V23990 P541 x3x D4 14

V23990-P541-*3*-PM
flow PIM 0
600V/6A
Features
flow PIM 0 housing
● Clip-in housing
● Trench Fieldstop IGBT's for low saturation losses
● Optional w/o BRC
Target Applications
17mm housing
12mm housing
● Industrial drives
● Embedded drives
Schematic
Types
● V23990-P541-A38-PM
● V23990-P541-A39-PM
● V23990-P541-C38-PM w/o BRC
● V23990-P541-C39-PM w/o BRC
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
33
46
A
250
A
310
A2s
37
59
W
Tjmax
150
°C
VCE
600
V
12
12
A
tp limited by Tjmax
18
A
VCE ≤ 600V, Tj ≤ Top max
18
A
34
52
W
±20
V
6
360
µs
V
175
°C
Input Rectifier Diode
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms
50Hz half sine wave
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
Inverter IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Copyright by Vincotech
Tj=Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 4
V23990-P541-*3*-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
12
12
A
12
A
Inverter FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Th=80°C
Tj=Tjmax
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
26
39
W
Tjmax
175
°C
VCE
600
V
11
12
A
18
A
18
A
31
47
W
±20
V
6
µs
Brake IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpuls
Th=80°C
Tc=80°C
Tj=Tjmax
tp limited by Tjmax
VCE ≤ 600V, Tj ≤ Top max
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Th=80°C
Tc=80°C
Tj=Tjmax
Tj≤150°C
VGE=15V
360
V
Tjmax
175
°C
VRRM
600
V
11
12
A
12
A
23
35
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Brake FWD
Peak Repetitive Reverse Voltage
DC forward current
IF
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
Comparative tracking index
Copyright by Vincotech
Vis
t=2s
DC voltage
CTI
>200
2
Revision: 4
V23990-P541-*3*-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=150°C
0,8
1,16
1,13
0,90
0,78
8
11
1,6
Input Rectifier Diode
Forward voltage
VF
30
Threshold voltage (for power loss calc. only)
Vto
30
Slope resistance (for power loss calc. only)
rt
30
Reverse current
Ir
Thermal resistance chip to heatsink per chip
1500
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
VGE(th)
VCE=VGE
V
V
mΩ
2
1,89
mA
K/W
Inverter IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
Collector-emitter cut-off current incl. Diode
VCE(sat)
15
ICES
0
Gate-emitter leakage current
IGES
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
6
600
0
20
tr
td(off)
tf
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
RthJH
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
5
5,8
6,5
1
1,52
1,7
2,1
0,06
350
Rgoff=16 Ω
Rgon=32 Ω
300
±15
6
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
none
td(on)
Turn-on energy loss per pulse
Thermal resistance chip to heatsink per chip
0,00009
12
10
8
11
118
134
87
116
0,07
0,10
0,15
0,19
ns
mWs
368
f=1MHz
25
0
28
Tj=25°C
pF
11
480
±15
6
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
42
nC
2,78
K/W
Inverter FWD
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
Copyright by Vincotech
6
Rgon=32 Ω
300
±15
di(rec)max
/dt
Erec
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
6
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1
1,64
1,56
8
8
73
163
0,23
0,43
569
338
0,04
0,09
3,68
3
2,5
V
A
ns
µC
A/µs
mWs
K/W
Revision: 4
V23990-P541-*3*-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1
1,54
1,72
2,1
Brake IGBT
Gate emitter threshold voltage
VGE(th)
VCE=VGE
0,00009
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
30
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0,06
350
none
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Rgoff=16 Ω
Rgon=32 Ω
±15
300
6
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
