V23990 P709 F D2 14

Final data sheet
V23990-P709-F-01-14
flow 90PACK1
P709-F 1200V/25A
Maximum Ratings / Höchstzulässige Werte
Parameter
Condition
Symbol
Supplier
Unit
Condition
Transistor Inverter
Transistor Wechselrichter
Collector-emitter break down voltage
Kollektor-Emitter-Sperrspannung
DC collector current
Kollektor-Dauergleichstrom
Repetitive peak collector current
Periodischer Kollektorspitzenstrom
Power dissipation per IGBT
Verlustleistung pro IGBT
Gate-emitter peak voltage
Gate-Emitter-Spitzenspannung
SC withstand time*
Kurzschlußverhalten*
max. Chip temperature
max. Chiptemperatur
Tj=Tjmax Th=80°C,
Tc=80°C
tp limited by Tj max
Tj=Tjmax Th=80°C
Tc=80°C
VCE
1200
V
IC
26
33,7
75
A
52,5
80
±20
W
10
900
150
us
V
°C
20
27,2
50
A
W
Tjmax
32
48
150
°C
Tstg
-40…+125
°C
Top
-40….+125
°C
Vis
4000
Vdc
min 12,7
mm
min 12,7
mm
Icpuls
Ptot
VGE
Tj≤150°C VGE=15V
VCC
tSC
Tjmax
A
V
Diode Inverter
Diode Wechselrichter
DC forward current
Dauergleichstrom
Repetitive peak forward current
Periodischer Spitzenstrom
Power dissipation per Diode
Verlustleistung pro Diode
max. Chip temperature
max. Chiptemperatur
Tj=Tjmax Th=80°C,
Tc=80°C
tp limited by Tj max
Tj=Tjmax Th=80°C
Tc=80°C
IF
IFRM
Ptot
A
Thermal properties
Thermische Eigenschaften
Storage temperature
Lagertemperatur
Operation temperature
Betriebstemperatur
Insulation properties
Modulisolation
Insulation voltage
Isolationsspannung
Creepage distance
Kriechstrecke
Clearance
Luftstrecke
t=1min
Additional notes and remarks:
* Allowed number of short circuits must be less than 1000
times, and time duration between short circuits should be
more than 1 second!
Copyright by Vincotech
1
Revision: 2
Final data sheet
flow 90PACK1
V23990-P709-F-01-14
P709-F 1200V/25A
Characteristic values/ Charateristische Werte
Description
Symbol Conditions
T(C°)
Transistor Inverter
Transistor Wechselrichter
Gate emitter threshold voltage
Gate-Schwellenspannung
Collector-emitter saturation voltage
Kollektor-Emitter Sättigungsspannung
Collector-emitter cut-off
Kollektor-Emitter Reststrom
Gate-emitter leakage current
Gate-Emitter Reststrom
Integrated Gate resistor
Integrirter Gate Widerstand
Turn-on delay time
Einschaltverzögerungszeit
Rise time
Anstiegszeit
Turn-off delay time
Abschaltverzögerungszeit
Fall time
Fallzeit
Turn-on energy loss per pulse
Einschaltverlustenergie pro Puls
Turn-off energy loss per pulse
Abschaltverlustenergie pro Puls
Input capacitance
Eingangskapazität
Output capacitance
Ausgangskapazität
Reverse transfer capacitance
Rückwirkungskapazität
Gate charge
Gate Ladung
Thermal resistance chip to heatsink per chip
Wärmewiderstand Chip-Kühlkörper pro Chip
Thermal resistance chip to case per chip
Wärmewiderstand Chip-Gehause pro Chip
Datasheet values
Other conditions
(Rgon-Rgoff)
VGE(V)
VGS(V)
VCE(V)
VDS(V)
IC(A)
IF(A)
Id(A)
VGE(th)
Tj=25°C
VCE=VGE
Tj=125°C
VCE(sat) Tj=25°C
Tj=125°C
ICES
Tj=25°C
Tj=125°C
IGES
Tj=25°C
Tj=150°C
