Solid-State Relays Features Rugged, epoxy encapsulation construction 4,000 volts of optical isolation Subjected to full load test and six times the rated current surge before and after encapsulation Unique heat-spreader technology UL and CSA recognized Opto 22 Power Series SSR Overview In 1974, Opto 22 introduced the first liquid epoxy-filled line of power solid-state relays (SSR). This innovation in SSR design greatly improved the reliability and reduced the cost of manufacturing. At that time, we also incorporated into our manufacturing process 100% testing under full load conditions of every relay we produced. By 1978, Opto 22 had gained such a reputation for reliability that we were recognized as the world’s leading manufacturer of solidstate relays. Through continuous manufacturing improvements and the same 100% testing policy established over 30 years ago, Opto 22 is still recognized today for the very high quality and reliability of all our solid-state relays. Opto 22 offers a complete line of SSRs, from the rugged 120/240/ 380-volt AC Series to the small footprint MP Series, designed for mounting on printed circuit boards. All Opto 22 SSRs feature 4,000 volts of optical isolation and are UL and CSA recognized. The innovative use of room-temperature liquid epoxy encapsulation, coupled with Opto 22’s unique heat-spreader technology, are key to mass producing the world’s most reliable solid state relays. Every Opto 22 solid state relay is subjected to full load test and six times the rated current surge both before and after encapsulation. This double testing of every part before it leaves the factory means you can rely on Opto 22 solid state relays. All Opto 22 SSRs are guaranteed for life. Solid-State Relays Description Part Numbers Part Description Part Description 480 VAC, 45 Amp, DC Control, Transient Proof 575D15-12 575 VAC, 15 Amp, DC Control, Transient Proof 240 VAC, 45 Amp, AC Control 575D30-HS 575 VAC, 30 Amp, DC Control, Transient Proof, with integrated heatsink 120D3 120 VAC, 3 Amp, DC Control 575D45-12 575 VAC, 45 Amp, DC Control, Transient Proof 120D10 120 VAC, 10 Amp, DC Control 120D25 120 VAC, 25 Amp, DC Control 575Di45-12 575 VAC, 45 Amp, DC Control, Transient Proof, with LED Indicators 120D45 120 VAC, 45 Amp, DC Control 240D3 240 VAC, 3 Amp, DC Control DC60P or DC60MP 60 VDC, 3 Amp, DC Control. P model is low profile. 240D10 240 VAC, 10 Amp, DC Control 240Di10 240 VAC, 10 Amp, DC Control, with LED Indicators DC200P or DC200MP 200 VDC, 1 Amp, DC Control. P model is low profile. 240D25 240 VAC, 25 Amp, DC Control DC60S-3 60 VDC, 3 Amp, DC Control 240Di25 240 VAC, 25 Amp, DC Control, with LED Indicators DC60S-5 60 VDC, 5 Amp, DC Control 240D30-HS 240 VAC, 30 Amp, DC Control, with integrated heatsink MP120D2 or P120D2 120 VAC, 2 Amp, DC Control. P model is low profile. 240D45 240 VAC, 45 Amp, DC Control MP120D4 or P120D4 120 VAC, 4 Amp, DC Control. P model is low profile. 240Di45 240 VAC, 45 Amp, DC Control, with LED Indicators 380D25 380 VAC, 25 Amp, DC Control MP240D2 or P240D2 240 VAC, 2 Amp, DC. P model is low profile. 380D45 380 VAC, 45 Amp, DC Control 480D10-12 480 VAC, 10 Amp, DC Control, Transient Proof MP240D4 or P240D4 240 VAC, 4 Amp, DC. P model is low profile. 480D15-12 480 VAC, 15 Amp, DC Control, Transient Proof MP380D4 380 VAC, 4 Amp, DC Z120D10 Z Model, 120 VAC, 10 Amp, DC Control Z240D10 Z Model, 240 VAC, 10 Amp, DC Control 120A25 120 VAC, 25 Amp, AC Control 240A10 240 VAC, 10 Amp, AC Control 240A25 240 VAC, 25 Amp, AC Control 240A45 480D25-12 480 VAC, 25 Amp, DC Control, Transient Proof Opto 22 • 43044 Business Park Drive • Temecula, CA 92590-3614 • www.opto22.com SALES 800-321-6786 • 951-695-3000 • FAX 951-695-3095 • [email protected] • SUPPORT 800-835-6786 • 951-695-3080 • FAX 951-695-3017 • [email protected] © 2006–2010 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations. DATA SHEET 480D45-12 120 VAC, 10 Amp, AC Control Form 0859-100305 480D25-HS 480 VAC, 25 Amp, DC Control, Transient Proof, with integrated heatsink 120A10 PAGE 1 Solid-State Relays Solid-State Relays Power Series SSRs Opto 22 provides a full range of Power Series relays with a wide variety of voltage (120–575 volts) and current options (3–45 amps). All Power Series relays feature 4,000 volts of optical isolation and have a high PRV rating. Some Power Series relays include built-in LEDs to indicate operation. See page 3. Printed Circuit Series SSRs Opto 22’s Printed Circuit Series allows OEMs to easily deploy solid state relays on printed circuit boards. Two unique packages are available, both of which will switch loads up to four amps. Operating temperature: –40 °C to 100 °C. See page 9. MP Series DC Series The DC Series delivers isolated DC control to large OEM customers worldwide. The MP Series packaging is designed with a minimum footprint to allow maximum relay density on the printed circuit board. P Series AC Series The AC Series offers the ultimate in solid state reliability. All AC Power Series relays feature a built-in snubber and zero voltage turn on. Transient-proof models offer self protection for noisy electrical environments. Z Series SSRs The P Series power relays provide low-profile [0.5 in. (12.7 mm)] center mounting on printed circuit boards. HS Series SSRs The HS Series features an integrated heatsink, which makes them so cool. These relays have less thermal resistance inside, so heat dissipates more easily than in a standard SSR mounted to the same heatsink. With the heatsink builtin, you don't have to select one from a catalog, and installation is much easier. See page 14. Form 0859-100305 The Z Series employs a unique heat transfer system that makes it possible for Opto 22 to deliver a low-cost, 10amp, solid state relay in an all-plastic case. The push-on, tool-free quickconnect terminals make the Z Series DATA SHEET ideal for high-volume OEM applications. Operating temperature: – 40 °C to 100 °C. See page 7. PAGE 2 Opto 22 • 43044 Business Park Drive • Temecula, CA 92590-3614 • www.opto22.com SALES 800-321-6786 • 951-695-3000 • FAX 951-695-3095 • [email protected] • SUPPORT 800-835-6786 • 951-695-3080 • FAX 951-695-3017 • [email protected] © 2006–2010 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations. Solid-State Relays Specifications (all Power Series models) • • • • • • • • 4,000 V