The following document contains information on Cypress products. Although the document is marked with the name “Spansion”, the company that originally developed the specification, Cypress will continue to offer these products to new and existing customers. Continuity of Specifications There is no change to this document as a result of offering the device as a Cypress product. Any changes that have been made are the result of normal document improvements and are noted in the document history page, where supported. Future revisions will occur when appropriate, and changes will be noted in a document history page. Continuity of Ordering Part Numbers Cypress continues to support existing part numbers. To order these products, please use only the Ordering Part Numbers listed in this document. For More Information Please contact your local sales office for additional information about Cypress products and solutions. About Cypress Cypress (NASDAQ: CY) delivers high-performance, high-quality solutions at the heart of today’s most advanced embedded systems, from automotive, industrial and networking platforms to highly interactive consumer and mobile devices. With a broad, differentiated product portfolio that includes ® NOR flash memories, F-RAM™ and SRAM, Traveo™ microcontrollers, the industry’s only PSoC ® programmable system-on-chip solutions, analog and PMIC Power Management ICs, CapSense ® capacitive touch-sensing controllers, and Wireless BLE Bluetooth Low-Energy and USB connectivity solutions, Cypress is committed to providing its customers worldwide with consistent innovation, bestin-class support and exceptional system value. MB9A140NB Series ® 32-bit ARM Cortex®-M3 based Microcontroller MB9AF141LB/MB/NB, MB9AF142LB/MB/NB, MB9AF144LB/MB/NB Data Sheet (Full Production) Notice to Readers: This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the valid combinations offered may occur. Publication Number MB9A140NB_DS706-00040 CONFIDENTIAL Revision 4.0 Issue Date June 10, 2015 D a t a S h e e t Notice On Data Sheet Designations Spansion Inc. issues data sheets with Advance Information or Preliminary designations to advise readers of product information or intended specifications throughout the product life cycle, including development, qualification, initial production, and full production. In all cases, however, readers are encouraged to verify that they have the latest information before finalizing their design. The following descriptions of Spansion data sheet designations are presented here to highlight their presence and definitions. Advance Information The Advance Information designation indicates that Spansion Inc. is developing one or more specific products, but has not committed any design to production. Information presented in a document with this designation is likely to change, and in some cases, development on the product may discontinue. Spansion Inc. therefore places the following conditions upon Advance Information content: “This document contains information on one or more products under development at Spansion Inc. The information is intended to help you evaluate this product. Do not design in this product without contacting the factory. Spansion Inc. reserves the right to change or discontinue work on this proposed product without notice.” Preliminary The Preliminary designation indicates that the product development has progressed such that a commitment to production has taken place. This designation covers several aspects of the product life cycle, including product qualification, initial production, and the subsequent phases in the manufacturing process that occur before full production is achieved. Changes to the technical specifications presented in a Preliminary document should be expected while keeping these aspects of production under consideration. Spansion places the following conditions upon Preliminary content: “This document states the current technical specifications regarding the Spansion product(s) described herein. The Preliminary status of this document indicates that product qualification has been completed, and that initial production has begun. Due to the phases of the manufacturing process that require maintaining efficiency and quality, this document may be revised by subsequent versions or modifications due to changes in technical specifications.” Combination Some data sheets contain a combination of products with different designations (Advance Information, Preliminary, or Full Production). This type of document distinguishes these products and their designations wherever necessary, typically on the first page, the ordering information page, and pages with the DC Characteristics table and the AC Erase and Program table (in the table notes). The disclaimer on the first page refers the reader to the notice on this page. Full Production (No Designation on Document) When a product has been in production for a period of time such that no changes or only nominal changes are expected, the Preliminary designation is removed from the data sheet. Nominal changes may include those affecting the number of ordering part numbers available, such as the addition or deletion of a speed option, temperature range, package type, or VIO range. Changes may also include those needed to clarify a description or to correct a typographical error or incorrect specification. Spansion Inc. applies the following conditions to documents in this category: “This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the valid combinations offered may occur.” Questions regarding these document designations may be directed to your local sales office. MB9A140NB_DS706-00040-4v0-E, June 10, 2015 CONFIDENTIAL MB9A140NB Series 32-bit ARM® Cortex®-M3 based Microcontroller MB9AF141LB/MB/NB, MB9AF142LB/MB/NB, MB9AF144LB/MB/NB Data Sheet (Full Production) Description The MB9A140NB Series are highly integrated 32-bit microcontrollers dedicated for embedded controllers with low-power consumption mode and competitive cost. These series are based on the ARM Cortex-M3 Processor with on-chip Flash memory and SRAM, and have peripheral functions such as various timers, ADCs, and Communication Interfaces (UART, CSIO, I2C). The products which are described in this data sheet are placed into TYPE6 product categories in FM3 Family Peripheral Manual. Note: ARM and Cortex are the trademarks of ARM Limited in the EU and other countries. Publication Number MB9A140NB_DS706-00040 Revision 4.0 Issue Date June 10, 2015 This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the valid combinations offered may occur. CONFIDENTIAL D a t a S h e e t Features 32-bit ARM Cortex-M3 Core Processor version: r2p1 Up to 40 MHz Frequency Operation Integrated Nested Vectored Interrupt Controller (NVIC): 1 NMI (non-maskable interrupt) and 48 peripheral interrupts and 16 priority levels 24-bit System timer (Sys Tick): System timer for OS task management On-chip Memories [Flash memory] Dual operation Flash memory Dual Operation Flash memory has the upper bank and the lower bank. So, this series could implement erase, write and read operations for each bank simultaneously. Main area: Up to 256 Kbytes (Up to 240 Kbytes upper bank + 16 Kbytes lower bank) Work area: 32 Kbytes (lower bank) Read cycle: 0 wait-cycle Security function for code protection [SRAM] This Series on-chip SRAM is composed of two independent SRAM (SRAM0, SRAM1). SRAM0 is connected to I-code bus and D-code bus of Cortex-M3 core. SRAM1 is connected to System bus. SRAM0: Up to 16 Kbytes SRAM1: Up to 16 Kbytes External Bus Interface* Supports SRAM, NOR Flash memory device Up to 8 chip selects 8-/16-bit Data width Up to 25-bit Address bit Maximum area size : Up to 256 Mbytes Supports Address/Data multiplex Supports external RDY function * : MB9AF141LB, F142LB and F144LB do not support External Bus Interface. Multi-function Serial Interface (Max 8channels) 4 channels with 16 steps×9-bit FIFO (ch.4 to ch.7), 4 channels without FIFO (ch.0 to ch.3) Operation mode is selectable from the followings for each channel. UART CSIO I 2C [UART] Full-duplex double buffer Selection with or without parity supported Built-in dedicated baud rate generator External clock available as a serial clock Hardware Flow control* : Automatically control the transmission by CTS/RTS (only ch.4) Various error detection functions available (parity errors, framing errors, and overrun errors) * : MB9AF141LB, F142LB and F144LB do not support Hardware Flow control. [CSIO] Full-duplex double buffer Built-in dedicated baud rate generator Overrun error detection function available 2 [I C] Standard-mode (Max 100 kbps) / Fast-mode (Max 400 kbps) supported 2 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t DMA Controller (8 channels) The DMA Controller has an independent bus from the CPU, so CPU and DMA Controller can process simultaneously. 8 independently configured and operated channels Transfer can be started by software or request from the built-in peripherals Transfer address area: 32-bit (4 Gbytes) Transfer mode: Block transfer/Burst transfer/Demand transfer Transfer data type: byte/half-word/word Transfer block count: 1 to 16 Number of transfers: 1 to 65536 A/D Converter (Max 24 channels) [12-bit A/D Converter] Successive Approximation type Built-in 2 units Conversion time: 2.0 μs @ 2.7 V to 3.6 V Priority conversion available (priority at 2 levels) Scanning conversion mode Built-in FIFO for conversion data storage (for SCAN conversion: 16 steps, for Priority conversion: 4 steps) Base Timer (Max 8 channels) Operation mode is selectable from the followings for each channel. 16-bit PWM timer 16-bit PPG timer 16-/32-bit reload timer 16-/32-bit PWC timer General-Purpose I/O Port This series can use its pins as general-purpose I/O ports when they are not used for external bus or peripherals. Moreover, the port relocate function is built in. It can set which I/O port the peripheral function can be allocated to. Capable of pull-up control per pin Capable of reading pin level directly Built-in the port relocate function Up to 83 fast general-purpose I/O Ports@100 pin Package Some ports are 5V tolerant I/O. See Pin Description to confirm the corresponding pins. Dual Timer (32-/16-bit Down Counter) The Dual Timer consists of two programmable 32-/16-bit down counters. Operation mode is selectable from the followings for each channel. Free-running Periodic (=Reload) One-shot June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 3 D a t a S h e e t HDMI-CEC/Remote Control Receiver (Up to 2 channels) HDMI-CEC transmitter Header block automatic transmission by judging Signal free Generating status interrupt by detecting Arbitration lost Generating START, EOM, ACK automatically to output CEC transmission by setting 1 byte data Generating transmission status interrupt when transmitting 1 block (1 byte data and EOM/ACK) HDMI-CEC receiver Automatic ACK reply function available Line error detection function available Remote control receiver 4 bytes reception buffer Repeat code detection function available Real-time clock (RTC) The Real-time clock can count Year/Month/Day/Hour/Minute/Second/A day of the week from 01 to 99. The interrupt function with specifying date and time (Year/Month/Day/Hour/Minute/Second/A day of the week.) is available. This function is also available by specifying only Year, Month, Day, Hour or Minute. Timer interrupt function after set time or each set time. Capable of rewriting the time with continuing the time count. Leap year automatic count is available. Watch Counter The Watch counter is used for wake up from sleep and timer mode. Interval timer: up to 64 s (Max) @ Sub Clock : 32.768 kHz External Interrupt Controller Unit Up to 16 external interrupt input pins Include one non-maskable interrupt (NMI) input pin Watchdog Timer (2 channels) A watchdog timer can generate interrupts or a reset when a time-out value is reached. This series consists of two different watchdogs, a Hardware watchdog and a Software watchdog. The Hardware watchdog timer is clocked by the built-in low-speed CR oscillator. Therefore, the Hardware watchdog is active in any low-power consumption modes except RTC, Stop, Deep Standby RTC and Deep Standby Stop modes. CRC (Cyclic Redundancy Check) Accelerator The CRC accelerator calculates the CRC which has a heavy software processing load, and achieves a reduction of the integrity check processing load for reception data and storage. CCITT CRC16 and IEEE-802.3 CRC32 are supported. CCITT CRC16 Generator Polynomial: 0x1021 IEEE-802.3 CRC32 Generator Polynomial: 0x04C11DB7 4 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t Clock and Reset [Clocks] Selectable from five clock sources (2 external oscillators, 2 built-in CR oscillators, and Main PLL). Main Clock: Sub Clock: Built-in high-speed CR Clock: Built-in low-speed CR Clock: Main PLL Clock 4 MHz to 48 MHz 32.768 kHz 4 MHz 100 kHz [Resets] Reset requests from INITX pin Power on reset Software reset Watchdog timers reset Low-voltage detection reset Clock Super Visor reset Clock Super Visor (CSV) Clocks generated by built-in CR oscillators are used to supervise abnormality of the external clocks. External clock failure (clock stop) is detected, reset is asserted. External frequency anomaly is detected, interrupt or reset is asserted. Low-Voltage Detector (LVD) This Series includes 2-stage monitoring of voltage on the VCC pins. When the voltage falls below the voltage that has been set, Low-Voltage Detector generates an interrupt or reset. LVD1: error reporting via interrupt LVD2: auto-reset operation Low-Power Consumption Mode Six low-power consumption modes supported. Sleep Timer RTC Stop Deep Standby RTC (selectable between keeping the value of RAM and not) Deep Standby Stop (selectable between keeping the value of RAM and not) Debug Serial Wire JTAG Debug Port (SWJ-DP) Embedded Trace Macrocells (ETM).* *: MB9AF141LB/MB, F142LB/MB and F144LB/MB support only SWJ-DP. Unique ID Unique value of the device (41-bit) is set. Power Supply Wide range voltage: VCC = 1.65 V to 3.6 V June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 5 D a t a S h e e t Product Lineup Memory size Product name Main On-chip area Flash Work memory area SRAM0 On-chip SRAM1 SRAM Total MB9AF141LB/MB/NB MB9AF142LB/MB/NB MB9AF144LB/MB/NB 64 Kbytes 128 Kbytes 256 Kbytes 32 Kbytes 32 Kbytes 32 Kbytes 8 Kbytes 8 Kbytes 16 Kbytes 8 Kbytes 8 Kbytes 16 Kbytes 16 Kbytes 16 Kbytes 32 Kbytes Function Product name Pin count MB9AF141LB MB9AF142LB MB9AF144LB 64 CPU Freq. Power supply voltage range DMAC External Bus Interface Multi-function Serial Interface (UART/CSIO/I2C) Base Timer (PWC/Reload timer/PWM/PPG) Dual Timer HDMI-CEC/ Remote Control Receiver Real-Time Clock Watch Counter CRC Accelerator Watchdog timer - MB9AF141MB MB9AF142MB MB9AF144MB MB9AF141NB MB9AF142NB MB9AF144NB 80/96 100/112 Cortex-M3 40 MHz 1.65 V to 3.6 V 8ch. Addr: 21-bit (Max) Addr: 25-bit (Max) R/W Data: 8-bit (Max) R/W Data: 8-/16-bit (Max) CS: 4 (Max) CS: 8 (Max) Support: SRAM, Support: SRAM, NOR Flash memory NOR Flash memory 8ch. (Max) ch.4 to ch.7: FIFO (16steps × 9-bit) ch.0 to ch.3: No FIFO 8ch. (Max) 1 unit 2ch. (Max) 1 unit 1 unit Yes 1ch. (SW) + 1ch. (HW) 8 pins (Max) + 11 pins (Max) + 16 pins (Max) + External Interrupts NMI × 1 NMI × 1 NMI × 1 I/O ports 51 pins (Max) 66 pins (Max) 83 pins (Max) 12-bit A/D converter 12ch. (2 units) 17ch. (2 units) 24ch. (2 units) CSV (Clock Super Visor) Yes LVD (Low-Voltage Detector) 2ch. High-speed 4 MHz Built-in CR Low-speed 100 kHz Debug Function SWJ-DP SWJ-DP/ETM Unique ID Yes Note: All signals of the peripheral function in each product cannot be allocated by limiting the pins of package. It is necessary to use the port relocate function of the I/O port according to your function use. See Electrical Characteristics 4.AC Characteristics (3)Built-in CR Oscillation Characteristics for accuracy of built-in CR. 6 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t Packages Product name Package LQFP: FPT-64P-M38 (0.5mm pitch) LQFP: FPT-64P-M39 (0.65mm pitch) QFN: LCC-64P-M24 (0.5mm pitch) LQFP: FPT-80P-M37 (0.5mm pitch) LQFP: FPT-80P-M40 (0.65mm pitch) BGA: BGA-96P-M07 (0.5mm pitch) LQFP: FPT-100P-M23 (0.5mm pitch) QFP: FPT-100P-M36 (0.65mm pitch) BGA: BGA-112P-M04 (0.8mm pitch) : Supported MB9AF141LB MB9AF142LB MB9AF144LB MB9AF141MB MB9AF142MB MB9AF144MB - - - - - MB9AF141NB MB9AF142NB MB9AF144NB - Note: See Package Dimensions for detailed information on each package. June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 7 D a t a S h e e t Pin Assignment FPT-100P-M23 VSS P81 P80 VCC P60/SIN5_0/TIOA2_2/INT15_1/WKUP3/CEC1/MRDY_1 P61/SOT5_0/TIOB2_2 P62/SCK5_0/ADTG_3/MOEX_1 P63/INT03_0/MWEX_1 P0F/NMIX/CROUT_1/RTCCO_0/SUBOUT_0/WKUP0 P0E/CTS4_0/TIOB3_2/MDQM1_1 P0D/RTS4_0/TIOA3_2/MDQM0_1 P0C/SCK4_0/TIOA6_1/MALE_1 P0B/SOT4_0/TIOB6_1/MCSX0_1 P0A/SIN4_0/INT00_2/MCSX1_1 P09/TRACECLK/TIOB0_2/RTS4_2/MCSX2_1 P08/AN23/TRACED3/TIOA0_2/CTS4_2/MCSX3_1 P07/AN22/TRACED2/ADTG_0/SCK4_2/MCLKOUT_1 P06/AN21/TRACED1/TIOB5_2/SOT4_2/INT01_1/MCSX4_1 P05/AN20/TRACED0/TIOA5_2/SIN4_2/INT00_1/MCSX5_1 P04/TDO/SWO P03/TMS/SWDIO P02/TDI/MCSX6_1 P01/TCK/SWCLK P00/TRSTX/MCSX7_1 VCC 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 (TOP VIEW) VCC 1 75 VSS P50/INT00_0/SIN3_1/MADATA00_1 2 74 P20/AN19/INT05_0/CROUT_0/MAD24_1 P51/INT01_0/SOT3_1/MADATA01_1 3 73 P21/AN18/SIN0_0/INT06_1/WKUP2 P52/INT02_0/SCK3_1/MADATA02_1 4 72 P22/AN17/SOT0_0/TIOB7_1 P53/SIN6_0/TIOA1_2/INT07_2/MADATA03_1 5 71 P23/AN16/SCK0_0/TIOA7_1 P54/SOT6_0/TIOB1_2/MADATA04_1 6 70 P1F/AN15/ADTG_5/MAD23_1 P55/SCK6_0/ADTG_1/MADATA05_1 7 69 P1E/AN14/RTS4_1/MAD22_1 P56/INT08_2/MADATA06_1 8 68 P1D/AN13/CTS4_1/MAD21_1 P30/TIOB0_1/INT03_2/MADATA07_1 9 67 P1C/AN12/SCK4_1/MAD20_1 P31/TIOB1_1/SCK6_1/INT04_2/MADATA08_1 10 66 P1B/AN11/SOT4_1/MAD19_1 P32/TIOB2_1/SOT6_1/INT05_2/MADATA09_1 11 65 P1A/AN10/SIN4_1/INT05_1/MAD18_1 P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6/MADATA10_1 12 64 P19/AN09/SCK2_2/MAD17_1 P34/TIOB4_1/MADATA11_1 13 63 P18/AN08/SOT2_2/MAD16_1 P35/TIOB5_1/INT08_1/MADATA12_1 14 62 AVSS LQFP - 100 49 50 VSS 46 PE0/MD1 PE3/X1 45 P4E/TIOB5_0/INT06_2/SIN7_1/MAD08_1 48 44 P4D/TIOB4_0/SOT7_1/MAD07_1 PE2/X0 43 P4C/TIOB3_0/SCK7_1/CEC0/MAD06_1 47 42 P4B/TIOB2_0/MAD05_1 MD0 41 VCC 40 51 P4A/TIOB1_0/SCK3_2/MAD04_1 25 39 P10/AN00 VSS P48/INT14_1/SIN3_2/MAD02_1 52 P49/TIOB0_0/SOT3_2/MAD03_1 24 38 P11/AN01/SIN1_1/INT02_1/WKUP1/MAD09_1 P3F/TIOA5_1 INITX 53 37 23 P47/X1A P12/AN02/SOT1_1/MAD10_1 P3E/TIOA4_1 36 54 P46/X0A 22 35 P13/AN03/SCK1_1/RTCCO_1/SUBOUT_1/MAD11_1 P3D/TIOA3_1 VCC 55 34 21 VSS P14/AN04/SIN0_1/INT03_1/MAD12_1 P3C/TIOA2_1 33 56 C 20 32 P15/AN05/SOT0_1/MAD13_1 P3B/TIOA1_1 P45/TIOA5_0/MAD01_1 57 31 19 P44/TIOA4_0/MAD00_1 P16/AN06/SCK0_1/MAD14_1 P3A/TIOA0_1/RTCCO_2/SUBOUT_2 30 58 P43/TIOA3_0/ADTG_7 18 29 P17/AN07/SIN2_2/INT04_1/MAD15_1 P39/ADTG_2 28 59 P42/TIOA2_0 17 27 AVCC P38/SCK5_2/INT11_1/MADATA15_1 26 AVRH 60 VCC 61 16 P41/TIOA1_0/INT13_1 15 P40/TIOA0_0/INT12_1 P36/SIN5_2/INT09_1/MADATA13_1 P37/SOT5_2/INT10_1/MADATA14_1 <Note> The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. 