11
11
8
11
112
127
87
100
0,08
0,11
0,14
0,17
ns
mWs
368
f=1MHz
0
25
±15
480
Tj=25°C
pF
28
11
6
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
42
nC
3,06
K/W
Brake FWD
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
trr
Reverse recovered charge
Qrr
Reverse recovery energy
Thermal resistance chip to heatsink per chip
Rgon=32 Ω
600
IRRM
Reverse recovery time
Peak rate of fall of recovery current
6
Rgon=32 Ω
±15
300
di(rec)max
/dt
Erec
RthJH
6
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1
1,63
1,56
2,5
60
7
7
96
165
0,23
0,23
442
268
0,04
0,09
Thermal grease
thickness≤50um
λ = 1 W/mK
V
µA
A
ns
µC
A/µs
mWs
4,09
K/W
22000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
T=25°C
R100=1486 Ω
T=100°C
Power dissipation constant
%
mW
T=25°C
3,5
mW/K
4000
K
B(25/50)
Tol. ±3%
T=25°C
B-value
B(25/100)
Tol. ±3%
T=25°C
Copyright by Vincotech
5
210
B-value
Vincotech NTC Reference
-5
T=25°C
K
A
4
Revision: 4
V23990-P541-*3*-PM
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
20
IC (A)
IC (A)
20
16
16
12
12
8
8
4
4
0
0
0
1
At
tp =
Tj =
VGE from
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
Output inverter FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
10
IF (A)
IC (A)
7
4
6
8
5
6
4
3
4
2
2
Tj = Tjmax-25°C
1
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
1
2
250
10
3
4
5
6
7
8
V9GE (V)
10
0,0
At
tp =
µs
V
Copyright by Vincotech
5
0,5
250
1,0
1,5
V F (V)
2,0
µs
Revision: 4
V23990-P541-*3*-PM
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
0,30
E (mWs)
E (mWs)
0,4
Eoff High T
0,25
Eon High T
0,3
Eoff Low T
0,20
Eon High T
Eon Low T
Eoff High T
0,2
0,15
Eon Low T
Eoff Low T
0,10
0,1
0,05
0,0
0,00
0
2
4
6
8
10
I C (A)
0
12
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
Rgon =
32
Ω
Rgoff =
16
Ω
50
100
150
200
250
RG( Ω )
300
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
IC =
6
A
Output inverter FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Output inverter FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,12
E (mWs)
E (mWs)
0,15
Tj = Tjmax -25°C
0,10
0,12
Erec
0,08
0,09
Tj = Tjmax -25°C
Erec
0,06
Tj = 25°C
Erec
0,06
0,04
Erec
0,03
0,02
Tj = 25°C
0,00
0,00
0
2
4
6
8
10
I C (A)
0
12
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
Rgon =
32
Ω
Copyright by Vincotech
50
100
150
200
250 R ( Ω )
G
300
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
IC =
6
A
6
Revision: 4
V23990-P541-*3*-PM
Output Inverter
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t ( µs)
t ( µs)
1,00
tdoff
tdoff
tf
0,10
0,10
tf
tdon
tr
tdon
0,01
0,01
tr
0,00
0,00
0
2
4
6
8
10
I C (A)
12
0
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
15
V
Rgon =
32
Ω
Rgoff =
16
Ω
50
100
150
200
250
R G ( Ω ) 300
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
15
V
IC =
6
A
Output inverter FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
Output inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,4
t rr( µs)
t rr( µs)
0,25
trr
0,20
0,3
trr
Tj = Tjmax -25°C
Tj = Tjmax -25°C
0,15
trr
0,2
0,10
trr
Tj = 25°C
Tj = 25°C
0,1
0,05
0,0
0,00
0
2
At
Tj =
VCE =
VGE =
Rgon =
25/125
300
15
32
4
6
8
10
I C (A)
0
12
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
50
25/125
300
6
15
100
150
200
250
R g on ( Ω )
300
°C
V
A
V
Revision: 4
V23990-P541-*3*-PM
Output Inverter
Output inverter FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
0,6
Qrr(mC)
0,5
Tj = Tjmax -25°C
Qrr( µC)
Qrr
0,5
Qrr
0,4
0,4
Tj = Tjmax -25°C
0,3
Qrr
Tj = 25°C
0,3
Qrr
0,2
0,2
Tj = 25°C
0,1
0,1
0,0
0,0
0
At
At
Tj =
VCE =
VGE =
Rgon =
2
4
25/125
300
15
32
6
8
10
I C (A)
0
12
50
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
