Analog and Interface Product Solutions Temperature Sensor Design Guide Temperature Measurement Solutions for Silicon IC Temperature Sensor, Thermocouple, RTD and Thermistor-Based Applications Design ideas in this guide use the following devices. A complete device list and corresponding data sheets for these products can be found at www.microchip.com. Voltage Output Temperature Sensors Logic Output Temperature Sensors MCP9700 MCP9701 MCP9700A MCP9701A TC1046 TC1047A TC620 TC621 TC622 TC623 TC624 TC6501 TC6502 TC6503 TC6504 Serial Output Temperature Sensors MCP9800 MCP9801 MCP9802 MCP9803 MCP9805 MCP98242 TC72 TC74 TC77 TCN75 TCN75A Comparators and Operational Amplifiers TC913A TC7650 TC7652 MCP616 MCP6541 MCP6542 MCP6543 MCP6544 MCP6001 MCP6021 MCP6231 MCP6271 MCP6281 MCP6291 PGA MCP6S21 MCP6S22 MCP6S24 MCP6S28 www.microchip.com/analog Temperature Sensor Design Guide TEMPERATURE SENSORS – OVERVIEW In many systems, temperature control is fundamental. There are a number of passive and active temperature sensors that can be used to measure system temperature, including: thermocouple, resistive temperature detector, thermistor and silicon temperature sensors. These sensors provide temperature feedback to the system controller to make decisions such as, over-temperature shutdown, turn-on/off cooling fan, temperature compensation or general purpose temperature monitor. Microchip offers a broad portfolio of thermal management products, including Logic Output, Voltage Output and Serial Output Temperature Sensors. These products allow the system designer to implement the device that best meets their application requirements. Key features include high accuracy, low power, extended temperature range and small packages. In addition, Microchip’s linear products can be used to support Thermocouple, RTD and Thermistor applications. Common Methods of Interfacing a Sensor Sensor Volts Serial Output OFF ON RTD Fan C - Thermocouple, Thermistor/Amplifiers Thermocouples VOUT Thermocouples are usually selected because of their wide temperature range (as low as -270°C to as high as 1750°C), ruggedness and price; however, they are highly non-linear and often require significant linearization algorithms. In addition, the voltage output of this temperature sensing element is relatively low when compared to devices that can convert voltage signals to a digital representation. Consequently, analog gain stages are required in the circuit. MCP6541 VDD R R R VREF Thermistor/ Amplifiers Programmable Gain Amplifier (PGA) VDD R + R RT MCP6S21 VOUT - C Gain-Adjustment Input Selection SPI Temperature Measurement Applications Computing: – CPU overtemperature protection – Fan control Cellular/PCS: – Power amplifier temperature compensation – Thermal sensing of display for contrast control Power Supply Embedded Systems: – Overtemperature shutdown – Battery management 2 Voltage Output Temperature Sensors: Voltage output temperature sensors develop an output voltage proportional to temperature, with a typical temperature coefficient of 6.25 mV/°C, 10 mV/°C and 19.5 mV/°C respectively. These temperature-to-voltage converters can sense a -40°C to +125°C temperature range and feature an offset voltage that allows reading negative temperatures without requiring a negative supply voltage. The extremely low operating current minimizes self-heating and maximizes battery life. VDD + Op Amps/Comparators Logic Output Temperature Sensors: Logic output temperature sensor families offer excellent temperature accuracy (±1°C, typical), with a very low operating current of less than 600 μA. These devices can replace mechanical switches in a variety of sensing and control applications. Serial Output Temperature Sensors: Serial (digital) output temperature sensors offer excellent temperature accuracy (±0.5°C, typical) with a very low operating current of 250 μA (typical). Communication with these devices is accomplished via an industry standard SMBus, I2C™ or SPI compatible interface protocol. These devices feature fast temperature conversion rate, with temperature resolution for the entire family ranging from 0.0625°C to 0.5°C. Analog Output Logic Output Silicon Output Temperature Sensors Resistive Temperature Detectors (RTDs) RTDs are able to sense temperatures with extreme accuracy, have consistent and repeatable performance and low drift error (-200°C to +850°C). For precision, these sensors also require a linearization look-up table in the microcontroller due to sensor non-linearities. Thermistors Thermistors (-100°C to +150°C) are normally used for overtemperature shutdown purposes. Although not as accurate as some of the other temperature sensor solutions, thermistors are inexpensive and come in small packages. They are also non-linear and require a temperature compensation look-up table. Temperature Sensor Design Guide LOGIC OUTPUT TEMPERATURE SENSORS Logic output sensors typically function as a thermostat, notifying the system that a minimum or maximum temperature limit has been reached. Sometimes referred to as a temperature switch, these devices can be used to turn-on either a fan or warning light when high or low temperature conditions are detected. Since the output is typically not latched, the switch will turn off when the temperature falls below or rises above the temperature set