8 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t FPT-100P-M36 P50/INT00_0/SIN3_1/MADATA00_1 VCC VSS P81 P80 VCC P60/SIN5_0/TIOA2_2/INT15_1/WKUP3/CEC1/MRDY_1 P61/SOT5_0/TIOB2_2 P62/SCK5_0/ADTG_3/MOEX_1 P63/INT03_0/MWEX_1 P0F/NMIX/CROUT_1/RTCCO_0/SUBOUT_0/WKUP0 P0E/CTS4_0/TIOB3_2/MDQM1_1 P0D/RTS4_0/TIOA3_2/MDQM0_1 P0C/SCK4_0/TIOA6_1/MALE_1 P0B/SOT4_0/TIOB6_1/MCSX0_1 P0A/SIN4_0/INT00_2/MCSX1_1 P09/TRACECLK/TIOB0_2/RTS4_2/MCSX2_1 P08/AN23/TRACED3/TIOA0_2/CTS4_2/MCSX3_1 P07/AN22/TRACED2/ADTG_0/SCK4_2/MCLKOUT_1 P06/AN21/TRACED1/TIOB5_2/SOT4_2/INT01_1/MCSX4_1 P05/AN20/TRACED0/TIOA5_2/SIN4_2/INT00_1/MCSX5_1 P04/TDO/SWO P03/TMS/SWDIO P02/TDI/MCSX6_1 P01/TCK/SWCLK P00/TRSTX/MCSX7_1 VCC VSS P20/AN19/INT05_0/CROUT_0/MAD24_1 P21/AN18/SIN0_0/INT06_1/WKUP2 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 (TOP VIEW) P51/INT01_0/SOT3_1/MADATA01_1 81 50 P22/AN17/SOT0_0/TIOB7_1 P52/INT02_0/SCK3_1/MADATA02_1 82 49 P23/AN16/SCK0_0/TIOA7_1 P53/SIN6_0/TIOA1_2/INT07_2/MADATA03_1 83 48 P1F/AN15/ADTG_5/MAD23_1 P54/SOT6_0/TIOB1_2/MADATA04_1 84 47 P1E/AN14/RTS4_1/MAD22_1 P55/SCK6_0/ADTG_1/MADATA05_1 85 46 P1D/AN13/CTS4_1/MAD21_1 P56/INT08_2/MADATA06_1 86 45 P1C/AN12/SCK4_1/MAD20_1 P30/TIOB0_1/INT03_2/MADATA07_1 87 44 P1B/AN11/SOT4_1/MAD19_1 P31/TIOB1_1/SCK6_1/INT04_2/MADATA08_1 88 43 P1A/AN10/SIN4_1/INT05_1/MAD18_1 P32/TIOB2_1/SOT6_1/INT05_2/MADATA09_1 89 42 P19/AN09/SCK2_2/MAD17_1 P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6/MADATA10_1 90 41 P18/AN08/SOT2_2/MAD16_1 P34/TIOB4_1/MADATA11_1 91 40 AVSS P35/TIOB5_1/INT08_1/MADATA12_1 92 39 AVRH P36/SIN5_2/INT09_1/MADATA13_1 93 38 AVCC P37/SOT5_2/INT10_1/MADATA14_1 94 37 P17/AN07/SIN2_2/INT04_1/MAD15_1 P38/SCK5_2/INT11_1/MADATA15_1 95 36 P16/AN06/SCK0_1/MAD14_1 P39/ADTG_2 96 35 P15/AN05/SOT0_1/MAD13_1 P3A/TIOA0_1/RTCCO_2/SUBOUT_2 97 34 P14/AN04/SIN0_1/INT03_1/MAD12_1 P3B/TIOA1_1 98 33 P13/AN03/SCK1_1/RTCCO_1/SUBOUT_1/MAD11_1 P3C/TIOA2_1 99 32 P12/AN02/SOT1_1/MAD10_1 P3D/TIOA3_1 100 31 P11/AN01/SIN1_1/INT02_1/WKUP1/MAD09_1 15 16 17 18 19 20 21 22 23 24 25 26 27 28 P47/X1A INITX P48/INT14_1/SIN3_2/MAD02_1 P49/TIOB0_0/SOT3_2/MAD03_1 P4A/TIOB1_0/SCK3_2/MAD04_1 P4B/TIOB2_0/MAD05_1 P4C/TIOB3_0/SCK7_1/CEC0/MAD06_1 P4D/TIOB4_0/SOT7_1/MAD07_1 P4E/TIOB5_0/INT06_2/SIN7_1/MAD08_1 PE0/MD1 MD0 PE2/X0 PE3/X1 VSS 30 14 P46/X0A 29 13 VCC 12 VSS VCC P10/AN00 11 C 7 P42/TIOA2_0 9 6 P41/TIOA1_0/INT13_1 10 5 P40/TIOA0_0/INT12_1 P45/TIOA5_0/MAD01_1 4 VCC 8 3 VSS P43/TIOA3_0/ADTG_7 2 P3F/TIOA5_1 P44/TIOA4_0/MAD00_1 1 P3E/TIOA4_1 QFP - 100 <Note> The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 9 D a t a S h e e t FPT-80P-M37/M40 VSS P81 P80 VCC P60/SIN5_0/TIOA2_2/INT15_1/WKUP3/CEC1/MRDY_1 P61/SOT5_0/TIOB2_2 P62/SCK5_0/ADTG_3/MOEX_1 P63/INT03_0/MWEX_1 P0F/NMIX/CROUT_1/RTCCO_0/SUBOUT_0/WKUP0 P0E/CTS4_0/TIOB3_2/MDQM1_1 P0D/RTS4_0/TIOA3_2/MDQM0_1 P0C/SCK4_0/TIOA6_1/MALE_1 P0B/SOT4_0/TIOB6_1/MCSX0_1 P0A/SIN4_0/INT00_2/MCSX1_1 P07/AN22/ADTG_0/MCLKOUT_1 P04/TDO/SWO P03/TMS/SWDIO P02/TDI/MCSX6_1 P01/TCK/SWCLK P00/TRSTX/MCSX7_1 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 (TOP VIEW) VCC 1 60 P20/AN19/INT05_0/CROUT_0/MAD24_1 P50/INT00_0/SIN3_1/MADATA00_1 2 59 P21/AN18/SIN0_0/INT06_1/WKUP2 P51/INT01_0/SOT3_1/MADATA01_1 3 58 P22/AN17/SOT0_0/TIOB7_1 P52/INT02_0/SCK3_1/MADATA02_1 4 57 P23/AN16/SCK0_0/TIOA7_1 P53/SIN6_0/TIOA1_2/INT07_2/MADATA03_1 5 56 P1B/AN11/SOT4_1/MAD19_1 P54/SOT6_0/TIOB1_2/MADATA04_1 6 55 P1A/AN10/SIN4_1/INT05_1/MAD18_1 P55/SCK6_0/ADTG_1/MADATA05_1 7 54 P19/AN09/SCK2_2/MAD17_1 P56/INT08_2/MADATA06_1 8 53 P18/AN08/SOT2_2/MAD16_1 P30/TIOB0_1/INT03_2/MADATA07_1 9 52 AVSS P31/TIOB1_1/SCK6_1/INT04_2/MADATA08_1 10 51 AVRH P32/TIOB2_1/SOT6_1/INT05_2/MADATA09_1 11 50 AVCC P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6/MADATA10_1 12 49 P17/AN07/SIN2_2/INT04_1/MAD15_1 P39/ADTG_2 13 48 P16/AN06/SCK0_1/MAD14_1 P3A/TIOA0_1/RTCCO_2/SUBOUT_2 14 47 P15/AN05/SOT0_1/MAD13_1 P3B/TIOA1_1 15 46 P14/AN04/SIN0_1/INT03_1/MAD12_1 P3C/TIOA2_1 16 45 P13/AN03/SCK1_1/RTCCO_1/SUBOUT_1/MAD11_1 P3D/TIOA3_1 17 44 P12/AN02/SOT1_1/MAD10_1 P3E/TIOA4_1 18 43 P11/AN01/SIN1_1/INT02_1/WKUP1/MAD09_1 P3F/TIOA5_1 19 42 P10/AN00 VSS 20 41 VCC 27 28 29 30 31 32 33 34 35 36 37 P47/X1A INITX P48/INT14_1/SIN3_2/MAD02_1 P49/TIOB0_0/SOT3_2/MAD03_1 P4A/TIOB1_0/SCK3_2/MAD04_1 P4B/TIOB2_0/MAD05_1 P4C/TIOB3_0/SCK7_1/CEC0/MAD06_1 P4D/TIOB4_0/SOT7_1/MAD07_1 P4E/TIOB5_0/INT06_2/SIN7_1/MAD08_1 PE0/MD1 MD0 40 26 P46/X0A VSS 25 VCC 39 24 VSS PE3/X1 23 C 38 22 P45/TIOA5_0/MAD01_1 PE2/X0 21 P44/TIOA4_0/MAD00_1 LQFP - 80 <Note> The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. 10 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t FPT-64P-M38/M39 VSS P81 P80 VCC P60/SIN5_0/TIOA2_2/INT15_1/WKUP3/CEC1 P61/SOT5_0/TIOB2_2 P62/SCK5_0/ADTG_3 P0F/NMIX/CROUT_1/RTCCO_0/SUBOUT_0/WKUP0 P0C/SCK4_0/TIOA6_1 P0B/SOT4_0/TIOB6_1 P0A/SIN4_0/INT00_2 P04/TDO/SWO P03/TMS/SWDIO P02/TDI P01/TCK/SWCLK P00/TRSTX 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 (TOP VIEW) VCC 1 48 P21/AN18/SIN0_0/INT06_1/WKUP2 P50/INT00_0/SIN3_1 2 47 P22/AN17/SOT0_0/TIOB7_1 P51/INT01_0/SOT3_1 3 46 P23/AN16/SCK0_0/TIOA7_1 P52/INT02_0/SCK3_1 4 45 P19/AN09/SCK2_2 P30/TIOB0_1/INT03_2 5 44 P18/AN08/SOT2_2 P31/TIOB1_1/SCK6_1/INT04_2 6 43 AVSS P32/TIOB2_1/SOT6_1/INT05_2 7 42 AVRH P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6 8 41 AVCC P39/ADTG_2 9 40 P17/AN07/SIN2_2/INT04_1 P3A/TIOA0_1/RTCCO_2/SUBOUT_2 10 39 P15/AN05 P3B/TIOA1_1 11 38 P14/AN04/INT03_1 P3C/TIOA2_1 12 37 P13/AN03/SCK1_1/RTCCO_1/SUBOUT_1 P3D/TIOA3_1 13 36 P12/AN02/SOT1_1 P3E/TIOA4_1 14 35 P11/AN01/SIN1_1/INT02_1/WKUP1 P3F/TIOA5_1 15 34 P10/AN00 VSS 16 33 VCC 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 C VCC P46/X0A P47/X1A INITX P49/TIOB0_0 P4A/TIOB1_0 P4B/TIOB2_0 P4C/TIOB3_0/SCK7_1/CEC0 P4D/TIOB4_0/SOT7_1 P4E/TIOB5_0/INT06_2/SIN7_1 PE0/MD1 MD0 PE2/X0 PE3/X1 VSS LQFP - 64 <Note> The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 11 D a t a S h e e t LCC-64P- M24 VSS P81 P80 VCC P60/SIN5_0/TIOA2_2/INT15_1/WKUP3/CEC1 P61/SOT5_0/TIOB2_2 P62/SCK5_0/ADTG_3 P0F/NMIX/CROUT_1/RTCCO_0/SUBOUT_0/WKUP0 P0C/SCK4_0/TIOA6_1 P0B/SOT4_0/TIOB6_1 P0A/SIN4_0/INT00_2 P04/TDO/SWO P03/TMS/SWDIO P02/TDI P01/TCK/SWCLK P00/TRSTX 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 (TOP VIEW) VCC 1 48 P21/AN18/SIN0_0/INT06_1/WKUP2 P50/INT00_0/SIN3_1 2 47 P22/AN17/SOT0_0/TIOB7_1 P51/INT01_0/SOT3_1 3 46 P23/AN16/SCK0_0/TIOA7_1 P52/INT02_0/SCK3_1 4 45 P19/AN09/SCK2_2 P30/TIOB0_1/INT03_2 5 44 P18/AN08/SOT2_2 P31/TIOB1_1/SCK6_1/INT04_2 6 43 AVSS P32/TIOB2_1/SOT6_1/INT05_2 7 42 AVRH P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6 8 41 AVCC P39/ADTG_2 9 40 P17/AN07/SIN2_2/INT04_1 P3A/TIOA0_1/RTCCO_2/SUBOUT_2 10 39 P15/AN05 P3B/TIOA1_1 11 38 P14/AN04/INT03_1 P3C/TIOA2_1 12 37 P13/AN03/SCK1_1/RTCCO_1/SUBOUT_1 P3D/TIOA3_1 13 36 P12/AN02/SOT1_1 P3E/TIOA4_1 14 35 P11/AN01/SIN1_1/INT02_1/WKUP1 P3F/TIOA5_1 15 34 P10/AN00 VSS 16 33 VCC 19 20 21 22 23 24 25 26 27 28 29 30 31 P46/X0A P47/X1A INITX P49/TIOB0_0 P4A/TIOB1_0 P4B/TIOB2_0 P4C/TIOB3_0/SCK7_1/CEC0 P4D/TIOB4_0/SOT7_1 P4E/TIOB5_0/INT06_2/SIN7_1 PE0/MD1 MD0 PE2/X0 PE3/X1 32 18 VSS 17 C VCC QFN - 64 <Note> The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. 12 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t BGA-112P-M04 (TOP VIEW) 1 2 3 4 5 6 7 8 9 10 11 A VSS P81 P80 VCC P0E P0B AN22 TMS/ SWDIO TRSTX VCC VSS B VCC VSS P52 P61 P0F P0C AN23 TDO/ SWO TCK/ SWCLK VSS TDI C P50 P51 VSS P60 P62 P0D P09 AN20 VSS AN19 AN18 D P53 P54 P55 VSS P56 P63 P0A VSS AN21 AN16 AN15 E P30 P31 P32 P33 Index AN17 AN14 AN12 AN11 F P34 P35 P36 P39 AN13 AN10 AN09 AVRH G P37 P38 P3A P3D AN08 AN07 AN06 AVSS H P3B P3C P3E VSS P44 P4C AN05 VSS AN04 AN03 AVCC J VCC P3F VSS P40 P43 P49 P4D AN02 VSS AN01 AN00 K VCC VSS X1A INITX P42 P48 P4B P4E MD1 VSS VCC L VSS C X0A VSS P41 P45 P4A MD0 X0 X1 VSS PFBGA - 112 <Note> The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 13 D a t a S h e e t BGA-96P-M07 (TOP VIEW) 1 2 3 4 5 6 7 8 9 10 11 A VSS P81 P80 VCC VSS P0F VSS AN22 TMS/ SWDIO TRSTX VSS B VCC VSS P52 P61 P63 P0D P0C TDO/ SWO TCK/ SWCLK VSS TDI C P50 P51 VSS P60 P62 P0E P0B P0A VSS AN19 AN18 D P53 P54 P55 Index AN17 AN16 VSS E P56 P30 P31 AN11 AN10 AN09 F VSS VSS VSS AN08 AN07 AVRH G P32 P33 P39 AN06 AN05 AVSS H P3A P3B P3C AN04 AN03 AVCC J P3D P3E VSS P3F P48 P4A P4D AN02 VSS AN01 AN00 K VCC VSS X1A INITX P45 P49 P4C P4E MD1 VSS VCC L VSS C X0A VSS P44 VSS P4B MD0 X0 X1 VSS PFBGA - 96 <Note> The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. 14 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t List of Pin Functions List of Pin Numbers The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Pin No LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96 1 79 B1 1 B1 2 80 C1 2 C1 LQFP-64 QFN-64 1 2 - 3 81 C2 3 C2 3 - 4 82 B3 4 B3 4 - 5 83 D1 5 D1 - 6 84 D2 6 D2 - June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL Pin Name VCC P50 INT00_0 SIN3_1 MADATA00_1 P51 INT01_0 SOT3_1 (SDA3_1) MADATA01_1 P52 INT02_0 SCK3_1 (SCL3_1) MADATA02_1 P53 SIN6_0 TIOA1_2 INT07_2 MADATA03_1 P54 SOT6_0 (SDA6_0) TIOB1_2 MADATA04_1 I/O Circuit Type Pin State Type - E L E L E L E L E K 15 D a t a S h e e t Pin No LQFP-64 LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96 QFN-64 7 85 D3 7 D3 - 8 86 D5 8 E1 - 9 87 E1 9 E2 5 - 10 88 E2 10 E3 6 - 11 89 E3 11 G1 7 - 12 90 E4 12 G2 8 13 91 F1 - - - 14 92 F2 - - - 16 CONFIDENTIAL Pin Name P55 SCK6_0 (SCL6_0) ADTG_1 MADATA05_1 P56 INT08_2 MADATA06_1 P30 TIOB0_1 INT03_2 MADATA07_1 P31 TIOB1_1 SCK6_1 (SCL6_1) INT04_2 MADATA08_1 P32 TIOB2_1 SOT6_1 (SDA6_1) INT05_2 MADATA09_1 P33 INT04_0 TIOB3_1 SIN6_1 ADTG_6 MADATA10_1 P34 TIOB4_1 MADATA11_1 P35 TIOB5_1 INT08_1 MADATA12_1 I/O Circuit Type Pin State Type E K E L E L E L E L E L E K E L MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t Pin No LQFP-64 LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96 QFN-64 15 93 F3 - - - - - - - F1 F2 F3 - 16 94 G1 - - - 17 95 G2 - - - 18 96 F4 13 G3 9 19 97 G3 14 H1 10 20 98 H1 15 H2 11 21 99 H2 16 H3 12 22 100 G4 17 J1 13 - - B2 - B2 - 23 1 H3 18 J2 14 24 2 J2 19 J4 15 25 26 3 4 L1 J1 20 - L1 - 16 - June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL Pin Name P36 SIN5_2 INT09_1 MADATA13_1 VSS VSS VSS P37 SOT5_2 (SDA5_2) INT10_1 MADATA14_1 P38 SCK5_2 (SCL5_2) INT11_1 MADATA15_1 P39 ADTG_2 P3A TIOA0_1 RTCCO_2 SUBOUT_2 P3B TIOA1_1 P3C TIOA2_1 P3D TIOA3_1 VSS P3E TIOA4_1 P3F TIOA5_1 VSS VCC I/O Circuit Type Pin State Type E L - E L E L E K E K E K E K E K - E K E K - 17 D a t a S h e e t Pin No LQFP-64 LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96 QFN-64 27 5 J4 - - - 28 6 L5 - - - 29 7 K5 - - - 30 8 J5 - - - 31 9 H5 21 L5 - 32 10 L6 22 K5 - 33 34 35 11 12 13 K2 J3 H4 L2 L4 K1 23 24 25 K2 J3 L6 L2 L4 K1 17 18 36 14 L3 26 L3 19 37 15 K3 27 K3 20 38 16 K4 28 K4 21 39 17 K6 29 J5 - 22 40 18 J6 30 K6 - 18 CONFIDENTIAL Pin Name P40 TIOA0_0 INT12_1 P41 TIOA1_0 INT13_1 P42 TIOA2_0 P43 TIOA3_0 ADTG_7 P44 TIOA4_0 MAD00_1 P45 TIOA5_0 MAD01_1 VSS VSS VSS VSS C VSS VCC P46 X0A P47 X1A INITX P48 INT14_1 SIN3_2 MAD02_1 P49 TIOB0_0 SOT3_2 (SDA3_2) MAD03_1 I/O Circuit Pin State Type Type E L E L E K E K E K E K - D F D G B C E L E K MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t Pin No LQFP-64 LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96 QFN-64 23 41 19 L7 31 J6 - 42 20 K7 32 L7 24 - 43 21 H6 33 K7 25 - 44 22 J7 34 J7 26 - 45 23 K8 35 K8 27 46 24 K9 36 K9 28 47 25 L8 37 L8 29 48 26 L9 38 L9 30 49 27 L10 39 L10 31 50 51 28 29 L11 K11 40 41 L11 K11 32 33 52 30 J11 42 J11 34 53 31 J10 43 J10 35 - June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL Pin Name P4A TIOB1_0 SCK3_2 (SCL3_2) MAD04_1 P4B TIOB2_0 MAD05_1 P4C TIOB3_0 SCK7_1 (SCL7_1) CEC0 MAD06_1 P4D TIOB4_0 SOT7_1 (SDA7_1) MAD07_1 P4E TIOB5_0 INT06_2 SIN7_1 MAD08_1 MD1 PE0 MD0 X0 PE2 X1 PE3 VSS VCC P10 AN00 P11 AN01 SIN1_1 INT02_1 WKUP1 MAD09_1 I/O Circuit Pin State Type Type E K E K I S I K I L C E G D A A A B - F M F R 19 D a t a S h e e t Pin No LQFP-64 LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96 QFN-64 54 32 J8 44 J8 - - K10 J9 - K10 J9 55 33 H10 45 H10 36 - 37 38 56 34 H9 46 H9 39 57 35 H7 47 G10 - 58 36 G10 48 G9 59 37 G9 49 F10 60 61 62 38 39 40 H11 F11 G11 50 51 52 H11 F11 G11 20 CONFIDENTIAL - 40 41 42 43 Pin Name P12 AN02 SOT1_1 (SDA1_1) MAD10_1 VSS VSS P13 AN03 SCK1_1 (SCL1_1) RTCCO_1 SUBOUT_1 MAD11_1 P14 AN04 INT03_1 SIN0_1 MAD12_1 P15 AN05 SOT0_1 (SDA0_1) MAD13_1 P16 AN06 SCK0_1 (SCL0_1) MAD14_1 P17 AN07 SIN2_2 INT04_1 MAD15_1 AVCC AVRH AVSS I/O Circuit Pin State Type Type F M - F M F N F M F M F N - MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t Pin No LQFP-64 LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96 QFN-64 63 41 G8 53 F9 44 - 45 64 42 F10 54 E11 - - H8 - - - 65 43 F9 55 E10 - 66 44 E11 56 E9 - 67 45 E10 - - - 68 46 F8 - - - 69 47 E9 - - - 70 48 D11 - - - June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL Pin Name P18 AN08 SOT2_2 (SDA2_2) MAD16_1 P19 AN09 SCK2_2 (SCL2_2) MAD17_1 VSS P1A AN10 SIN4_1 INT05_1 MAD18_1 P1B AN11 SOT4_1 (SDA4_1) MAD19_1 P1C AN12 SCK4_1 (SCL4_1) MAD20_1 P1D AN13 CTS4_1 MAD21_1 P1E AN14 RTS4_1 MAD22_1 P1F AN15 ADTG_5 MAD23_1 I/O Circuit Pin State Type Type F M F M - F N F M F M F M F M F M 21 D a t a S h e e t Pin No LQFP-64 LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96 QFN-64 B10 B10 C9 C9 D11 - 71 49 D10 57 D10 46 72 50 E8 58 D9 47 73 51 C11 59 C11 48 74 52 C10 60 C10 - 75 76 53 54 A11 A10 - A11 - - 77 55 A9 61 A10 49 - 78 56 B9 62 B9 79 57 B11 63 B11 50 51 - 80 58 A8 64 A9 52 81 59 B8 65 B8 53 22 CONFIDENTIAL Pin Name VSS VSS VSS P23 AN16 SCK0_0 (SCL0_0) TIOA7_1 P22 AN17 SOT0_0 (SDA0_0) TIOB7_1 P21 AN18 SIN0_0 INT06_1 WKUP2 P20 AN19 INT05_0 CROUT_0 MAD24_1 VSS VCC P00 TRSTX MCSX7_1 P01 TCK SWCLK P02 TDI MCSX6_1 P03 TMS SWDIO P04 TDO SWO I/O Circuit Pin State Type Type - F M F M F R F N E J E J E J E J E J MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t Pin No LQFP-64 LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96 QFN-64 82 60 C8 - - - - - D8 - - - 83 61 D9 - - - 66 A8 84 62 A7 - - - - - - A7 - 85 63 B7 - - - 86 64 C7 - - - 87 65 D7 67 C8 54 - June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL Pin Name P05 AN20 TRACED0 TIOA5_2 SIN4_2 INT00_1 MCSX5_1 VSS P06 AN21 TRACED1 TIOB5_2 SOT4_2 (SDA4_2) INT01_1 MCSX4_1 P07 AN22 ADTG_0 MCLKOUT_1 TRACED2 SCK4_2 (SCL4_2) VSS P08 AN23 TRACED3 TIOA0_2 CTS4_2 MCSX3_1 P09 TRACECLK TIOB0_2 RTS4_2 MCSX2_1 P0A SIN4_0 INT00_2 MCSX1_1 I/O Circuit Pin State Type Type F Q - F Q F P - F P E O I L 23 D a t a S h e e t Pin No LQFP-64 LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96 QFN-64 88 66 A6 68 C7 55 - 56 89 67 B6 69 B7 - - D4 C3 - C3 - 90 68 C6 70 B6 - 91 69 A5 71 C6 - - - - - A5 - 92 70 B5 72 A6 57 93 71 D6 73 B5 - 94 72 C5 74 C5 58 - 95 24 CONFIDENTIAL 73 B4 75 B4 59 Pin Name P0B SOT4_0 (SDA4_0) TIOB6_1 MCSX0_1 P0C SCK4_0 (SCL4_0) TIOA6_1 MALE_1 VSS VSS P0D RTS4_0 TIOA3_2 MDQM0_1 P0E CTS4_0 TIOB3_2 MDQM1_1 VSS P0F NMIX CROUT_1 RTCCO_0 SUBOUT_0 WKUP0 P63 INT03_0 MWEX_1 P62 SCK5_0 (SCL5_0) ADTG_3 MOEX_1 P61 SOT5_0 (SDA5_0) TIOB2_2 I/O Circuit Pin State Type Type I K I K - E K E K - E I E L E K E K MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t Pin No LQFP-64 LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96 QFN-64 96 97 98 99 100 74 75 76 77 78 C4 A4 A3 A2 A1 76 77 78 79 80 June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL C4 A4 A3 A2 A1 60 61 62 63 64 Pin Name P60 SIN5_0 TIOA2_2 INT15_1 WKUP3 CEC1 MRDY_1 VCC P80 P81 VSS I/O Circuit Pin State Type Type I T H H H H - 25 D a t a S h e e t List of pin functions The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Pin No Pin Pin Name Function ADC 26 CONFIDENTIAL ADTG_0 ADTG_1 ADTG_2 ADTG_3 ADTG_4 ADTG_5 ADTG_6 ADTG_7 ADTG_8 AN00 AN01 AN02 AN03 AN04 AN05 AN06 AN07 AN08 AN09 AN10 AN11 AN12 AN13 AN14 AN15 AN16 AN17 AN18 AN19 AN20 AN21 AN22 AN23 Function Description A/D converter external trigger input pin A/D converter analog input pin. ANxx describes ADC ch.xx. LQFP- QFP100 100 84 7 18 94 70 12 30 52 53 54 55 56 57 58 59 63 64 65 66 67 68 69 70 71 72 73 74 82 83 84 85 62 85 96 72 48 90 8 30 31 32 33 34 35 36 37 41 42 43 44 45 46 47 48 49 50 51 52 60 61 62 63 BGA- LQFP- BGA112 80 96 A7 D3 F4 C5 D11 E4 J5 J11 J10 J8 H10 H9 H7 G10 G9 G8 F10 F9 E11 E10 F8 E9 D11 D10 E8 C11 C10 C8 D9 A7 B7 66 7 13 74 12 42 43 44 45 46 47 48 49 53 54 55 56 57 58 59 60 66 - A8 D3 G3 C5 G2 J11 J10 J8 H10 H9 G10 G9 F10 F9 E11 E10 E9 D10 D9 C11 C10 A8 - LQFP/ QFN64 9 58 8 34 35 36 37 38 39 40 44 45 46 47 48 - MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t Pin No Pin Pin Name Function Base Timer 0 Base Timer 1 Base Timer 2 Base Timer 3 Base Timer 4 Base Timer 5 Base Timer 6 Base Timer 7 TIOA0_0 TIOA0_1 TIOA0_2 TIOB0_0 TIOB0_1 TIOB0_2 TIOA1_0 TIOA1_1 TIOA1_2 TIOB1_0 