INTERSIL ISL28208FUZ

40V Precision Single Supply Rail-Rail Output Low
Power Operational Amplifiers
ISL28108, ISL28208, ISL28408
Features
The ISL28108, ISL28208 and ISL28408 are single, dual and
quad low power precision amplifiers optimized for single
supply applications. These devices feature a common mode
input voltage range extending to 0.5V below the V- rail, a
rail-to-rail differential input voltage range for use as a
comparator, and rail-to-rail output voltage swing, which make
them ideal for single supply applications where input
operation at ground is important.
• Single or Dual Supply, Rail-to-Rail Output and Below Ground
(V-) input capability
Added features include low offset voltage, and low
temperature drift making them the ideal choice for
applications requiring high DC accuracy. The output stage is
capable of driving large capacitive loads from rail to rail for
excellent ADC driving performance. The devices can operate
for single or dual supply from 3V (±1.5V) to 40V (±20V) and are
fully characterized at ±5V and ±15V. The combination of
precision, low power, and small footprint provides the user with
outstanding value and flexibility relative to similar competitive
parts.
• Low Noise Current . . . . . . . . . . . . . . . . . . . . . . . . . . . 80fA/√Hz
Applications for these amplifiers include precision
instrumentation, data acquisition, precision power supply
control, and industrial control.
• Rail-to-rail Input Differential Voltage Range for Comparator
Applications
• Single Supply Range . . . . . . . . . . . . . . . . . . . . . . . . . 3V to 40V
• Low Current Consumption (VS = ±5V) . . . . . . . . . . . . . . 165µA
• Low Noise Voltage . . . . . . . . . . . . . . . . . . . . . . . . . 15.8nV/√Hz
• Low Input Offset Voltage (ISL28108) . . . . . . . . . . . . . . 150µV
• Superb Temperature Drift
- Voltage Offset TC . . . . . . . . . . . . . . . . . . . . . . 0.1µV/°C, Typ
• Low Input Bias Current . . . . . . . . . . . . . . . . . . . . . . . -13nA Typ
• Operating Temperature Range. . . . . . . . . . .-40°C to +125°C
• No Phase Reversal
Applications
• Precision Instruments
The ISL28108 single is offered in 8 Ld TDFN, SOIC and MSOP
packages. The ISL28208 dual amplifier is offered in 8 Ld
TDFN, MSOP, and SOIC packages. The ISL28408 is offered in
14 Ld SOIC package. All devices are offered in standard pin
configurations and operate over the extended temperature
range to -40°C to +125°C.
• Medical Instrumentation
• Data Acquisition
• Power Supply Control
• Industrial Process Control
Related Literature
• AN1658, “ISL28208SOICEVAL2Z Evaluation Board User
Guide”
RF
IN-
10kΩ
RIN+
IN+
10kΩ
-
+3V
to 40V
V+
ISL28108
V-
+
GAIN = 10
VREF
VS = ±15V
300
VOUT
200
RREF+
100kΩ
100
-40°C
+25°C
+125°C
0
-100
-200
-300
-400
SINGLE-SUPPLY, LOW-SIDE
CURRENT SENSE AMPLIFIER
FIGURE 1. TYPICAL APPLICATION CIRCUIT
November 1, 2011
FN6935.3
400
VOS (µV)
RINRSENSE
500
100kΩ
LOAD
1
-500
-16
-15.5
-15
-14.5 -14 13
13.5
14
14.5
15
INPUT COMMON MODE VOLTAGE (V)
FIGURE 2. INPUT OFFSET VOLTAGE vs INPUT COMMON MODE
VOLTAGE, VS = ±15V
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas Inc. 2011. All Rights Reserved
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.
All other trademarks mentioned are the property of their respective owners.
ISL28108, ISL28208, ISL28408
Ordering Information
PART NUMBER
(Notes 1, 2, 3)
TEMP. RANGE
(°C)
PART MARKING
PACKAGE
(Pb-Free)
PKG.
