V23990-P541-*3*-PM flow PIM 0 600V/6A Features flow PIM 0 housing ● Clip-in housing ● Trench Fieldstop IGBT's for low saturation losses ● Optional w/o BRC Target Applications 17mm housing 12mm housing ● Industrial drives ● Embedded drives Schematic Types ● V23990-P541-A38-PM ● V23990-P541-A39-PM ● V23990-P541-C38-PM w/o BRC ● V23990-P541-C39-PM w/o BRC Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 33 46 A 250 A 310 A2s 37 59 W Tjmax 150 °C VCE 600 V 12 12 A tp limited by Tjmax 18 A VCE ≤ 600V, Tj ≤ Top max 18 A 34 52 W ±20 V 6 360 µs V 175 °C Input Rectifier Diode Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp=10ms 50Hz half sine wave Tj=25°C Tj=Tjmax Th=80°C Tc=80°C Inverter IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Copyright by Vincotech Tj=Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 4 V23990-P541-*3*-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 12 12 A 12 A Inverter FWD Peak Repetitive Reverse Voltage DC forward current VRRM IF Th=80°C Tj=Tjmax Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C 26 39 W Tjmax 175 °C VCE 600 V 11 12 A 18 A 18 A 31 47 W ±20 V 6 µs Brake IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpuls Th=80°C Tc=80°C Tj=Tjmax tp limited by Tjmax VCE ≤ 600V, Tj ≤ Top max Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Th=80°C Tc=80°C Tj=Tjmax Tj≤150°C VGE=15V 360 V Tjmax 175 °C VRRM 600 V 11 12 A 12 A 23 35 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Brake FWD Peak Repetitive Reverse Voltage DC forward current IF Th=80°C Tc=80°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage Comparative tracking index Copyright by Vincotech Vis t=2s DC voltage CTI >200 2 Revision: 4 V23990-P541-*3*-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=150°C 0,8 1,16 1,13 0,90 0,78 8 11 1,6 Input Rectifier Diode Forward voltage VF 30 Threshold voltage (for power loss calc. only) Vto 30 Slope resistance (for power loss calc. only) rt 30 Reverse current Ir Thermal resistance chip to heatsink per chip 1500 RthJH Thermal grease thickness≤50um λ = 1 W/mK VGE(th) VCE=VGE V V mΩ 2 1,89 mA K/W Inverter IGBT Gate emitter threshold voltage Collector-emitter saturation voltage Collector-emitter cut-off current incl. Diode VCE(sat) 15 ICES 0 Gate-emitter leakage current IGES Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time 6 600 0 20 tr td(off) tf Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate RthJH Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 5 5,8 6,5 1 1,52 1,7 2,1 0,06 350 Rgoff=16 Ω Rgon=32 Ω 300 ±15 6 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω none td(on) Turn-on energy loss per pulse Thermal resistance chip to heatsink per chip 0,00009 12 10 8 11 118 134 87 116 0,07 0,10 0,15 0,19 ns mWs 368 f=1MHz 25 0 28 Tj=25°C pF 11 480 ±15 6 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 42 nC 2,78 K/W Inverter FWD Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip Copyright by Vincotech 6 Rgon=32 Ω 300 ±15 di(rec)max /dt Erec RthJH Thermal grease thickness≤50um λ = 1 W/mK 6 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1 1,64 1,56 8 8 73 163 0,23 0,43 569 338 0,04 0,09 3,68 3 2,5 V A ns µC A/µs mWs K/W Revision: 4 V23990-P541-*3*-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1 1,54 1,72 2,1 Brake IGBT Gate emitter threshold voltage VGE(th) VCE=VGE 0,00009 Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 30 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 0,06 350 none tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Rgoff=16 Ω Rgon=32 Ω ±15 300 6 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 11 11 8 11 112 127 87 100 