TIOB1_1 TIOB1_2 TIOA2_0 TIOA2_1 TIOA2_2 TIOB2_0 TIOB2_1 TIOB2_2 TIOA3_0 TIOA3_1 TIOA3_2 TIOB3_0 TIOB3_1 TIOB3_2 TIOA4_0 TIOA4_1 TIOA4_2 TIOB4_0 TIOB4_1 TIOB4_2 TIOA5_0 TIOA5_1 TIOA5_2 TIOB5_0 TIOB5_1 TIOB5_2 Function Description Base timer ch.0 TIOA pin Base timer ch.0 TIOB pin Base timer ch.1 TIOA pin Base timer ch.1 TIOB pin Base timer ch.2 TIOA pin Base timer ch.2 TIOB pin Base timer ch.3 TIOA pin Base timer ch.3 TIOB pin Base timer ch.4 TIOA pin Base timer ch.4 TIOB pin Base timer ch.5 TIOA pin Base timer ch.5 TIOB pin 5 97 63 18 87 64 6 98 83 19 88 84 7 99 74 20 89 73 8 100 68 21 90 69 9 1 22 91 10 2 60 23 92 61 J4 G3 B7 J6 E1 C7 L5 H1 D1 L7 E2 D2 K5 H2 C4 K7 E3 B4 J5 G4 C6 H6 E4 A5 H5 H3 J7 F1 L6 J2 C8 K8 F2 D9 14 30 9 15 5 31 10 6 16 76 32 11 75 17 70 33 12 71 21 18 34 22 19 35 - H1 K6 E2 H2 D1 J6 E3 D2 H3 C4 L7 G1 B4 J1 B6 K7 G2 C6 L5 J2 J7 K5 J4 K8 - BGA- LQFP- BGA112 80 96 TIOA6_1 Base timer ch.6 TIOA pin 89 67 B6 69 B7 56 TIOB6_1 Base timer ch.6 TIOB pin 88 66 A6 68 C7 55 71 72 - 49 50 - D10 E8 - 57 58 - D10 D9 - 46 47 - TIOA7_0 TIOA7_1 TIOA7_2 TIOB7_0 TIOB7_1 TIOB7_2 Base timer ch.7 TIOA pin Base timer ch.7 TIOB pin June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 27 19 85 40 9 86 28 20 5 41 10 6 29 21 96 42 11 95 30 22 90 43 12 91 31 23 44 13 32 24 82 45 14 83 LQFP/ QFN64 10 22 5 11 23 6 12 60 24 7 59 13 25 8 14 26 15 27 - LQFP- QFP100 100 27 D a t a S h e e t Pin No Pin Function Debugger External Bus 28 CONFIDENTIAL Pin Name Function Description Serial wire debug interface clock input pin Serial wire debug interface SWDIO data input / output pin SWO Serial wire viewer output pin TCK J-TAG test clock input pin TDI J-TAG test data input pin TDO J-TAG debug data output pin J-TAG test mode state TMS input/output pin TRACECLK Trace CLK output pin of ETM TRACED0 TRACED1 Trace data output pins of ETM TRACED2 TRACED3 TRSTX J-TAG test reset input pin MAD00_1 MAD01_1 MAD02_1 MAD03_1 MAD04_1 MAD05_1 MAD06_1 MAD07_1 MAD08_1 MAD09_1 MAD10_1 MAD11_1 External bus interface address MAD12_1 bus MAD13_1 MAD14_1 MAD15_1 MAD16_1 MAD17_1 MAD18_1 MAD19_1 MAD20_1 MAD21_1 MAD22_1 MAD23_1 MAD24_1 SWCLK LQFP- QFP100 100 BGA- LQFP- BGA112 80 96 LQFP/ QFN64 78 56 B9 62 B9 50 80 58 A8 64 A9 52 81 78 79 81 59 56 57 59 B8 B9 B11 B8 65 62 63 65 B8 B9 B11 B8 53 50 51 53 80 58 A8 64 A9 52 86 82 83 84 85 77 31 32 39 40 41 42 43 44 45 53 54 55 56 57 58 59 63 64 65 66 67 68 69 70 74 64 60 61 62 63 55 9 10 17 18 19 20 21 22 23 31 32 33 34 35 36 37 41 42 43 44 45 46 47 48 52 C7 C8 D9 A7 B7 A9 H5 L6 K6 J6 L7 K7 H6 J7 K8 J10 J8 H10 H9 H7 G10 G9 G8 F10 F9 E11 E10 F8 E9 D11 C10 61 21 22 29 30 31 32 33 34 35 43 44 45 46 47 48 49 53 54 55 56 60 A10 L5 K5 J5 K6 J6 L7 K7 J7 K8 J10 J8 H10 H9 G10 G9 F10 F9 E11 E10 E9 C10 49 - MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t Pin No Pin Function External Bus Pin Name MCSX0_1 MCSX1_1 MCSX2_1 MCSX3_1 MCSX4_1 MCSX5_1 MCSX6_1 MCSX7_1 MDQM0_1 MDQM1_1 MOEX_1 MWEX_1 Function Description External bus interface chip select output pin External bus interface byte mask signal output pin External bus interface read enable signal for SRAM External bus interface write enable signal for SRAM MADATA00_1 MADATA01_1 MADATA02_1 MADATA03_1 MADATA04_1 MADATA05_1 MADATA06_1 MADATA07_1 MADATA08_1 External bus interface data bus MADATA09_1 MADATA10_1 MADATA11_1 MADATA12_1 MADATA13_1 MADATA14_1 MADATA15_1 Address Latch enable signal for multiplex External RDY input signal MRDY_1 MCLKOUT_1 External bus clock output pin MALE_1 June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 88 87 86 85 83 82 79 77 90 91 66 65 64 63 61 60 57 55 68 69 A6 D7 C7 B7 D9 C8 B11 A9 C6 A5 68 67 63 61 70 71 C7 C8 B11 A10 B6 C6 LQFP/ QFN64 - 94 72 C5 74 C5 - 93 71 D6 73 B5 - 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 C1 C2 B3 D1 D2 D3 D5 E1 E2 E3 E4 F1 F2 F3 G1 G2 2 3 4 5 6 7 8 9 10 11 12 - C1 C2 B3 D1 D2 D3 E1 E2 E3 G1 G2 - - 89 67 B6 69 B7 - 96 84 74 62 C4 A7 76 66 C4 A8 - LQFP- QFP100 100 BGA- LQFP- BGA112 80 96 29 D a t a S h e e t Pin No Pin Function External Interrupt Pin Name INT00_0 INT00_1 INT00_2 INT01_0 INT01_1 INT02_0 INT02_1 INT03_0 INT03_1 INT03_2 INT04_0 INT04_1 INT04_2 INT05_0 INT05_1 INT05_2 INT06_1 INT06_2 INT07_2 INT08_1 INT08_2 INT09_1 INT10_1 INT11_1 INT12_1 INT13_1 INT14_1 INT15_1 NMIX 30 CONFIDENTIAL Function Description External interrupt request 00 input pin External interrupt request 01 input pin External interrupt request 02 input pin External interrupt request 03 input pin External interrupt request 04 input pin External interrupt request 05 input pin External interrupt request 06 input pin External interrupt request 07 input pin External interrupt request 08 input pin External interrupt request 09 input pin External interrupt request 10 input pin External interrupt request 11 input pin External interrupt request 12 input pin External interrupt request 13 input pin External interrupt request 14 input pin External interrupt request 15 input pin Non-Maskable Interrupt input pin 2 82 87 3 83 4 53 93 56 9 12 59 10 74 65 11 73 45 80 60 65 81 61 82 31 71 34 87 90 37 88 52 43 89 51 23 C1 C8 D7 C2 D9 B3 J10 D6 H9 E1 E4 G9 E2 C10 F9 E3 C11 K8 2 67 3 4 43 73 46 9 12 49 10 60 55 11 59 35 C1 C8 C2 B3 J10 B5 H9 E2 G2 F10 E3 C10 E10 G1 C11 K8 LQFP/ QFN64 2 54 3 4 35 38 5 8 40 6 7 48 27 5 83 D1 5 D1 - 14 8 92 86 F2 D5 8 E1 - 15 93 F3 - - - 16 94 G1 - - - 17 95 G2 - - - 27 5 J4 - - - 28 6 L5 - - - 39 17 K6 29 J5 - 96 74 C4 76 C4 60 92 70 B5 72 A6 57 LQFP- QFP100 100 BGA- LQFP- BGA112 80 96 MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t Pin No Pin Function GPIO Pin Name P00 P01 P02 P03 P04 P05 P06 P07 P08 P09 P0A P0B P0C P0D P0E P0F P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P1A P1B P1C P1D P1E P1F P20 P21 P22 P23 Function Description General-purpose I/O port 0 General-purpose I/O port 1 General-purpose I/O port 2 June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL LQFP- QFP100 100 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 52 53 54 55 56 57 58 59 63 64 65 66 67 68 69 70 74 73 72 71 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 30 31 32 33 34 35 36 37 41 42 43 44 45 46 47 48 52 51 50 49 BGA- LQFP- BGA112 80 96 A9 B9 B11 A8 B8 C8 D9 A7 B7 C7 D7 A6 B6 C6 A5 B5 J11 J10 J8 H10 H9 H7 G10 G9 G8 F10 F9 E11 E10 F8 E9 D11 C10 C11 E8 D10 61 62 63 64 65 66 67 68 69 70 71 72 42 43 44 45 46 47 48 49 53 54 55 56 60 59 58 57 A10 B9 B11 A9 B8 A8 C8 C7 B7 B6 C6 A6 J11 J10 J8 H10 H9 G10 G9 F10 F9 E11 E10 E9 C10 C11 D9 D10 LQFP/ QFN64 49 50 51 52 53 54 55 56 57 34 35 36 37 38 39 40 44 45 48 47 46 31 D a t a S h e e t Pin No Pin Function GPIO 32 CONFIDENTIAL Pin Name P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P3A P3B P3C P3D P3E P3F P40 P41 P42 P43 P44 P45 P46 P47 P48 P49 P4A P4B P4C P4D P4E P50 P51 P52 P53 P54 P55 P56 P60 P61 P62 P63 P80 P81 PE0 PE2 PE3 Function Description General-purpose I/O port 3 General-purpose I/O port 4 General-purpose I/O port 5 General-purpose I/O port 6 General-purpose I/O port 8 General-purpose I/O port E LQFP- QFP100 100 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 27 28 29 30 31 32 36 37 39 40 41 42 43 44 45 2 3 4 5 6 7 8 96 95 94 93 98 99 46 48 49 87 88 89 90 91 92 93 94 95 96 97 98 99 100 1 2 5 6 7 8 9 10 14 15 17 18 19 20 21 22 23 80 81 82 83 84 85 86 74 73 72 71 76 77 24 26 27 BGA- LQFP- BGA112 80 96 E1 E2 E3 E4 F1 F2 F3 G1 G2 F4 G3 H1 H2 G4 H3 J2 J4 L5 K5 J5 H5 L6 L3 K3 K6 J6 L7 K7 H6 J7 K8 C1 C2 B3 D1 D2 D3 D5 C4 B4 C5 D6 A3 A2 K9 L9 L10 9 10 11 12 13 14 15 16 17 18 19 21 22 26 27 29 30 31 32 33 34 35 2 3 4 5 6 7 8 76 75 74 73 78 79 36 38 39 E2 E3 G1 G2 G3 H1 H2 H3 J1 J2 J4 L5 K5 L3 K3 J5 K6 J6 L7 K7 J7 K8 C1 C2 B3 D1 D2 D3 E1 C4 B4 C5 B5 A3 A2 K9 L9 L10 LQFP/ QFN64 5 6 7 8 9 10 11 12 13 14 15 19 20 22 23 24 25 26 27 2 3 4 60 59 58 62 63 28 30 31 MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t Pin No Pin Function Multifunction Serial 0 Pin Name Function Description SIN0_0 SIN0_1 Multi-function serial interface ch.0 input pin Multi-function serial interface ch.0 output pin. This pin operates as SOT0 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA0 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.0 clock I/O pin. This pin operates as SCK0 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL0 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.1 input pin Multi-function serial interface ch.1 output pin. This pin operates as SOT1 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA1 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.1 clock I/O pin. This pin operates as SCK1 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL1 when it is used in an I2C (operation mode 4). SOT0_0 (SDA0_0) SOT0_1 (SDA0_1) SCK0_0 (SCL0_0) SCK0_1 (SCL0_1) Multifunction Serial 1 SIN1_1 SOT1_1 (SDA1_1) SCK1_1 (SCL1_1) June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 73 56 51 34 C11 H9 59 46 C11 H9 LQFP/ QFN64 48 - 72 50 E8 58 D9 47 57 35 H7 47 G10 - 71 49 D10 57 D10 46 58 36 G10 48 G9 - 53 31 J10 43 J10 35 54 32 J8 44 J8 36 55 33 H10 45 H10 37 LQFP- QFP100 100 BGA- LQFP- BGA112 80 96 33 D a t a S h e e t Pin No Pin Function Multifunction Serial 2 Pin Name SIN2_2 SOT2_2 (SDA2_2) SCK2_2 (SCL2_2) Multifunction Serial 3 SIN3_1 SIN3_2 SOT3_1 (SDA3_1) SOT3_2 (SDA3_2) SCK3_1 (SCL3_1) SCK3_2 (SCL3_2) 34 CONFIDENTIAL Function Description Multi-function serial interface ch.2 input pin Multi-function serial interface ch.2 output pin. This pin operates as SOT2 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA2 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.2 clock I/O pin. This pin operates as SCK2 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL2 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.3 input pin Multi-function serial interface ch.3 output pin. This pin operates as SOT3 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA3 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.3 clock I/O pin. This pin operates as SCK3 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL3 when it is used in an I2C (operation mode 4). LQFP- QFP100 100 BGA- LQFP- BGA112 80 96 LQFP/ QFN64 59 37 G9 49 F10 40 63 41 G8 53 F9 44 64 42 F10 54 E11 45 2 39 80 17 C1 K6 2 29 C1 J5 2 - 3 81 C2 3 C2 3 40 18 J6 30 K6 - 4 82 B3 4 B3 4 41 19 L7 31 J6 - MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t Pin No Pin Function Pin Name Function Description Multifunction Serial 4 SIN4_0 SIN4_1 SIN4_2 Multi-function serial interface ch.4 input pin SOT4_0 (SDA4_0) SOT4_1 (SDA4_1) SOT4_2 (SDA4_2) SCK4_0 (SCL4_0) SCK4_1 (SCL4_1) SCK4_2 (SCL4_2) Multifunction Serial 5 RTS4_0 RTS4_1 RTS4_2 CTS4_0 CTS4_1 CTS4_2 SIN5_0 SIN5_2 SOT5_0 (SDA5_0) SOT5_2 (SDA5_2) SCK5_0 (SCL5_0) SCK5_2 (SCL5_2) Multi-function serial interface ch.4 output pin. This pin operates as SOT4 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA4 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.4 clock I/O pin. This pin operates as SCK4 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL4 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.4 RTS output pin Multi-function serial interface ch.4 CTS input pin Multi-function serial interface ch.5 input pin Multi-function serial interface ch.5 output pin. This pin operates as SOT5 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA5 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.5 clock I/O pin. This pin operates as SCK5 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL5 when it is used in an I2C (operation mode 4). June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 87 65 82 65 43 60 D7 F9 C8 67 55 - C8 E10 - LQFP/ QFN64 54 - 88 66 A6 68 C7 55 66 44 E11 56 E9 - 83 61 D9 - - - 89 67 B6 69 B7 56 67 45 E10 - - - 84 62 A7 - - - 90 69 86 91 68 85 96 15 68 47 64 69 46 63 74 93 C6 E9 C7 A5 F8 B7 C4 F3 70 71 76 - B6 C6 C4 - 60 - 95 73 B4 75 B4 59 16 94 G1 - - - 94 72 C5 74 C5 58 17 95 G2 - - - LQFP- QFP100 100 BGA- LQFP- BGA112 80 96 35 D a t a S h e e t Pin No Pin Function Multifunction Serial 6 Pin Name Function Description SIN6_0 SIN6_1 Multi-function serial interface ch.6 input pin Multi-function serial interface ch.6 output pin. This pin operates as SOT6 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA6 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.6 clock I/O pin. This pin operates as SCK6 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL6 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.7 input pin Multi-function serial interface ch.7 output pin. This pin operates as SOT7 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA7 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.7 clock I/O pin. This pin operates as SCK7 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL7 when it is used in an I2C (operation mode 4). SOT6_0 (SDA6_0) SOT6_1 (SDA6_1) SCK6_0 (SCL6_0) SCK6_1 (SCL6_1) Multifunction Serial 7 SIN7_1 SOT7_1 (SDA7_1) SCK7_1 (SCL7_1) 36 CONFIDENTIAL 5 12 83 90 D1 E4 5 12 D1 G2 LQFP/ QFN64 8 6 84 D2 6 D2 - 11 89 E3 11 G1 7 7 85 D3 7 D3 - 10 88 E2 10 E3 6 45 23 K8 35 K8 27 44 22 J7 34 J7 26 43 21 H6 33 K7 25 LQFP- QFP100 100 BGA- LQFP- BGA112 80 96 MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t Pin No Pin Function Real-time clock Low-Power Consumption Mode Pin Name RTCCO_0 RTCCO_1 RTCCO_2 SUBOUT_0 SUBOUT_1 SUBOUT_2 WKUP0 WKUP1 WKUP2 WKUP3 HDMICEC/ Remote Control CEC0 CEC1 Function Description 0.5 seconds pulse output pin of Real-time clock Sub clock output pin Deep standby mode return signal input pin 0 Deep standby mode return signal input pin 1 Deep standby mode return signal input pin 2 Deep standby mode return signal input pin 3 HDMI-CEC/RemoteControl Reception ch.0 input/output pin HDMI-CEC/RemoteControl Reception ch.1 input/output pin June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 92 55 19 92 55 19 70 33 97 70 33 97 B5 H10 G3 B5 H10 G3 72 45 14 72 45 14 A6 H10 H1 A6 H10 H1 LQFP/ QFN64 57 37 10 57 37 10 92 70 B5 72 A6 57 53 31 J10 43 J10 35 73 51 C11 59 C11 48 96 74 C4 76 C4 60 43 21 H6 33 K7 25 96 74 C4 76 C4 60 LQFP- QFP100 100 BGA- LQFP- BGA112 80 96 37 D a t a S h e e t Pin No Pin Function Pin Name Reset INITX Mode MD0 MD1 Power GND 38 CONFIDENTIAL VCC VCC VCC VCC VCC VCC VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS Function Description External Reset Input pin. A reset is valid when INITX=L. Mode 0 pin. During normal operation, MD0=L must be input. During serial programming to Flash memory, MD0=H must be input. Mode 1 pin. During serial programming to Flash memory, MD1=L must be input. Power supply Pin Power supply Pin Power supply Pin Power supply Pin Power supply Pin Power supply Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin LQFP100 LQFP/ QFP- BGA- LQFP- BGAQFN100 112 80 96 64 38 16 K4 28 K4 21 47 25 L8 37 L8 29 46 24 K9 36 K9 28 1 26 35 51 76 97 25 34 50 75 100 79 4 13 29 54 75 3 12 28 53 78 B1 J1 K1 K11 A10 A4 B2 L1 K2 J3 H4 L4 L11 K10 J9 H8 B10 C9 A11 D8 D4 C3 A1 1 25 41 77 20 24 40 80 B1 K1 K11 A4 F1 F2 F3 B2 L1 K2 J3 L6 L4 L11 K10 J9 B10 C9 D11 A11 A7 C3 A5 A1 1 18 33 61 16 32 64 MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t Pin No Pin Function Clock Pin Name X0 X0A X1 X1A CROUT_0 CROUT_1 ADC power AVCC AVRH ADC GND C pin AVSS C Function Description Main clock (oscillation) input pin Sub clock (oscillation) input pin Main clock (oscillation) I/O pin Sub clock (oscillation) I/O pin Built-in high-speed CR-osc clock output port A/D converter analog power supply pin A/D converter analog reference voltage input pin BGA- LQFP- BGA112 80 96 LQFP/ QFN64 48 26 L9 38 L9 30 36 14 L3 26 L3 19 49 27 L10 39 L10 31 37 74 92 15 52 70 K3 C10 B5 27 60 72 K3 C10 A6 20 57 60 38 H11 50 H11 41 61 39 F11 51 F11 42 A/D converter GND pin 62 40 G11 52 G11 43 Power stabilization capacity pin 33 11 L2 23 L2 17 June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL LQFP- QFP100 100 39 D a t a S h e e t I/O Circuit Type Type Circuit Remarks A It is possible to select the main oscillation / GPIO function When the main oscillation is selected. Oscillation feedback resistor : Approximately 1 MΩ With Standby mode control Pull-up resistor P-ch P-ch Digital output X1 N-ch Digital output R Pull-up resistor control When the GPIO is selected. CMOS level output. CMOS level hysteresis input With pull-up resistor control With standby mode control Pull-up resistor : Approximately 33 kΩ IOH= -4 mA, IOL= 4 mA Digital input Standby mode control Clock input Feedback resistor Standby mode control Digital input Standby mode control Pull-up resistor R P-ch P-ch Digital output N-ch Digital output X0 Pull-up resistor control CMOS level hysteresis input Pull-up resistor : Approximately 33 kΩ B Pull-up resistor Digital input 40 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t Type Circuit Remarks C Digital input Open drain output CMOS level hysteresis input Digital output N-ch D It is possible to select the sub oscillation / GPIO function Pull-up resistor P-ch P-ch Digital output X1A N-ch Digital output R Pull-up resistor control Digital input When the sub oscillation is selected. Oscillation feedback resistor : Approximately 5 MΩ With Standby mode control When the GPIO is selected. CMOS level output. CMOS level hysteresis input With pull-up resistor control With standby mode control Pull-up resistor : Approximately 33 kΩ IOH= -4 mA, IOL= 4 mA Standby mode control Clock input Feedback resistor Standby mode control Digital input Standby mode control Pull-up resistor R P-ch P-ch Digital output N-ch Digital output X0A Pull-up resistor control June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 41 D a t a S h e e t Type Circuit Remarks E P-ch P-ch N-ch CMOS level output CMOS level hysteresis input With pull-up resistor control With standby mode control Pull-up resistor : Approximately 33 kΩ IOH= -4 mA, IOL= 4 mA When this pin is used as an I2C pin, the digital output P-ch transistor is always off Digital output Digital output R Pull-up resistor control Digital input Standby mode control F P-ch P-ch N-ch R CMOS level output CMOS level hysteresis input With input control Analog input With pull-up resistor control With standby mode control Pull-up resistor : Approximately 33 kΩ IOH= -4 mA, IOL= 4 mA When this pin is used as an I2C pin, the digital output P-ch transistor is always off Digital output Digital output Pull-up resistor control Digital input Standby mode control Analog input Input control G CMOS level hysteresis input Mode input 42 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t Type Circuit Remarks CMOS level output CMOS level hysteresis input With standby mode control IOH = -12.0 mA, IOL = 10.5 mA H P-ch N-ch Digital output Digital output R Digital input Standby mode control I P-ch P-ch N-ch Digital output Digital output R CMOS level output CMOS level hysteresis input 5 V tolerant With pull-up resistor control With standby mode control Pull-up resistor : Approximately 33 kΩ IOH= -4 mA, IOL= 4 mA Available to control PZR registers. When this pin is used as an I2C pin, the digital output P-ch transistor is always off Pull-up resistor control Digital input Standby mode control June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 43 D a t a S h e e t Handling Precautions Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Spansion semiconductor devices. 