Rgint
td(on)
tr
td(off)
tf
Eon
Eoff
Cies
Coss
Crss
QGate
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1m
15
25
Copyright by Vincotech
Max
RthJC
5,8
6,5
V
1,68
1,9
2,2
V
mA
0
1200
0,25
0
650
8
Rgoff=32 Ω
Rgon=32 Ω
Rgoff=32 Ω
Rgon=32 Ω
Rgoff=32 Ω
Rgon=32 Ω
Rgoff=32 Ω
Rgon=32 Ω
Rgoff=32 Ω
Rgon=32 Ω
Rgoff=32 Ω
Rgon=32 Ω
f=1MHz
nA
Ohm
ns
±15
600
25
250
±15
600
25
26
±15
600
25
460
±15
600
25
194
ns
ns
ns
mWs
±15
600
25
2,81
±15
0
600
25
25
2,89
1,81
nF
f=1MHz
0
25
0,095
nF
f=1MHz
0
25
0,082
nF
mWs
±15
25
Thermal grease
thickness≤50um
Warmeleitpaste
Dicke≤50um
λ = 0,61 W/mK
RthJH
5
20
240
nC
1,33
K/W
K/W
SIDC10D120H6
Diode Wechselrichter
Thermal resistance chip to case per chip
Wärmewiderstand Chip-Gehause pro Chip
Typ
SIGC32T120R3L
Diode Inverter
Diode forward voltage
Durchlaßspannung
Peak reverse recovery current
Rückstromspitze
Reverse recovery time
Sperreverzögerungszeit
Reverse recovered charge
Sperrverzögerungsladung
Reverse recovered energy
Sperrverzögerungsenergie
Thermal resistance chip to heatsink per chip
Wärmewiderstand Chip-Kühlkörper pro Chip
Min
Unit
VF
IRM
trr
Qrr
Erec
RthJH
RthJC
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Rgoff=32 Ω
Rgon=32 Ω
Rgoff=32 Ω
Rgon=32 Ω
Rgoff=32 Ω
Rgon=32 Ω
Rgoff=32 Ω
Rgon=32 Ω
Thermal grease
thickness≤50um
Warmeleitpaste
Dicke≤50um
λ = 0,61 W/mK
2
25
1,7
1,68
25
37,1
2,3
V
A
±15
600
ns
±15
600
25
422
±15
600
25
4,9
uC
mWs
±15
600
25
1,88
2,22
K/W
K/W
Revision: 2
Final data sheet
flow 90PACK1 1200V/25A
V23990-P709-F-01-14
Output inverter
Figure 1. Typical output characteristics
Figure 2.
Output inverter IGBT
Typical output characteristics
Output inverter IGBT
Ic= f(VCE)
Ic= f(VCE)
70
IC (A)
IC (A)
70
60
60
50
50
40
40
30
30
20
20
10
10
0
0
0
1
2
3
4
VCE (V)
5
0
1
2
3
4
VCE (V)
parameter: tp = 250 us Tj = 25 °C
VGE parameter:
from:
7 V to
17 V
in
1 V steps
parameter: tp = 250 us Tj = 125 °C
VGE parameter:
from:
7 V to
17 V
in
1 V steps
Figure 3. Typical transfer characteristics
Figure 4.
Output inverter IGBT
Ic= f(VGE)
30
5
Typical diode forward current as
a function of forward voltage
IF=f(VF)
Output inverter FRED
IC (A)
IF (A)
70
25 oC
60
25
125 oC
50
20
40
15
30
10
125 oC
20
25 oC
5
10
0
0
0
2
4
6
8
10 V GE (V) 12
parameter: tp = 250 us VCE =
Copyright by Vincotech
0
10 V
0,5
1
1,5
2
2,5
VF (V) 3
parameter: tp = 250 us
3
Revision: 2
Final data sheet
flow 90PACK1 1200V/25A
V23990-P709-F-01-14
Output inverter
Figure 5. Typical switching energy losses
Figure 6.
as a function of collector current
Output inverter IGBT
E = f (RG)
E = f (Ic)
6
E (mWs)
6
E (mWs)
Typical switching energy losses
as a function of gate resistor
Output inverter IGBT
Eon
5
5
Eoff
Eon
4
4
3
3
Eoff
Erec
2
2
Erec
1
1
0
0
0
10
20
30
40
I C (A)
50
0
15
30
inductive load, Tj = 125 °C
VCE = 600 V
VGE= ±15 V
Rgon=
32 Ω
Rgoff=
32 Ω
inductive load, Tj = 125 °C
VCE = 600 V
VGE= ±15 V
Ic =
25 A
Figure 7. Typical switching times as a
Figure 8.