DWG. #
ISL28108FBZ
28108 FBZ
-40 to +125
8 Ld SOIC
M8.15E
ISL28108FRTZ
108Z
-40 to +125
8 Ld TDFN
L8.3x3K
Coming soon
ISL28108FUZ
8108Z
-40 to +125
8 Ld MSOP
M8.118B
ISL28208FBZ
28208 FBZ
-40 to +125
8 Ld SOIC
M8.15E
ISL28208FRTZ
208F
-40 to +125
8 Ld TDFN
L8.3x3K
Coming soon
ISL28208FUZ
8208Z
-40 to +125
8 Ld MSOP
M8.118B
ISL28408FBZ
28408 FBZ
-40 to +125
14 Ld SOIC
M14.15
ISL28208SOICEVAL2Z
Evaluation Board
NOTES:
1. Add “-T*” suffix for tape and reel. Please refer to Tech Brief TB347 for details on reel specifications.
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pbfree products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL28108, ISL28208, ISL28408. For more information on MSL please
see Tech Brief TB363.
Pin Configurations
ISL28108
(8 LD MSOP, SOIC)
TOP VIEW
ISL28108
(8 LD TDFN)
TOP VIEW
NC 1
8 NC
NC
1
8
NC
-IN 2
7 V+
-IN
2
7
V+
6 VOUT
+IN
3
6
VOUT
V-
4
5
NC
- +
+IN 3
PAD
V- 4
5 NC
ISL28208
(8 LD MSOP, SOIC)
TOP VIEW
ISL28208
(8 LD TDFN)
TOP VIEW
VOUT_A
1
-IN_A
2
+IN_A
3
V-
4
PAD
- +
+ -
- +
8 V+
VOUT _A
1
7 VOUT_B
-IN_A
2
6 -IN_B
+IN_A
3
5 +IN_B
V-
4
8 V+
7 VOUT_B
- +
+ -
6 -IN_B
5 +IN_B
ISL28408
(14 LD SOIC)
TOP VIEW
VOUT_A 1
-IN_A 2
14 V OUT_D
A
- +
D
+ -
+IN_A 3
V +
12 +IN _D
11 V -
4
10 +IN_C
+IN_B 5
- IN_B 6
V OUT_B 7
2
13 - IN _D
- +
B
+ C
9 -IN_ C
8 V O UT_C
FN6935.3
November 1, 2011
ISL28108, ISL28208, ISL28408
Pin Descriptions
ISL28108
(8 Ld SOIC,
MSOP, TDFN)
ISL28208
(8 Ld SOIC,
TDFN)
ISL28408
(14 Ld SOIC)
PIN
NAME
EQUIVALENT
CIRCUIT
3
-
-
+IN
Circuit 1
Amplifier non-inverting input
-
3
3
+IN_A
-
5
5
+IN_B
-
-
10
+IN_C
-
-
12
+IN_D
4
4
11
V-
Circuit 3
Negative power supply
2
-
-
-IN
Circuit 1
Amplifier inverting input
-
2
2
-IN_A
-
6
6
-IN_B
-
-
9
-IN_C
-
-
13
-IN_D
7
8
4
V+
Circuit 3
Positive power supply
6
-
-
VOUT
Circuit 2
Amplifier output
-
1
1
VOUT_A
-
7
7
VOUT_B
-
-
8
VOUT_C
-
-
14
VOUT_D
1, 5, 8
-
-
NC
-
No internal connection
PAD
PAD
-
PAD
-
Thermal Pad - TDFN and QFN packages only. Connect
thermal pad to ground or most negative potential.
IN-
V+
V+
IN+
OUT
V-
VCIRCUIT 2
CIRCUIT 1
3
DESCRIPTION
V+
CAPACITIVELY
TRIGGERED
ESD CLAMP
VCIRCUIT 3
FN6935.3
November 1, 2011
ISL28108, ISL28208, ISL28408
Table of Contents
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Electrical Specifications, VS ±15V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Electrical Specifications, VS ±5V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Typical Performance Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Operating Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Input Stage Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Output Drive Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Output Phase Reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Unused Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
ISL28108, ISL28208, ISL28408 SPICE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Characterization vs Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Package Outline Drawing, M8.15E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Package Outline Drawing, L8.3x3K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Package Outline Drawing, M8.118B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Package Outline Drawing, M14.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4
FN6935.3
November 1, 2011
ISL28108, ISL28208, ISL28408
Absolute Maximum Ratings
Thermal Information
Maximum Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42V
Maximum Differential Input Voltage
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42V or V- - 0.5V to V+ + 0.5V
Min/Max Input Voltage . . . . . . . . . . . . . . . . . . .42V or V- - 0.5V to V+ + 0.5V
Max/Min Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20mA
Output Short-Circuit Duration (1 output at a time) . . . . . . . . . . . Indefinite
ESD Tolerance (ISL28208, ISL28408)
Human Body Model (Tested per JESD22-A114F) . . . . . . . . . . . . . . . . 6kV
Machine Model (Tested per JESD22-A115-C) . . . . . . . . . . . . . . . . . . 400V
Charged Device Model (Tested per JESD22-C110D) . . . . . . . . . . . . . 2kV
ESD Tolerance (ISL28108)
Human Body Model (Tested per JESD22-A114F) . . . . . . . . . . . . . . .5.5kV
Machine Model (Tested per JESD22-A115-C) . . . . . . . . . . . . . . . . . . 300V
Charged Device Model (Tested per JESD22-C110D) . . . . . . . . . . . . . 2kV
Thermal Resistance (Typical)
θJA (°C/W) θJC (°C/W)