point. Note that it is necessary to have hysteresis so the switch does not “chatter” when crossing the temperature set point. TC6501/2/3/4 Key Features: Most logic output temperature sensors are available in either a Hot (for temperature-increasing applications) or Cold (for temperature-decreasing applications) option. The hot and cold options ensure that the hysteresis is in the appropriate position, either below or above the temperature set point. TC623 Key Features: Factory-programmed Temperature Set Points No External Components Required Small SOT-23 Packages TC620/1 Key Features: Dual Trip Point Temperature Sensor Wide Voltage Supply Range: +4.5V to +18V User-programmable Trip Point and Hysteresis Dual Trip Point Temperature Sensor User-programmable Trip Point and Hysteresis TC622/4 Key Features: Low-Cost Single Trip Point Temperature Sensor Temperature Set Point Easily Programs with a Single External Resistor TO-220 Package for Direct Mounting to Heatsink Logic Output Temperature Sensor Key Features: Logic-Level Output Notifies System When Temperature is Above (or Below) a Preset Value Factory and User-programmable Temperature Settings Available in a Variety of Output Configurations Logic Output Temperature Sensor Applications: Fan Controllers Power Supplies Motor Drives RF Power Amplifiers Logic Output Temperature Sensors Used as Temperature Switches VDD +12V Overtemperature Indicator VDD VDD NTC Thermistor RLOW THERM VDD 12V DC Brushless Fan RHIGH HIGH SET GND GND LOW LIMIT CONTROL TC621 VCC TOVER TC6501 LOW SET HIGH LIMIT HYST RSET PIC® MCU OUT Overtemperature LED TSET TC622 Logic-Level MOSFET VDD OUT GND INT System Controller TC6501 Hot and Cold Options Voltage Temperature Voltage Temperature 3 Temperature Sensor Design Guide VOLTAGE OUTPUT TEMPERATURE SENSORS A Voltage Output Temperature Sensor provides an analog output signal of varying voltage on a single pin. The output voltage has a factory set slope (e.g., 10 mV/°C) and correlates to the ambient temperature of the device. The device output is typically connected to a stand-alone or integrated ADC (Analog-to-Digital Converter). TC1046 Key Features: Wide Temperature Measurement Range: -40°C to +125°C High Temperature Accuracy: ±0.5°C (typ.) Linear Temperature Slope: 6.25 mV/°C TC1047A Key Features: Wide Temperature Measurement Range: -40°C to +125°C High Temperature Accuracy: ±0.5°C (typ.) Linear Temperature Slope: 10 mV/°C The circuit shown below can be used to measure the LCD panel’s temperature at multiple locations. The operational amplifier functions as an averaging circuit to provide a composite voltage output that can be used to adjust the LCD contrast. MCP6021 (Op Amp) Key Features: Single-Supply: 2.5V to 5.5V Rail-to-Rail Input and Output Unity-Gain Stable VDD/2 Reference Output Voltage Output Temperature Sensor Key Features: Easy System Integration Reduces PCB Space Low Current Consumption Minimizes Design Time MCP9700 Key Features: Low Cost Temperature Accuracy: ±1°C (typ.) Voltage Output Temperature Sensor Typical Applications: Cellular Phones Temperature Measurement/Instrumentation Consumer Electronics MCP9700A Key Features: Low Cost Temperature Accuracy: ±1°C (typ.) LCD Contrast Control LCD Module VDD Upper-Left Sensor R TC1047A R VDD R Lower-Right Sensor TC1047A VDD LCD Adj. Module + MCP6021 Internal VDD 2 Reference Voltage Using the TC1046 to Create a Simple Temperature Measurement System 7 8 RS 6 9 R/W 5 4 3 10 E VDD 2 1 16 17 U1 20 11 RB4 12 RB5 13 RB6 14 RB7 2 x 20 LCD Dot Matrix 15 VDD 1 18 RS R/W 2 TC1046 VDD Optional for noisy applications U2 E RA5 2 24 3 4 25 5 6 27 7 R1 4.7 k 26 28 PIC16F872A 13 14 XTAL 32 kHz 16 10 17 18 8 19 4 RB6 RB7 11 15 C3 22 pF RB4 RB5 12 9 3 22 23 RA5 C8 0.1 μF 21 C7 0.1 μF 1 C1 15 pF C2 15 pF Temperature Sensor Design Guide VOLTAGE OUTPUT TEMPERATURE SENSORS Linear Active Thermistors The MCP9700/01 and MCP9700A/01A families of Linear Active Thermistor® Integrated Circuits (ICs) are analog temperature sensors that convert temperature to an analog voltage output. These sensors compete with a thermistor solution in price and performance. Unlike resistive sensors (such as thermistors), Linear Active Thermistor ICs do not require an additional signalconditioning circuit. Therefore, the biasing circuit development overhead for thermistor solutions can be eliminated by implementing these low-cost devices. The voltage output pin (VOUT) can be directly connected to the ADC input of a microcontroller. The sensor output voltage is proportional to ambient temperature with temperature coefficient of 10 mV/°C and 19.5 mV/°C with output voltage at 0°C scaled to 500 mV and 400 mV, respectively. These coefficients are ideal for 8-bit Analog-to-Digital Converters referenced at 5V and 2.5V. The operating current is 6 μA (typ.) and they use a PCB space saving 5-pin SC-70/SOT-23 and 3-pin TO-92 packages. MCP9700/01 Key Features: 5-pin SC-70 Package 3-pin TO-92 Package 5-pin SOT-23 Package Operating temperature range: -40°C to 125°C Temperature Coefficient: 10 mV/°C (MCP9700) Temperature Coefficient: 19.5 mV/°C (MCP9701) Low power: 6 μA (typ.) MCP9700/01 and MCP9700A/01A Typical Applications: Entertainment Systems Home Appliance Battery Packs and Power Supplies for Portable Equipment General Purpose Temperature Monitoring Sensor Application