45
60
RG(Ω)
function of collector current
Output inverter IGBT
Typical switching times as a
function of gate resistor
Output inverter IGBT
t = f (Ic)
t = f (RG)
75
1
tdoff
t ( μs)
t ( μs)
1
tdoff
tdon
tdon
tf
tf
0,1
0,1
tr
tr
0,01
0,01
0,001
0,001
0
10
20
30
40
IC (A)
50
0
inductive load, Tj = 125 °C
VCE = 600 V
VGE= ±15 V
Rgon=
32 Ω
Rgoff=
32 Ω
Copyright by Vincotech
15
30
45
60
RG (Ω )
75
inductive load, Tj = 125 °C
VCE = 600 V
VGE= ±15 V
Ic =
25 A
4
Revision: 2
Final data sheet
flow 90PACK1 1200V/25A
V23990-P709-F-01-14
Output inverter
Figure 9. Typical reverse recovery time as a
Figure 10. Typical reverse recovery current as a
function of IGBT turn on gate resistor
Output inverter FRED diode
function of IGBT turn on gate resistor
Output inverter FRED diode
trr = f (Rgon)
IRRM = f (Rgon)
80
IrrM (A)
t rr( μs)
0,6
0,5
60
0,4
40
0,3
0,2
20
0,1
0
0
0
15
Tj =
VR =
I F=
VGE=
30
125
600
25
±15
45
60 R Gon ( Ω ) 75
0
15
°C
V
A
V
30
Tj =
VR =
I F=
VGE=
Figure 11. Typical reverse recovery charge as a
60 R Gon ( Ω )
75
°C
V
A
V
Figure 12. Typical rate of fall of forward
function of IGBT turn on gate resistor
Output inverter FRED diode
and reverse recovery current as a
function of IGBT turn on gate resistor
Output inverter FRED diode
dI0/dt,dIrec/dt= f (Rgon)
Qrr = f (Rgon)
6
4000
direc / dt (A/ μs)
Qrr ( μC)
125
600
25
±15
45
5
3500
dIrec/dt
3000
4
2500
2000
3
1500
2
1000
dI0/dt
1
500
0
0
0
15
Tj =
VR =
I F=
VGE=
30
125
600
25
±15
45
60 R Gon ( Ω) 75
0
°C
V
A
V
Copyright by Vincotech
15
Tj =
VR =
I F=
VGE=
5
30
125
600
25
±15
45
60 R Gon ( Ω) 75
°C
V
A
V
Revision: 2
Final data sheet
flow 90PACK1 1200V/25A
V23990-P709-F-01-14
Output inverter
Figure 13. IGBT transient thermal impedance
Figure 14. FRED transient thermal impedance
as a function of pulse width
as a function of pulse width
ZthJH = f(tp)
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
10-4
10-3
10-2
Parameter: D = tp / T
10-1
100 t p (s)
-5
101
10
RthJH= 1,33 K/W
-4
10
10
-3
10
-2
Parameter: D = tp / T
IGBT thermal model values
FRED thermal model values
R (C/W)
R (C/W)
0,09
0,31
0,64
0,19
0,05
0,05
Tau (s)
3,7E+00
5,7E-01
1,4E-01
1,7E-02
1,9E-03
2,6E-04
Copyright by Vincotech
0,05
0,24
0,94
0,59
0,26
0,15
6
10
-1
10
0
t p (s)
10
1
RthJH= 2,22 K/W
Tau (s)
9,9E+00
1,1E+00
1,8E-01
4,6E-02
8,5E-03
7,4E-04
Revision: 2
Final data sheet
flow 90PACK1 1200V/25A
V23990-P709-F-01-14
Output inverter
Figure 15. Power dissipation as a
Figure 16. Collector current as a
function of heatsink temperature
Output inverter IGBT
function of heatsink temperature
Output inverter IGBT
Ptot = f (Th)
Ic = f (Th)
40
IC (A)
Ptot (W)
125
100
30
75
20
50