25/125
300
6
15
100
150
200
R g on ( Ω)
300
°C
V
A
V
Output inverter FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
10
250
IrrM (A)
IrrM (A)
12
Tj = Tjmax -25°C
IRRM
10
IRRM
8
IRRM
IRRM
Tj = Tjmax - 25°C
8
Tj = 25°C
6
Tj = 25°C
6
4
4
2
2
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
2
25/125
300
15
32
4
6
8
10
I C (A)
12
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
8
50
25/125
300
6
15
100
150
200
250
R gon ( Ω )
300
°C
V
A
V
Revision: 4
V23990-P541-*3*-PM
Output Inverter
Output inverter FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
1400
1000
direc / dt (A/ µs)
dI0/dt
dIrec/dt
direc / dt (A/µ s)
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dI0/dt
dIrec/dt
1200
800
1000
600
800
600
400
400
200
200
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
2
25/125
300
15
32
4
6
8
10
I C (A)
0
12
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
150
200
250
R gon ( Ω ) 300
°C
V
A
V
Output inverter FWD
ZthJH (K/W)
Zth-JH (K/W)
101
100
0
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
25/125
300
6
15
100
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
10
50
10
-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
10-5
At
D=
RthJH =
10-4
10-2
10-1
100
t p (s)
1
10-5
1010
At
D=
RthJH =
tp / T
2,78
Thermal grease
R (C/W)
0,07
0,34
0,93
0,64
0,44
0,37
10-3
K/W
IGBT thermal model values
Phase change interface
Tau (s)
3,3E+00
3,8E-01
8,3E-02
1,3E-02
2,6E-03
3,2E-04
Copyright by Vincotech
R (C/W)
0,06
0,27
0,75
0,52
0,36
0,30
10-4
R (C/W)
0,04
0,20
0,88
0,69
0,78
0,44
9
10-2
10-1
100
t p (s)
10110
tp / T
3,68
Thermal grease
Tau (s)
2,7E+00
3,1E-01
6,7E-02
1,1E-02
2,1E-03
2,6E-04
10-3
K/W
FWD thermal model values
Phase change interface
Tau (s)
1,4E+01
7,0E-01
1,2E-01
2,0E-02
4,1E-03
7,3E-04
R (C/W)
0,04
0,16
0,71
0,56
0,63
0,36
Tau (s)
1,1E+01
5,7E-01
9,4E-02
1,6E-02
3,3E-03
5,9E-04
Revision: 4
V23990-P541-*3*-PM
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
14
IC (A)
Ptot (W)
70
60
12
50
10
40
8
30
6
20
4
10
2
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
175
Output inverter FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
Output inverter FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
14
IF (A)
Ptot (W)
50
150
12
40
10
30
8
6
20
4
10
2
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
°C
Copyright by Vincotech
10
50
175
100
150
T h ( o C)
200
°C
Revision: 4
V23990-P541-*3*-PM
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
VGE = f(QGE)
3
18
IC (A)
VGE (V)
10
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
16
14
102
120V
480V
12
10uS
100uS
10
10
1
100mS
8
1mS
DC
10mS
6
100
4
2
0
10-1
10
0
At
D=
Th =
VGE =
10
1
10
V CE (V)
2
0
103
At
IC =
single pulse
80
ºC
15
V
Tjmax
ºC
Tj =
Output inverter IGBT
Figure 27
10
20
6
30
50
Q g (nC) 60
A
Output inverter IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
40
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
16
IC(sc)
tsc (µS)
100
14
80
12
10
60
8
40
6
4
20
2
0
0
10
11
12
13
14
V GE (V)
12
15
14
16
At
VCE =
600
V
At
VCE ≤
400
V
Tj ≤
150
ºC
Tj =
150
ºC
Copyright by Vincotech
11
18
V GE (V)
20
Revision: 4
V23990-P541-*3*-PM
IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
15
IC MAX
12
Ic CHIP
Ic MODULE
9
VCE
MAX
6
3
0
0
100
200
300
At
Tj =
Tjmax-25
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
Copyright by Vincotech
400
500
600
700
V CE (V)
12
Revision: 4
V23990-P541-*3*-PM
Brake
Brake IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Brake IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
20
IC (A)
IC (A)
20
16
16
12
12
8
8
4
4
0
0
0
1
At
tp =
Tj =