optical isolation, input to output Zero voltage turn-on Turn-on time: 0.5 cycle maximum Turn-off time: 0.5 cycle maximum Operating temperature: –40 °C to 100 °C Operating frequency: 25 to 65 Hz (operates at 400 Hz with six times off-state leakage) Coupling capacitance, input to output: 8 pF maximum Hermetically sealed DV/DT Off-state: 200 volts per microsecond DV/DT commutating: snubbed for rated current at 0.5 power factor UL recognized CSA certified CE component Torque specs for screws: Control terminals, 6 in/lb Field terminals, 18 in/lb A plastic safety cover (Opto 22 part number SAFETY COVER) is optionally available for Opto 22 Power Series SSRs. The safety cover reduces the chance of accidental contact with relay terminals, while providing access holes for test instrumentation. Solid-State Relays • • • • • • Safety Cover for Power Series SSRs An optional plastic safety cover can be installed on a Power Series SSR. Form 0859-100305 DATA SHEET Opto 22 • 43044 Business Park Drive • Temecula, CA 92590-3614 • www.opto22.com SALES 800-321-6786 • 951-695-3000 • FAX 951-695-3095 • [email protected] • SUPPORT 800-835-6786 • 951-695-3080 • FAX 951-695-3017 • [email protected] © 2006–2010 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations. PAGE 3 Solid-State Relays AC Power Series Specifications Opto 22 provides a full range of Power Series relays with a wide variety of voltage (120–575) and current options (3–45 amps). All Power Series relays feature 4,000 volts of optical isolation and have a high PRV rating. Operating temperature is –40 °C to 100 °C. Solid-State Relays 120/240/380 Volt Model Nominal Nominal 1 cycle Nominal Number AC Line Current Surge Signal Input Voltage Rating (Amps) Resistance (Amps) Peak (Ohms) Signal Pick-up Voltage Signal Peak Maximum Off-State Operating I2t Drop-out Repetitive Output Leakage Voltage Rating Voltage Voltage Voltage (mA) Range t=8.3 Maximum Drop Maximum** (Volts AC) (ms) Isolation Voltage θjc* Dissipation (Watts/ (°C/Watt) Amp) 120D3 120 3 85 1000 3VDC (32V allowed) 1 VDC 600 1.6 volts 2.5mA 12–140 30 4,000VRMS 11 1.7 120D10 120 10 110 1000 3VDC (32V allowed) 1 VDC 600 1.6 volts 7 mA 12–140 50 4,000VRMS 1.3 1.6 120D25 120 25 250 1000 3VDC (32V allowed) 1 VDC 600 1.6 volts 7 mA 12–140 250 4,000VRMS 1.2 1.3 120D45 120 45 650 1000 3VDC (32V allowed) 1 VDC 600 1.6 volts 7 mA 12–140 1750 4,000VRMS 0.67 0.9 240D3 240 3 85 1000 3VDC (32V allowed) 1 VDC 600 1.6 volts 5 mA 24–280 30 4,000VRMS 11 1.7 240D10 240 10 110 1000 3VDC (32V allowed) 1 VDC 600 1.6 volts 14 mA 24–280 50 4,000VRMS 1.3 1.6 240Di10 240 10 110 730 3VDC (32V allowed) 1 VDC 600 1.6 volts 14 mA 24–280 50 4,000VRMS 1.3 1.6 240D25 240 25 250 1000 3VDC (32V allowed) 1 VDC 600 1.6 volts 14 mA 24–280 250 4,000VRMS 1.2 1.3 240Di25 240 25 250 730 3VDC (32V allowed) 1 VDC 600 1.6 volts 14 mA 12–280 250 4,000VRMS 1.2 1.3 240D45 240 45 650 1000 3VDC (32V allowed) 1 VDC 600 1.6 volts 14 mA 24–280 1750 4,000VRMS 0.67 0.9 240Di45 240 45 650 730 3VDC (32V allowed) 1 VDC 600 1.6 volts 14 mA 24–280 1750 4,000VRMS 0.67 0.9 380D25 380 25 250 1000 3VDC (32V allowed) 1 VDC 800 1.6 volts 12 mA 24–420 250 4,000VRMS 1.2 1.3 380D45 380 45 650 1000 3VDC (32V allowed) 1 VDC 800 1.6 volts 12 mA 24–420 1750 4,000VRMS 0.67 0.9 120A10 120 10 110 33K 85VAC (280V allowed) 10 VAC 600 1.6 volts 7 mA 12–140 50 4,000VRMS 1.3 1.6 120A25 120 25 250 33K 85VAC (280V allowed) 10 VAC 600 1.6 volts 7 mA 12–140 250 4,000VRMS 1.2 1.3 240A10 240 10 110 33K 85VAC (280V allowed) 10 VAC 600 1.6 volts 14 mA 24–280 50 4,000VRMS 1.3 1.6 240A25 240 25 250 33K 85VAC (280V allowed) 10 VAC 600 1.6 volts 14 mA 24–280 250 4,000VRMS 1.2 1.3 240A45 240 45 650 33K 85VAC (280V allowed) 10 VAC 600 1.6 volts 14 mA 24–280 1750 4,000VRMS 0.67 0.9 Form 0859-100305 DATA SHEET Note: θjc* = Thermal resistance from internal junction to base. Maximum internal junction temperature is 110 °C. ** Operating Frequency: 25 to 65 Hz (operates at 400 Hz with 6 times the offstate leakage) PAGE 4 Opto 22 • 43044 Business Park Drive • Temecula, CA 92590-3614 • www.opto22.com SALES 800-321-6786 • 951-695-3000 • FAX 951-695-3095 • [email protected] • SUPPORT 800-835-6786 • 951-695-3080 • FAX 951-695-3017 • [email protected] © 2006–2010 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations. Solid-State Relays 120/240/380 Volt (cont.) Thermal Ratings Surge Current Data 3-Amp 10-Amp 25-Amp 45-Amp Time Time* Peak Peak Peak Peak (Seconds) (Cycles) Amps Amps Amps Amps 1 85 110 250 650 0.050 3 66 85 175 420 0.100 6 53 70 140 320 0.200 12 45 60 112 245 0.500 30 37 50 80 175 1 60 31 40 67 134 2 120 28 33 53 119 3 180 27 32 49 98 4 240 26 31 47 95 5 300 25 30 45 91 10 600 24 28 42 84 Solid-State Relays 0.017 Note: *60 HZ. Dimensional Drawings Side view: Part numbers DC60S3, 120D3, and 240D3 only Form 0859-100305 Opto 22 • 43044 Business Park Drive • Temecula, CA 92590-3614 • www.opto22.com SALES 800-321-6786 • 951-695-3000 • FAX 951-695-3095 • [email protected] • SUPPORT 800-835-6786 • 951-695-3080 • FAX 951-695-3017 • [email protected] © 2006–2010 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations. DATA SHEET Side view: All other part numbers PAGE 5 Solid-State Relays 480/575 Volt Solid-State Relays Model Number Nominal Nominal 1 cycle Nominal AC Line Current Surge Signal Input Voltage Rating (Amps) Resistance (Amps) Peak (Ohms) Signal Pick-up Voltage Signal Peak Maximum Off-State Operating I2t Isolation θjc* Dissipation Drop-out Repetitive Output Leakage Voltage Rating Voltage (°C/Watt) (Watts/Amp) Voltage Voltage Voltage (mA) Range t=8.3 Maximum Drop Maximum** (Volts AC) (ms) 480D10-12 480 10 110 1000 3VDC (32V allowed) 1 VDC 1200 3.2 volts 11 mA 100–530 50 4,000VRMS 1.2 2.5 480D15-12 480 15 150 1000 3VDC (32V allowed) 1 VDC 1200 3.2 volts 11 mA 100–530 50 4,000VRMS 1.2 2.5 480D25-12 480 25 250 1000 3VDC (32V allowed) 1 VDC 1000 1.6 volts 11 mA 100–530 250 4,000VRMS 1.3 1.3 480D45-12 480 45 650 1000 3VDC (32V allowed) 1 VDC 1000 1.6 volts 11 mA 100–530 1750 4,000VRMS 0.67 0.9 575D15-12 575 15 150 1000 3VDC (32V allowed) 1 VDC 1200 3.2 volts 15 mA 100–600 90 4,000VRMS 1.2 2.5 575D45-12 575 45 650 1000 3VDC (32V allowed) 1 VDC 1000 1.6 volts 15 mA 100–600 1750 4,000VRMS 0.67 0.9 575Di45-12 575 45 650 730 3VDC (32V allowed) 1 VDC 1000 1.6 volts 15 mA 100–600 1750 4,000VRMS 0.67 0.9 Note: θjc* = Thermal resistance