1. Precautions for Product Design This section describes precautions when designing electronic equipment using semiconductor devices. Absolute Maximum Ratings Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings. Recommended Operating Conditions Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges. Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand. Processing and Protection of Pins These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions. (1) Preventing Over-Voltage and Over-Current Conditions Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage. (2) Protection of Output Pins Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection. (3) Handling of Unused Input Pins Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin. Latch-up Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up. CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following: (1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc. (2) Be sure that abnormal current flows do not occur during the power-on sequence. Code: DS00-00004-3E 44 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t Observance of Safety Regulations and Standards Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products. Fail-Safe Design Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. Precautions Related to Usage of Devices Spansion semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. 2. Precautions for Package Mounting Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Spansion's recommended conditions. For detailed information about mount conditions, contact your sales representative. Lead Insertion Type Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket. Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Spansion recommended mounting conditions. If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting. Surface Mount Type Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges. You must use appropriate mounting techniques. Spansion Inc. recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Spansion ranking of recommended conditions. June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 45 D a t a S h e e t Lead-Free Packaging CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use. Storage of Semiconductor Devices Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following: (1) Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight. (2) Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C. When you open Dry Package that recommends humidity 40% to 70% relative humidity. (3) When necessary, Spansion Inc. packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage. (4) Avoid storing packages where they are exposed to corrosive gases or high levels of dust. Baking Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Spansion recommended conditions for baking. Condition: 125°C/24 h Static Electricity Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions: (1) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity. (2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment. (3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MΩ). Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended. (4) Ground all fixtures and instruments, or protect with anti-static measures. (5) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies. 46 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t 3. Precautions for Use Environment Reliability of semiconductor devices depends on ambient temperature and other conditions as described above. For reliable performance, do the following: (1) Humidity Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing. (2) Discharge of Static Electricity When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges. (3) Corrosive Gases, Dust, or Oil Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices. (4) Radiation, Including Cosmic Radiation Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate. (5) Smoke, Flame CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases. Customers considering the use of Spansion products in other special environmental conditions should consult with sales representatives. Please check the latest handling precautions at the following URL. http://www.spansion.com/fjdocuments/fj/datasheet/e-ds/DS00-00004.pdf June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 47 D a t a S h e e t Handling Devices Power supply pins In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating. Moreover, connect the current supply source with each Power supply pin and GND pin of this device at low impedance. It is also advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between each Power supply pin and GND pin, between AVCC pin and AVSS pin near this device. Stabilizing supply voltage A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the recommended operating conditions of the VCC power supply voltage. As a rule, with voltage stabilization, suppress the voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC value in the recommended operating conditions, and the transient fluctuation rate does not exceed 0.1 V/μs when there is a momentary fluctuation on switching the power supply.. Crystal oscillator circuit Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator, and the bypass capacitor to ground are located as close to the device as possible. It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by ground plane as this is expected to produce stable operation. Evaluate oscillation of your using crystal oscillator by your mount board. Sub crystal oscillator This series sub oscillator circuit is low gain to keep the low current consumption. The crystal oscillator to fill the following conditions is recommended for sub crystal oscillator to stabilize the oscillation. ・Surface mount type Size: More than 3.2 mm × 1.5 mm Load capacitance: Approximately 6 pF to 7 pF ・Lead type Load capacitance: Approximately 6 pF to 7 pF 48 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t Using an external clock When using an external clock as an input of the main clock, set X0/X1 to the external clock input, and input the clock to X0. X1(PE3) can be used as a general-purpose I/O port. Similarly, when using an external clock as an input of the sub clock, set X0A/X1A to the external clock input, and input the clock to X0A. X1A (P47) can be used as a general-purpose I/O port. • Example of Using an External Clock Device X0(X0A) Can be used as general-purpose I/O ports. Set as External clock input X1(PE3), X1A (P47) 2 Handling when using Multi-function serial pin as I C pin If it is using the multi-function serial pin as I2C pins, P-ch transistor of digital output is always disabled. However, I2C pins need to keep the electrical characteristic like other pins and not to connect to the external I2C bus system with power OFF. C Pin This series contains the regulator. Be sure to connect a smoothing capacitor (C S) for the regulator between the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor. However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to use by evaluating the temperature characteristics of a capacitor.A smoothing capacitor of about 4.7μF would be recommended for this series. C Device CS VSS GND Mode pins (MD0) Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistor stays low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is because of preventing the device erroneously switching to test mode due to noise. June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 49 D a t a S h e e t Notes on power-on Turn power on/off in the following order or at the same time. If not using the A/D converter, connect AVCC = VCC and AVSS = VSS. Turning on : VCC →AVCC → AVRH Turning off : AVRH → AVCC → VCC Serial Communication There is a possibility to receive wrong data due to the noise or other causes on the serial communication. Therefore, design a printed circuit board so as to avoid noise. Consider the case of receiving wrong data due to noise, perform error detection such as by applying a checksum of data at the end. If an error is detected, retransmit the data. Differences in features among the products with different memory sizes and between Flash memory products and MASK products The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among the products with different memory sizes and between Flash memory products and MASK products are different because chip layout and memory structures are different. If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics. Pull-Up function of 5 V tolerant I/O Please do not input the signal more than VCC voltage at the time of Pull-Up function use of 5 V tolerant I/O. 50 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t Block Diagram TRSTX,TCK, TDI,TMS TDO TRACEDx, TRACECLK ETM*1 SWJ-DP TPIU* SRAM0 8/16 Kbyte ROM Table 1 Multi-layer AHB (Max 40 MHz) Cortex-M3 Core I @40 MHz(Max) D NVIC Sys AHB-APB Bridge: APB0(Max 40 MHz) Dual-Timer WatchDog Timer (Software) Clock Reset Generator INITX WatchDog Timer (Hardware) SRAM1 8/16 Kbyte Flash I/F Security On-Chip Flash 64+32 Kbyte/ 128+32 Kbyte/ 256+32 Kbyte DMAC 8ch. CSV X0 X1 X0A X1A CROUT Main Osc Sub Osc PLL CR 4 MHz AHB-AHB Bridge CLK Source Clock CR 100 kHz MADx External Bus I/F*2 ADTGx TIOAx TIOBx Unit 0 Unit 1 Base Timer 16-bit 8ch./ 32-bit 4ch. Power-On Reset LVD Ctrl RTCCO, SUBOUT WKUPx C CRC Accelerator Watch Counter External Interrupt Controller 16-pin + NMI INTx NMIX MODE-Ctrl MD0, MD1 P0x, P1x, HDMI-CEC/ Remote Reciver Control Real-Time Clock LVD Regulator GPIO CEC0,CEC1 MCSXx, MOEX, MWEX, MALE, MRDY, MCLKOUT, MDQMx IRQ-Monitor AHB-APB Bridge : APB2 (Max 40 MHz) ANxx MADATAx 12-bit A/D Converter AHB-APB Bridge : APB1 (Max 40 MHz) AVCC, AVSS, AVRH PIN-Function-Ctrl . . . PEx Multi-Function Serial I/F 8ch. (with FIFO ch.4 to ch.7) HW flow control(ch.4)*2 Deep Standby Ctrl SCKx SINx SOTx CTS4 RTS4 *1: For the MB9AF141LB/MB, MB9AF142LB/MB, and MB9AF144LB/MB, ETM is not available. *2: For the MB9AF141LB, MB9AF142LB and MB9AF144LB, the External Bus Interface is not available. And the Multi-function Serial Interface does not support hardware flow control in these products. Memory Size See Memory size in Product Lineup to confirm the memory size. June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 51 D a t a S h e e t Memory Map Memory Map (1) Peripherals Area 0x41FF_FFFF Reserved 0xFFFF_FFFF Reserved 0xE010_0000 0xE000_0000 Cortex-M3 Private Peripherals 0x4006_1000 0x4006_0000 0x4005_0000 0x4004_0000 0x4003_F000 Reserved 0x4003_C000 0x4003_B000 0x4003_A000 0x7000_0000 0x6000_0000 External Device Area Reserved 0x4003_9000 0x4003_8000 0x4003_7000 0x4003_6000 0x4003_5000 0x4400_0000 0x4200_0000 0x4000_0000 32Mbytes Bit band alias Peripherals Reserved 0x2400_0000 0x2200_0000 0x1FFF_0000 0x0020_8000 0x0020_0000 See the next page "Memory Map (2)" for the memory size details. 0x0010_4000 0x0010_0000 0x4003_3000 0x4003_2000 0x4003_1000 0x4003_0000 0x4002_F000 0x4002_E000 32Mbytes Bit band alias Reserved 0x2008_0000 0x2000_0000 0x4003_4000 0x4002_8000 EXT-bus I/F Reserved RTC Watch Counter CRC MFS Reserved LVD/DS mode HDMI-CEC/ Remote Control Receiver GPIO Reserved Int-Req.Read EXTI Reserved CR Trim Reserved A/DC 0x4002_6000 Reserved 0x4002_5000 Base Timer Reserved 0x4001_6000 0x4001_5000 0x0000_0000 0x4001_3000 0x4001_2000 0x4001_1000 0x4001_0000 0x4000_1000 0x4000_0000 CONFIDENTIAL Reserved 0x4002_7000 SRAM1 SRAM0 Reserved Flash(Work area) Reserved Security/CR Trim Flash(Main area) 52 DMAC Dual Timer Reserved SW WDT HW WDT Clock/Reset Reserved Flash I/F MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t Memory Map (2) MB9AF144LB/MB/NB MB9AF142LB/MB/NB 0x2008_0000 MB9AF141LB/MB/NB 0x2008_0000 Reserved 0x2008_0000 Reserved Reserved 0x2000_4000 0x2000_2000 SRAM1 16Kbytes 0x2000_0000 0x2000_0000 SRAM0 16Kbytes 0x1FFF_E000 0x2000_2000 SRAM1 8Kbytes SRAM0 8Kbytes 0x2000_0000 0x1FFF_E000 SRAM1 8Kbytes SRAM0 8Kbytes 0x1FFF_C000 SA4-7 (8 KBx4) Reserved 0x0010_4000 0x0010_2000 0x0010_0000 0x0020_0000 SA4-7 (8 KBx4) Reserved 0x0010_4000 CR trimming Security 0x0010_2000 0x0010_0000 0x0020_8000 0x0020_0000 SA4-7 (8 KBx4) Reserved Flash(Work area) 32 Kbytes 0x0020_0000 0x0020_8000 Reserved Flash(Work area) 32 Kbytes 0x0020_8000 Reserved Flash(Work area) 32 Kbytes Reserved 0x0010_4000 CR trimming Security 0x0010_2000 0x0010_0000 CR trimming Security Reserved Reserved Reserved 0x0000_0000 SA2-3 (8 KBx2) SA9 (64 KB) SA8 (48 KB) 0x0000_0000 SA2-3 (8 KBx2) 0x0001_0000 SA8 (48 KB) 0x0000_0000 Flash(Main area) 64 Kbytes SA8 (48 KB) 0x0002_0000 Flash(Main area) 128 Kbytes SA9-11 (64 KBx3) Flash(Main area) 256 Kbytes 0x0004_0000 SA2-3 (8 KBx2) Refer to the programming manual for the detail of Flash main area. ・MB9AB40N/A40N/340N/140N/150R,MB9B520M/320M/120M Series Flash Programming Manual June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 53 D a t a S h e e t Peripheral Address Map Start address End address Bus 0x4000_0000 0x4000_0FFF 0x4000_1000 0x4000_FFFF 0x4001_0000 0x4001_0FFF Clock/Reset Control 0x4001_1000 0x4001_1FFF Hardware Watchdog timer 0x4001_2000 0x4001_2FFF 0x4001_3000 0x4001_4FFF AHB APB0 Peripherals Flash memory I/F register Reserved Software Watchdog timer Reserved 0x4001_5000 0x4001_5FFF Dual Timer 0x4001_6000 0x4001_FFFF Reserved 0x4002_0000 0x4002_4FFF Reserved 0x4002_5000 0x4002_5FFF Base Timer 0x4002_6000 0x4002_6FFF Reserved 0x4002_7000 0x4002_7FFF APB1 A/D Converter 0x4002_8000 0x4002_DFFF Reserved 0x4002_E000 0x4002_EFFF Built-in CR trimming 0x4002_F000 0x4002_FFFF Reserved 0x4003_0000 0x4003_0FFF External Interrupt 0x4003_1000 0x4003_1FFF Interrupt Source Check Register 0x4003_2000 0x4003_2FFF Reserved 0x4003_3000 0x4003_3FFF GPIO 0x4003_4000 0x4003_4FFF HDMI-CEC/Remote control Receiver 0x4003_5000 0x4003_57FF Low-Voltage Detector 0x4003_5800 0x4003_5FFF 0x4003_6000 0x4003_7FFF 0x4003_8000 0x4003_8FFF Multi-function serial APB2 Deep standby mode Controller Reserved 0x4003_9000 0x4003_9FFF CRC 0x4003_A000 0x4003_AFFF Watch Counter 0x4003_B000 0x4003_BFFF Real-time clock 0x4003_C000 0x4003_EFFF Reserved 0x4003_F000 0x4003_FFFF External bus interface 0x4004_0000 0x4005_FFFF 0x4006_0000 0x4006_0FFF 0x4006_1000 0x41FF_FFFF 54 CONFIDENTIAL Reserved AHB DMAC register Reserved MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t Pin Status in Each CPU State The terms used for pin status have the following meanings. INITX=0 This is the period when the INITX pin is the L level. INITX=1 This is the period when the INITX pin is the H level. SPL=0 This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 0. SPL=1 This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 1. Input enabled Indicates that the input function can be used. Internal input fixed at 0 This is the status that the input function cannot be used. Internal input is fixed at L. Hi-Z Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state. Setting disabled Indicates that the setting is disabled. Maintain previous state Maintains the state that was immediately prior to entering the current mode. If a built-in peripheral function is operating, the output follows the peripheral function. If the pin is being used as a port, that output is maintained. Analog input is enabled Indicates that the analog input is enabled. Trace output Indicates that the trace function can be used. GPIO selected In Deep standby mode, pins switch to the general-purpose I/O port. June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 55 D a t a S h e e t Pin status type List of Pin Status A Function group Power-on reset or Device Run mode INITX low-voltage internal or Sleep input state detection reset state mode state state Power supply unstable - Power supply stable INITX = 0 INITX = 1 INITX = 1 Power supply stable Timer mode, RTC mode, or Stop mode state Deep standby RTC mode or Deep standby Stop mode state Power supply stable Power supply stable INITX = 1 SPL = 0 SPL = 1 INITX = 1 SPL = 0 SPL = 1 Maintain previous state GPIO Hi-Z / Hi-Z / selected Internal Internal Internal input fixed input fixed input fixed at 0 at 0 at 0 Return from Deep standby mode state Power supply stable INITX = 1 - GPIO selected Setting disabled Setting disabled Setting disabled Maintain previous state Main crystal oscillator input pin/ External main clock input selected Input enabled Input enabled Input enabled Input enabled Input enabled Maintain previous state GPIO Hi-Z / Hi-Z / selected Internal Internal Internal input fixed input fixed input fixed at "0" at 0 at 0 GPIO selected Maintain previous state Hi-Z / Internal input fixed at 0 Maintain previous state Input enabled Input enabled Input enabled GPIO selected Input enabled GPIO selected Setting disabled Setting disabled Setting disabled Maintain