0,08 0,11 0,14 0,17 ns mWs 368 f=1MHz 0 25 ±15 480 Tj=25°C pF 28 11 6 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 42 nC 3,06 K/W Brake FWD Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir trr Reverse recovered charge Qrr Reverse recovery energy Thermal resistance chip to heatsink per chip Rgon=32 Ω 600 IRRM Reverse recovery time Peak rate of fall of recovery current 6 Rgon=32 Ω ±15 300 di(rec)max /dt Erec RthJH 6 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1 1,63 1,56 2,5 60 7 7 96 165 0,23 0,23 442 268 0,04 0,09 Thermal grease thickness≤50um λ = 1 W/mK V µA A ns µC A/µs mWs 4,09 K/W 22000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P T=25°C R100=1486 Ω T=100°C Power dissipation constant % mW T=25°C 3,5 mW/K 4000 K B(25/50) Tol. ±3% T=25°C B-value B(25/100) Tol. ±3% T=25°C Copyright by Vincotech 5 210 B-value Vincotech NTC Reference -5 T=25°C K A 4 Revision: 4 V23990-P541-*3*-PM Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 20 IC (A) IC (A) 20 16 16 12 12 8 8 4 4 0 0 0 1 At tp = Tj = VGE from 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 5 250 µs 125 °C 7 V to 17 V in steps of 1 V Output inverter FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 10 IF (A) IC (A) 7 4 6 8 5 6 4 3 4 2 2 Tj = Tjmax-25°C 1 Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 0 0 0 At tp = VCE = 1 2 250 10 3 4 5 6 7 8 V9GE (V) 10 0,0 At tp = µs V Copyright by Vincotech 5 0,5 250 1,0 1,5 V F (V) 2,0 µs Revision: 4 V23990-P541-*3*-PM Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 0,30 E (mWs) E (mWs) 0,4 Eoff High T 0,25 Eon High T 0,3 Eoff Low T 0,20 Eon High T Eon Low T Eoff High T 0,2 0,15 Eon Low T Eoff Low T 0,10 0,1 0,05 0,0 0,00 0 2 4 6 8 10 I C (A) 0 12 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = 15 V Rgon = 32 Ω Rgoff = 16 Ω 50 100 150 200 250 RG( Ω ) 300 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = 15 V IC = 6 A Output inverter FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Output inverter FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,12 E (mWs) E (mWs) 0,15 Tj = Tjmax -25°C 0,10 0,12 Erec 0,08 0,09 Tj = Tjmax -25°C Erec 0,06 Tj = 25°C Erec 0,06 0,04 Erec 0,03 0,02 Tj = 25°C 0,00 0,00 0 2 4 6 8 10 I C (A) 0 12 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = 15 V Rgon = 32 Ω Copyright by Vincotech 50 100 150 200 250 R ( Ω ) G 300 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = 15 V IC = 6 A 6 Revision: 4 V23990-P541-*3*-PM Output Inverter Output inverter IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 t ( µs) t ( µs) 1,00 tdoff tdoff tf 0,10 0,10 tf tdon tr tdon 0,01 0,01 tr 0,00 0,00 0 2 4 6 8 10 I C (A) 12 0 With an inductive load at Tj = 125 °C VCE = 300 V VGE = 15 V Rgon = 32 Ω Rgoff = 16 Ω 50 100 150 200 250 R G ( Ω ) 300 With an inductive load at Tj = 125 °C VCE = 300 V VGE = 15 V IC = 6 A Output inverter FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) Output inverter FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,4 t rr( µs) t rr( µs) 0,25 trr 0,20 0,3 trr Tj = Tjmax -25°C Tj = Tjmax -25°C 0,15 trr 0,2 0,10 trr Tj = 25°C Tj = 25°C 0,1 0,05 0,0 0,00 0 2 At Tj = VCE = VGE = Rgon = 25/125 300 15 32 4 6 8 10 I C (A) 0 12 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 50 25/125 300 6 15 100 150 200 250 R g on ( Ω ) 300 °C V A V Revision: 4 V23990-P541-*3*-PM Output Inverter Output inverter FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 0,6 Qrr(mC) 0,5 Tj = Tjmax -25°C Qrr( µC) Qrr 0,5 Qrr 0,4 0,4 Tj = Tjmax -25°C 0,3 Qrr Tj = 25°C 0,3 Qrr 0,2 0,2 Tj = 25°C 0,1 0,1 0,0 0,0 0 At At Tj = VCE = VGE = Rgon = 2 4 25/125 300 15 32 6 