Tips The MCP9700/01 and MCP9700A/01A ICs are designed to drive large capacitive loads. This capability makes the sensors immune to board parasitic capacitance, which allows the sensors to be remotely located and to drive long PCB trace or shielded cables to the ADC. In addition, adding capacitive load at VOUT helps the sensors transient response by reducing overshoots or undershoots. This provides a more stable temperature reading. IC temperature sensors use analog circuitry to measure temperature. Unlike digital circuits, analog circuits are more susceptible to power-supply noise. It is recommended that a bypass capacitor CBYPASS of 0.1 μf to 1 μf be placed at close proximity to the VDD and VSS pins of the sensor. The capacitor provides protection against power-supply glitches by slowing fast transient noise. However, the effectiveness of the bypass capacitor depends upon the power-supply source resistance. Larger source resistance provides RC network with the CBYPASS and adds a corner frequency to filter out the power-supply noise. Adding a series resistor to the power-supply line is adequate to increase the source resistance. Typical Application Circuit For a Thermistor Solution +5V R* VOUT VDD MCP9700/A MCP9701/A VSS CLOAD* CBYPASS *Optional 5 Temperature Sensor Design Guide VOLTAGE OUTPUT TEMPERATURE SENSORS Typically, the accuracy of an IC temperature sensors is within ±1°C at room temperature and the accuracy error increases exponentially at hot and cold temperature extremes. The sensor error characteristic has a parabolic shape, which can be described using a second order equation. The equation can be used to compensate the sensor error to provide higher accuracy over the operating temperature range. This is done by evaluating the equation at the temperature of interest (sensor output in degree Celsius) and subtracting the result from the sensor output. The subtracted result in °C is the compensated sensor output. Graph 1: MCP9800 2nd Order Equation 2.0 Typical Results Equation 1, 2 and 3 show the 2nd order error equation of the tested parts for the MCP9800, MCP9700/A and MCP9701/A, respectively. Since these devices have functional differences, the operating temperature range and temperature error coefficients differ. The equations below describe the typical device temperature error characteristics. 0.0 -1.0 Sensor Accuracy -3.0 -55 -35 -15 5 25 45 65 Temperature (°C) 85 105 125 Graph 2: MCP9700/A 2nd Order Equation MCP9700/A 3.0 2.0 Accuracy (°C) A short look-up table can also be generated for low-level PIC microcontrollers such as PIC10FXX, PIC12FXXX, PIC14FXXX and PIC16FXXX. For additional information, see AN1001: IC Temperature Sensor Accuracy Compensation with a PIC® Microcontroller. Compensated Sensor Accuracy 1.0 -2.0 For higher accuracy, the equation can be computed using a standard PIC microcontroller, such as PIC16FXXXX, PIC18FXXXX, PIC24FXXXX or dsPIC30FXXXX. Compensated Sensor Output (°C) = Sensor Output (°C) – Sensor Error|Sensor Output (°C) MCP9800 3.0 Accuracy (°C) IC Sensor Compensation Technique Compensated Sensor Accuracy 1.0 0.0 -1.0 -2.0 Sensor Accuracy -3.0 -55 -35 -15 5 25 45 65 Temperature (°C) 85 105 125 Equation 1: MCP9800 2nd Order Equation Where: = 150 x 10-6°C/°C2 EC2 EC1 = 7 x 10-3°C/°C Error-55 = -1.5°C Equation 2: MCP9700/A 2nd Order Equation ErrorT_2 = EC2(125°C – TA) • (TA – -40°C) + EC1(TA – -40°C) + Error-40 Where: EC2 = 244 x 10-6°C/°C2 EC1 = 2 x 10-12°C/°C » 0°C/°C Error-40 = -2°C Equation 3: MCP9701/A 2nd Order Equation ErrorT_2 = EC2(125°C – TA) • (TA – -515°C) + EC1(TA – -15°C) + Error-15 Where: EC2 = 200 x 10-6°C/°C2 EC1 = 1 x 10-3°C/°C Error-15 = -1.5°C 6 Graph 3: MCP9701/A 2nd Order Equation MCP9701/A 3.0 2.0 Accuracy (°C) ErrorT_2 = EC2(125°C – TA) • (TA – -55°C) + EC1(TA – -55°C) + Error-55 Compensated Sensor Accuracy 1.0 0.0 -1.0 -2.0 Sensor Accuracy -3.0 -15 5 25 45 65 85 Temperature (°C) 105 125 Temperature Sensor Design Guide SERIAL OUTPUT TEMPERATURE SENSORS MCP9800/1/2/3 Key Features: Typically, serial output temperature sensors use a two or three wire interface to the host controller and provide functions that are user programmable. Functions such as temperature alert output allow the user to configure the device as a standalone temperature monitoring system. The alert output can be used to notify the system controller to act upon the change in temperature. This feature eliminates the need for the system controller to monitor temperature continuously using the serial interface. ±1°C (max.) Accuracy From -10°C to +85°C Supply Current: 200 μA (typ.) One Shot Temperature Measurement TC72 Key Features: 10-Bit Temperature-to-Digital Converter Power-saving One-shot Temperature Measurement Low Power Consumption The figure below illustrates a multi-zone temperature measurement application. Communication with the MCP9801 is accomplished via a two-wire I2C™/SMbus compatible serial bus. This device can be set to notify the host controller when the ambient temperature exceeds a user-specified set point. The microcontroller can monitor the temperature of each sensor on the serial bus by either reading the temperature data register or functioning as a stand-alone thermostat. The temperature threshold trip point is programmed by writing to the set point register. The ALERT pin is an open-drain