V23990 P849 x5x D7 19

V23990-P849-*5*-PM
application sheet
rd
Inverter Application
flow PIM 0 3 gen
1200 V / 8 A
General conditions
3phase SPWM
V GEon = 15 V
V GEoff = -15 V
R gon = 32 Ω
R goff = 32 Ω
Figure 1
IGBT
Figure 2
Typical average static loss as a function of output current
P loss = f(I out)
FWD
Typical average static loss as a function of output current
P loss = f(I out)
Ploss (W)
16
Ploss (W)
25
Mi*cosfi = 1
Mi*cosf i= -1
14
20
12
10
15
8
10
6
4
5
2
Mi*cosfi = 1
Mi*cosfi = -1
0
0
0
At
Tj =
2
4
125
6
8
10
12
14
0
16
Iout (A)
4
6
8
10
12
14
16
Iout (A)
At
Tj =
°C
Mi*cosφ from -1 to 1 in steps of 0,2
125
°C
Mi*cosφ from -1 to 1 in steps of 0,2
Figure 3
IGBT
Typical average switching loss
as a function of output current
Figure 4
P loss = f(I out)
18
fsw = 16kHz
16
FWD
Typical average switching loss
as a function of output current
Ploss (W)
Ploss (W)
2
14
P loss = f(I out)
8
fsw = 16kHz
7
6
12
5
10
4
8
3
6
2
4
1
2
fsw = 2kHz
fsw = 2kHz
0
0
0
At
Tj =
2
125
4
6
8
10
12
14
Iout (A)
0
16
4
6
8
10
12
14
16
Iout (A)
At
Tj =
°C
DC link = 600
V
f sw from 2 kHz to 16 kHz in steps of factor 2
copyright Vincotech
2
125
°C
DC link = 600
V
f sw from 2 kHz to 16 kHz in steps of factor 2
1
19 Mar. 2016 / Revision 7
V23990-P849-*5*-PM
application sheet
rd
Inverter Application
flow PIM 0 3 gen
Figure 5
Phase
1200 V / 8 A
Figure 6
Typical available 50Hz output current
as a function Mi*cosφ
I out = f(Mi*cos φ )
Phase
Typical available 50Hz output current
as a function of switching frequency I out = f(f sw)
12
12
Ts = 60 °C
Iout (A)
Iout (A)
Ts = 60 °C
Ts = 100 °C
10
10
8
8
6
6
4
Ts = 100 °C
4
2
2
0
-1,0
-0,8
At
Tj =
-0,6
125
-0,4
-0,2
0,0
0,2
0,4
0,6
0
0,8
1,0
Mi*cos φ
1
At
Tj =
°C
DC link = 600
V
f sw =
4
kHz
T s from
60 °C to 100 °C in steps of 5 °C
10
125
DC link = 600
Mi*cos φ =0,8
T s from
Figure 7
Phase
-0,6
60 °C to 100 °C in steps of 5 °C
Phase
12
Iout (Apeak)
Mi*cosfi
11,0-12,0
V
Typical available 0Hz output current as a function
of switching frequency
Ioutpeak = f(fsw)
-1,0
-0,8
100
°C
Figure 8
Typical available 50Hz output current as a function of
Mi*cos φ and switching frequency
Iout = f(fsw, Mi*cos φ)
Iout (A)
fsw (kHz)
Th = 60°C
10
-0,4
8
10,0-11,0
-0,2
Th = 100°C
0,0
6
9,0-10,0
0,2
0,4
4
8,0-9,0
0,6
2
0,8
7,0-8,0
1,0
1
2
4
8
16
32
64
0
f sw (kHz)
At
Tj =
1
10
fsw (kHz)
125
°C
At
Tj =
DC link = 600
Ts =
80
V
°C
DC link = 600
V
T s from
60 °C to 100 °C in steps of 5 °C
Mi =
copyright Vincotech
2
125
100
°C
0
19 Mar. 2016 / Revision 7
V23990-P849-*5*-PM
application sheet
rd
Inverter Application
flow PIM 0 3 gen
Figure 9
Inverter
Figure 10
Inverter
Typical efficiency as a function of output power
efficiency=f(P out)
efficiency (%)
Typical available peak output power as a function of
heatsink temperature
P out=f(T s)
Pout (kW)
1200 V / 8 A
6
2kHz
5
16kHz
100
99
2kHz
98
97
4
16kHz
96
3
95
94
2
93
92
1
91
0
90
60
65
At
Tj =
DC link =
Mi =
cos φ =
f sw from
70
75
125
°C
600
1
V
80
85
90
95
100
Ts ( o C)
0
At
Tj =
DC link =
Mi =
cos φ =
f sw from
0,80
2 kHz to 16 kHz in steps of factor 2
Figure 11
2
4
125
°C
600
1
V
6
Pout (kW)
8
0,80
2 kHz to 16 kHz in steps of factor 2
Inverter
Overload (%)
Typical available overload factor as a function of
motor power and switching frequency P peak / P nom=f(Pnom,fsw)
400
350
300
250
200
150
Switching frequency (kHz)
Motor nominal power (HP/kW)
100
1,50 / 1,10
2,00 / 1,47
3,00 / 2,21
5,00 / 3,68
7,50 / 5,52
10,00 / 7,36
1
399
300
200
120
0
0
2
399
300
200
120
0
0
4
399
300
200
120
0
0
8
399
300
200
120
0
0
16
399
300
200
120
0
0
At
Tj =
125
DC link = 600
°C
V
Mi =
1
cos φ =
f sw from
Ts =
0,8
1 kHz to 16kHz in steps of factor 2
80
°C
Motor eff =0,85
copyright Vincotech
3
19 Mar. 2016 / Revision 7