from internal junction to base. Maximum internal junction temperature is 110 °C. ** Operating Frequency: 25 to 65 Hz (operates at 400 Hz with 6 times the offstate leakage) Surge Current Data Thermal Ratings 15-Amp 25-Amp 45-Amp Time Time*** 10-Amp Peak Peak Peak Peak Second (Cycles) Amps Amps Amps Amps 0.017 1 110 150 250 650 0.050 3 85 140 175 420 0.100 6 70 110 140 320 0.200 12 60 90 112 245 0.500 30 50 70 80 175 1 60 40 55 67 134 2 120 33 49 53 119 3 180 32 47 49 98 4 240 31 43 47 95 5 300 30 40 45 91 10 600 28 35 42 84 Form 0859-100305 DATA SHEET Note: ***60 HZ PAGE 6 Opto 22 • 43044 Business Park Drive • Temecula, CA 92590-3614 • www.opto22.com SALES 800-321-6786 • 951-695-3000 • FAX 951-695-3095 • [email protected] • SUPPORT 800-835-6786 • 951-695-3080 • FAX 951-695-3017 • [email protected] © 2006–2010 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations. Solid-State Relays 480/575 Volt (cont) Dimensional Drawings Side view: Part numbers DC60S3, 120D3, and 240D3 only Z Series Specifications Solid-State Relays Side view: All other part numbers AC Power: 120/240 Volt The Z Series employs a unique heat transfer system that makes it possible for Opto 22 to deliver a low-cost, 10-amp, solid-state relay in an allplastic case. The push-on tool-free quick-connect terminals make the Z Series ideal for high-volume OEM applications. Operating temperature is –40 °C to 100 °C. Z120D10 Z240D10 Nominal AC Line Voltage Nominal 120 240 Current Rating (Amps) 10 10 1 cycle Surge (Amps) Peak 110 110 Nominal Signal Input Resistance (Ohms) 1000 1000 Signal Pick-up Voltage 3VDC (32V allowed) 3VDC (32V allowed) Signal Drop-out Voltage 1 VDC 1 VDC Peak Repetitive Voltage Maximum 600 600 Maximum Output Voltage Drop 1.6 volts 1.6 volts Off-State Leakage (mA) Maximum** 6 mA 12 mA Operating Voltage Range (Volts AC) 12–140 24–280 I Rating t=8.3 (ms) 50 50 Isolation Voltage 4,000 VRMS 4,000 VRMS θjc* (°C/Watt) Dissipation (Watts/Amp) 4 4 2t Form 0859-100305 Opto 22 • 43044 Business Park Drive • Temecula, CA 92590-3614 • www.opto22.com SALES 800-321-6786 • 951-695-3000 • FAX 951-695-3095 • [email protected] • SUPPORT 800-835-6786 • 951-695-3080 • FAX 951-695-3017 • [email protected] © 2006–2010 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations. DATA SHEET Notes: θjc* = Thermal resistance from internal junction to base. Maximum internal junction temperature is 110°C. ** Operating Frequency: 25–65 Hz (operates at 400 Hz with 6 times the offstate leakage) PAGE 7 Solid-State Relays AC Power: 120/240 Volt (cont.) Solid-State Relays Current vs. Ambient Ratings Surge Current Data Time Second Time*** (Cycles) Peak Amps 0.017 1 110 0.050 3 85 0.100 6 70 0.200 12 60 0.500 30 50 1 60 40 2 120 33 3 180 32 4 240 31 5 300 30 10 600 28 Note: ***60 HZ Form 0859-100305 DATA SHEET Dimensional Drawings PAGE 8 Opto 22 • 43044 Business Park Drive • Temecula, CA 92590-3614 • www.opto22.com SALES 800-321-6786 • 951-695-3000 • FAX 951-695-3095 • [email protected] • SUPPORT 800-835-6786 • 951-695-3080 • FAX 951-695-3017 • [email protected] © 2006–2010 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations. Solid-State Relays Printed Circuit Series Specifications AC Power: MP and P Series The MP Series packaging is designed with a minimum footprint to allow maximum relay density on the printed circuit board. The P Series power relays provide low-profile for 0.5-inch (12.7 mm) center mounting on printed circuit boards. Operating temperature: –40 °C to 100 °C. MP120D4 or P120D4 MP240D2 or P240D2 MP240D4 or P240D4 MP380D4 Nominal AC Line Voltage 120 120 240 240 380 Nominal Current Rating Amps 2 4 2 4 4 1 cycle Surge (Amps) Peak 20 85 20 85 85 Nominal Signal Input Resistance (Ohms) 1000 1000 1000 1000 1000 Signal Pick-up Voltage 3VDC*** (24V allowed) 3VDC*** (24V allowed) 3VDC*** (24V allowed) 3VDC*** (24V allowed) 3VDC*** (24V allowed) Signal Drop-out Voltage 1 VDC 1 VDC 1 VDC 1 VDC 1 VDC Peak Repetitive Voltage Maximum 600 600 600 600 800 Maximum Output Voltage Drop 1.6 volts 1.6 volts 1.6 volts 1.6 volts 1.6 volts Off-State Leakage mA Maximum** 5 mA 5 mA 5 mA 5 mA 5 mA Operating Voltage Range (Volts AC) 12–140 12–140 24–280 24–280 24–420 I2t 2 30 2 30 30 Isolation Voltage 4,000 VRMS 4,000 VRMS 4,000 VRMS 4,000 VRMS 4,000 VRMS θjc* °C/Watt 20 6.5 20 6.5 6.5 Dissipation Watts/Amp 1.2 1.2 1.2 1.2 1.2 Rating (Motor Load) 1 FLA at 120 VAC 6 LRA at 120 VAC 2.5 FLA at 240 VAC 6 LRA at 240 VAC 1 FLA at 120 VAC 15 LRA at 120 VAC 2.5 FLA at 240 VAC 15 LRA at 240 VAC 2.5 FLA at 380 VAC 15 LRA at 380 VAC Rating t=8.3 (ms) Solid-State Relays MP120D2 or P120D2 Notes: θjc* = Thermal resistance from internal junction to base. Maximum internal junction temperature is 110 °C. ** Operating Frequency: 25 to 65 Hz (operates at 400 Hz with 6 times the offstate leakage) *** = P Series 32 volts maximum. Form 0859-100305 DATA SHEET Opto 22 • 43044 Business Park Drive • Temecula, CA 92590-3614 • www.opto22.com SALES 800-321-6786 • 951-695-3000 • FAX 951-695-3095 • [email protected] • SUPPORT 800-835-6786 • 951-695-3080 • FAX 951-695-3017 • [email protected] © 2006–2010 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations. PAGE 9 Solid-State Relays AC Power: P and MP Series (cont.) e Surge Current Data Solid-State Relays Time Time* Second (Cycles) Dimensional Drawings Peak Amps Peak Amps 0.017 1 20 85 0.050 3 18 66 0.100 6 15 53 0.200 12 11 45 0.500 30 9 37 1 60 8.5 31 2 120 8 28 3 180 7.5 27 4 240 7 26 5 300 6.5 25 10 600 6 24 Form 0859-100305 DATA SHEET Note: *60 HZ PAGE 10 Opto 22 • 43044 Business Park Drive • Temecula, CA 92590-3614 • www.opto22.com SALES 800-321-6786 • 951-695-3000 • FAX 951-695-3095 • [email protected] • SUPPORT 800-835-6786 • 951-695-3080 • FAX 951-695-3017 • [email protected] © 2006–2010 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations. Solid-State Relays AC Power: P and MP Series (cont.) Thermal Ratings Time Time* Second (Cycles) Peak Amps Peak Amps 0.017 1 20 85 0.050 3 18 66 0.100 6 15 53 0.200 12 11 45 0.500 30 9 37 1 60 8.5 31 2 120 8 28 3 180 7.5 27 4 240 7 26 5 300 6.5 25 10 600 6 24 Solid-State Relays Surge Current Data Note: *60 HZ Form 0859-100305 DATA SHEET Opto 22 • 43044 Business Park Drive • Temecula, CA 92590-3614 • www.opto22.com SALES 800-321-6786 • 951-695-3000 • FAX 951-695-3095 • [email protected] • SUPPORT 800-835-6786 • 