previous state External main clock input selected Setting disabled Setting disabled Setting disabled Maintain previous state Main crystal oscillator output pin Hi-Z / Internal input fixed at 0/ or Input enabled C INITX input pin Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled D Mode input pin Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Mode input pin Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled GPIO selected Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z / Input enabled GPIO selected Hi-Z / Input enabled GPIO selected B CONFIDENTIAL Hi-Z / Internal input fixed at 0 Maintain Maintain Maintain Maintain Maintain Maintain previous previous previous previous previous previous state/When state/When state/When state/When state/When state/When Hi-Z / Hi-Z / oscillation oscillation oscillation oscillation oscillation oscillation Internal Internal stops*1, stops*1, stops*1, stops*1, stops*1, stops*1, input fixed input fixed Hi-Z / Hi-Z / Hi-Z / Hi-Z / Hi-Z / Hi-Z / at 0 at 0 Internal Internal Internal Internal Internal Internal input fixed input fixed input fixed input fixed input fixed input fixed at 0 at 0 at 0 at 0 at 0 at 0 E 56 Maintain previous state MB9A140NB_DS706-00040-4v0-E, June 10, 2015 Pin status type D a t a S h e e t Function group Power-on reset or Device Run mode INITX low-voltage internal or Sleep input state detection reset state mode state state Power supply unstable - Power supply stable INITX = 0 INITX = 1 INITX = 1 Power supply stable Timer mode, RTC mode, or Stop mode state Deep standby RTC mode or Deep standby Stop mode state Power supply stable Power supply stable INITX = 1 SPL = 0 SPL = 1 INITX = 1 SPL = 0 SPL = 1 Maintain previous state GPIO Hi-Z / Hi-Z / selected Internal Internal Internal input fixed input fixed input fixed at 0 at 0 at 0 Return from Deep standby mode state Power supply stable INITX = 1 - GPIO selected Setting disabled Setting disabled Setting disabled Maintain previous state Sub crystal oscillator input pin / External sub clock input selected Input enabled Input enabled Input enabled Input enabled Input enabled Maintain previous state GPIO Hi-Z / Hi-Z / selected Internal Internal Internal input fixed input fixed input fixed at 0 at 0 at 0 GPIO selected Maintain previous state Hi-Z / Internal input fixed at 0 Maintain previous state GPIO selected F GPIO selected Setting disabled Setting disabled Setting disabled Maintain previous state External sub clock input selected Setting disabled Setting disabled Setting disabled Maintain previous state Sub crystal oscillator output pin Hi-Z / Internal input fixed at 0/ or Input enable G H GPIO selected Hi-Z Hi-Z / Hi-Z / Internal Internal input fixed input fixed at 0 at 0 Hi-Z / Input enabled June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL Hi-Z / Input enabled Maintain previous state Maintain previous state Input enabled Input enabled Maintain previous state Input enabled Hi-Z/ Internal input fixed at 0 Input enabled Maintain Maintain Maintain Maintain Maintain previous previous previous previous previous state/When state/When state/When state/When state/When oscillation oscillation oscillation oscillation oscillation stops*2, stops*2, stops*2, stops*2, stops*2, Hi-Z / Hi-Z / Hi-Z/ Hi-Z/ Hi-Z/ Internal Internal Internal Internal Internal input fixed input fixed input fixed input fixed input fixed at 0 at 0 at 0 at 0 at 0 Maintain previous state GPIO Hi-Z / Hi-Z / selected Internal Internal Internal input fixed input fixed input fixed at 0 at 0 at 0 GPIO selected 57 Pin status type D a t a S h e e t Function group Power supply unstable NMIX selected I Power-on reset or Device Run mode INITX low-voltage internal or Sleep input state detection reset state mode state state Resource other than above selected Setting disabled Setting disabled Hi-Z Hi-Z / Input enabled Hi-Z Pull-up / Input enabled Pull-up / Input enabled J GPIO selected Setting disabled Setting disabled Setting disabled Hi-Z Hi-Z / Input enabled Hi-Z / Input enabled Setting disabled Setting disabled Setting disabled Resource selected K GPIO selected External interrupt enabled selected L Resource other than above selected Hi-Z GPIO selected Analog input selected Hi-Z M Resource other than above selected GPIO selected 58 CONFIDENTIAL Setting disabled Hi-Z / Input enabled Deep standby RTC mode or Deep standby Stop mode state Power supply stable Power supply stable INITX = 1 SPL = 0 SPL = 1 INITX = 1 SPL = 0 SPL = 1 Setting disabled Hi-Z / Input enabled GPIO selected JTAG selected Power supply stable INITX = 0 INITX = 1 INITX = 1 Power supply stable Timer mode, RTC mode, or Stop mode state Hi-Z / Input enabled Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 Maintain previous state Setting disabled Power supply stable INITX = 1 - WKUP input enabled Hi-Z / WKUP input enabled GPIO selected Maintain previous state Maintain previous state Maintain previous state GPIO Hi-Z / Hi-Z / selected Internal Internal Internal input fixed input fixed input fixed at 0 at 0 at 0 GPIO selected GPIO Hi-Z / Hi-Z / selected Internal Internal Internal input fixed input fixed input fixed at 0 at 0 at 0 GPIO selected Maintain previous state Maintain previous state Maintain previous state GPIO Hi-Z / selected Internal Internal Hi-Z / input fixed Internal input fixed at 0 at 0 input fixed at 0 Hi-Z / Hi-Z / Hi-Z / Hi-Z / Hi-Z / Hi-Z / Hi-Z / Internal Internal Internal Internal Internal Internal Internal input fixed input fixed input fixed input fixed input fixed input fixed input fixed at 0 / at 0 / at 0 / at 0 / at 0 / at 0 / at 0 / Analog Analog Analog Analog Analog Analog Analog input input input input input input input enabled enabled enabled enabled enabled enabled enabled Setting disabled Return from Deep standby mode state Maintain previous state Maintain previous state GPIO Hi-Z / Hi-Z / selected Internal Internal Internal input fixed input fixed input fixed at 0 at 0 at 0 GPIO selected Hi-Z / Internal input fixed at 0 / Analog input enabled GPIO selected MB9A140NB_DS706-00040-4v0-E, June 10, 2015 Pin status type D a t a S h e e t Function group Power supply unstable - Analog input selected N Power-on reset or Device Run mode INITX low-voltage internal or Sleep input state detection reset state mode state state Hi-Z Power supply stable INITX = 0 INITX = 1 INITX = 1 Power supply stable Timer mode, RTC mode, or Stop mode state Deep standby RTC mode or Deep standby Stop mode state Power supply stable Power supply stable INITX = 1 SPL = 0 SPL = 1 INITX = 1 SPL = 0 SPL = 1 Hi-Z / Hi-Z / Hi-Z / Hi-Z / Hi-Z / Hi-Z / Hi-Z / Internal Internal Internal Internal Internal Internal Internal input fixed input fixed input fixed input fixed input fixed input fixed input fixed at 0 / at 0 / at 0 / at 0 / at 0 / at 0 / at 0 / Analog Analog Analog Analog Analog Analog Analog input input input input input input input enabled enabled enabled enabled enabled enabled enabled Maintain previous state External interrupt enabled selected Resource other than above selected Setting disabled Setting disabled Setting disabled Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state GPIO selected Trace selected O Resource other than above selected Hi-Z GPIO selected Analog input selected Hi-Z Hi-Z / Input enabled Hi-Z / Input enabled Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 / Analog input enabled GPIO Hi-Z / selected Internal Internal input fixed input fixed at 0 at 0 GPIO selected GPIO Hi-Z / selected Internal Internal input fixed input fixed at 0 at 0 Hi-Z / Internal input fixed at 0 GPIO selected Hi-Z / Hi-Z / Hi-Z / Hi-Z / Hi-Z / Hi-Z / Hi-Z / Internal Internal Internal Internal Internal Internal Internal input fixed input fixed input fixed input fixed input fixed input fixed input fixed at 0 / at 0 / at 0 / at 0 / at 0 / at 0 / at 0 / Analog Analog Analog Analog Analog Analog Analog input input input input input input input enabled enabled enabled enabled enabled enabled enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Trace output Trace selected Setting disabled Setting disabled GPIO selected June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL Power supply stable INITX = 1 - Trace output P Resource other than above selected Hi-Z / Internal input fixed at 0 Return from Deep standby mode state Setting disabled Maintain previous state Maintain previous state GPIO Hi-Z / selected Internal Hi-Z / Internal input fixed Internal input fixed at 0 input fixed at 0 at 0 GPIO selected 59 Pin status type D a t a S h e e t Function group Power-on reset or Device Run mode INITX low-voltage internal or Sleep input state detection reset state mode state state Power supply unstable - Analog input selected Hi-Z Power supply stable INITX = 0 INITX = 1 INITX = 1 Power supply stable Timer mode, RTC mode, or Stop mode state Deep standby RTC mode or Deep standby Stop mode state Power supply stable Power supply stable INITX = 1 SPL = 0 SPL = 1 INITX = 1 SPL = 0 SPL = 1 Hi-Z / Hi-Z / Hi-Z / Hi-Z / Hi-Z / Hi-Z / Hi-Z / Internal Internal Internal Internal Internal Internal Internal input fixed input fixed input fixed input fixed input fixed input fixed input fixed at 0 / at 0 / at 0 / at 0 / at 0 / at 0 / at 0 / Analog Analog Analog Analog Analog Analog Analog input input input input input input input enabled enabled enabled enabled enabled enabled enabled Q Resource other than above selected Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z External interrupt enabled selected Maintain previous state Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z Hi-Z / Input enabled Hi-Z / Input enabled Maintain previous state Maintain previous state Resource other than above selected GPIO selected CEC enabled S Resource other than above selected GPIO selected 60 CONFIDENTIAL GPIO Hi-Z / selected Internal Internal input fixed input fixed at 0 at 0 Hi-Z / Hi-Z / Hi-Z / Hi-Z / Hi-Z / Hi-Z / Hi-Z / Internal Internal Internal Internal Internal Internal Internal input fixed input fixed input fixed input fixed input fixed input fixed input fixed at 0 / at 0 / at 0 / at 0 / at 0 / at 0 / at 0 / Analog Analog Analog Analog Analog Analog Analog input input input input input input input enabled enabled enabled enabled enabled enabled enabled WKUP enabled R Maintain previous state Hi-Z / Internal input fixed at 0 GPIO selected Analog input selected Power supply stable INITX = 1 Hi-Z / Internal input fixed at 0 / Analog input enabled Trace output Trace selected External interrupt enabled selected Return from Deep standby mode state WKUP input enabled Maintain previous state Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / WKUP input enabled GPIO Hi-Z / selected Internal Internal Hi-Z / input fixed Internal input fixed at 0 at 0 input fixed at 0 Maintain previous state GPIO selected Maintain previous state GPIO Hi-Z / Hi-Z / selected Internal Internal Internal input fixed input fixed input fixed at 0 at 0 at 0 GPIO selected Maintain previous state GPIO selected MB9A140NB_DS706-00040-4v0-E, June 10, 2015 Pin status type D a t a S h e e t Function group Power supply unstable CEC enabled WKUP enabled T Power-on reset or Device Run mode INITX low-voltage internal or Sleep input state detection reset state mode state state Setting disabled Setting disabled Power supply stable INITX = 0 INITX = 1 INITX = 1 Power supply stable Setting disabled Setting disabled Setting disabled GPIO selected Hi-Z / Input enabled Power supply stable Power supply stable INITX = 1 SPL = 0 SPL = 1 INITX = 1 SPL = 0 SPL = 1 Maintain previous state Maintain previous state Maintain previous state WKUP input enabled Hi-Z / WKUP input enabled Hi-Z / Input enabled Maintain previous state Maintain previous state Maintain previous state Hi-Z Deep standby RTC mode or Deep standby Stop mode state Setting disabled External interrupt enabled selected Resource other than above selected Maintain previous state Timer mode, RTC mode, or Stop mode state Maintain previous state Return from Deep standby mode state GPIO Hi-Z / selected Internal Hi-Z / Internal Internal input fixed input fixed at 0 input fixed at 0 at 0 Power supply stable INITX = 1 Maintain previous state GPIO selected *1: Oscillation is stopped at Sub Timer mode, Low-speed CR Timer mode, RTC mode, Stop mode, Deep Standby RTC mode, and Deep Standby Stop mode. *2: Oscillation is stopped at Stop mode and Deep Standby Stop mode. June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 61 D a t a S h e e t Electrical Characteristics 1. Absolute Maximum Ratings Parameter Power supply voltage*1, *2 Analog power supply voltage*1, *3 Analog reference voltage*1, *3 Symbol VCC AVCC AVRH Rating Min Max Unit Remarks VSS - 0.5 VSS - 0.5 VSS - 0.5 VSS + 4.6 V VSS + 4.6 V VSS + 4.6 V VCC + 0.5 VSS - 0.5 V (≤ 4.6 V) Input voltage*1 VI VSS - 0.5 VSS + 6.5 V 5 V tolerant AVCC + 0.5 Analog pin input voltage*1 VIA VSS - 0.5 V (≤ 4.6 V) VCC + 0.5 Output voltage*1 VO VSS - 0.5 V (≤ 4.6 V) 10 mA L level maximum output current*4 IOL 39 mA P80/P81 pins 4 mA 5 L level average output current* IOLAV 10.5 mA P80/P81 pins L level total maximum output current ∑IOL 100 mA L level total average output current*6 ∑IOLAV 50 mA - 10 mA H level maximum output current*4 IOH - 39 mA P80/P81 pins -4 mA 5 H level average output current* IOHAV - 12 mA P80/P81 pins H level total maximum output current ∑IOH - 100 mA H level total average output current*6 ∑IOHAV - 50 mA Power consumption PD 300 mW Storage temperature TSTG - 55 + 150 °C *1: These parameters are based on the condition that V SS = AVSS = 0 V. *2: VCC must not drop below VSS - 0.5 V. *3: Ensure that the voltage does not to exceed VCC + 0.5 V, for example, when the power is turned on. *4: The maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins. *5: The average output current is defined as the average current value flowing through any one of the corresponding pins for a 100 ms period. *6: The total average output current is defined as the average current value flowing through all of corresponding pins for a 100 ms. <WARNING> Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings. 62 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t 2. Recommended Operating Conditions (VSS = AVSS = 0.0V) Parameter Power supply voltage Analog power supply voltage Symbol VCC AVCC Conditions - Value Min Max Unit Remarks 2 1.65* 3.6 V 1.65 3.6 V AVCC = VCC 2.7 AVCC V AVCC ≥ 2.7 V Analog reference voltage AVRH AVCC AVCC V AVCC<2.7 V Smoothing capacitor CS -1 10 µF For Regulator*1 Operating temperature TA - 40 + 85 °C *1 : See C Pin in Handling Devices for the connection of the smoothing capacitor. *2 : In between less than the minimum power supply voltage and low voltage reset/interrupt detection voltage or more, instruction execution and low voltage detection function by built-in High-speed CR(including Main PLL is used) or built-in Low-speed CR is possible to operate only. <WARNING> The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated under these conditions. Any use of semiconductor devices will be under their recommended operating condition. Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device failure. No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you are considering application under any conditions other than listed herein, please contact sales representatives beforehand. June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 63 D a t a S h e e t 3. DC Characteristics (1) Current rating (VCC = AVCC = 1.65V to 3.6V, VSS = AVSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol Pin name PLL Rrun mode ICC Power supply current VCC ICCS Value Unit Remarks Typ*3 Max*4 Conditions High-speed CR Rrun mode Sub Rrun mode Low-speed CR Run mode PLL Sleep mode High-speed CR Sleep mode Sub Sleep mode Low-speed CR Sleep mode CPU: 40 MHz, Peripheral: 40 MHz CPU: 40 MHz, Peripheral: the clock stops NOP operation 15.5 21 mA *1, *5 8.7 12 mA *1, *5 CPU/ Peripheral: 4 MHz*2 1.8 2.9 mA *1 CPU/ Peripheral: 32 kHz 110 680 μA *1, *6 CPU/ Peripheral: 100 kHz 125 700 μA *1 Peripheral: 40 MHz 9 12.5 mA *1, *5 Peripheral: 4 MHz*2 0.8 1.6 mA *1 Peripheral: 32 kHz 96 670 μA *1, *6 Peripheral: 100 kHz 110 680 μA *1 *1: When all ports are fixed. *2: When setting it to 4 MHz by trimming. *3: TA=+25°C, VCC=3.6 V *4: TA=+85°C, VCC=3.6 V *5: When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit) *6: When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit) 64 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t Parameter Symbol Pin name Conditions Main Timer mode ICCT Sub Timer mode ICCR RTC mode ICCH Power supply current Stop mode VCC ICCHD ICCRD Deep Standby Stop mode Deep Standby RTC mode TA = + 25°C, When LVD is off TA = + 85°C, When LVD is off TA = + 25°C, When LVD is off TA = + 85°C, When LVD is off TA = + 25°C, When LVD is off TA = + 85°C, When LVD is off TA = + 25°C, When LVD is off TA = + 85°C, When LVD is off TA = + 25°C, When LVD is off, When RAM is off TA = + 25°C, When LVD is off, When RAM is on TA = + 85°C, When LVD is off, When RAM is off TA = + 85°C, When LVD is off, When RAM is on TA = + 25°C, When LVD is off, When RAM is off TA = + 25°C, When LVD is off, When RAM is on TA = + 85°C, When LVD is off, When RAM is off TA = + 85°C, When LVD is off, When RAM is on Value Unit Remarks Typ*2 Max*2 2.1 2.5 mA *1, *3 - 3.4 mA *1, *3 12 35 μA *1, *4 - 330 μA *1, *4 9.8 29 μA *1, *4 - 280 μA *1, *4 9 28 μA *1 - 270 μA *1 1.25 7 μA *1, *4, *5 5.3 18 μA *1, *4, *5 70 μA *1, *4, *5 100 μA *1, *4, *5 1.9 9 μA *1, *5 5.9 20 μA *1, *5 75 μA *1, *5 105 μA *1, *5 - - *1: When all ports are fixed. *2: VCC=3.6 V *3: When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit) *4: When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit) *5: RAM on/off setting is on-chip SRAM only. June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 65 D a t a S h e e t · Low-Voltage Detection Current (VCC = 1.65V to 3.6V, VDDI = 1.1V to 