VGE from
2
3
4
V CE (V)
5
0
1
At
tp =
Tj =
VGE from
µs
250
25
°C
7 V to 17 V in steps of 1 V
Brake IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
2
3
V CE (V)
4
250
µs
125
°C
7 V to 17 V in steps of 1 V
Brake FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
25
IF (A)
IC (A)
7
5
6
20
5
15
4
3
10
2
5
1
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
4
6
8
V GE (V)
0,0
10
At
tp =
µs
V
Copyright by Vincotech
13
0,5
250
1,0
1,5
2,0
2,5
V F (V)
3,0
µs
Revision: 4
V23990-P541-*3*-PM
Brake
Brake IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Brake IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
0,4
0,25
E (mWs)
E (mWs)
Eoff
Eon
Eoff
Eon
Tj = Tjmax -25°C
0,20
0,3
Eon
Eon
0,15
Tj = Tjmax -25°C
0,2
Eoff
0,10
Eoff
Tj = 25°C
0,1
0,05
Tj = 25°C
0,00
0,0
0
2
4
6
8
10
I C (A)
12
0
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
Rgon =
32
Ω
Rgoff =
16
Ω
50
100
150
200
R G ( Ω ) 300
250
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
IC =
6
A
Brake FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Brake FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,10
E (mWs)
E (mWs)
0,12
Erec
0,10
Tj = Tjmax -25°C
0,08
0,08
Tj = Tjmax - 25°C
Erec
0,06
Tj = 25°C
0,06
Erec
0,04
0,04
Erec
Tj = 25°C
0,02
0,02
0,00
0,00
0
2
4
6
8
10
I C (A)
0
12
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
Rgon =
32
Ω
Copyright by Vincotech
50
100
150
200
250
R G ( Ω ) 300
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
IC =
6
A
14
Revision: 4
V23990-P541-*3*-PM
Brake
Brake IGBT
Brake IGBT
1,00
1,00
t ( µs)
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( µs)
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
tdoff
tdoff
tf
0,10
0,10
tf
tdon
tr
tdon
0,01
0,01
tr
0,00
0,00
0
2
4
6
8
I C (A)
10
12
0
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
15
V
Rgon =
32
Ω
Rgoff =
16
Ω
50
100
150
200
R G ( Ω ) 300
250
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
15
V
IC =
6
A
Brake IGBT
Figure 11
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Brake FWD
Figure 12
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
101
ZthJH (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
10-4
10-3
At
Thermal grease
RthJH =
3,06
D=
K/W
Copyright by Vincotech
10-2
10-1
100
t p (s)
101 10
10
tp / T
Phase change interface
RthJH =
0,60
K/W
-5
10
-4
At
Thermal grease
RthJH =
4,09
15
10
-3
D=
K/W
10
-2
10
-1
10
0
t p (s)
1
10 10
tp / T
Phase change interface
RthJH =
1,27
K/W
Revision: 4
V23990-P541-*3*-PM
Brake
Brake IGBT
Figure 13
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Brake IGBT
Figure 14
Collector current as a
function of heatsink temperature
IC = f(Th)
15
IC (A)
Ptot (W)
60
50
12
40
9
30
6
20
3
10
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
175
Brake FWD
Figure 15
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
200
ºC
V
Brake FWD
Figure 16
Forward current as a
function of heatsink temperature
IF = f(Th)
15
Ptot (W)
IF (A)
50
T h ( o C)
40
12
30
9
20
6
10
3
0
0
0
At
Tj =
50
175
100
150
Th ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
16
50
175
100
150
Th ( o C)
200
ºC
Revision: 4
V23990-P541-*3*-PM
Input Rectifier Bridge
Rectifier diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
IF (A)
ZthJC (K/W)
100
80
100
60
40
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
20
Tj = Tjmax-25°C
Tj = 25°C
0
0,0
0,4
0,8
1,2
1,6
2,0
10
V F (V)
At
tp =
10-5
10-4
At
D=
RthJH =
µs
250
-2
Rectifier diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
10-2
10-1
t p (s)
101 10
tp / T
1,89
K/W
Rectifier diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
100
100
Ptot (W)