951-695-3080 • FAX 951-695-3017 • [email protected] © 2006–2010 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations. PAGE 11 Solid-State Relays DC Switching Series Specifications DC60P or DC60MP DC200P or DC200MP DC60S-3 DC60S-5 5-60 VDC 5-200 VDC 5-60 VDC 5-60 VDC Forward Voltage Drop 1.5 volts 1.5 volts at 1 amp 1.5 volts at 3 amps 1.5 volts at 5 amps Nominal Current Rating 3 amps 1 amp 3 amps 5 amps Off-State Blocking 60 VDC 250 VDC 60 VDC 60 VDC Signal Pickup Voltage 3 VDC 32 Volts* allowed 3 VDC 32 Volts* allowed 3 VDC 32 Volts allowed 3 VDC 32 Volts allowed Signal Dropout Voltage 1 VDC 1 VDC 1 VDC 1 VDC 1,000 ohms 1,000 ohms 1 Second Surge 5 amps 2 amps 5 amps 10 amps Operating Temp. Range -40° C to 100° C -40° C to 100° C -40° C to 100° C -40° C to 100° C Solid-State Relays Operating Voltage Range Signal Input Impedance Isolation Voltage 1,000 ohms 1,000 ohms 4,000 VRMS 4,000 VRMS 4,000 VRMS 4,000 VRMS 1 mA maximum 1 mA maximum 1 mA maximum 1 mA maximum Package Type P/MP series P/MP series Power series Power series Turn-On Time 100 μsec 100 μsec 100 μsec 100 μsec Turn-Off Time 750 μsec 750 μsec 750 μsec 750 μsec Off-state Leakage Thermal Ratings Form 0859-100305 DATA SHEET Note: *MP series maximum allowed control signal 24 VDC. PAGE 12 Opto 22 • 43044 Business Park Drive • Temecula, CA 92590-3614 • www.opto22.com SALES 800-321-6786 • 951-695-3000 • FAX 951-695-3095 • [email protected] • SUPPORT 800-835-6786 • 951-695-3080 • FAX 951-695-3017 • [email protected] © 2006–2010 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations. Solid-State Relays Dimensional Drawings Side view: Part numbers DC60S3, 120D3, and 240D3 only Solid-State Relays Side view: All other part numbers Form 0859-100305 DATA SHEET Opto 22 • 43044 Business Park Drive • Temecula, CA 92590-3614 • www.opto22.com SALES 800-321-6786 • 951-695-3000 • FAX 951-695-3095 • [email protected] • SUPPORT 800-835-6786 • 951-695-3080 • FAX 951-695-3017 • [email protected] © 2006–2010 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations. PAGE 13 Solid-State Relays HS Series Specifications Solid-State Relays The HS Series features an integrated heatsink, which makes them so cool. Because there is less thermal resistance internal to the unit than in a standard SSR mounted to the same heat sink, heat dissipates more easily. The built-in heatsink means you don't have to select a heatsink, and installation is much easier. Each HS-series SSR has built-in hardware for screw mounting and a built-in DIN-rail adapter clip for mounting to a 35mm DIN rail. Model Number Nominal AC Line Voltage Operating Voltage Range (Volts AC) Peak Repetitive Voltage Maximum 240D30-HS 480D25-HS 575D30-HS 240 480 575 24–280 100–530 100–600 600 1000 1200 Off-State Leakage (mA) Maximum** 5 mA 10 mA 12 mA Nominal Output Voltage Drop (RMS) 1.0 volts 1.0 volts 1.0 volts 30 25 30 Nominal Current Rating (Amps) 1 cycle Surge (Amps) Peak 610 610 610 I2t Rating t=8.3 (ms) 1550 1550 1550 Isolation Voltage (transient 4KV) 2,500VRMS 2,500VRMS 2,500VRMS Dissipation (Nominal Watts/Amp) 1.0 1.0 1.0 Signal Pick-up Voltage 4VDC (32V allowed) 4VDC (32V allowed) 4VDC (32V allowed) Signal Drop-out Voltage 1 VDC 1 VDC 1 VDC Nominal Signal Input Resistance (Ohms) 730 1000 1000 θja* (°C/Watt) 2.2 2.2 2.2 Note: θja* = Thermal resistance from internal junction to ambient. Maximum internal junction temperature is 110 °C. ** Operating Frequency: 25 to 65 Hz (operates at 400 Hz with 6 times the offstate leakage) Surge Current Data, Peak Amps Form 0859-100305 DATA SHEET Time Second PAGE 14 60HZ 50HZ 0.0167 610 580 0.05 394 375 0.1 300 386 0.2 230 219 0.5 164 156 1 126 120 2 112 106 3 92 87 4 89 85 5 85 81 10 79 75 Opto 22 • 43044 Business Park Drive • Temecula, CA 92590-3614 • www.opto22.com SALES 800-321-6786 • 951-695-3000 • FAX 951-695-3095 • [email protected] • SUPPORT 800-835-6786 • 951-695-3080 • FAX 951-695-3017 • [email protected] © 2006–2010 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations. Solid-State Relays HS-series (cont.) Thermal Ratings 30 30 25 A 25 Amp Models RMS Amperes 20 B 15 10 5 20 30 40 50 60 70 80 90 100 A 20 B 15 10 5 20 30 Ambient Temperature (°C) 40 50 60 70 80 90 100 Ambient Temperature (°C) A: Single relay or with 0.75” spacing between relays. Derate above 40 °C; subtract 0.5 amp/°C. B: Three relays side by side with 0.25” spacing. All relays with the same load. Derate above 40 °C; subtract 0.4 amp/°C. Solid-State Relays 30 Amp Models RMS Amperes 25 NOTE: This data is for SSRs mounted to a horizontal surface. To take advantage of the cooling effect of natural air flow, we recommend mounting HS-series SSRs to a vertical surface with the Opto 22 logo right side up as shown here. Dimensional Drawing 3.90” (99.11mm) 3.50” (88.90mm) 0.20” (5.08mm) 1.25” (31.75mm) 0.25” (6.35mm) 3.21” (81.55mm) 1.75” (44.45mm 4.81” (122.17mm) Form 0859-100305 DATA SHEET Opto 22 • 43044 Business Park Drive • Temecula, CA 92590-3614 • www.opto22.com SALES 800-321-6786 • 951-695-3000 • FAX 951-695-3095 • [email protected] • SUPPORT 800-835-6786 • 951-695-3080 • FAX 951-695-3017 • [email protected] © 2006–2010 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations. PAGE 15 Solid-State Relays Applications: Tips Heat Sink Calculation Solid-State Relays Like all semiconductor devices, SSR current ratings must be based on maximum internal junction temperature. All Opto 22 SSRs operate conservatively at maximum internal junction temperatures of 110 °C. Use the equation below to calculate the maximum allowable heat sink thermal resistance for your application. It is good engineering practice to provide a margin for error instead of running the application right at the limits. If your application is near the thermal limit, it can be helpful to add a fan to move air across the heat sink. IMPORTANT: Thermally conductive grease must be used between the relay base and the heat sink. Sample Calculation 1 120-volt, 20-amp load; 50 °C ambient air temperature Model: 120D25 SSR. See the last two columns of the table on page 4 for thermal resistance and dissipation values for the 120D25. Also, see the note at the bottom of the table. Dissipation: 1.3 watts/amp Thermal resistance: 1.2 °C/watt Maximum junction temperature: 110 °C The calculation would be as follows: Form 0859-100305 DATA SHEET This means that you should