10
25
0
0
0
50
100
150
Th ( o C)
0
200
50
100
150
parameter: Tj= 150 ºC
parameter: Tj= 150 ºC
VGE=
15 V
Figure 17. Power dissipation as a
Figure 18. Forward current as a
Th ( o C)
200
function of heatsink temperature
Output inverter FRED
function of heatsink temperature
Output inverter FRED
Ptot = f (Th)
IF = f (Th)
75
IF (A)
Ptot (W)
40
60
30
45
20
30
10
15
0
0
0
50
100
150
Th ( o C)
200
0
parameter: Tj= 150 ºC
Copyright by Vincotech
50
100
150
Th ( o C) 200
parameter: Tj= 150 ºC
7
Revision: 2
Final data sheet
flow 90PACK1 1200V/25A
V23990-P709-F-01-14
Thermistor
Figure 19. Typical NTC characteristic
as afunction of temperature
RT = f (T)
NTC-typical temperature characteristic
R/Ω
25000
20000
15000
10000
5000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
8
Revision: 2
Final data sheet
flow 90PACK1 1200V/25A
V23990-P709-F-01-14
Switching definitions
General conditions:
Figure 1.
Tj=
125 °C
32 Ω
Rgon=
Turn-off Switching Waveforms &
definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Output inverter IGBT
Figure 2.
Rgoff=
32 Ω
Turn-on Switching Waveforms &
definition of tdon, tEon
(tEon = integrating time for Eon)
Output inverter IGBT
280
140
120
100
200
Uce 90%
Uge 90%
80
Ic
240
tdoff
160
60
Ic
%
120
%
40
Uce
tEoff
80
20
Uce
Uge
Uge
tdon
40
0
Ic 1%
Uge10%
-20
Uce3%
Ic10%
0
tEon
-40
-0,3
-0,1
0,1
Uge(0%)=
Uge(100%)=
Uc(100%)=
Ic(100%)=
tdoff=
tEoff=
Figure 3.
-15
15
600
25
0,46
0,77
0,3
0,5
time (us)
0,7
0,9
-40
1,1
2,5
V
V
V
A
us
us
2,65
2,8
Uge(0%)=
Uge(100%)=
Uc(100%)=
Ic(100%)=
tdon=
tEon=
Turn-off Switching Waveforms &
definition of tf
Output inverter IGBT
Figure 4.
140
2,95
3,1
time(us)
-15
15
600
25
0,25
0,61
3,25
3,4
3,55
V
V
V
A
us
us
Turn-on Switching Waveforms &
definition of tr
Output inverter IGBT
260
120
fitted
100
Ic
Ic
220
Uce
180
Ic 90%
80
140
%
Ic 60%
% 60
Uce
100
40
Ic90%
Ic 40%
tr
60
20
Ic10%
0
20
Ic10%
tf
-20
2,85
-20
0,2
0,3
0,4
0,5
time (us)
0,6
0,7
0,8
Uc(100%)=
600 V
Ic(100%)=
25 A
tf= 0,194 us
Copyright by Vincotech
2,9
2,95
3
3,05
time(us)
3,1
3,15
3,2
3,25
Uc(100%)= 600 V
Ic(100%)=
25 A
tr= 0,026 us
9
Revision: 2
Final data sheet
flow 90PACK1 1200V/25A
V23990-P709-F-01-14
Switching definitions
Figure 5.
Turn-off Switching Waveforms &
definition of tEoff
Output inverter IGBT
Figure 6.
120
Turn-on Switching Waveforms &
definition of tEon
Output inverter IGBT
220
Eoff
100
Pon
Poff
180
80
140
60
Eon
100
%
%
40
60
20
Uge10%
20
0
Uge90%
-20
-0,4
-0,2
tEoff
0
0,2
0,4
time (us)
tEon
Ic 1%
0,6
0,8
Uce3%
-20
1
2,5
1,2
2,65
2,8
Poff(100%)= 14,92 kW
Eoff(100%)= 2,90 mJ
tEoff= 0,77 us
Pon(100%)=
Eon(100%)=
tEon=
Figure 7. Gate voltage vs Gate charge
Figure 8.