IF (A)
60
50
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
30
150
60
90
120
T h ( o C)
0
150
At
Tj =
ºC
Copyright by Vincotech
17
30
150
60
90
120
T h ( o C)
150
ºC
Revision: 4
V23990-P541-*3*-PM
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
Thermistor
Figure 2
Typical NTC resistance values



 B25/100⋅ 1 − 1  
 T T 

25  


NTC-typical temperature characteristic
24000
R/Ω
R(T ) = R25 ⋅ e
[Ω]
20000
16000
12000
8000
4000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
18
Revision: 4
V23990-P541-*3*-PM
Switching Definitions Output Inverter
General conditions
Tj
= 125 °C
Rgon
= 32 Ω
Rgoff
= 16 Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
125
240
tdoff
%
IC
%
VCE
200
100
VGE 90%
VCE 90%
160
75
IC
120
VCE
50
tEoff
80
tdon
25
VGE
40
IC 1%
VGE
VGE 10%
0
0
-25
-0,2
VCE 3%
IC 10%
tEon
-40
0
0,2
0,4
0,6
3
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0
15
300
6
0,13
0,44
3,05
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
3,1
0
15
300
6
0,01
0,13
time(us)
3,2
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,15
Turn-on Switching Waveforms & definition of tr
120
240
fitted
%
VCE
IC
%
100
200
IC 90%
80
160
60
120
IC 60%
40
VCE
IC 90%
80
IC 40%
20
tr
40
IC10%
0
Ic
0
tf
-20
-0,1
VC (100%) =
IC (100%) =
tf =
IC 10%
-40
0
0,1
300
6
0,12
Copyright by Vincotech
0,2
0,3
time (us)
0,4
3
VC (100%) =
IC (100%) =
tr =
V
A
µs
19
3,05
3,1
300
6
0,01
3,15
time(us)
3,2
V
A
µs
Revision: 4
V23990-P541-*3*-PM
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
200
%
IC 1%
100
160
Eoff
Poff
Pon
%
75
120
Eon
50
80
25
40
VGE 90%
VGE 10%
0
0
tEoff
-25
-0,1
VCE 3%
tEon
-40
0
0,1
0,2
0,3
0,4
0,5
2,9
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
1,79
0,19
0,44
3
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Figure 7
Gate voltage vs Gate charge (measured)
Output inverter FWD
3,1
1,79
0,10
0,13
3,2
time(us)
3,3
kW
mJ
µs
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
120
VGE (V)
20
Id
%
80
15
trr
40
10
Vd
0
fitted
IRRM 10%
-40
5
-80
0
-120
IRRM 90%
IRRM 100%
-160
-5
-20
-10
0
10
20
30
40
50
2,8
2,9
3
3,1
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
0
15
300
6
43,26
Copyright by Vincotech
3,2
3,3
3,4
time(us)
Qg (nC)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
20
300
6
8
0,16
V
A
A
µs
Revision: 4
V23990-P541-*3*-PM
Switching Definitions Output Inverter
Output inverter FWD
Figure 9
Output inverter FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
125
150
%
%
Id
100
tQrr
50
tErec
75
Qrr
0
Erec
100
50
25
-50
Prec
0
-100
-25
-150
2,8
Id (100%) =
Qrr (100%) =
tQrr =
3
3,2
6
0,43
0,33
Copyright by Vincotech
3,4
time(us)
2,8
3,6
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
21
3
3,2
1,79
0,09
0,33
3,4
time(us)
3,6
kW
mJ
µs
Revision: 4
V23990-P541-*3*-PM
Ordering Code and Marking - Features - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
in DataMatrix as
in packaging barcode as
without thermal paste 12mm housing
V23990-P541-A38-PM
V23990-P541-A39-PM
V23990-P541-C38-PM
V23990-P541-C39-PM
P541-A38-PM
P541-A39-PM
P541-C38-PM
P541-C39-PM
P541-A38
P541-A39
P541-C38
P541-C39
without thermal paste 17mm housing
without thermal paste, w/o brake, 12mm housing
without thermal paste, w/o brake, 17mm housing
Outline
Pin
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Pin Table
X
25,5
25,5
22,8
20,1
16,2
13,5
10,8
8,1
5,4
2,7
0
0
0
7,5
7,5
15
15
22,8
25,5
33,5
33,5
33,5
33,5
Y
2,7
0
0
0
0
0
0
0
0
0
0
19,8
22,5
19,8
22,5
19,8
22,5
22,5
22,5
22,5
15
7,5
0
Pinout
Copyright by Vincotech
22
Revision: 4
V23990-P541-*3*-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
23
Revision: 4