8 Ld SOIC Package (208, Notes 4, 7). . . . . . .
120
55
8 Ld SOIC Package (108, Notes 4, 7) . . . . . . .
120
60
8 Ld TDFN Package (208, Notes 5, 6) . . . . . .
47
6
8 Ld TDFN Package (108, Notes 5, 6) . . . . . .
45
3.5
8 Ld MSOP Package (208, Notes 4, 7). . . . . .
150
50
8 Ld MSOP Package (108, Notes 4, 7). . . . . .
165
57
14 Ld SOIC Package (408, Notes 4, 7). . . . . .
71
37
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . -65°C to +150°C
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .see link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp
Operating Conditions
Ambient Operating Temperature Range . . . . . . . . . . . . . . -40°C to +125°C
Maximum Operating Junction Temperature . . . . . . . . . . . . . . . . . . +150°C
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3V (±1.5V) to 40V (±20V)
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product
reliability and result in failures not covered by warranty.
NOTES:
4. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
5. θJA is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech
Brief TB379.
6. For θJC, the “case temp” location is the center of the exposed metal pad on the package underside.
7. For θJC, the “case temp” location is taken at the package top center.
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise
noted, all tests are at the specified temperature and are pulsed tests, therefore: TJ = TC = TA
Electrical Specifications VS ±15V, VCM = 0, VO = 0V, RL = Open, TA= +25°C, unless otherwise noted. Boldface limits apply over
the operating temperature range, -40°C to +125°C. Temperature data established by characterization.
MIN
PARAMETER
VOS
DESCRIPTION
Input Offset Voltage
(Note 8)
TYP
MAX
(Note 8)
UNIT
ISL28208 SOIC, TDFN
ISL28408 SOIC
-230
25
230
µV
330
µV
ISL28108 SOIC, TDFN
-150
150
µV
270
µV
CONDITIONS
-330
10
-270
TCVOS
ΔVOS
IB
Input Offset Voltage Temperature
Coefficient
ISL28208 SOIC
-40°C to +125°C
0.1
1.1
µV/°C
ISL28208 TDFN
ISL28408 SOIC
-40°C to +125°C
0.2
1.4
µV/°C
ISL28108 SOIC, TDFN
-40°C to +125°C
0.2
1.2
µV/°C
5
300
µV
400
µV
Input Offset Voltage Match
(ISL28208 only)
-300
Input Bias Current
-43
-400
-13
-63
TCIB
Input Bias Current
Temperature Coefficient
5
nA
nA
0.07
nA/°C
FN6935.3
November 1, 2011
ISL28108, ISL28208, ISL28408
Electrical Specifications VS ±15V, VCM = 0, VO = 0V, RL = Open, TA= +25°C, unless otherwise noted. Boldface limits apply over
the operating temperature range, -40°C to +125°C. Temperature data established by characterization. (Continued)
MIN
PARAMETER
IOS
DESCRIPTION
Input Offset Current
CONDITIONS
ISL28208 SOIC, TDFN
(Note 8)
TYP
MAX
(Note 8)
UNIT
-3
0
3
nA
4
nA
4
nA
5
nA
-4
ISL28108 SOIC, TDFN
ISL28408 SOIC
CMRR
Common-Mode Rejection Ratio
-5
119
dB
VCM = V- -0.2V to V+ -1.8V
123
dB
102
dB
VCMIR
Common Mode Input Voltage
Range