select a heat sink with a thermal resistance of less than 1.1 °C/watt. PAGE 16 Opto 22 • 43044 Business Park Drive • Temecula, CA 92590-3614 • www.opto22.com SALES 800-321-6786 • 951-695-3000 • FAX 951-695-3095 • [email protected] • SUPPORT 800-835-6786 • 951-695-3080 • FAX 951-695-3017 • [email protected] © 2006–2010 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations. Solid-State Relays Sample Calculation 2 240-volt,18-amp load, 25 °C ambient air temperature Model: 240D45 See the last two columns of the table on page 4 for thermal resistance and dissipation values for the 240D45. Also, see the note at the bottom of the table. The calculation would be as follows: This means that you should select a heat sink with a thermal resistance of less than 4.6 °C/watt. Solid-State Relays Dissipation: 0.9 watts/amp Thermal resistance: 0.67 °C/watt Maximum junction temperature: 110 °C Duty Cycle Calculation When solid-state relays are operated in an on/off mode, it may be advantageous to calculate the RMS value of the current through the SSR for heat sinking or determining the proper current rating of the SSR for the given application. IRMS = RMS value of load or SSR T1 = Time current is on T2 = Time current is off ION = RMS value of load current during on period I RMS = (ION)2 x T1 T1 + T2 Form 0859-100305 DATA SHEET Opto 22 • 43044 Business Park Drive • Temecula, CA 92590-3614 • www.opto22.com SALES 800-321-6786 • 951-695-3000 • FAX 951-695-3095 • [email protected] • SUPPORT 800-835-6786 • 951-695-3080 • FAX 951-695-3017 • [email protected] © 2006–2010 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations. PAGE 17 Solid-State Relays Solid-State Relays Transformer Loads Solenoid Valve and Contactor Loads Careful consideration should be given to the selection of the proper SSR for driving a given transformer. Transformers are driven from positive saturation of the iron core to negative saturation of the core each half cycle of the alternating voltage. Large inrush currents can occur during the first half cycle of line voltage if a zero-voltage SSR happens to turn on during the positive half cycle of voltage when the core is already in positive saturation. Inrush currents greater than 10 times rated transformer current can easily occur. The following table provides a guide for selecting the proper SSR for a given transformer rating. All Opto 22 SSRs are designed to drive inductive loads such as solenoid valves and electromechanical contactors. The built-in snubber in each SSR assures proper operation into inductive loads. The following table is a guide in selecting an SSR to drive a solenoid or contactor. 120-Volt Coils SSR CURRENT RATING SOLENOID CONTACTOR 2-Amp 1-Amp NEMA Size 4 4-Amp 3-Amp NEMA Size 7 240-Volt Coils 120-Volt Transformers TRANSFORMER SSR CURRENT RATING P or MP 120D2 100 VA Z120D10 500 VA 120D3 100 VA SSR MODEL P or MP 120D4 250 VA 120D10 or 120A10 500 VA 120D25 or 120A25 1 KVA 120D45 2 KVA 240-Volt Transformers P or MP240D2 200 VA 7240D10 1 KVA 120D3 200 VA P or MP240D4 500 VA 240D10 or 240A10 1 KVA 240D25 or 240A25 2 KVA 240D45 4 KVA 480-Volt Transformers SSR MODEL TRANSFORMER 480D10-12 5-Amp Primary 480D15-12 5-Amp Primary SOLENOID CONTACTOR 2-Amp 1-Amp NEMA Size 7 4-Amp 3-Amp NEMA Size 7 Control Current Calculation All Opto 22 DC-controlled SSRs have a control circuit consisting of 1000 ohms in series with an LED. The LED will drop 1 volt, so the voltage across the internal resistor will be 1 volt less than the control voltage. The control current (IC ) can be calculated from the control voltage (VC ) as follows: IC = (VC - 1)/1000 Examples: 3 VDC control voltage: IC = (3 - 1)/1000 = 0.002 A (2 mA) 32 VDC control voltage: IC = (32 - 1)/1000 = 0.031 A (31 mA) For control voltages above 32 VDC, an external resistor can be added in series with the SSR to limit the control current. Also, if the device driving the control current to the SSR is limited, you can limit the control current by using an external resistor (Re). IC = (VC - 1)/ (Re + 1000) Re = [(VC - 1)/(IC)] -1000 To limit the control current to 2 mA, this simplifies to: Form 0859-100305 DATA SHEET Re = 500 (VC - 3) PAGE 18 Opto 22 • 43044 Business Park Drive • Temecula, CA 92590-3614 • www.opto22.com SALES 800-321-6786 • 951-695-3000 • FAX 951-695-3095 • [email protected] • SUPPORT 800-835-6786 • 951-695-3080 • FAX 951-695-3017 • [email protected] © 2006–2010 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations. Solid-State Relays Opto 22 SSRs for controlling single-phase motors are shown in the following tables: 120-Volt Single-Phase Non-Reversing Motors SSR Model MOTOR RATING 1 Amp Z120D10 1/4 HP 120D3 1-1/2 Amp P or MP120D4 1-1/2 Amp 120D10 or 120A10 1/4 HP 120D25 or 120A25 1/3 HP 120D45 3/4 HP In applications requiring higher voltage, two Opto 22 SSRs may be operated in series for double the voltage rating. The built-in snubber in each SSR assures proper voltage sharing of the two SSRs in series. In the following diagram, two 240-volt, 45-amp SSRs are connected in series for operation on a 480-volt line. The control is shown with a parallel hook-up but it should be noted that a serial connection can also be implemented. 240-Volt Single Phase Non-Reversing Motors SSR Model MOTOR RATING P or MP240D2 1 Amp Z240D10 1/4 HP 240D3 1-1/2 Amp P or MP240D4 1-1/2 Amp 240D10 or 240A10 1/3 HP 240D25 or 120A25 1/2 HP 240D45 1-1/2 HP Lamp Loads Since all Opto 22 SSRs are zero-voltage switching, they are ideal for driving incandescent lamps, because the initial inrush current into a cold filament is reduced. The life of the lamp is increased when switched by a zero-voltage turn-on SSR. The following table is a guide to selecting an Opto 22 SSR for switching a given incandescent lamp. 120 Volt Lamps SSR CURRENT RATING 120-Volt Single-Phase Reversing Motors Solid-State Relays P or MP120D2 Solid-State Relays in Series LAMP RATING 2-Amp 100 Watt 4-Amp 400 Watt 10-Amp 1 Kilowatt SSR Model MOTOR RATING 25-Amp 2 Kilowatt P or MP240D2 1 Amp 45-Amp 3 Kilowatt Z240D10 1/4 HP 240D3 1-1/2 Amp P or MP240D4 1-1/2 Amp 240D10 or 240A10 1/4 HP 240D25 or 120A25 1/3 HP 240D45 3/4 HP 240 Volt Rating SSR CURRENT RATING LAMP RATING 2-Amp 200 Watt 4-Amp 800 Watt 10-Amp 2 Kilowatt 25-Amp 4 Kilowatt 45-Amp 6 Kilowatt 240-Volt Single-Phase Reversing Motors 1/4 HP 480D15-12 1/4 HP