120
15
80
10
40
5
0
0
% -40
-5
-80
-10
-120
-15
-160
3,1
3,25
time(us)
3,4
3,55
3,7
14,9 kW
2,81 mJ
0,61 us
Turn-off Switching Waveforms &
definition of trr
Output inverter FRED
Output inverter IGBT
20
2,95
Id
trr
Uge (V)
fitted
Ud
-50
0
50
Ugeoff=
-15
Ugeon=
15
Uc(100%)=
600
Ic(100%)=
25
Qg= 269,2
100
150
Qg (nC)
200
250
300
V
V
V
A
nC
Copyright by Vincotech
IRRM90%
IRRM100%
-200
2,65
-20
IRRM10%
2,8
2,95
Ud(100%)=
Id(100%)=
IRRM(100%)=
trr=
10
3,1
600
25
37
0,42
3,25
time(us)
3,4
3,55
3,7
3,85
V
A
A
us
Revision: 2
Final data sheet
flow 90PACK1 1200V/25A
V23990-P709-F-01-14
Switching definitions
Figure 9.
Turn-on Switching Waveforms &
definition of tQrr
(tQrr= integrating time for Qrr)
Output inverter FRED
Figure 10. Turn-on Switching Waveforms &
definition of tErec
(tErec= integrating time for Erec)
Output inverter FRED
150
120
Erec
Qrr
100
100
Id
80
50
tErec
tQint
60
0
%
%
-50
40
-100
20
Prec
0
-150
-20
-200
2,5
2,7
2,9
3,1
3,3
3,5
time(us)
3,7
3,9
4,1
2,5
4,3
Id(100%)=
25 A
Qrr(100%)= 4,897 uC
tQint= 0,88 us
Copyright by Vincotech
2,7
2,9
Prec(100%)=
Erec(100%)=
tErec=
11
3,1
3,3
3,5
time(us)
3,7
3,9
4,1
4,3
14,9 kW
1,88 mJ
0,88 us
Revision: 2
Final data sheet
flow 90PACK1 1200V/25A
V23990-P709-F-01-14
Output inverter application
General conditions3 phase SPWM, Vgeon=
Vgeoff=
15 V
-15 V
Figure 1. Typical avarage static loss
as a function of output current
Ploss=f(Iout)
IGBT
Figure 2.
Rgoff=
32 Ω
Typical avarage static loss
as a function of output current
FRED
Ploss=f(Iout)
50
Ploss (W)
60
Ploss (W)
32 Ω
Rgon=
45
Mi*cosfi=1
50
40
Mi*cosfi=-1
35
40
30
25
30
20
20
15
10
10
5
Mi*cosfi=1
Mi*cosfi=-1
0
0
0
5
10
15
20
25
Conditions:
Tj=125°C
Modulation index * cosfi
parameter
Mi*cosfi from
in
30
35
40
-1,00 to
0,20 steps
0
45
50
Iout (A)
10
20
30
40
50
Iout (A)
Conditions:
Tj=125°C
Modulation index * cosfi
parameter
Mi*cosfi from -1,00 to
in 0,20 steps
1,00
Figure 4.
Typical avarage switching loss
as a function of output current
FRED
Ploss=f(Iout)
Ploss (W)
Ploss (W)
Figure 3. Typical avarage switching loss
as a function of output current
Ploss=f(Iout)
IGBT
1,00
80,0
25,0
70,0
fsw=16kHz
fsw=16kHz
20,0
60,0
50,0
15,0
40,0
10,0
30,0
20,0
5,0
10,0
fsw=2kHz
fsw=2kHz
0,0
0,0
0
5
10
Conditions:
Switching freq.
parameter
15
20
25
Tj=125°C
DC link=
fsw from
in
Copyright by Vincotech
30
35
40
0
45 (A) 50
Iout
10
Conditions:
600 V
2 kHz to
* 2 steps
16 kHz
Switching freq.
parameter
12
20
Tj=125°C
DC link=
fsw from
in
30
40
600 V
2 kHz to
* 2 steps
Iout (A)
50
16 kHz
Revision: 2