1.3V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Low-voltage detection circuit (LVD) power supply current Symbol ICCLVD Pin name Conditions Value Typ Max At operation for reset VCC = 3.6 V 0.13 0.3 μA At not detect At operation for interrupt VCC = 3.6 V 0.13 0.3 μA At not detect Unit Remarks VCC · Flash Memory Current (VCC = 1.65V to 3.6V, VDDI = 1.1V to 1.3V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol Pin name Conditions Flash memory write/erase current ICCFLASH VCC At Write/Erase Value Typ Max Unit 9.5 mA 11.2 Remarks * *: The current at which to write or erase Flash memory, I CCFLASH is added to ICC. · A/D Converter Current (VCC = VCC28 = AVCC = 1.65V to 3.6V, VDDI = 1.1V to 1.3V, VSS = AVSS = 0V, TA = - 40°C to +85°C) Parameter Power supply current Reference power supply current 66 CONFIDENTIAL Symbol ICCAD ICCAVRH Pin name AVCC AVRH Value Typ Max Unit At 1unit operation 0.27 0.42 mA At stop 0.03 10 μA At 1unit operation AVRH=3.6 V 0.72 1.29 mA At stop 0.02 2.6 μA Conditions Remarks MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t (2) Pin Characteristics (VCC = AVCC = 1.65V to 3.6V, VSS = AVSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol Pin name Conditions CMOS hysteresis input pin, MD0, MD1 VCC ≥ 2.7 V VCC × 0.8 VCC < 2.7 V VCC × 0.7 VCC ≥ 2.7 V VCC × 0.8 H level input voltage (hysteresis input) L level input voltage (hysteresis input) VIHS 5 V tolerant input pin VILS CMOS hysteresis input pin, MD0, MD1 5 V tolerant input pin 4 mA type H level output voltage VOH P80/P81 4mA type L level output voltage VOL P80/P81 Input leak current Pull-up resistor value Input capacitance IIL RPU CIN CEC0, CEC1 Value Typ Max - VCC + 0.3 V - VSS + 5.5 V VCC ≥ 2.7 V VCC × 0.2 VSS - 0.3 - VCC < 2.7 V V VCC × 0.3 VCC ≥ 2.7 V VCC × 0.2 VSS - 0.3 - VCC < 2.7 V VCC ≥ 2.7 V, IOH = - 4 mA VCC < 2.7 V, IOH = - 2 mA VCC ≥ 2.7 V, IOH = - 12 mA Other than VCC, VSS, AVCC, AVSS, AVRH Unit Remarks VCC × 0.7 V VCC × 0.3 VCC - 0.5 - VCC V VCC - 0.4 - VCC V VSS - 0.4 V VSS - 0.4 V -5 - +5 μA - - +1.8 μA VCC ≥ 2.7 V 21 33 66 VCC < 2.7 V - - 134 - - 5 15 VCC < 2.7 V, IOH = - 6.5 mA VCC ≥ 2.7 V, IOL = 4 mA VCC < 2.7 V, IOL = 2 mA VCC ≥ 2.7 V, IOL = 10.5 mA VCC < 2.7 V, IOL = 5 mA VCC = AVCC = AVRH = VSS = AVSS = 0.0 V VCC - 0.45 Pull-up pin June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL VCC < 2.7 V Min kΩ pF 67 D a t a S h e e t 4. AC Characteristics (1) Main Clock Input Characteristics (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Input frequency Input clock cycle Input clock pulse width Input clock rising time and falling time Symbol Pin Conditions name Value Min Max Unit VCC ≥ 2.7 V VCC < 2.7 V 4 4 48 20 MHz - 4 48 MHz - 20.83 250 ns - PWH/tCYLH, PWL/tCYLH 45 55 % tCF, tCR - - 5 ns - - 40 MHz fCH tCYLH fCM X0, X1 - Remarks When crystal oscillator is connected When using external clock When using external clock When using external clock When using external clock Master clock Base clock fCC 40 MHz (HCLK/FCLK) Internal operating clock*1 frequency fCP0 40 MHz APB0 bus clock*2 fCP1 40 MHz APB1 bus clock*2 fCP2 40 MHz APB2 bus clock*2 Base clock tCYCC 25 ns (HCLK/FCLK) Internal operating tCYCP0 25 ns APB0 bus clock*2 1 clock* cycle time tCYCP1 25 ns APB1 bus clock*2 tCYCP2 25 ns APB2 bus clock*2 *1: For more information about each internal operating clock, see Chapter 2-1: Clock in FM3 Family Peripheral Manual. *2: For about each APB bus which each peripheral is connected to, see Block Diagram in this data sheet. X0 68 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t (2) Sub Clock Input Characteristics (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Input frequency Symbol Min Value Typ Max - - 32.768 - kHz - 32 - 100 kHz Pin Conditions name Unit fCL X0A, X1A Input clock cycle tCYLL - 10 - 31.25 μs Input clock pulse width - PWH/tCYLL, PWL/tCYLL 45 - 55 % Remarks When crystal oscillator is connected When using external clock When using external clock When using external clock X0A (3) Built-in CR Oscillation Characteristics Built-in High-speed CR (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Clock frequency Symbol fCRH Min Value Typ Max TA = + 25°C VCC ≥ 2.7 V 3.96 4 4.04 TA = + 25°C VCC < 2.7 V 3.9 4 4.1 Conditions TA = - 40°C to + 85°C TA = - 40°C to + 85°C Unit Remarks When trimming*1 MHz 3.84 4 4.16 2.8 - 5.2 When not trimming Frequency tCRWT 30 μs *2 stabilization time *1: In the case of using the values in CR trimming area of Flash memory at shipment for frequency/temperature trimming. *2: This is the time to stabilize the frequency of High-speed CR clock after setting trimming value. This period is able to use High-speed CR clock as source clock. Built-in Low-speed CR (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Clock frequency Symbol Conditions fCRL - June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL Min Value Typ Max 50 100 150 Unit Remarks kHz 69 D a t a S h e e t (4-1) Operating Conditions of Main PLL (In the case of using main clock for input of PLL) (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol Min Value Typ Max Unit Remarks PLL oscillation stabilization wait time*1 tLOCK 100 μs (LOCK UP time) PLL input clock frequency fPLLI 4 16 MHz PLL multiple rate 5 37 multiple PLL macro oscillation clock frequency fPLLO 75 150 MHz Main PLL clock frequency*2 fCLKPLL 40 MHz *1: Time from when the PLL starts operating until the oscillation stabilizes. *2: For more information about Main PLL clock (CLKPLL), see Chapter 2-1: Clock in FM3 Family Peripheral Manual. (4-2) Operating Conditions of Main PLL (In the case of using the built-in High-speed CR for the input clock of the Main PLL) (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol Min Value Typ Max Unit Remarks PLL oscillation stabilization wait time*1 tLOCK 100 μs (LOCK UP time) PLL input clock frequency fPLLI 3.8 4 4.2 MHz PLL multiple rate 19 35 multiple PLL macro oscillation clock frequency fPLLO 72 150 MHz Main PLL clock frequency*2 fCLKPLL 40 MHz *1: Time from when the PLL starts operating until the oscillation stabilizes. *2: For more information about Main PLL clock (CLKPLL), see Chapter 2-1: Clock in FM3 Family Peripheral Manual. Note: Make sure to input to the Main PLL source clock, the High-speed CR clock (CLKHC) that the frequency/temperature has been trimmed. When setting PLL multiple rate, please take the accuracy of the built-in High-speed CR clock into account and prevent the master clock from exceeding the maximum frequency. Main PLL connection Main clock (CLKMO) High-speed CR clock (CLKHC) K divider PLL input clock Main PLL PLL macro oscillation clock M divider Main PLL clock (CLKPLL) N divider 70 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t (5) Reset Input Characteristics (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Reset input time Symbol tINITX Value Pin Conditions name Min Max INITX 500 - - Unit Remarks ns (6) Power-on Reset Timing (VCC= 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol Power supply rising time tVCCR Power supply shut down time Time until releasing Power-on reset tOFF Pin name Value Max 0 - ms 1 - ms 1.34 16.09 ms VCC tPRT Unit Min Remarks VCC_minimum VCC VDH_minimum 0.2V 0.2V 0.2V tVCCR tPRT Internal reset CPU Operation Reset active tOFF Release start Glossary ・ VCC_minimum: Minimum VCC of recommended operating conditions ・ VDH_minimum: Minimum detection voltage (when SVHR=00000) of Low-Voltage detection reset See 6. Low-Voltage Detection Characteristics June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 71 D a t a S h e e t (7) External Bus Timing External bus clock output characteristics (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol Pin name Conditions Value Min Max Unit VCC ≥ 2.7 V 40 MHz VCC < 2.7 V 20 MHz *: The external bus clock output (MCLKOUT) is a divided clock of HCLK. For more information about setting of clock divider, see Chapter 12: External Bus Interface in FM3 Family Peripheral Manual. When external bus clock is not output, this characteristic does not give any effect on external bus operation. Output frequency tCYCLE MCLKOUT* MCLKOUT External bus signal input/output characteristics (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Signal input characteristics Signal output characteristics 72 CONFIDENTIAL Symbol Conditions VIH VIL VOH - VOL Input signal VIH VIL VIH VIL Output signal VOH VOL VOH VOL Value Unit 0.8 × VCC V 0.2 × VCC V 0.8 × VCC V 0.2 × VCC V Remarks MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t Separate Bus Access Asynchronous SRAM Mode (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol Pin name Conditions Value Min VCC ≥ 2.7 V MOEX tOEW MOEX MCLK×n-3 Min pulse width VCC < 2.7 V VCC ≥ 2.7 V -9 MCSX ↓ → Address MCSX[7:0], tCSL – AV output delay time MAD[24:0] VCC < 2.7 V -12 VCC ≥ 2.7 V MOEX ↑ → MOEX, tOEH - AX 0 Address hold time MAD[24:0] VCC < 2.7 V VCC ≥ 2.7 V MCLK×m-9 MCSX ↓ → tCSL - OEL MOEX ↓ delay time VCC < 2.7 V MCLK×m-12 MOEX, MCSX[7:0] VCC ≥ 2.7 V MOEX ↑ → tOEH - CSH 0 MCSX ↑ time VCC < 2.7 V VCC ≥ 2.7 V MCLK×m-9 MCSX ↓ → MCSX, tCSL - RDQML MDQM ↓ delay time MDQM[1:0] VCC < 2.7 V MCLK×m-12 VCC ≥ 2.7 V 30 Data set up → MOEX, tDS - OE MOEX ↑ time MADATA[15:0] VCC < 2.7 V 38 VCC ≥ 2.7 V MOEX ↑ → MOEX, tDH - OE 0 Data hold time MADATA[15:0] VCC < 2.7 V VCC ≥ 2.7 V MWEX tWEW MWEX MCLK×n-3 Min pulse width VCC < 2.7 V VCC ≥ 2.7 V MWEX ↑ → Address MWEX, tWEH - AX 0 output delay time MAD[24:0] VCC < 2.7 V VCC ≥ 2.7 V MCLK×n-9 MCSX ↓ → tCSL - WEL MWEX ↓ delay time VCC < 2.7 V MCLK×n-12 MWEX, MCSX[7:0] VCC ≥ 2.7 V MWEX ↑ → tWEH - CSH 0 MCSX ↑ delay time VCC < 2.7 V VCC ≥ 2.7 V MCLK×n-9 MCSX ↓→ MCSX, tCSL-WDQML MDQM ↓ delay time MDQM[1:0] VCC < 2.7 V MCLK×n-12 VCC ≥ 2.7 V MCLK-9 MWEX ↓→ MCSX, tCSL - DV Data output time MADATA[15:0] VCC < 2.7 V MCLK-12 VCC ≥ 2.7 V MWEX ↑ → MWEX, tWEH - DX 0 Data hold time MADATA[15:0] VCC < 2.7 V Note: When the external load capacitance CL = 30 pF (m = 0 to 15, n = 1 to 16). June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL Max +9 +12 MCLK×m+9 MCLK×m+12 MCLK×m+9 MCLK×m+12 MCLK×m+9 MCLK×m+12 MCLK×m+9 MCLK×m+12 - Unit ns ns ns ns ns ns ns - ns - ns MCLK×m+9 MCLK×m+12 MCLK×n+9 MCLK×n+12 MCLK×m+9 MCLK×m+12 MCLK×n+9 MCLK×n+12 MCLK+9 MCLK+12 MCLK×m+9 MCLK×m+12 ns ns ns ns ns ns 73 D a t a S h e e t MCLK MCSX[7:0] MAD[24:0] MOEX MDQM[1:0] MWEX MADATA[15:0] 74 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t Separate Bus Access Synchronous SRAM Mode (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Address delay time Symbol Pin name Conditions tAV MCLK, MAD[24:0] VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC <2.7 V VCC ≥ 2.7 V VCC <2.7 V tCSL MCSX delay time tCSH tREL MOEX delay time tREH Data set up → MCLK ↑ time MCLK ↑ → Data hold time tDS tDH tWEL MWEX delay time tWEH MDQM[1:0] delay time tDQML tDQMH MCLK, MCSX[7:0] MCLK, MOEX MCLK, MADATA[15:0] MCLK, MADATA[15:0] MCLK, MWEX MCLK, MDQM[1:0] MCLK ↑ → MCLK, tODS Data output time MADATA[15:0] MCLK ↑ → MCLK, tOD Data hold time MADATA[15:0] Note: When the external load capacitance CL = 30 pF. Value Unit Min Max 1 12 13 ns 1 12 ns 1 12 ns 1 1 9 12 9 12 ns ns 24 37 - ns 0 - ns 1 1 1 1 MCLK + 1 1 9 12 9 12 9 12 9 12 MCLK + 18 MCLK + 24 18 24 ns ns ns ns ns ns MCLK MCSX[7:0] MAD[24:0] MOEX MDQM[1:0] MWEX MADATA[15:0] June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 75 D a t a S h e e t Multiplexed Bus Access Asynchronous SRAM Mode (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol Pin name Conditions Value Min VCC ≥ 2.7 V Multiplexed tALE-CHMADV -2 address delay time VCC < 2.7 V MALE, MADATA[15:0] VCC ≥ 2.7 V MCLK×n+0 Multiplexed tCHMADH address hold time VCC < 2.7 V MCLK×n+0 Note: When the external load capacitance CL = 30 pF (m = 0 to 15, n = 1 to 16). Max +10 +20 MCLK×n+10 MCLK×n+20 Unit ns ns MCLK MCSX[7:0] MALE MAD [24:0] MOEX MDQM [1:0] MWEX MADATA[15:0] 76 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t Multiplexed Bus Access Synchronous SRAM Mode (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol tCHAL MALE delay time tCHAH Pin name Conditions MCLK, ALE VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V MCLK ↑ → Multiplexed tCHMADV Address delay time MCLK, MADATA[15:0] MCLK ↑ → Multiplexed tCHMADX Data output time Note: When the external load capacitance CL = 30 pF. VCC ≥ 2.7 V Min VCC < 2.7 V Unit Remarks 9 12 9 12 ns ns ns ns 1 tOD ns 1 tOD ns 1 1 VCC < 2.7 V VCC ≥ 2.7 V Value Max MCLK MCSX[7:0] MALE MAD [24:0] MOEX MDQM [1:0] MWEX MADATA[15:0] June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 77 D a t a S h e e t External Ready Input Timing (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter MCLK ↑ MRDY input setup time Symbol tRDYI Pin name Conditions MCLK, MRDY Value Min VCC ≥ 2.7 V 23 VCC < 2.7 V 37 Max - Unit Remarks ns When RDY is input ··· MCLK Over 2cycles Original MOEX MWEX tRDYI MRDY When RDY is released MCLK ··· ··· 2 cycles Extended MOEX MWEX tRDYI 0.5×VCC MRDY 78 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t (8) Base Timer Input Timing Timer input timing (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Input pulse width Symbol Pin name Conditions tTIWH, tTIWL TIOAn/TIOBn (when using as ECK, TIN) - tTIWH Value Min Max 2tCYCP - Unit Remarks ns tTIWL ECK VIHS TIN VIHS VILS VILS Trigger input timing (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Input pulse width Symbol Pin name Conditions tTRGH, tTRGL TIOAn/TIOBn (when using as TGIN) - tTRGH TGIN VIHS Value Min Max 2tCYCP - Unit Remarks ns tTRGL VIHS VILS VILS Note: tCYCP indicates the APB bus clock cycle time. About the APB bus number which the Base Timer is connected to, see Block Diagram in this data sheet. June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 79 D a t a S h e e t (9) CSIO/UART Timing CSIO (SPI = 0, SCINV = 0) (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Pin Symbol Conditions name Serial clock cycle time tSCYC SCK ↓ → SOT delay time tSLOVI SIN → SCK ↑ setup time tIVSHI SCK ↑ → SIN hold time tSHIXI Serial clock L pulse width tSLSH SCKx Serial clock H pulse width tSHSL SCKx SCK ↓ → SOT delay time tSLOVE SIN → SCK ↑ setup time tIVSHE SCK ↑ → SIN hold time tSHIXE SCK falling time SCK rising time tF tR SCKx SCKx, SOTx SCKx, Master mode SINx SCKx, SINx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx VCC < 2.7 V Min Max VCC ≥ 2.7 V Min Max Unit 4tCYCP - 4tCYCP - ns - 30 + 30 - 20 + 20 ns 50 - 36 - ns 0 - 0 - ns - ns - ns 2tCYCP 10 tCYCP + 10 - 2tCYCP 10 tCYCP + 10 - 50 - 33 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Slave mode Notes: The above characteristics apply to clock synchronous mode. tCYCP indicates the APB bus clock cycle time. About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet. These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed. When the external load capacitance CL = 30 pF. 80 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t tSCYC SCK VOH VOH VOL tSHOVI VOH VOL SOT tIVSLI VIH SIN tSLIXI VIH VIL VIL Master mode tSHSL SCK VIH VIH VIL tR SOT tSLSH tF VIL VIL tSHOVE VOH VOL tIVSLE SIN VIH VIL tSLIXE VIH VIL Slave mode June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 81 D a t a S h e e t CSIO (SPI = 0, SCINV = 1) (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol VCC < 2.7 V Min Max SCKx SCKx, SOTx SCKx, Master mode SINx SCKx, SINx 4tCYCP - 4tCYCP - ns - 30 + 30 - 20 + 20 ns 50 - 36 - ns 0 - 0 - ns - ns - ns Serial clock cycle time tSCYC SCK ↑ → SOT delay time tSHOVI SIN → SCK ↓ setup time tIVSLI SCK ↓ → SIN hold time tSLIXI Serial clock L pulse width tSLSH SCKx Serial clock H pulse width tSHSL SCKx SCK ↑ → SOT delay time tSHOVE SIN → SCK ↓ setup time tIVSLE SCK ↓ → SIN hold time tSLIXE SCK falling time SCK rising time tF tR VCC ≥ 2.7 V Min Max Pin Conditions name SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx 2tCYCP 10 tCYCP + 10 - 2tCYCP 10 tCYCP + 10 Unit - 50 - 33 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Slave mode Notes: The above characteristics apply to clock synchronous mode. tCYCP indicates the APB bus clock cycle time. About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet. These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed. When the external load capacitance CL = 30 pF. 82 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t tSCYC SCK VOH VOH VOL tSHOVI VOH VOL SOT tIVSLI VIH SIN tSLIXI VIH VIL VIL Master mode tSHSL SCK VIH VIH VIL tR SOT tSLSH tF VIL VIL tSHOVE VOH VOL tIVSLE SIN VIH VIL tSLIXE VIH VIL Slave mode June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 83 D a t a S h e e t CSIO (SPI = 1, SCINV = 0) (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol VCC < 2.7 V Min Max SCKx SCKx, SOTx SCKx, SINx Master mode SCKx, SINx SCKx, SOTx 4tCYCP - 4tCYCP - ns - 30 + 30 - 20 + 20 ns 50 - 36 - ns 0 - 0 - ns - ns - ns - ns Serial clock cycle time tSCYC SCK ↑ → SOT delay time tSHOVI SIN → SCK ↓ setup time tIVSLI SCK ↓→ SIN hold time tSLIXI SOT → SCK ↓ delay time tSOVLI Serial clock L pulse width tSLSH SCKx Serial clock H pulse width tSHSL SCKx SCK ↑ → SOT delay time tSHOVE SIN → SCK ↓ setup time tIVSLE SCK ↓→ SIN hold time tSLIXE SCK falling time SCK rising time tF tR VCC ≥ 2.7 V Min Max Pin Conditions name SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx 2tCYCP 34 2tCYCP 10 tCYCP + 10 - 2tCYCP 34 2tCYCP 10 tCYCP + 10 Unit - 50 - 33 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Slave mode Notes: The above characteristics apply to clock synchronous mode. tCYCP indicates the APB bus clock cycle time. About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet. These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed. When the external load capacitance CL = 30 pF. 84 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t tSCYC VOH SCK VOL tSOVLI SOT VOH VOL VOH VOL tIVSLI tSLIXI VIH VIL SIN VOL tSHOVI VIH VIL Master mode tSLSH VIH SCK SOT VIL VIL tF * VOH VOL tR tIVSLE SIN tSHSL VIH VIH tSHOVE VOH VOL tSLIXE VIH VIL VIH VIL Slave mode *: Changes when writing to TDR register