8 10 I C (A) 0 12 50 At Tj = VR = IF = VGE = °C V V Ω Output inverter FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 25/125 300 6 15 100 150 200 R g on ( Ω) 300 °C V A V Output inverter FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 10 250 IrrM (A) IrrM (A) 12 Tj = Tjmax -25°C IRRM 10 IRRM 8 IRRM IRRM Tj = Tjmax - 25°C 8 Tj = 25°C 6 Tj = 25°C 6 4 4 2 2 0 0 0 At Tj = VCE = VGE = Rgon = 2 25/125 300 15 32 4 6 8 10 I C (A) 12 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 8 50 25/125 300 6 15 100 150 200 250 R gon ( Ω ) 300 °C V A V Revision: 4 V23990-P541-*3*-PM Output Inverter Output inverter FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) 1400 1000 direc / dt (A/ µs) dI0/dt dIrec/dt direc / dt (A/µ s) Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dI0/dt dIrec/dt 1200 800 1000 600 800 600 400 400 200 200 0 0 0 At Tj = VCE = VGE = Rgon = 2 25/125 300 15 32 4 6 8 10 I C (A) 0 12 At Tj = VR = IF = VGE = °C V V Ω Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 150 200 250 R gon ( Ω ) 300 °C V A V Output inverter FWD ZthJH (K/W) Zth-JH (K/W) 101 100 0 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 25/125 300 6 15 100 Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 10 50 10 -2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 10-5 At D= RthJH = 10-4 10-2 10-1 100 t p (s) 1 10-5 1010 At D= RthJH = tp / T 2,78 Thermal grease R (C/W) 0,07 0,34 0,93 0,64 0,44 0,37 10-3 K/W IGBT thermal model values Phase change interface Tau (s) 3,3E+00 3,8E-01 8,3E-02 1,3E-02 2,6E-03 3,2E-04 Copyright by Vincotech R (C/W) 0,06 0,27 0,75 0,52 0,36 0,30 10-4 R (C/W) 0,04 0,20 0,88 0,69 0,78 0,44 9 10-2 10-1 100 t p (s) 10110 tp / T 3,68 Thermal grease Tau (s) 2,7E+00 3,1E-01 6,7E-02 1,1E-02 2,1E-03 2,6E-04 10-3 K/W FWD thermal model values Phase change interface Tau (s) 1,4E+01 7,0E-01 1,2E-01 2,0E-02 4,1E-03 7,3E-04 R (C/W) 0,04 0,16 0,71 0,56 0,63 0,36 Tau (s) 1,1E+01 5,7E-01 9,4E-02 1,6E-02 3,3E-03 5,9E-04 Revision: 4 V23990-P541-*3*-PM Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 14 IC (A) Ptot (W) 70 60 12 50 10 40 8 30 6 20 4 10 2 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 Output inverter FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V Output inverter FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 14 IF (A) Ptot (W) 50 150 12 40 10 30 8 6 20 4 10 2 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = °C Copyright by Vincotech 10 50 175 100 150 T h ( o C) 200 °C Revision: 4 V23990-P541-*3*-PM Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) VGE = f(QGE) 3 18 IC (A) VGE (V) 10 Output inverter IGBT Figure 26 Gate voltage vs Gate charge 16 14 102 120V 480V 12 10uS 100uS 10 10 1 100mS 8 1mS DC 10mS 6 100 4 2 0 10-1 10 0 At D= Th = VGE = 10 1 10 V CE (V) 2 0 103 At IC = single pulse 80 ºC 15 V Tjmax ºC Tj = Output inverter IGBT Figure 27 10 20 6 30 50 Q g (nC) 60 A Output inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) 40 Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) 16 IC(sc) tsc (µS) 100 14 80 12 10 60 8 40 6 4 20 2 0 0 10 11 12 13 14 V GE (V) 12 15 14 16 At VCE = 600 V At VCE ≤ 400 V Tj ≤ 150 ºC Tj = 150 ºC Copyright by Vincotech 11 18 V GE (V) 20 Revision: 4 V23990-P541-*3*-PM IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 15 IC MAX 12 Ic CHIP Ic MODULE 9 VCE MAX 6 3 0 0 100 200 300 At Tj = Tjmax-25 Uccminus=Uccplus ºC Switching mode : 3 level switching Copyright by Vincotech 400 500 600 700 V CE (V) 12 Revision: 4 V23990-P541-*3*-PM Brake Brake IGBT Figure 1 Typical output characteristics IC = f(VCE) Brake IGBT Figure 2 Typical output characteristics IC = f(VCE) 