Opto 22 • 43044 Business Park Drive • Temecula, CA 92590-3614 • www.opto22.com SALES 800-321-6786 • 951-695-3000 • FAX 951-695-3095 • [email protected] • SUPPORT 800-835-6786 • 951-695-3080 • FAX 951-695-3017 • [email protected] © 2006–2010 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations. Form 0859-100305 MOTOR RATING 480D10-12 DATA SHEET SSR Model PAGE 19 Solid-State Relays Single-Phase Reversing Motor Control (cont.) Solid-State Relays Heater Loads Care should be taken in selecting a SSR for driving a heater load if the load is cycled on and off in a continuous manner as might occur in a temperature control application. Constant cycling can cause thermal fatigue in the thyristor chip at the point where the chip bonds to the lead frame. Opto 22 employs a thick copper lead frame for mounting the SCR chips in the power series SSRs to eliminate thermal fatigue failures. In addition, Opto 22 recommends operating any SSR at 75% rated current for cycling heater loads to ensure complete reliability. The following table is a guide to selecting the proper SSR for a given heater load. Nominal SSR Current Rating Maximum Recommended Heater Current 2-Amp 1½-Amp 4-Amp 2½-Amp 10-Amp 7½-Amp 25-Amp 18-Amp 45-Amp 35-Amp 10 480V 8-Amp 10 480V 8-Amp The resistors are unnecessary if the control circuit is designed to ensure that one SSR is off before the other SSR is on. Three-Phase Motor Control Single-Phase Reversing Motor Control The circuit diagram below illustrates a typical 1 Ø motor winding inductance and the phase shift capacitor can cause twice-line voltage to appear across the open SSR. A 240-volt SSR should be used for a 120-volt line. During the transition period when one SSR is turned on and the other SSR is going off, both SSRs may be on. In this case, the capacitor may discharge through the two SSRs, causing large currents to flow, which may destroy the SSRs. The addition of RL as shown will protect the SSRs from the short circuit capacitor discharge current. Three-phase motors may be controlled by solid-state relays as shown. A third SSR as shown is optional, but not necessary. The control windings may be connected in series or parallel. Care should be taken to ensure that the surge current drawn by the motor does not exceed the surge current rating of the SSR. Form 0859-100305 DATA SHEET 240 Volt Three-Phase Motor PAGE 20 SSR MODEL MOTOR Z240D10 3/4 HP 240D10 3/4 HP 240A10 3/4 HP 240D25 2 HP 240A25 2 HP 240D45 3 HP Opto 22 • 43044 Business Park Drive • Temecula, CA 92590-3614 • www.opto22.com SALES 800-321-6786 • 951-695-3000 • FAX 951-695-3095 • [email protected] • SUPPORT 800-835-6786 • 951-695-3080 • FAX 951-695-3017 • [email protected] © 2006–2010 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations. Solid-State Relays 480 Volt Three-Phase Motors SSR MODEL MOTOR 480D10-12 1-½ HP 480D15-12 1-½ HP Three-Phase Reversing Motor Control Opto 22 Relay Motor Full Load Rating Resistor for 120V line Resistor for 240V line 3-Amp 1.25-Amp 4 ohm 50 W 8 ohm 50 W 10-Amp 5-Amp 1 ohm 100 W 2 ohm 100 W 25-Amp 8-Amp .5 ohm 100 W 1 ohm 100 W 45-Amp 16-Amp .25 ohm 150 W .5 ohm 150 W 15-Amp 5-Amp 1 ohm 100 W 2 ohm 100 W Solid-State Relays Three-phase reversing motor control can be implemented with four SSRs as shown in the connection diagram. The SSRs work in pairs with SSR1 and SSR3 operated for rotation in one direction and SSR2 and SSR4 operated for rotation in the reverse direction. The resistor R1 as shown in the connection diagram protects against line-toline shorts if SSR1 and SSR4 or SSR3 and SSR2 are on at the same time during the reversing transition period. Use the following table as a guide to the proper selection of an SSR for this application. Form 0859-100305 DATA SHEET Opto 22 • 43044 Business Park Drive • Temecula, CA 92590-3614 • www.opto22.com SALES 800-321-6786 • 951-695-3000 • FAX 951-695-3095 • [email protected] • SUPPORT 800-835-6786 • 951-695-3080 • FAX 951-695-3017 • [email protected] © 2006–2010 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations. PAGE 21 Solid-State Relays FAQ: SSR Applications Solid-State Relays Q : What is a solid-state relay? A: A solid-state relay (SSR) is a semiconductor device that can be used in place of a mechanical relay to switch electricity to a load in many applications. Solid-state relays are purely electronic, normally composed of a low current “control” side (equivalent to the coil on an electromechanical relay) and a high-current load side (equivalent to the contact on a conventional relay). SSRs typically also feature electrical isolation to several thousand volts between the control and load sides. Because of this isolation, the load side of the relay is actually powered by the switched line; both line voltage and a load (not to mention a control signal) must be present for the relay to operate. Q : What are the advantages of using an SSR over a mechanical relay? A: There are many applications that require a moderate amount of power (W to kW) to be switched on and off fairly rapidly. A good example would be the operation of a heater element in a controlled-temperature system. Typically, the amount of heat put into the system is regulated using pulse-width modulation turning a fixed-power heating element on and off for time periods ranging from seconds to minutes. Mechanical relays have a finite cycle life, as their components tend to wear out over thousands to millions of cycles. SSRs do not have this problem; in the proper application, they could be operated almost infinitely. Q : Do you make multi-pole or multi-throw SSRs? A: Opto 22 manufactures only single-pole, single-throw SSRs. If multi-phase operation is required, just use a relay on each phase. Because of the limitations on semiconductor devices of the type used in SSRs, it is not practical to build single-device multi-throw SSRs. However, an alternative to multi-throw operation may be accomplished with multiple relays. Q : Can I hook up SSRs in parallel to achieve a higher current rating? A: No. There is no way to guarantee that two or more relays will turn on simultaneously when operated in parallel. Each relay requires a minimum voltage across the output terminals to function; because of the optical isolation feature, the “contact” part of the SSR is actually powered by the line it switches. One relay