output that can be connected to the microcontroller’s interrupt pin for overtemperature interrupt. TC74 Key Features: Simple 2-wire Serial Interface Digital Temperature-sensing in SOT-23-5 or TO-22-5 Packages Low Power Consumption TC77 Key Features: 13-Bit Temperature-to-Digital Converter Low Power Consumption ±1°C (max.) Accuracy From +25°C to +65°C SPI Compatible Communications Interface Serial Output Temperature Sensor Applications: TCN75 Key Features: Personal Computers Set-top Boxes Cellular Phones General Purpose Temperature Monitoring Industry Standard SMBus/I2C™ Interface Programmable Trip Point and Hysteresis Thermal Event Alarm Output Functions as Interrupt or Comparator/Thermostat Output A Multi-zone Temperature Measurement System Using the Two-wire Serial Communication Port of the MCP9801 VDD R R GP2/INT SDA SCL ® R SDA SCL PIC MCU MCP9801 System Controller SDA SCL INT V+ ADC VDD ALERT MCP9801 V+ A0 A0 A0 A1 A2 A1 A2 A1 A2 Sensor #0 MCP9801 SDA SCL INT Clock Generator Counter/ Accumulator Sensor #1 Control Logic Address Decoder Serial Bus Interface Data Registers Calibration Registers Temperature Data Offset Correction Temp. Set Point Gain Correction Temp. Hysteresis Configuration Registers Control Set Point Comparator INT MCP9801 Sensor #7 A0 A1 A2 DATA CLK VDD Manufacturer/Ver. ID 7 Temperature Sensor Design Guide DIGITAL TEMPERATURE SENSOR Typical Application The MCP9805 digital temperature sensor is designed to meet the JEDEC standard JC42.4 for Mobile Platform Memory Module Thermal Sensor. This device provides an accuracy of ±1°C (max.) from a temperature range of +75°C to +95°C (active range) and ±2°C (max.) from +40°C to +125°C (monitor range) as defined in the JEDEC standard. In addition, this device has an integrated 256 byte EEPROM for SPD. Memory Module Memory SPD* Temperature Sensor EEPROM MCP9805 MCP9805 Key Features: Accuracy with 0.25°C/LSb Resolution: – ±1°C (max.) from +75°C to +95°C – ±2°C (max.) from +40°C to +125°C – ±3°C (max.) from -20°C to +125°C 256 byte EEPROM for SPD Operating Current: 200 μA (typ.) Shutdown Current: 0.1 μA (typ.) R R MCP9805 Applications: 3.3 VDD_SPD Dual In-line Memory Module (DIMM) Personal Computers (PCs) and Servers Hard Disk Drives and Other PC Peripherals General Purpose Temperature Sensor SDA SCLK * Serial Presence Detect Register Structure Block Diagram Event Output Hysteresis Continuous Conversion or Shutdown Critical Boundary Trip Lock Event Boundary Window Lock Bit Clear Event Output Interrupt Event Output Status Enable/Disable Event Output Critical Event Output only Event Output Polarity, Active-High/Low Band Gap Temperature Sensor Event Output Comparator/Interrupt Configuration Register DS ADC Temperature Register (TA) Temperature Upper-Boundary (TUPPER) Temperature Lower-Boundary (TLOWER) Critical Temperature Limit (TCRIT) Manufacturer Identification Register Device Identification and Revision Register Device Capability Register Measurement Resolution Measurement Range Measurement Accuracy Temperature Event Output SMBus/Standard I2C™ Interface Register Pointer A0 8 A1 A2 Event VDD GND SDA SCLK Event Temperature Sensor Design Guide DIGITAL TEMPERATURE SENSOR The MCP98242 digital temperature sensor is designed to meet the JEDEC standard JC42.4 for Mobile Platform Memory Module Thermal Sensor. This device provides an accuracy of ±1°C (max.) from a temperature range of +75°C to +95°C (active range) and ±2°C (max.) from +40°C to +125°C (monitor range) as defined in the JEDEC standard. Typical Application DIMM Module Memory MCP98242 Key Features: Accuracy with 0.25°C/LSb Resolution: – ±1°C (max.) from +75°C to +95°C – ±2°C (max.) from +40°C to +125°C – ±3°C (max.) from -20°C to +125°C 256 byte EEPROM for SPD Shutdown Current: 0.1 μA (typ.) MCP98242 Temperature Sensor + EEPROM ±0.5°C (typ.) Sensor 256 byte EEPROM for SPD MCP98242 Applications: Dual In-line Memory Module (DIMM) Personal Computers (PCs) and Servers Hard Disk Drives and Other PC Peripherals General Purpose Temperature Sensor 3.3 VDD_SPD SDA SCL Event Register Structure Block Diagram Temperature Sensor EEPROM Hysteresis Shutdown Critical Trip Lock Alarm Win Lock Bit HV Generator Clear Event Event Status Output Control Critical Event Only WriteProtected Array (80h-7Fh) Event Polarity Event Comp/Int Band Gap Temperature Sensor Configuration Temperature Address Decoder X ΔΣ ADC TUPPER Standard Array (80h-FFh) TLOWER 0.5°C/bit 0.25°C/bit 0.125°C/bit 0.0625°C/bit TCRIT Manufacturer ID Memory Control Logic Device ID/Rev Resolution Write Protect Circuitry Capability Selected Resolution Address Decoder Y Temp. Range Accuracy Output Feature Sense Amp R/W Control Register Pointer SMBus/Standard I2C™ Interface A0 A1 A2 Event SDA SCL VDD GND 9 Temperature Sensor Design Guide THERMOCOUPLES Thermocouples The thermocouple can quantify temperature as it relates to a reference temperature. This reference temperature is usually sensed using a Thermistor, RTD or Integrated Silicon Sensor. The wide temperature ranges of the thermocouple make it appropriate for many hostile sensing environments. The thermocouple consists of two dissimilar metallic wires that are connected at two different junctions, one for temperature measurement and the other for reference. The temperature difference between the two junctions is determined by