20 IC (A) IC (A) 20 16 16 12 12 8 8 4 4 0 0 0 1 At tp = Tj = VGE from 2 3 4 V CE (V) 5 0 1 At tp = Tj = VGE from µs 250 25 °C 7 V to 17 V in steps of 1 V Brake IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 2 3 V CE (V) 4 250 µs 125 °C 7 V to 17 V in steps of 1 V Brake FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 25 IF (A) IC (A) 7 5 6 20 5 15 4 3 10 2 5 1 Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 4 6 8 V GE (V) 0,0 10 At tp = µs V Copyright by Vincotech 13 0,5 250 1,0 1,5 2,0 2,5 V F (V) 3,0 µs Revision: 4 V23990-P541-*3*-PM Brake Brake IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Brake IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 0,4 0,25 E (mWs) E (mWs) Eoff Eon Eoff Eon Tj = Tjmax -25°C 0,20 0,3 Eon Eon 0,15 Tj = Tjmax -25°C 0,2 Eoff 0,10 Eoff Tj = 25°C 0,1 0,05 Tj = 25°C 0,00 0,0 0 2 4 6 8 10 I C (A) 12 0 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = 15 V Rgon = 32 Ω Rgoff = 16 Ω 50 100 150 200 R G ( Ω ) 300 250 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = 15 V IC = 6 A Brake FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Brake FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,10 E (mWs) E (mWs) 0,12 Erec 0,10 Tj = Tjmax -25°C 0,08 0,08 Tj = Tjmax - 25°C Erec 0,06 Tj = 25°C 0,06 Erec 0,04 0,04 Erec Tj = 25°C 0,02 0,02 0,00 0,00 0 2 4 6 8 10 I C (A) 0 12 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = 15 V Rgon = 32 Ω Copyright by Vincotech 50 100 150 200 250 R G ( Ω ) 300 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = 15 V IC = 6 A 14 Revision: 4 V23990-P541-*3*-PM Brake Brake IGBT Brake IGBT 1,00 1,00 t ( µs) Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( µs) Figure 9 Typical switching times as a function of collector current t = f(IC) tdoff tdoff tf 0,10 0,10 tf tdon tr tdon 0,01 0,01 tr 0,00 0,00 0 2 4 6 8 I C (A) 10 12 0 With an inductive load at Tj = 125 °C VCE = 300 V VGE = 15 V Rgon = 32 Ω Rgoff = 16 Ω 50 100 150 200 R G ( Ω ) 300 250 With an inductive load at Tj = 125 °C VCE = 300 V VGE = 15 V IC = 6 A Brake IGBT Figure 11 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) Brake FWD Figure 12 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 101 ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 10-4 10-3 At Thermal grease RthJH = 3,06 D= K/W Copyright by Vincotech 10-2 10-1 100 t p (s) 101 10 10 tp / T Phase change interface RthJH = 0,60 K/W -5 10 -4 At Thermal grease RthJH = 4,09 15 10 -3 D= K/W 10 -2 10 -1 10 0 t p (s) 1 10 10 tp / T Phase change interface RthJH = 1,27 K/W Revision: 4 V23990-P541-*3*-PM Brake Brake IGBT Figure 13 Power dissipation as a function of heatsink temperature Ptot = f(Th) Brake IGBT Figure 14 Collector current as a function of heatsink temperature IC = f(Th) 15 IC (A) Ptot (W) 60 50 12 40 9 30 6 20 3 10 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = ºC 175 Brake FWD Figure 15 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 200 ºC V Brake FWD Figure 16 Forward current as a function of heatsink temperature IF = f(Th) 15 Ptot (W) IF (A) 50 T h ( o C) 40 12 30 9 20 6 10 3 0 0 0 At Tj = 50 175 100 150 Th ( o C) 200 0 At Tj = ºC Copyright by Vincotech 16 50 175 100 150 Th ( o C) 200 ºC Revision: 4 V23990-P541-*3*-PM Input Rectifier Bridge Rectifier diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 IF (A) ZthJC (K/W) 100 80 100 60 40 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 20 Tj = Tjmax-25°C Tj = 25°C 0 0,0 0,4 0,8 1,2 1,6 2,0 10 V F (V) At tp = 10-5 10-4 At D= RthJH = µs 250 -2 Rectifier diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 10-2 10-1 t p (s) 101 10 tp / T 1,89 