turning on before the other will cause the second relay to lose its turn-on voltage, and it won’t ever turn on, or at least not until the first relay fails from carrying too much current. Q : What does a “zero-crossing” turn-on circuit refer to? A: “Zero-crossing” turn-on and turn-off refer to the point on the AC wave form when the voltage is zero. It is at this point that an AC SSR will turn on or off. All Opto 22 AC relays are designed with a zerocrossing turn-on and turn-off circuit. When the AC circuit voltage is at zero, no current is flowing. This makes it much easier and safer for the semiconductor device in the relay to be turned on or off. It also generates much less electrical EMI/RFI noise. Form 0859-100305 DATA SHEET Q : What are the limitations of using an SSR? PAGE 22 A: SSRs have a few limitations when compared to the capabilities of their mechanical counterparts. First, because the relay is semiconductor-based, it will never turn all the way on, nor off. This means that in the “on” state, the relay still has some internal resistance to the flow of electricity, causing it to get hot. When in the “off” state, the relay will exhibit a small amount of leakage current, typically a few mA. This leakage can conspire to keep some loads, especially ones with a high impedance, from turning off! Additionally, SSRs are more sensitive to voltage transients; while Opto 22 relays are very well transient-protected, if a relay gets hit hard enough a sufficient number of times, it will die or degrade. This makes SSRs less ideal for driving highly inductive electromechanical loads, such as some solenoids or motors. SSRs should also never be used for applications such as safety power disconnects, because even in the off state, leakage current is present. Leakage current through an SSR also implies the presence of a potentially high voltage. Even though the relay is not conducting a large amount of current, the switched terminal will still be “hot,” and thus dangerous. Q : Can I use an AC SSR to switch DC? A: No. Because of the zero-crossing circuit described above, the relay will most likely never turn on, and even if it is on, it will likely not be able to be turned off, as DC voltage typically never drops to zero. Q : Can I use a DC SSR to switch AC? A: No. The semiconductor device used in Opto 22’s DC SSRs is polarized. It may break down and conduct for the portion of the waveform that is reversed in polarity. Q : Can a DC SSR be used to switch an analog signal? A: This is not recommended at all. First, the voltage drop across the relay will cause signal loss. Second, the conduction characteristics of the SSR are very non-linear at low operating voltages and currents. Use a mechanical relay; it will work much better. Opto 22 • 43044 Business Park Drive • Temecula, CA 92590-3614 • www.opto22.com SALES 800-321-6786 • 951-695-3000 • FAX 951-695-3095 • [email protected] • SUPPORT 800-835-6786 • 951-695-3080 • FAX 951-695-3017 • [email protected] © 2006–2010 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations. Solid-State Relays Q : What agency approvals do your SSRs carry? A: In general, Opto 22 relays carry UL, CSA, and CE approval. See http://support.opto22.com. Additionally, some SSRs contain VDE-approved optocouplers; contact Opto 22 for more information. FAQ: SSR Troubleshooting A: There is no “normal” mode of failure for SSRs. They just stop working, by refusing to turn on or off. An improper installation is often to blame for an SSR failure, as these are very simple, reliable devices. If you have a failed SSR, it is important to look at the normal operating parameters of that relay within the larger system to make sure that the relay being used is appropriate to the application, and that the relay is being properly installed in the system. The three most common causes of SSR failure are as follows: • SSR improperly matched to load. The relay was destroyed by overheating from carrying too much current too long. • SSR insufficiently protected. Remember, a semiconductor is less tough than a simple metal contact. Reverse voltages exceeding the PRV rating of the relay will cause damage. Voltage spikes on the switched line, perhaps from inductive kickback, may have destroyed one or more of the internal switching devices. Remember to use snubbers, transorbs, MOVs, and/or commutating diodes on highly inductive loads. • SSR improperly installed. The SSR was not mounted to a large enough heat sink, or no thermal compound was used, causing the relay to overheat. Also, insufficient tightening of the load terminals can cause arcing and ohmic heating of the relay. Opto 22 recommends 18 inch-pounds of torque on the load screw terminals. Similar failures have also been attributed to the use of crimp-on terminal lugs or spades; make sure such terminals are tightly crimped, and even drip some solder into the joint to ensure good electrical contact and protection from corrosion. Q : How can I test my SSR? Q : I have an SSR driving a load. The load turns on okay, but never seems to turn off, unless I remove power from the relay entirely. What might be happening? A: This is normally a problem when using an SSR with a highimpedance load, such as a neon lamp or a small solenoid. Loads like these often have relatively large initial currents, but relatively small “hold in” currents. The result is that the off-state leakage current through the relay (see previous section) is insufficient to cause the load to turn on to start with, but sufficient to keep it on, once started. The solution is to place a power resistor, sized for 8–10 times the rated maximum leakage current for the SSR in parallel with the load. Make sure that this resistor has a high enough power rating for the application. For example, for a 5 mA leakage current at 120 VAC, a resistor drawing 50 mA would be desirable. Using Ohm’s Law, the resistor value becomes 2,400 ohms. This resistor will dissipate 6 watts, so a 7.5 or 10-watt size power resistor should be used. Solid-State Relays Q : My SSR does not function anymore. What may have happened? to change state unless zero voltage is applied. Most test equipment will supply a DC voltage to the relay, and the relay will thus never see the zero it requires to change state. To test an SSR, it is best to operate it at the actual line voltage