measuring the change in voltage across the dissimilar metals at the temperature measurement junction. The Instrument Society of America (ISA) defines a number of commercially available thermocouple types in terms of performance. Type E, J, K and T are base-metal thermocouples and can be used to measure temperatures from about -200°C to 1000°C. Type S, R and B are noble-metal thermocouples and can be used to measure temperatures from about -50°C to 2000°C. The TC913A auto-zeroed op amp is selected because of its low offset voltage of 15 μV (max.) and high Common Mode Rejection Ratio (CMRR) of 116 dB (typ.). Auto-zero and chopper amplifiers are good thermocouple amplifiers due to their low offset voltage and CMRR specifications. The cold junction compensation circuit is implemented with the TC1047A silicon IC temperature sensor located on the PCB. Thermocouple Key Features: Self-powered -270°C to 1750°C Remote Sensing Robust Sensor Thermocouple Applications: Stoves Engines Thermopiles Silicon Sensors for Cold Junction Compensation: The circuit shown below can be used for remote thermocouple sensing applications. The thermocouple is connected to the circuitry via a shielded cable and EMI filters. The thermocouple is tied to a positive and negative supply via large resistors so that the circuit can detect a failed open-circuit thermocouple. TC1047A Analog Temperature Sensor MCP9800 12-bit Serial Output Temperature Sensor Thermocouple Amplifier Circuit +V Thermocouple R << EMI Filter << EMI Filter +V TC1047A 10 +V R – + R << R –V R R C IN_1 TC913A C ADC -V Cold Junction Compensation IN_2 Temperature Sensor Design Guide RESISTIVE TEMPERATURE DETECTORS (RTDs) RTDs RTD Key Features: Extremely Accurate with Excellent Linearity Variety of Packages RTDs (Resistive Temperature Detectors) serve as the standard for precision temperature measurements due to their excellent repeatability and stability characteristics. RTDs provide the designer with an absolute result that is fairly linear over temperature. The RTD’s linear relationship between resistance and temperature simplifies the implementation of signalconditioning circuitry. Wire-wound or Thin-film RTD Applications: Industrial Instrumentation Hot Wire Anemometers Laboratory-quality Measurements Circuit A below is easy to modify for a desired temperatureto-frequency range. It requires either precision, low-drift components or a calibration step to achieve high accuracy. Circuit B utilizes pull-up and pull-down resistors to excite the RTD, employing the TC913A op amp to amplify the small voltage changes that correspond to temperature. Recommended Products: TC913A/B – Auto-zero Op Amps TC7650/2 – Chopper-stabilized Op Amps MCP616/7/8/9 – Micropower Bi-CMOS Op Amps MCP6021/2/4 – 10 MHz Bandwidth Op Amps MCP6041/2/3/4 – 600 nA, Rail-to-Rail Input/Output Op Amps MCP6541/2/3/4 – Push-Pull Output Sub-Microamp Comparators MCP6S21/2/6/7 – Single-ended, Rail-to-Rail Input/ Output Low-gain Programmable Gain Amplifiers (PGAs) RTD Temperature Measurement Circuits RTD VDD C + Circuit A MCP6541 VOUT - R VDD R R Circuit B VREF Connector R R R EMI Filter - RTD TC913A + EMI Filter Shielded Cable R R R PCB 11 Temperature Sensor Design Guide THERMISTORS (THERMALLY SENSITIVE RESISTORS) Thermistors are built with semiconductor materials and can have either a positive (PTC) or negative (NTC) temperature coefficient. However, the NTC is typically used for temperature sensing. Advantages of thermistors include a very high sensitivity to changes in temperature (having a thermal response of up to -100Ω/°C at 25°C), fast response time and low cost. The main drawback of thermistors is that the change in resistance with temperature is highly non-linear at temperatures below 0°C and greater than 70°C. A conventional fixed gain thermistor amplifier circuit is shown below. A simple voltage divider is created with a reference resistor (R1) and the thermistor (RT). A constant voltage source is supplied (VREF) with the output of the voltage divider (VTH) directly correlating to temperature. The response is shown in the graph of temperature vs. output voltage to the right of the circuit. It is fairly linear in the range of 0-70°C, but the accuracy of the circuit is limited without adding additional circuitry. The advantage of the PGA circuit (below) is illustrated by comparing the VOUT slope plots of the conventional circuit with the PGA circuit. The VOUT slope for the PGA circuit has a minimum value of 30 mV for temperatures greater than 35°C, which means that only a 9-bit ADC is required. In contrast, a voltage divider with a gain of 1 will require an 11-bit, or higher, ADC to provide an equivalent temperature resolution. The resolution of a thermistor circuit is important in applications such as overtemperature shutdown circuits. Thermistor Key Features: Inexpensive Two-wire Measurement Variety of Packages Thermistor Applications: Battery Chargers Power Supplies Cold Junction Compensation Conventional Fixed Gain Thermistor Amplifier VREF R2 100K VDD VTH + MCP6001 VOUT RT = 10K @ 25°C C1 1F VOUT (V) R1 4.53K 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 G = +1 V/V -50 -25 0 25 50 75 100 125 150 Thermistor Temperature (°C) VOUT RT = 10K @ 25°C C1 1F – Gain Adjustment Input Selection Hysteresis -50 SPI 12 G = +32 MCP6S21 + G = +16 100K G = +8 R2 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 G = +4 VDD VOUT (V) RS 28K G = +1 VREF G = +2 PGA Circuit Interfaced with a Thermistor -25 0 25 50 75 100 125 Thermistor Temperature (°C) 150 Temperature Sensor Design Guide RELATED SUPPORT MATERIAL The following Application Notes are available on the Microchip web site: www.microchip.com. Application Notes General Temperature Sensing AN679: Temperature Sensing Technologies The most popular temperature sensor technologies are discussed at a level of detail that will give the reader insight into the methods for determining which sensor is most appropriate for a particular application. AN867: Temperature-Sensing with a Programmable Gain Amplifier The implementation of temperature measurement systems from sensor to PIC® microcontroller using a NTC thermistor, silicon temperature sensor, anti-aliasing filter, A/D converter and microcontroller are discussed. AN929: Temperature Measurement Circuits for Embedded Applications Explores selection techniques for temperature sensor and conditioning circuits to maximize the measurement accuracy, while simplifying the interface to a microcontroller. AN1001: IC Temperature Sensor Accuracy Compensation with a PICmicro® Microcontroller The typical accuracy of analog and serial-output IC temperature sensors is within ±1°C, however, at hot or cold extremes, the accuracy decreases non-linearly. This application note is based on the analog output MCP9700/9701 and serial output MCP9800 temperature sensors. It derives an equation describing the sensor’s typical non-linear characteristics, which can be used to compensate for the sensor’s accuracy error over the specified operating temperature range. Silicon IC Temperature Sensors Analog Output AN938: Interfacing a TC1047A Analog Output Temperature Sensors to a PICmicro® Microcontroller Discusses system integration, firmware implementation and PCB layout techniques for using the TC1047A in an embedded system. TB051: Precision Temperature Measurement Technical Brief Logic Output AN762: Applications of the TC62X Solid-State Temperature Sensor Sensing temperature and comparing that temperature to preset limits is the basis for a variety of problems that designers face in system design and process control. This Application Note discusses the new generation of small, easy-to-use, temperature-sensing products provided by Microchip; namely, the TC62X product family. AN773: Application Circuits of the TC620/TC621 Solid-State Temperature Sensors Discusses the benefits of the TC620/TC621 solid-state temperature sensors. Serial Output AN871: Solving Thermal Measurement Problems Using the TC72 and TC77 Digital Silicon Temperature Sensors Discusses the benefits of the TC72/TC77 temperature sensors by analyzing their internal circuitry, illustrating the principles these sensors employ to accurately measure temperature. AN913: Interfacing the TC77 Thermal Sensor to a PICmicro® Microcontroller Discusses system integration, firmware implementation and PCB layout techniques for using the TC77 in an embedded system. AN940: Interfacing the TC72 SPI Digital Temperature Sensor to a PICmicro® Microcontroller Techniques for integrating the TC72 into an embedded system are demonstrated using the PICkit™ Flash Starter Kit. TB050: Monitoring Multiple Temperature Nodes Using TC74 Thermal Sensors and a PIC16C505 The PIC16C505 is a 14-pin MCU that can easily interface to the TC74. This Technical Brief illustrates the ease of interfacing these two products. TB052: Multi-Zone Temperature Monitoring with the TCN75 Thermal Sensor Presents an example of a simple, multi-zone thermal-monitoring system using the Hardware mode of the Master Synchronous Serial Port (MSSP) module of a PIC® microcontroller. Provides a description for interfacing a TC1046 temperature sensor to a PIC16F872 microcontroller. A 2 x 20 dot matrix LCD is included in the design to provide additional functionality. 13 Temperature Sensor Design Guide RELATED SUPPORT MATERIAL Thermocouples Demonstration/Evaluation Kits AN684: Single-Supply Temperature Sensing with Thermocouples For additional information on these and other analog demonstration and evaluation kits, visit the Microchip web site at: www.microchip.com/analogtools This Application Note focuses on circuit solutions that use thermocouples in their design. The signal-conditioning path for the thermocouple system is discussed, followed by complete application circuits. RTDs AN687: Precision Temperature Sensing with RTD Circuits MCP9700 Temperature-to-Voltage Converter PICtail™ Demonstration Board Part Number: MCP9700DM-PCTL MCP9800 Temp Sensor PICtail™ Demonstration Board Part Number: MCP9800DM-PCTL Focuses on circuit solutions that use platinum RTDs in their design. AN895: Oscillator Circuits for RTD Temperature Sensors Demonstrates how to design a temperature sensor oscillator circuit using Microchip’s low-cost MCP6001 operational amplifier and the MCP6541 comparator. Thermistors MCP9800 Temperature Data Logger Demonstration Board Part Number: MCP9800DM-DL TC72 Digital Temperature Sensor PICtail™ Demonstration Board Part Number: TC72DM-PICTL AN685: Thermistors in Single-Supply Temperature Sensing Systems Focuses on circuit solutions that use Negative Temperature Coefficient (NTC) thermistors in