June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 85 D a t a S h e e t CSIO (SPI = 1, SCINV = 1) (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol Pin Conditions name VCC < 2.7 V Min Max VCC ≥ 2.7 V Min Max Unit Serial clock cycle time tSCYC SCKx 4tCYCP - 4tCYCP - ns SCK ↓ → SOT delay time tSLOVI SCKx, SOTx - 30 + 30 - 20 + 20 ns SIN → SCK ↑ setup time tIVSHI 50 - 36 - ns SCK ↑ → SIN hold time tSHIXI 0 - 0 - ns SOT → SCK ↑ delay time tSOVHI - ns Serial clock L pulse width tSLSH SCKx - ns Serial clock H pulse width tSHSL SCKx - ns SCK ↓ → SOT delay time tSLOVE SIN → SCK ↑ setup time tIVSHE SCK ↑ → SIN hold time tSHIXE SCK falling time SCK rising time tF tR SCKx, SINx Master mode SCKx, SINx SCKx, SOTx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx 2tCYCP 34 2tCYCP 10 tCYCP + 10 - 2tCYCP 34 2tCYCP 10 tCYCP + 10 - 50 - 33 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Slave mode Notes: The above characteristics apply to clock synchronous mode. tCYCP indicates the APB bus clock cycle time. About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet. These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed. When the external load capacitance CL = 30 pF. 86 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t tSCYC VOH SCK VOH VOL tSOVHI tSLOVI VOH VOL SOT VOH VOL tSHIXI tIVSHI VIH VIL SIN VIH VIL Master mode tR SCK tF tSHSL VIH VIH VIL tSLSH VIL VIL tSLOVE VOH VOL SOT VOH VOL tIVSHE tSHIXE VIH VIL SIN VIH VIL Slave mode UART external clock input (EXT = 1) (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Serial clock L pulse width Serial clock H pulse width SCK falling time SCK rising time tSLSH tSHSL tF tR CL = 30 pF Min Max tCYCP + 10 tCYCP + 10 - 5 5 Unit Remarks ns ns ns ns tF tR t t SHSL SCK V IL June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL Value Symbol Conditions V IH SLSH V IH V IL VIL V IH 87 D a t a S h e e t (10) External Input Timing (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Input pulse width Symbol tINH, tINL Value Unit Min Max Pin name Conditions ADTG - 2tCYCP*1 - ns INTxx, NMIX *2 2tCYCP + 100*1 - ns *3 500 - ns WKUPx *4 600 - ns Remarks A/D converter trigger input External interrupt NMI Deep standby wake up *1: tCYCP indicates the APB bus clock cycle time. About the APB bus number which the Multi-function Timer is connected to, see Block Diagram in this data sheet. *2: When in Run mode, in Sleep mode. *3: When in Stop mode, in Timer mode. *4: When in Deep Standby RTC mode, in Deep Standby Stop mode. 88 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t 2 (11) I C Timing (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol Conditions Standard-mode Min Max Fast-mode Unit Remarks Min Max SCL clock frequency FSCL 0 100 0 400 kHz (Repeated) START condition hold time tHDSTA 4.0 0.6 μs SDA ↓ → SCL ↓ SCL clock L width tLOW 4.7 1.3 μs SCL clock H width tHIGH 4.0 0.6 μs (Repeated) START condition setup time tSUSTA 4.7 0.6 μs SCL ↑ → SDA ↓ CL = 30 pF, R = (Vp/IOL)*1 Data hold time tHDDAT 0 3.45*2 0 0.9*3 μs SCL ↓ → SDA ↓ ↑ Data setup time tSUDAT 250 100 ns SDA ↓ ↑ → SCL ↑ STOP condition setup time tSUSTO 4.0 0.6 μs SCL ↑ → SDA ↑ Bus free time between STOP condition and tBUF 4.7 1.3 μs START condition Noise filter tSP 2 tCYCP*4 2 tCYCP*4 ns *1: R and C represent the pull-up resistor and load capacitance of the SCL and SDA lines, respectively. Vp indicates the power supply voltage of the pull-up resistor and IOL indicates VOL guaranteed current. *2: The maximum tHDDAT must satisfy that it does not extend at least L period (tLOW) of device's SCL signal. *3: A Fast-mode I2C bus device can be used on a Standard-mode I2C bus system as long as the device satisfies the requirement of tSUDAT ≥ 250 ns. *4: tCYCP is the APB bus clock cycle time. About the APB bus number that I2C is connected to, see Block Diagram in this data sheet. To use Standard-mode, set the APB bus clock at 2 MHz or more. To use Fast-mode, set the APB bus clock at 8 MHz or more. SDA SCL June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 89 D a t a S h e e t (12) ETM Timing (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Data hold TRACECLK frequency Pin name Conditions tETMH TRACECLK, TRACED[3:0] VCC ≥ 2.7 V 2 11 VCC < 2.7 V 2 15 VCC ≥ 2.7 V - 40 MHz VCC < 2.7 V - 20 MHz VCC ≥ 2.7 V 25 - ns VCC < 2.7 V 50 - ns 1/ tTRACE TRACECLK TRACECLK clock cycle Value Unit Min Max Symbol tTRACE Remarks ns Note: When the external load capacitance CL = 30 pF. HCLK TRACECLK TRACED[3:0] 90 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t (13) JTAG Timing (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol Pin name Conditions TCK, TMS, TDI TCK, TMS, TDI VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V TMS, TDI setup time tJTAGS TMS, TDI hold time tJTAGH TDO delay time tJTAGD TCK, TDO VCC < 2.7 V Note: When the external load capacitance CL = 30 pF. Value Min Max Unit 15 - ns 15 - ns - 25 - 45 Remarks ns TCK TMS/TDI TDO June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 91 D a t a S h e e t 5. 12-bit A/D Converter Electrical Characteristics for the A/D Converter (VCC = AVCC = 1.65V to 3.6V, VSS = AVSS = 0V, TA = - 40°C to + 85°C) Value Typ Max - ±2 12 ± 4.5 bit LSB - - ± 2.2 ± 2.5 LSB VZT ANxx - ±6 ± 15 mV VFST ANxx - Parameter Symbol Pin name Min Resolution Integral Nonlinearity Differential Nonlinearity Zero transition voltage Full-scale transition voltage - - - Conversion time - - Sampling time*2 tS - tCCK - tSTT - - AVCC - AVRH Compare clock cycle*3 AVRH ± 6 AVRH ± 15 2.0*1 4.0*1 10*1 0.6 1.2 3.0 100 200 500 - Unit mV - μs 10 us - 1000 ns - - 1.0 μs - 0.27 0.03 0.42 10 mA μA - 0.72 1.29 mA - 0.02 2.6 μA pF LSB μA State transition time to operation permission Power supply current (analog + digital) Reference power supply current (between AVRH to AVSS) Analog input capacity CAIN - - - Analog input resistor RAIN - - - Interchannel disparity Analog port input current Analog input voltage - - - - 9.4 2.2 5.5 10.5 4 - ANxx - - 5 - ANxx Remarks kΩ AVCC ≥ 2.7 V 1.8 V< AVCC < 2.7 V 1.65 V< AVCC < 1.8 V AVCC ≥ 2.7 V 1.8 V< AVCC < 2.7 V 1.65 V< AVCC < 1.8 V AVCC ≥ 2.7 V 1.8 V< AVCC < 2.7 V 1.65 V< AVCC < 1.8 V A/D 1unit operation When A/D stops A/D 1unit operation AVRH=3.6 V When A/D stops AVCC ≥ 2.7 V 1.8 V< AVCC < 2.7 V 1.65 V< AVCC < 1.8 V AVSS AVRH V 2.7 AVCC ≥ 2.7 V Reference voltage AVRH AVCC V AVCC AVCC < 2.7 V *1: The conversion time is the value of sampling time (tS) + compare time (tC). The condition of the minimum conversion time is the following. AVCC ≥ 2.7 V, HCLK=40 MHz sampling time: 0.6 μs, compare time: 1.4 μs 1.8 V < AVCC < 2.7 V, HCLK=40 MHz sampling time: 1.2 μs, compare time: 2.8 μs 1.65 V < AVCC < 1.8 V, HCLK=40 MHz sampling time: 3 μs, compare time: 7 μs Ensure that it satisfies the value of the sampling time (tS) and compare clock cycle (tCCK). For setting of the sampling time and the compare clock cycle, see Chapter 1-1: A/D Converter in FM3 Family Peripheral Manual Analog Macro Port. The register setting of the A/D Converter are reflected in the operation according to the APB bus clock timing. The sampling clock and compare clock is generated from the Base clock (HCLK). About the APB bus number which the A/D Converter is connected to, see Block Diagram in this data sheet. *2: A necessary sampling time changes by external impedance. Ensure that it set the sampling time to satisfy (Equation 1). *3: The compare time (tC) is the value of (Equation 2). 92 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t REXT ANxx Analog input pin Comparator RAIN Analog signal source CAIN (Equation 1) tS ≥ ( RAIN + REXT ) × CAIN × 9 tS: RAIN: CAIN: REXT: Sampling time[ns] input resistor of A/D[kΩ] = 2.2 kΩ at 2.7 V < AVCC < 3.6 V input resistor of A/D[kΩ] = 5.5 kΩ at 1.8 V < AVCC < 2.7 V input resistor of A/D[kΩ] = 10.5 kΩ at 1.65 V < AVCC < 1.8 V input capacity of A/D[pF] = 9.4 pF at 1.65 V < AVCC < 3.6 V Output impedance of external circuit[kΩ] (Equation 2) tC = tCCK × 14 tC: tCCK: Compare time Compare clock cycle June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 93 D a t a S h e e t Definition of 12-bit A/D Converter Terms Resolution: Integral Nonlinearity: Differential Nonlinearity: Analog variation that is recognized by an A/D converter. Deviation of the line between the zero-transition point (0b000000000000 ←→ 0b000000000001) and the full-scale transition point (0b111111111110 ←→ 0b111111111111) from the actual conversion characteristics. Deviation from the ideal value of the input voltage that is required to change the output code by 1 LSB. Integral Nonlinearity Differential Nonlinearity 0xFFF Actual conversion characteristics 0xFFE 0x(N+1) {1 LSB(N-1) + VZT} VFST VNT 0x004 (Actuallymeasured value) (Actually-measured value) 0x003 Digital output Digital output 0xFFD 0xN Actual conversion characteristics Ideal characteristics V(N+1)T 0x(N-1) (Actually-measured value) Actual conversion characteristics Ideal characteristics 0x002 VNT (Actually-measured value) 0x(N-2) 0x001 VZT (Actually-measured value) AVSS Actual conversion characteristics AVRH AVSS AVRH Analog input Linearity error of digital output N = Analog input VNT - {1LSB × (N - 1) + VZT} 1LSB Differential linearity error of digital output N = 1LSB = V(N + 1) T - VNT 1LSB [LSB] - 1 [LSB] VFST - VZT 4094 N: A/D converter digital output value. Voltage at which the digital output changes from 0x000 to 0x001. VFST: Voltage at which the digital output changes from 0xFFE to 0xFFF. VNT: Voltage at which the digital output changes from 0x(N − 1) to 0xN. VZT: 94 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t 6. Low-Voltage Detection Characteristics (1) Low-Voltage Detection Reset (TA = - 40°C to + 85°C) Parameter Symbol Conditions Min Value Typ Max Unit Remarks Detected voltage VDL 1.38 1.50 1.60 V When voltage drops SVHR*1 = 00000 Released voltage VDH 1.43 1.55 1.65 V When voltage rises Detected voltage VDL 1.43 1.55 1.65 V When voltage drops SVHR*1 = 00001 Released voltage VDH Same as SVHR = 00000 value V When voltage rises Detected voltage VDL 1.47 1.60 1.73 V When voltage drops SVHR*1 = 00010 Released voltage VDH Same as SVHR = 00000 value V When voltage rises Detected voltage VDL 1.52 1.65 1.78 V When voltage drops 1 SVHR* = 00011 Released voltage VDH Same as SVHR = 00000 value V When voltage rises Detected voltage VDL 1.56 1.70 1.84 V When voltage drops SVHR*1 = 00100 Released voltage VDH Same as SVHR = 00000 value V When voltage rises Detected voltage VDL 1.61 1.75 1.89 V When voltage drops SVHR*1 = 00101 Released voltage VDH Same as SVHR = 00000 value V When voltage rises Detected voltage VDL 1.66 1.80 1.94 V When voltage drops SVHR*1 = 00110 Released voltage VDH Same as SVHR = 00000 value V When voltage rises Detected voltage VDL 1.70 1.85 2.00 V When voltage drops 1 SVHR* = 00111 Released voltage VDH Same as SVHR = 00000 value V When voltage rises Detected voltage VDL 1.75 1.90 2.05 V When voltage drops SVHR*1 = 01000 Released voltage VDH Same as SVHR = 00000 value V When voltage rises Detected voltage VDL 1.79 1.95 2.11 V When voltage drops SVHR*1 = 01001 Released voltage VDH Same as SVHR = 00000 value V When voltage rises Detected voltage VDL 1.84 2.00 2.16 V When voltage drops SVHR*1 = 01010 Released voltage VDH Same as SVHR = 00000 value V When voltage rises Detected voltage VDL 1.89 2.05 2.21 V When voltage drops 1 SVHR* = 01011 Released voltage VDH Same as SVHR = 00000 value V When voltage rises Detected voltage VDL 2.30 2.50 2.70 V When voltage drops SVHR*1 = 01100 Released voltage VDH Same as SVHR = 00000 value V When voltage rises Detected voltage VDL 2.39 2.60 2.81 V When voltage drops SVHR*1 = 01101 Released voltage VDH Same as SVHR = 00000 value V When voltage rises Detected voltage VDL 2.48 2.70 2.92 V When voltage drops SVHR*1 = 01110 Released voltage VDH Same as SVHR = 00000 value V When voltage rises Detected voltage VDL 2.58 2.80 3.02 V When voltage drops 1 SVHR* = 01111 Released voltage VDH Same as SVHR = 00000 value V When voltage rises Detected voltage VDL 2.67 2.90 3.13 V When voltage drops SVHR*1 = 10000 Released voltage VDH Same as SVHR = 00000 value V When voltage rises Detected voltage VDL 2.76 3.00 3.24 V When voltage drops SVHR*1 = 10001 Released voltage VDH Same as SVHR = 00000 value V When voltage rises Detected voltage VDL 2.85 3.10 3.35 V When voltage drops SVHR*1 = 10010 Released voltage VDH Same as SVHR = 00000 value V When voltage rises Detected voltage VDL 2.94 3.20 3.46 V When voltage drops 1 SVHR* = 10011 Released voltage VDH Same as SVHR = 00000 value V When voltage rises LVD stabilization 5200 × tLVDW μs wait time tCYCP*2 LVD detection tLVDDL 200 μs delay time *1: The SVHR bit of Low-Voltage Detection Voltage Control Register (LVD_CTL) is initialized to 00000 by Low-Voltage Detection Reset. *2: tCYCP indicates the APB2 bus clock cycle time. June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 95 D a t a S h e e t (2) Interrupt of Low-Voltage Detection (TA = - 40°C to + 85°C) Parameter Symbol Conditions Detected voltage VDL SVHI = 00100 Released voltage VDH Detected voltage VDL SVHI = 00101 Released voltage VDH Detected voltage VDL SVHI = 00110 Released voltage VDH Detected voltage VDL SVHI = 00111 Released voltage VDH Detected voltage VDL SVHI = 01000 Released voltage VDH Detected voltage VDL SVHI = 01001 Released voltage VDH Detected voltage VDL SVHI = 01010 Released voltage VDH Detected voltage VDL SVHI = 01011 Released voltage VDH Detected voltage VDL SVHI = 01100 Released voltage VDH Detected voltage VDL SVHI = 01101 Released voltage VDH Detected voltage VDL SVHI = 01110 Released voltage VDH Detected voltage VDL SVHI = 01111 Released voltage VDH Detected voltage VDL SVHI = 10000 Released voltage VDH Detected voltage VDL SVHI = 10001 Released voltage VDH Detected voltage VDL SVHI = 10010 Released voltage VDH Detected voltage VDL SVHI = 10011 Released voltage VDH LVD stabilization tLVDW wait time LVD detection delay tLVDDL time *: tCYCP indicates the APB2 bus clock cycle time. 96 CONFIDENTIAL Min Value Typ Max 1.56 1.61 1.61 1.66 1.66 1.70 1.70 1.75 1.75 1.79 1.79 1.84 1.84 1.89 1.89 1.93 2.30 2.39 2.39 2.48 2.48 2.58 2.58 2.67 2.67 2.76 2.76 2.85 2.85 2.94 2.94 3.04 1.70 1.75 1.75 1.80 1.80 1.85 1.85 1.90 1.90 1.95 1.95 2.00 2.00 2.05 2.05 2.10 2.50 2.60 2.60 2.70 2.70 2.80 2.80 2.90 2.90 3.00 3.00 3.10 3.10 3.20 3.20 3.30 - - - - 1.84 1.89 1.89 1.94 1.94 2.00 2.00 2.05 2.05 2.11 2.11 2.16 2.16 2.21 2.21 2.27 2.70 2.81 2.81 2.92 2.92 3.02 3.02 3.13 3.13 3.24 3.24 3.35 3.35 3.46 3.46 3.56 5200 × tCYCP* 200 Unit V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V Remarks When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises μs μs MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t 7. Flash Memory Write/Erase Characteristics (1) Write / Erase time (VCC = 1.65V to 3.6V, TA = - 40°C to + 85°C) Parameter Sector erase time Value Typ* Max* 1.1 2.7 Large Sector Unit s Small Sector 0.3 Half word (16-bit) write time 0.9 Remarks Includes write time prior to internal erase Not including system-level overhead time Includes write time prior to internal Chip erase time 6.8 18 s erase *: The typical value is immediately after shipment, the maximam value is guarantee value under 100,000 cycle of erase/write. 30 528 μs (2) Write cycles and data hold time Erase/write cycles (cycle) Data hold time (year) 1,000 20* 10,000 *: At average + 85C June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL Remarks 10* 97 D a t a S h e e t 8. Return Time from Low-Power Consumption Mode (1) Return Factor: Interrupt/WKUP The return time from Low-Power consumption mode is indicated as follows. It is from receiving the return factor to starting the program operation. ・ Return Count Time (VCC = 1.65V to 3.6V, VDDI = 1.1V to 1.3V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol Max* Low-speed CR Timer mode tICNT Unit 40 80 μs 350 700 μs 690 880 μs 523 μs 603 μs μs RTC mode, 278 Stop mode 318 Deep Standby RTC mode Deep Standby Stop mode 278 *: The maximum value depends on the accuracy of built-in CR. Remarks μs tCYCC Sleep mode High-speed CR Timer mode, Main Timer mode, PLL Timer mode Sub Timer mode Value Typ 523 When RAM is off When RAM is on ・ Operation example of return from Low-Power consumption mode (by external interrupt*) External interrupt Interrupt factor accept Active tICNT CPU Operation Interrupt factor clear by CPU Start *: External interrupt is set to detecting fall edge. 98 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t ・ Operation example of return from Low-Power consumption mode (by internal resource interrupt*) Internal resource interrupt Interrupt factor accept Active tICNT CPU Operation Interrupt factor clear by CPU Start *: Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode. Notes: ・ The return factor is different in each Low-Power consumption modes. See Chapter 6: Low Power Consumption Mode and Operations of Standby Modes in FM3 Family Peripheral Manual. ・ When interrupt recoveries, the operation mode that CPU recoveries depend on the state before the Low-Power consumption mode transition. See Chapter 6: Low Power Consumption Mode in FM3 Family Peripheral Manual. June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 99 D a t a S h e e t (2) Return Factor: Reset The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to starting the program operation. ・ Return Count Time (VCC = 1.65V to 3.6V, VDDI = 1.1V to 1.3V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol Value Unit Typ Max* 148 263 μs 148 263 μs 258 483 μs Sub Timer mode 322 516 μs RTC/Stop mode 278 523 μs 603 523 μs μs Sleep mode High-speed CR Timer mode, Main Timer mode, PLL Timer mode Low-speed CR Timer mode tRCNT 318 Deep Standby RTC mode Deep Standby Stop mode 278 *: The maximum value depends on the accuracy of built-in CR. Remarks When RAM is off When RAM is on ・ Operation example of return from Low-Power consumption mode (by INITX) INITX Internal reset Reset active Release tRCNT