it will be used at, driving a load such as a large light bulb. Q : I have a new AC SSR driving a solenoid. It turns on okay once, but will not turn on again. What is going on? A: Some solenoids, some types of halogen lights, and some types of strobe lights incorporate a diode in series with the coil or filament. This causes the light to behave as a half-wave rectifier. Opto 22 SSRs have a built-in R-C snubber circuit in parallel with the output. The capacitor in this circuit charges up but cannot discharge through the series diode, causing a voltage to appear across the SSR terminals. Because the SSR must see a zero voltage across the terminals to come on, it can’t turn on again in this situation. The solution here would be to put a high-value resistor (several tens of Kohms) across the terminals of the relay, to allow the capacitor to drain its charge. Form 0859-100305 Opto 22 • 43044 Business Park Drive • Temecula, CA 92590-3614 • www.opto22.com SALES 800-321-6786 • 951-695-3000 • FAX 951-695-3095 • [email protected] • SUPPORT 800-835-6786 • 951-695-3080 • FAX 951-695-3017 • [email protected] © 2006–2010 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations. DATA SHEET A: It is not possible to test an SSR by the same methods used to test mechanical relays; a typical SSR will always show an infinite impedance to a resistance meter placed across the output terminals. There are a few reasons for this. First, the SSR requires a small amount of power to operate, derived from whatever voltage source is placed on the load terminals. A typical multimeter will not supply sufficient voltage to cause the relay to change state. Second, AC SSRs contain a zero-crossing circuit, which will not allow them PAGE 23 More About Opto 22 Products SNAP PAC Brains Opto 22 develops and manufactures reliable, flexible, easy-to-use hardware and software products for industrial automation, remote monitoring, and data acquisition applications. SNAP PAC System Designed to simplify the typically complex process of understanding, selecting, buying, and applying an automation system, the SNAP PAC System consists of four integrated components: • SNAP PAC controllers • PAC Project™ Software Suite • SNAP PAC brains • SNAP I/O™ While SNAP PAC controllers provide central control and data distribution, SNAP PAC brains provide distributed intelligence for I/O processing and communications. Brains offer analog, digital, and serial functions, including thermocouple linearization; PID loop control; and optional high-speed digital counting (up to 20 kHz), quadrature counting, TPO, and pulse generation and measurement. SNAP I/O I/O provides the local connection to sensors and equipment. Opto 22 SNAP I/O offers 1 to 32 points of reliable I/O per module, depending on the type of module and your needs. Analog, digital, serial, and special-purpose modules are all mixed on the same mounting rack and controlled by the same processor (SNAP PAC brain or rack-mounted controller). Quality SNAP PAC Controllers Programmable automation controllers (PACs) are multifunctional, multidomain, modular controllers based on open standards and providing an integrated development environment. Opto 22 has been manufacturing PACs for many years. The latest models include the standalone SNAP PAC S-series and the rackmounted SNAP PAC R-series. Both handle a wide range of digital, analog, and serial functions and are equally suited to data collection, remote monitoring, process control, and discrete and hybrid manufacturing. SNAP PACs are based on open Ethernet and Internet Protocol (IP) standards, so you can build or extend a system without the expense and limitations of proprietary networks and protocols. PAC Project Software Suite Opto 22’s PAC Project Software Suite provides full-featured and cost-effective control programming, HMI (human machine interface) development and runtime, OPC server, and database connectivity software to power your SNAP PAC System. These fully integrated software applications share a single tagname database, so the data points you configure in PAC Control™ are immediately available for use in PAC Display™, OptoOPCServer™, and OptoDataLink™. Commands are in plain English; variables and I/O point names are fully descriptive. PAC Project Basic offers control and HMI tools and is free for download on our website, www.opto22.com. PAC Project Professional, available for separate purchase, adds OptoOPCServer, OptoDataLink, options for Ethernet link redundancy or segmented networking, and support for legacy Opto 22 serial mistic™ I/O units. Founded in 1974 and with over 85 million devices sold, Opto 22 has established a worldwide reputation for highquality products. All are made in the U.S.A. at our manufacturing facility in Temecula, California. Because we do no statistical testing and each part is tested twice before leaving our factory, we can guarantee most solid-state relays and optically isolated I/O modules for life. Free Product Support Opto 22’s Product Support Group offers free, comprehensive technical support for Opto 22 products. Our staff of support engineers represents decades of training and experience. Product support is available in English and Spanish, by phone or email, Monday through Friday, 7 a.m. to 5 p.m. PST. Free Customer Training Hands-on training classes for the SNAP PAC System are offered at our headquarters in Temecula, California. Each student has his or her own learning station; classes are limited to nine students. Registration for the free training class is on a first-come, first-served basis. See our website, www.opto22.com, for more information or email [email protected]. Purchasing Opto 22 Products Opto 22 products are sold directly and through a worldwide network of distributors, partners, and system integrators. For more information, contact Opto 22 headquarters at 800-321-6786 or 951-695-3000, or visit our website at www.opto22.com. www.opto22.com www.opto22.com • Opto 22 • 43044 Business Park Drive • Temecula, CA 92590-3614 • Form 1335-090113 SALES 800-321-6786 • 951-695-3000 • FAX 951-695-3095 • [email protected] • SUPPORT 800-835-6786 • 951-695-3080 • FAX 951-695-3017 • [email protected] © 2010 Opto 22. All rights reserved. Dimensions and specifications are subject to change. Brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.