their design. AN897: Thermistor Temperature Sensing with MCP6S2X PGA Presents two circuits that employ a precise, Negative Temperature Coefficient (NTC) thermistor for temperature measurement. TC74 Serial Digital Thermal Sensor Demonstration Board Part Number: TC74DEMO TC77 Thermal Sensor PICtail™ Demonstration Board Part Number: TC77DM-PICTL TC64X/64XB Fan Speed Controller Demonstration Board Part Number: TC642DEMO TC64X/64XB Fan Speed Controller Evaluation Board Part Number: TC642EV TC650 Fan Controller Demonstration Board Part Number: TC650DEMO TC652 Fan Controller Demonstration Board Part Number: TC652DEMO TC1047A Temperature-to-Voltage Converter PICtail™ Demonstration Board Part Number: TC1047ADM-PICTL 14 15 0.5/1 0.5/1 I2C™ I2C™ SMBus SMBus SMBus MCP9800 MCP9801 MCP9802 MCP9803 MCP9805 MCP98242 0.5/2 0.5/2 SMBus/I2C SMBus/I2C 4-Wire SPI 3-Wire SPI TC74 TCN75 TC72 TC77 2.7 -40 to +125 Accuracy @ 25°C (Typ./Max) 1/3 1/3 1/5 1/3 1/5 0.5/4 0.5/4 0.5/4 0.5/4 Device TC620 TC621 TC622 TC623 TC624 TC6501 TC6502 TC6503 TC6504 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 Temperature Range (°C) 60 60 12 12 12 12 IQ Max. (μA) Temperature Set Points 4.4 4.4 5.5 5.5 5.5 5.5 VDD Max. (V) Factory programmed thresholds Factory programmed thresholds Factory programmed thresholds Factory programmed thresholds User-selectable, set by external resistor User-selectable, set by external resistor User-selectable, set by external resistor User-selectable, set by external resistor 2.7 2.65 2.7 2.7 3.0 3.0 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 4.5 4.5 4.5 VDD Min. (V) 10 6.25 19.5 19.5 10 10 400 400 1000 350 500 500 400 400 400 400 5.5 5.5 5.5 5.5 4.5 4.5 18 18 18 VDD Max (V) 500 424 400 400 500 500 40 40 40 40 300 250 600 400 400 IQ Max. (μA) Packages SOIC-8, SOT-23-5 MSOP-8, 2x3 DFN-8 SOIC-8, MSOP-8 SOT-23-5, TO-220-5 TSSOP-8, 2x3 DFN-8 TSSOP-8, 2x3 DFN-8 SOIC-8, MSOP-8 SOT-23-5 SOIC-8, MSOP-8 SOT-23-5 Packages Packages SOT-23-5 SOT-23-5 SOT-23-5 SOT-23-5 PDIP-8, SOIC-8 PDIP-8, SOIC-8 PDIP-8, SOIC-8, TO-220-5 PDIP-8, SOIC-8 PDIP-8, SOIC-8 SOT-23-3 SOT-23-3 SC-70-5 SC-70-5, TO-92-3 SC-70-5 SOT-23-5, SC-70-5, TO-92-3 IQ Max. (μA) Offset Voltage (Output @ 0°C) (mV) 5.5 5.5 5.5 5.5 3.6 3.6 5.5 5.5 5.5 5.5 VDD Max (V) Slope (mV/°C) VDD Min. (V) User-selectable, set by external resistor 2.7 3.1 3.1 2.3 2.3 VDD Min. (V) -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 Temperature Range (°C) -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 Temperature Range (°C) Logic Output Temperature Sensor Products 0.5/2.0 1/2 MCP9701A TC1047/A 1/4 MCP9701 0.5/2.0 1/2 MCP9700A TC1046 1/4 Accuracy @ 25°C (Typ./Max) MCP9700 Device Analog (Voltage Output) Temperature Sensor Products 0.5/1 0.5/1 2/3 (0.5/1 75°C-95°C) SMBus 2/3 (0.5/1 75°C-95°C) 0.5/1 0.5/1 Accuracy @ 25°C (Typ./Max) Device Serial Communication Serial Output Temperature Sensor Products See Microchip’s Advanced Parts Selector (MAPS) software for complete product selection and specifications. – – – – – – – – – Development Tools TC1047ADM-PCTL – – – MCP9700DM-PCTL MCP9700DM-PCTL Development Tools TC77DM-PCTL TC72DM-PICTL – TC74DEMO – – – – – MCP9800DM-DL MCP9800DM-PCTL Development Tools Temperature Sensor Design Guide SELECTED PRODUCT SPECIFICATIONS 15 16 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 MCP616 MCP6001 MCP6041 MCP6141 MCP6231 MCP6271 MCP6281 MCP6291 2 1 4 MCP6542 MCP6543 MCP6544 4 4 4 4 1 2 6 8 MCP6S22 MCP6S26 MCP6S28 Channels MCP6S21 Device 2 to 12 2 to 12 2 to 12 2 to 12 -3 db BW (MHz) 1.1 1.1 1.1 1.1 IQ Typical (mA) 1 1 1 1 IQ Typical (μA) ±2 275 275 275 275 VOS (μV) 5 5 5 5 ±1 2.4 to 5.5 7.2 to 5.5 2.0 to 5.5 1.8 to 5.5 1.4 to 5.5 1.4 to 5.5 1.8 to 5.5 2.3 to 5.5 2.7 to 5.5 5 to 16 4.5 to 16 6.5 to 16 Operating Voltage Range (V) 2.5 to 5.5 2.5 to 5.5 2.5 to 5.5 2.5 to 5.5 Operating Voltage (V) 1.6 to 5.5 1.6 to 5.5 1.6 to 5.5 1.6 to 5.5 Operating Voltage (V) 50 Packages 100 -40 to +85 -40 to +85 -40 to +85 -40 to +85 Temperature Range (°C) -40 to +85 -40 to +85 -40 to +85 -40 to +85 Packages TO-92-3, SOT-23B-3 Packages PDIP-16, SOIC-16 PDIP-14, SOIC-14, TSSOP-14 PDIP-8, SOIC-8, MSOP-8 PDIP-8, SOIC-8, MSOP-8 Packages PDIP-14, SOIC-14, TSSOP-14 PDIP-8, SOIC-8, MSOP-8 PDIP-8, SOIC-8, MSOP-8 PDIP-8, SOIC-8, MSOP-8, SOT-23-5 Max. Supply Current (μA @ 25°C) TSSOP-14, PDIP-8, SOIC-8, MSOP-8, SOT-23-5 TSSOP-14, PDIP-8, SOIC-8, MSOP-8, SOT-23-5 TSSOP-14, PDIP-8, SOIC-8, MSOP-8, SOT-23-5 TSSOP-14, PDIP-8, SOIC-8, SOT-23-5, SC-70-5 TSSOP-14, PDIP-8, SOIC-8, MSOP-8, SOT-23-5 TSSOP-14, PDIP-8, SOIC-8, MSOP-8, SOT-23-5 SOT-23-5, SC-70-5 PDIP-8, SOIC-8, MSOP-8 TSSOP-14, PDIP-8, SOIC-8, SOT-23-5 PDIP-8, PDIP-14 PDIP-8, PDIP-14 PDIP-8 Temperature Range (°C) Temperature Coefficient (ppm/°C) -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +85 -40 to +125 0 to +70 0 to +70 0 to +70 Temperature Range (°C) Initial Accuracy (%) VOS Max (mV) 3 3 3 7 3 3 7 0.15 2 0.05 0.05 0.15 VOS Max. (mV) Max Load Current (mA) 1000/1300 450/570 120/240 20/30 0.6/1 0.6/1 100/170 19/25 230/325 1000/3000 2000/3500 8500/1100 IQ (Typ./Max) (μA) Typical Propagation Delay (μsec) 2.5 Output Voltage (V) 10,000 5000 2000 300 100 14 1000 190 2800 400 2000 1500 GBWP (kHz) Programmable Gain Amplifiers (PGAs) 1 MCP6541 Device # per Package 2.7 to 5.5 MCP1525 Comparators VCC Range Device Voltage Reference 