CPU Operation 100 CONFIDENTIAL Start MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t ・ Operation example of return from low power consumption mode (by internal resource reset*) Internal resource reset Internal reset Reset active Release tRCNT CPU Operation Start *: Internal resource reset is not included in return factor by the kind of Low-Power consumption mode. Notes: ・ The return factor is different in each Low-Power consumption modes. See Chapter 6: Low Power Consumption Mode and Operations of Standby Modes in FM3 Family Peripheral Manual. ・ When interrupt recoveries, the operation mode that CPU recoveries depend on the state before the Low-Power consumption mode transition. See Chapter 6: Low Power Consumption Mode in FM3 Family Peripheral Manual. ・ The time during the power-on reset/low-voltage detection reset is excluded. See (6) Power-on Reset Timing in 4. AC Characteristics in Electrical Characteristics for the detail on the time during the power-on reset/low-voltage detection reset. ・ When in recovery from reset, CPU changes to the High-speed CR Run mode. When using the main clock or the PLL clock, it is necessary to add the main clock oscillation stabilization wait time or the Main PLL clock stabilization wait time. ・ The internal resource reset means the watchdog reset and the CSV reset. June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 101 D a t a S h e e t Ordering Information Part number On-chip Flash memory On-chip SRAM MB9AF141LBPMC1-G-JNE2 Main: 64 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF142LBPMC1-G-JNE2 Main: 128 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF144LBPMC1-G-JNE2 Main: 256 Kbyte Work: 32 Kbyte 32 Kbyte MB9AF141LBPMC-G-JNE2 Main: 64 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF142LBPMC-G-JNE2 Main: 128 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF144LBPMC-G-JNE2 Main: 256 Kbyte Work: 32 Kbyte 32 Kbyte MB9AF141LBQN-G-AVE2 Main: 64 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF142LBQN-G-AVE2 Main: 128 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF144LBQN-G-AVE2 Main: 256 Kbyte Work: 32 Kbyte 32 Kbyte MB9AF141MBPMC-G-JNE2 Main: 64 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF142MBPMC-G-JNE2 Main: 128 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF144MBPMC-G-JNE2 Main: 256 Kbyte Work: 32 Kbyte 32 Kbyte MB9AF141MBPMC1-G-JNE2 Main: 64 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF142MBPMC1-G-JNE2 Main: 128 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF144MBPMC1-G-JNE2 Main: 256 Kbyte Work: 32 Kbyte 32 Kbyte MB9AF141MBBGL-GE1 Main: 64 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF142MBBGL-GE1 Main: 128 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF144MBBGL-GE1 Main: 256 Kbyte Work: 32 Kbyte 32 Kbyte MB9AF141NBPMC-G-JNE2 Main: 64 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF142NBPMC-G-JNE2 Main: 128 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF144NBPMC-G-JNE2 Main: 256 Kbyte Work: 32 Kbyte 32 Kbyte 102 CONFIDENTIAL Package Packing Plastic LQFP 64-pin (0.5mm pitch), (FPT-64P-M38) Plastic LQFP 64-pin (0.65mm pitch), (FPT-64P-M39) Plastic QFN 64-pin (0.5mm pitch), (LCC-64P-M24) Plastic LQFP 80-pin (0.5mm pitch), (FPT-80P-M37) Tray Plastic LQFP 80-pin (0.65mm pitch), (FPT-80P-M40) Plastic PFBGA 96-pin (0.5mm pitch), (BGA-96P-M07) Plastic LQFP 100-pin (0.5mm pitch), (FPT-100P-M23) MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t On-chip Flash memory On-chip SRAM MB9AF141NBPQC-G-JNE2 Main: 64 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF142NBPQC-G-JNE2 Main: 128 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF144NBPQC-G-JNE2 Main: 256 Kbyte Work: 32 Kbyte 32 Kbyte MB9AF141NBBGL-GE1 Main: 64 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF142NBBGL-GE1 Main: 128 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF144NBBGL-GE1 Main: 256 Kbyte Work: 32 Kbyte 32 Kbyte Part number June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL Package Packing Plastic QFP 100-pin (0.65mm pitch), (FPT-100P-M36) Tray Plastic PFBGA 112-pin (0.8mm pitch), (BGA-112P-M04) 103 D a t a S h e e t Package Dimensions 100-pin plastic LQFP Lead pitch 0.50 mm Package width × package length 14.00 mm × 14.00 mm Lead shape Gullwing Lead bend direction Normal bend Sealing method Plastic mold Mounting height 1.70 mm MAX Weight 0.65 g (FPT-100P-M23) 100-pin plastic LQFP (FPT-100P-M23) Note 1) * : These dimensions do not include resin protrusion. Note 2) Pins width and pins thickness include plating thickness. Note 3) Pins width do not include tie bar cutting remainder. 16.00±0.20(.630±.008)SQ *14.00±0.10(.551±.004)SQ 75 51 76 50 0.08(.003) Details of "A" part 1.50 +0.20 - 0.10 (.059+.008 -.004) (Mounting height) INDEX 100 26 "A" 1 C 0.22±0.05 (.009±.002) 0.08(.003) 2009-2010 FUJITSU SEMICONDUCTOR LIMITED F100034S-c-3-4 104 CONFIDENTIAL 0.60±0.15 (.024±.006) 25 0.50(.020) 0°~8° 0.50±0.20 (.020±.008) M 0.10±0.10 (.004±.004) (Stand off) 0.25(.010) 0.145±0.055 (.006±.002) Dimensions in mm (inches). Note:The values in parentheses are reference values. MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t 100-pin plastic QFP Lead pitch 0.65 mm Package width × package length 14.00 mm × 20.00 mm Lead shape Gullwing Sealing method Plastic mold Mounting height 3.35 mm MAX Code (Reference) P-QFP100-14 × 20-0.65 (FPT-100P-M36) 100-pin plastic QFP (FPT-100P-M36) Note 1) * : These dimensions do not include resin protrusion. Note 2) Pins width and pins thickness include plating thickness. Note 3) Pins width do not include tie bar cutting remainder. 23.90±0.40(.941±.016) * 20.00±0.20(.787±.008) 80 51 81 50 0.10(.004) 17.90± 0.40 (.705±.016) *14.00±0.20 (.551±.008) INDEX Details of "A" part 100 1 30 0.65(.026) 0.32 ± 0.05 (.013±.002) 0.13(.005) "A" C 2011 FUJITSU SEMICONDUCTOR LIMITED HMbF100-36Sc-1-1 June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 0.25(.010) +0.35 3.00 –0.20 +.014 .118 –.008 (Mounting height) 0~8° 31 M 0.17 ± 0.06 (.007 ±. 002) 0.80 ± 0.20 (.031 ±. 008) 0.88 ± 0.15 (.035 ±. 006) 0.25 ± 0.20 (.010 ±. 008) (Stand off) Dimensions in mm (inches). Note: The valuesin parentheses are reference values. 105 D a t a S h e e t 80-pin plastic LQFP Lead pitch 0.50 mm Package width × package length 12.00 mm × 12.00 mm Lead shape Gullwing Lead bend direction Normal bend Sealing method Plastic mold Mounting height 1.70 mm MAX Weight 0.47 g (FPT-80P-M37) 80-pin plastic LQFP (FPT-80P-M37) Note 1) * : These dimensions do not include resin protrusion. Note 2) Pins width and pins thickness include plating thickness. Note 3) Pins width do not include tie bar cutting remainder. 14.00± 0.20(.551 ± .008)SQ *12.00± 0.10(.472 ± .004)SQ 60 0.145± 0.055 (.006 ± .002) 41 Details of "A" part 61 40 +0.20 1.50 –0.10 (Mounting height) +.008 .059 –.004 0.25(.010) 0~8° 0.08(.003) INDEX 80 0.50 ± 0.20 (.020 ± .008) 0.60 ± 0.15 (.024 ± .006) 0.10 ± 0.05 (.004 ± .002) (Stand off) 21 "A" 1 20 0.50(.020) 0.22± 0.05 (.009± .002) C 0.08(.003) 2009-2010 FUJITSU SEMICONDUCTOR LIMITED F80037S-c-1-2 106 CONFIDENTIAL M Dimensions in mm (inches). Note: The values in parentheses are reference values. MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t 80-pin plastic LQFP Lead pitch 0.65 mm Package width × package length 14.00 mm × 14.00 mm Lead shape Gullwing Sealing method Plastic mold Mounting height 1.60 mm Max. Code (Reference) P-LQFP80-14 × 14-0.65 (FPT-80P-M40) 80-pin plastic LQFP (FPT-80P-M40) Note 1) * : These dimensions do not include resin protrusion. Note 2) Pins width and pins thickness include plating thickness. Note 3) Pins width do not include 16.00±0.20(.630±.008)SQ *14.00±0.10(.551±.004)SQ 60 0.145±0.055 (.006±.002) 41 Details of "A" part 40 61 1.50±0.10 (.059±.004) 0.25(.010) 0.10(.004) 0˚~7˚ INDEX 0.50±0.20 (.020±.008) 21 80 0.65(.026) C 0.60±0.15 (.024±.006) 20 1 0.32±0.06 (.013±.002) 0.13(.005) M 2012 FUJITSU SEMICONDUCTOR LIMITED HMbF80-40Sc-1-1 June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 0.10±0.05 (.004±.002) Dimensions in mm (inches). Note: The values in parentheses are reference values. 107 D a t a S h e e t 64-pin plastic LQFP Lead pitch 0.50 mm Package width × package length 10.00 mm × 10.00 mm Lead shape Gullwing Lead bend direction Normal bend Sealing method Plastic mold Mounting height 1.70 mm MAX Weight 0.32 g (FPT-64P-M38) 64-pin plastic LQFP (FPT-64P-M38) Note 1) * : These dimensions do not include resin protrusion. Note 2) Pins width and pins thickness include plating thickness. Note 3) Pins width do not include tie bar cutting remainder. 12.00±0.20(.472±.008)SQ *10.00±0.10(.394±.004)SQ 48 0.145 ± 0.055 (.006 ± .002) 33 49 Details of "A" part 32 0.08(.003) +0.20 1.50 –0.10 (Mounting height) +.008 .059 –.004 0.25(.010) 0~8° INDEX 64 17 1 0.22±0.05 (.009±.002) 0.08(.003) 2010 FUJITSU SEMICONDUCTOR LIMITED F64038S-c-1-2 108 CONFIDENTIAL 0.10 ± 0.10 (.004±.004) (Stand off) "A" 16 0.50(.020) C 0.50±0.20 (.020±.008) 0.60 ± 0.15 (.024±.006) M Dimensions in mm (inches). Note: The values in parentheses are reference values. MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t 64-pin plastic LQFP Lead pitch 0.65 mm Package width × package length 12.00 mm × 12.00 mm Lead shape Gullwing Sealing method Plastic mold Mounting height 1.70 mm MAX Weight 0.47 g (FPT-64P-M39) 64-pin plastic LQFP (FPT-64P-M39) Note 1) Pins width and pins thickness include plating thickness. 14.00±0.20(.551±.008)SQ 12.00±0.10(.472±.004)SQ 48 0.145±0.055 (.006±.002) 33 Details of "A" part 32 49 +0.20 1.50 –0.10 +.008 .059 –.004 0.10(.004) INDEX 1 16 0.65(.026) C 0.50±0.20 (.020±.008) 0.60±0.15 (.024±.006) 17 64 0.32±0.05 (.013±.002) CONFIDENTIAL 0.10±0.10 (.004±.004) 0.25(.010)BSC "A" 0.13(.005) M 2010-2011 FUJITSU SEMICONDUCTOR LIMITED HMbF64-39Sc-2-2 June 10, 2015, MB9A140NB_DS706-00040-4v0-E 0~8˚ Dimensions in mm (inches). Note: The values in parentheses are reference values. 109 D a t a S h e e t 64-pin plastic QFN Lead pitch 0.50 mm Package width × package length 9.00 mm × 9.00 mm Sealing method Plastic mold Mounting height 0.90 mm MAX Weight - (LCC-64P-M24) 64-pin plastic QFN (LCC-64P-M24) 9.00±0.10 (.354±.004) 6.00±0.10 (.236±.004) 9.00±0.10 (.354±.004) 0.25±0.05 (.010±.002) 6.00±0.10 (.236±.004) INDEX AREA 0.45 (.018) 1PIN ID (0.20R (.008R)) 0.85±0.05 (.033±.002) 0.05 (.002) MAX C CONFIDENTIAL 0.40±0.05 (.016±.002) (0.20 (.008)) 2011 FUJITSU SEMICONDUCTOR LIMITED HMbC64-24Sc-2-1 110 0.50 (.020) (TYP) Dimensions in mm (inches). Note: The values in parentheses are reference values. MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t 112-ball plastic PFBGA Ball pitch 0.80 mm Package width × package length 10.00 × 10.00 mm Lead shape Soldering ball Sealing method Plastic mold Ball size Ф 0.45 mm Mounting height 1.45 mm Max. Weight 0.22 g (BGA-112P-M04) 112-ball plastic PFBGA (BGA-112P-M04) 10.00±0.10(.394±.004) 0.20(.008) S B 0.80(.031) REF B 11 10 9 8 7 6 5 4 3 2 0.80(.031) REF A 10.00±0.10 (.394±.004) 1 L K J H G F (INDEX AREA) 0.35±0.10 (.014±.004) (Stand off) 0.20(.008) S A 1.25±0.20 (.049±.008) (Seated height) ED C B A INDEX 112-Ф0.45±010 (112-Ф0.18±.004) Ф0.08(.003) M S A B S 0.10(.004) S C 2003-2010 FUJITSU SEMICONDUCTOR LIMITED B112004S-c-2-3 June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL Dimensions in mm (inches). Note: The values in parentheses are reference values. 111 D a t a S h e e t 96-pin plastic FBGA Lead pitch 0.5 mm Package width × package length 6.00 mm × 6.00 mm Lead shape Ball Sealing method Plastic mold Mounting height 1.30 mm MAX Weight 0.08 g (BGA-96P-M07) 96-pin plastic FBGA (BGA-96P-M07) 6.00±0.10(.236±.004) 5.00(.197) REF B 0.20(.008) S B 0.50 (.020) TYP 11 10 9 8 A 7 5.00(.197) REF 6.00±0.10 (.236±.004) 6 5 0.50(.020) TYP 4 3 2 1 L K J H G F E D C B A (INDEX AREA) INDEX 0.20(.008) S A 96-ø0.30±0.10 (96-ø.012±.004) ø0.05(.002) M S A B S 0.08(.003) S C 2012 FUJITSU SEMICONDUCTOR LIMITED B96007S-c-1-1 112 CONFIDENTIAL 1.15±0.15 (Seated height) (.045±.006) 0.25±0.10 (Stand off) (.010±.004) Dimensions in mm (inches). Note: The values in parentheses are reference values. MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t Major Changes Page Section Revision 2.0 FEATURE 2 On-chip Memories 5 Unique ID PRODUCT LINEUP 6 Function 48 HANDLING DEVICES MEMORY MAP 53 Memory Map (2) PIN STATUS IN EACH CPU STATE 58 List of Pin Status ELECTRICAL CHARACTERISTICS 65 3.DC Characteristics (1) Current rating 4.AC Characteristics 69 (3) Built-in CR Oscillation Characteristics Built-in high-speed CR (7) External Bus Timing 73, 74 Separate Bus Access Asynchronous SRAM Mode 75 Separate Bus Access Synchronous SRAM Mode 80, 82, (9) CSIO Timing 84, 86 89 (11) I2C Timing 92 5. 12-bit A/D Converter • Electrical Characteristics for the A/D Converter 94 • Definition of 12-bit A/D Converter Terms 95 6. Low-Voltage Detection Characteristics (1) Low-Voltage Detection Reset 96 (2) Interrupt of Low-Voltage Detection Revision 2.1 Revision 3.0 - - - - 2 3 6 51 52 63 64,65 86 FEATURES •External Bus Interface •Multi-function Serial Interface PRODUCT LINEUP •Function BLOCK DIAGRAM MEMORY MAP •Memory Map (1) ELECTRICAL CHARACTERISTICS 2.Recommended Operating Conditions 3.DC Characteristics (1)Current rating (9)CSIO Timing •Synchronous serial (SPI=1, SCINV=1) (9) CSIO Timing • External clock(EXT=1):asyntironous only (12)I2C Timing 88 June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL Change Results Revised the descriptions of [Flash memory]. Added the descriptions of "Unique ID". Added the descriptions. Revised the Pin status type of "I". Revised the descriptions of Power supply current. Added the "Flash memory write/erase current". Added the footnote. Revised the table and the footnote. Revised the table and the figure. Revised the title to "CSIO Timing". Revised the note. Revised the footnote. • Revised the parameter. • Revised the symbol. • Corrected the value. • Revised the parameter. • Revised the symbol. • Corrected "Conditions" and "Value" in the table. • Added the Item. • Added the footnote. Added the Item. Company name and layout design change Corrected the Series name. MB9A140NA Series → MB9A140NB Series Corrected the Product name as follows. MB9AF144LB, MB9AF142LB, MB9AF141LB MB9AF144MB, MB9AF142MB, MB9AF141MB MB9AF144NB, MB9AF142NB, MB9AF141NB Added the Item. • Maximum area size : Up to 256 Mbytes Corrected the description of "I2C" Added the footnote Corrected the figure Corrected the address "External Device Area" Add the footnote •Corrected the Condition •Delete the minmun value •Corrected the remarks •Add the footnote Corrected the figure of "MS bit=1" Corrected the figure Corrected the description as follows. •Typical mode → Standard-mode •High-speed mode→ Fast-mode 113 D a t a S h e e t Page 91 Section 5.12-bit A/D Converter •Electrical Characteristics for the A/D Converter ORDERING INFORMATON 98 Revision 4.0 Memory Map 53 · Memory map(2) Electrical Characteristics 64 - 66 3. DC Characteristics (1) Current rating Electrical Characteristics 67 3. DC Characteristics (2) Pin Characteristics Electrical Characteristics 4. AC Characteristics 70 (4-1) Operating Conditions of Main PLL (4-2) Operating Conditions of Main PLL Electrical Characteristics 71 4. AC Characteristics (6) Power-on Reset Timing Electrical Characteristics 80 - 87 4. AC Characteristics (9) CSIO/UART Timing 92 98 - 101 102, 103 114 CONFIDENTIAL Electrical Characteristics 5. 12bit A/D Converter Electrical Characteristics 8. Return Time from Low-Power Consumption Mode Ordering Information Change Results •Corrected the terminal name AN00 ~ AN23 → ANxx •Corrected the minmum value of "Sampling time" •Corrected the max and min value of "State transition time to oprerationpermission" •Corrected the footnote Corrected the "Part number" Added the summary of Flash memory sector and the note · Changed the table format · Added Main Timer mode current · Moved A/D Converter Current Added input leak current of CEC pin at power off. Added the figure of Main PLL connection · Added Time until releasing Power-on reset · Changed the figure of timing · Modified from UART Timing to CSIO/UART Timing · Changed from Internal shift clock operation to Master mode · Changed from External shift clock operation to Slave mode · Added the typical value of Integral Nonlinearity, Differential Nonlinearity, Zero transition voltage and Full-scale transition voltage · Added Conversion time at AVcc < 2.7V Added Return Time from Low-Power Consumption Mode Changed notation of part number MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 115 D a t a S h e e t 116 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015 D a t a S h e e t June 10, 2015, MB9A140NB_DS706-00040-4v0-E CONFIDENTIAL 117 D a t a S h e e t Colophon The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable to you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior authorization by the respective government entity will be required for export of those products. Trademarks and Notice The contents of this document are subject to change without notice. This document may contain information on a Spansion product under development by Spansion. Spansion reserves the right to change or discontinue work on any product without notice. The information in this document is provided as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement of third-party rights, or any other warranty, express, implied, or statutory. Spansion assumes no liability for any damages of any kind arising out of the use of the information in this document. Copyright © 2013-2015 Cypress All rights reserved. Spansion®, the Spansion logo, MirrorBit®, MirrorBit® EclipseTM, ORNANDTM, Easy DesignSimTM, TraveoTM and combinations thereof, are trademarks and registered trademarks of Spansion LLC in the United States and other countries. Other names used are for informational purposes only and may be trademarks of their respective owners. 118 CONFIDENTIAL MB9A140NB_DS706-00040-4v0-E, June 10, 2015