K/W Rectifier diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 100 100 Ptot (W) IF (A) 60 50 80 40 60 30 40 20 20 10 0 0 0 At Tj = 30 150 60 90 120 T h ( o C) 0 150 At Tj = ºC Copyright by Vincotech 17 30 150 60 90 120 T h ( o C) 150 ºC Revision: 4 V23990-P541-*3*-PM Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) Thermistor Figure 2 Typical NTC resistance values B25/100⋅ 1 − 1 T T 25 NTC-typical temperature characteristic 24000 R/Ω R(T ) = R25 ⋅ e [Ω] 20000 16000 12000 8000 4000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 18 Revision: 4 V23990-P541-*3*-PM Switching Definitions Output Inverter General conditions Tj = 125 °C Rgon = 32 Ω Rgoff = 16 Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 240 tdoff % IC % VCE 200 100 VGE 90% VCE 90% 160 75 IC 120 VCE 50 tEoff 80 tdon 25 VGE 40 IC 1% VGE VGE 10% 0 0 -25 -0,2 VCE 3% IC 10% tEon -40 0 0,2 0,4 0,6 3 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0 15 300 6 0,13 0,44 3,05 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 3,1 0 15 300 6 0,01 0,13 time(us) 3,2 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,15 Turn-on Switching Waveforms & definition of tr 120 240 fitted % VCE IC % 100 200 IC 90% 80 160 60 120 IC 60% 40 VCE IC 90% 80 IC 40% 20 tr 40 IC10% 0 Ic 0 tf -20 -0,1 VC (100%) = IC (100%) = tf = IC 10% -40 0 0,1 300 6 0,12 Copyright by Vincotech 0,2 0,3 time (us) 0,4 3 VC (100%) = IC (100%) = tr = V A µs 19 3,05 3,1 300 6 0,01 3,15 time(us) 3,2 V A µs Revision: 4 V23990-P541-*3*-PM Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 200 % IC 1% 100 160 Eoff Poff Pon % 75 120 Eon 50 80 25 40 VGE 90% VGE 10% 0 0 tEoff -25 -0,1 VCE 3% tEon -40 0 0,1 0,2 0,3 0,4 0,5 2,9 time (us) Poff (100%) = Eoff (100%) = tEoff = 1,79 0,19 0,44 3 Pon (100%) = Eon (100%) = tEon = kW mJ µs Figure 7 Gate voltage vs Gate charge (measured) Output inverter FWD 3,1 1,79 0,10 0,13 3,2 time(us) 3,3 kW mJ µs Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 120 VGE (V) 20 Id % 80 15 trr 40 10 Vd 0 fitted IRRM 10% -40 5 -80 0 -120 IRRM 90% IRRM 100% -160 -5 -20 -10 0 10 20 30 40 50 2,8 2,9 3 3,1 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = 0 15 300 6 43,26 Copyright by Vincotech 3,2 3,3 3,4 time(us) Qg (nC) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 20 300 6 8 0,16 V A A µs Revision: 4 V23990-P541-*3*-PM Switching Definitions Output Inverter Output inverter FWD Figure 9 Output inverter FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 125 150 % % Id 100 tQrr 50 tErec 75 Qrr 0 Erec 100 50 25 -50 Prec 0 -100 -25 -150 2,8 Id (100%) = Qrr (100%) = tQrr = 3 3,2 6 0,43 0,33 Copyright by Vincotech 3,4 time(us) 2,8 3,6 Prec (100%) = Erec (100%) = tErec = A µC µs 21 3 3,2 1,79 0,09 0,33 3,4 time(us) 3,6 kW mJ µs Revision: 4 V23990-P541-*3*-PM Ordering Code and Marking - Features - Outline - Pinout Ordering Code & Marking Version Ordering Code in DataMatrix as in packaging barcode as without thermal paste 12mm housing V23990-P541-A38-PM V23990-P541-A39-PM V23990-P541-C38-PM V23990-P541-C39-PM P541-A38-PM P541-A39-PM P541-C38-PM P541-C39-PM P541-A38 P541-A39 P541-C38 P541-C39 without thermal paste 17mm housing without thermal paste, w/o brake, 12mm housing without thermal paste, w/o brake, 17mm housing Outline Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Pin Table X 25,5 25,5 22,8 20,1 16,2 13,5 10,8 8,1 5,4 2,7 0 0 0 7,5 7,5 15 15 22,8 25,5 33,5 33,5 33,5 33,5 Y 2,7 0 0 0 0 0 0 0 0 0 0 19,8 22,5 19,8 22,5 19,8 22,5 22,5 22,5 22,5 15 7,5 0 Pinout Copyright by Vincotech 22 Revision: 4 V23990-P541-*3*-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 23 Revision: 4