1 1, 2, 4 1 TC7650 MCP601 2 TC913A TC7652 # per Package Device Operational Amplifiers – – – – Development Tools – – – – Development Tools – Development Tools – – – – – – – – – – – Development Tools Temperature Sensor Design Guide SELECTED PRODUCT SPECIFICATIONS 16 Temperature Sensor Design Guide ANALOG AND INTERFACE PRODUCTS Stand-Alone Analog and Interface Portfolio Thermal Management Power Management Linear Mixed-Signal Temperature Sensors LDO & Switching Regulators Op Amps Fan Speed Controllers/ Fan Fault Detectors Charge Pump DC/DC Converters Programmable Gain Amplifiers Digital Potentiometers Power MOSFET Drivers Comparators D/A Converters PWM Controllers Linear Integrated Devices V/F and F/V Converters System Supervisors Voltage Detectors A/D Converter Families Interface CAN Peripherals Infrared Peripherals LIN Transceiver Serial Peripherals Ethernet Controller Energy Measurement ICs Voltage References Battery Management Li-Ion/Li-Polymer Battery Chargers Smart Battery Managers Analog and Interface Attributes Robustness MOSFET Drivers lead the industry in latch-up immunity/stability Low Power/Low Voltage Op Amp family with the lowest power for a given gain bandwidth 600 nA/1.4V/14 kHz bandwidth Op Amps 1.8V charge pumps and comparators Lowest power 12-bit ADC in a SOT-23 package Integration One of the first to market with integrated LDO with Reset and Fan Controller with temperature sensor PGA integrates MUX, resistive ladder, gain switches, high-performance amplifier, SPI interface Space Savings Resets and LDOs in SC70, A/D converters in a 5-lead SOT-23 package CAN and IrDA® Standard protocol stack embedded in an 18-pin package Accuracy Low input offset voltages High gains Innovation Low pin-count embedded IrDA Standard stack, FanSense™ technology Select Mode™ operation For more information, visit the Microchip web site at: www.microchip.com 17 Support Training Microchip is committed to supporting its customers in developing products faster and more efficiently. We maintain a worldwide network of field applications engineers and technical support ready to provide product and system assistance. In addition, the following service areas are available at www.microchip.com: ■ Support link provides a way to get questions answered fast: http://support.microchip.com ■ Sample link offers evaluation samples of any Microchip device: http://sample.microchip.com ■ Forum link provides access to knowledge base and peer help: http://forum.microchip.com ■ Buy link provides locations of Microchip Sales Channel Partners: www.microchip.com/sales If additional training interests you, then Microchip can help. We continue to expand our technical training options, offering a growing list of courses and in-depth curriculum locally, as well as significant online resources – whenever you want to use them. ■ Regional Training Centers: www.microchip.com/rtc ■ MASTERs Conferences: www.microchip.com/masters ■ Worldwide Seminars: www.microchip.com/seminars ■ eLearning: www.microchip.com/webseminars ■ Resources from our Distribution and Third Party Partners www.microchip.com/training Sales Office Listing AMERICAS Atlanta Tel: 678-957-9614 Boston Tel: 774-760-0087 Chicago Tel: 630-285-0071 Cleveland Tel: 216-447-0464 Dallas Tel: 972-818-7423 Detroit Tel: 248-538-2250 Kokomo Tel: 765-864-8360 Los Angeles Tel: 949-462-9523 Santa Clara Tel: 408-961-6444 Toronto Mississauga, Ontario Tel: 905-673-0699 EUROPE Austria - Wels Tel: 43-7242-2244-39 Denmark - Copenhagen Tel: 45-4450-2828 France - Paris Tel: 33-1-69-53-63-20 Germany - Munich Tel: 49-89-627-144-0 Italy - Milan Tel: 39-0331-742611 Netherlands - Drunen Tel: 31-416-690399 Spain - Madrid Tel: 34-91-708-08-90 UK - Wokingham Tel: 44-118-921-5869 ASIA/PACIFIC Australia - Sydney Tel: 61-2-9868-6733 China - Beijing Tel: 86-10-8528-2100 China - Chengdu Tel: 86-28-8665-5511 China - Hong Kong SAR Tel: 852-2401-1200 China - Nanjing Tel: 86-25-8473-2460 China - Qingdao Tel: 86-532-8502-7355 China - Shanghai Tel: 86-21-5407-5533 China - Shenyang Tel: 86-24-2334-2829 China - Shenzhen Tel: 86-755-8203-2660 China - Wuhan Tel: 86-27-5980-5300 China - Xiamen Tel: 86-592-2388138 China - Xian Tel: 86-29-8833-7252 China - Zhuhai Tel: 86-756-3210040 ASIA/PACIFIC India - Bangalore Tel: 91-80-3090-4444 India - New Delhi Tel: 91-11-4160-8631 India - Pune Tel: 91-20-2566-1512 Japan - Yokohama Tel: 81-45-471- 6166 Korea - Daegu Tel: 82-53-744-4301 Korea - Seoul Tel: 82-2-554-7200 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Malaysia - Penang Tel: 60-4-227-8870 Philippines - Manila Tel: 63-2-634-9065 Singapore Tel: 65-6334-8870 Taiwan - Hsin Chu Tel: 886-3-572-9526 Taiwan - Kaohsiung Tel: 886-7-536-4818 Taiwan - Taipei Tel: 886-2-2500-6610 Thailand - Bangkok Tel: 66-2-694-1351 1/26/09 Information subject to change. The Microchip name and logo, the Microchip logo and PIC are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FanSense, Linear Active Thermistor, PICkit, PICtail and Select Mode are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. All other trademarks mentioned herein are property of their respective companies. © 2009, Microchip Technology Incorporated. All Rights Reserved. Printed in the U.S.A. 2/09 DS21895D *DS21895D* www.microchip.com Microchip Technology Inc. 2355 W. Chandler Blvd. Chandler, AZ 85224-6199