Guaranteed by CMRR test
PSRR
Power Supply Rejection Ratio
VS = 3V to 40V, VCMIR = Valid Input Voltage
Open-Loop Gain
0
VCM = V- -0.5V to V+ -1.8V
VCM = V- to V+ -1.8V
AVOL
-4
105
123
dB
102
115
dB
V- - 0.5
V+ - 1.8
V-
VO = -13V to +13V, RL = 10kΩ to ground
V+ - 1.8
V
110
128
dB
109
124
dB
117
126
dB
100
dB
VOL
Output Voltage Low,
VOUT to V-
RL = 10kΩ
52
VOH
Output Voltage High,
V+ to VOUT
RL = 10kΩ
70
Supply Current/Amplifier
RL = Open
IS
V
85
mV
145
mV
110
mV
150
mV
185
250
µA
270
350
µA
ISC+
Output Short Circuit Source
Current
RL = 10Ω to V-
19
mA
ISC-
Output Short Circuit Sink Current
RL = 10Ω to V+
30
mA
VSUPPLY
Supply Voltage Range
Guaranteed by PSRR
3
40
V
AC SPECIFICATIONS
GBWP
Gain Bandwidth Product
ACL = 101, VO = 100mVP-P, RL = 2kΩ
1.2
MHz
enp-p
Noise Voltage
0.1Hz to 10Hz; VS = +18V
580
nVP-P
en
Noise Voltage Density
f = 10Hz; VS = +18V
18
nV/√Hz
en
Noise Voltage Density
f = 100Hz; VS = +18V
16
nV/√Hz
en
Noise Voltage Density
f = 1kHz; VS = +18V
15.8
nV/√Hz
en
Noise Voltage Density
f = 10kHz; VS = +18V
15.8
nV/√Hz
in
Noise Current Density
f = 10kHz; VS = +18V
80
fA/√Hz
THD + N
Total Harmonic Distortion + Noise 1kHz, AV = 1, VO = 3.5VRMS, RL =10kΩ
0.00042
%
0.45
V/µs
TRANSIENT RESPONSE
SR
Slew Rate, VOUT 20% to 80%
6
AV = 1, RL = 2kΩ, VO = 10VP-P
FN6935.3
November 1, 2011
ISL28108, ISL28208, ISL28408
Electrical Specifications VS ±15V, VCM = 0, VO = 0V, RL = Open, TA= +25°C, unless otherwise noted. Boldface limits apply over
the operating temperature range, -40°C to +125°C. Temperature data established by characterization. (Continued)
MIN
PARAMETER
tr, tf, Small
Signal
ts
DESCRIPTION
CONDITIONS
(Note 8)
TYP
MAX
(Note 8)
UNIT
Rise Time, VOUT 10% to 90%
AV = 1, VOUT = 100mVP-P, Rf = 0Ω, RL = 2kΩ to
VCM
264
ns
Fall Time, VOUT 90% to 10%
AV = 1, VOUT = 100mVP-P, Rf = 0Ω, RL = 2kΩ to
VCM
254
ns
Settling Time to 0.01%
10V Step; 10% to VOUT
AV = -1, VOUT = 10VP-P, Rg = Rf =10k, RL = 2kΩ to
VCM
27
µs
Electrical Specifications
VS ±5V, VCM = 0, VO = 0V, TA = +25°C, unless otherwise noted. Boldface limits apply over the operating
temperature range, -40°C to +125°C. Temperature data established by characterization.
MIN
PARAMETER
VOS
DESCRIPTION
Input Offset Voltage
(Note 8)
TYP
MAX
(Note 8)
UNIT
ISL28208 SOIC, TDFN
ISL28408 SOIC
-230
25
230
µV
330
µV
ISL28108 SOIC, TDFN
-150
150
µV
270
µV
CONDITIONS
-330
10
-270
TCVOS
ΔVOS
IB
Input Offset Voltage Temperature
Coefficient
ISL28208 SOIC
-40°C to +125°C
0.1
1.1
µV/°C
ISL28208 TDFN
ISL28408 SOIC
-40°C to +125°C
0.2
1.4
µV/°C
ISL28108 SOIC, TDFN
-40°C to +125°C
0.2
1.2
µV/°C
3
300
µV
400
µV
Input Offset Voltage Match
(ISL28208 only)
-300
Input Bias Current
-43
-400
-15
nA
-63
TCIB
Input Bias Current
Temperature Coefficient
-40°C to +125°C
IOS
Input Offset Current
ISL28208 SOIC, TDFN
nA
-3
0
-4
ISL28108 SOIC, TDFN
ISL28408 SOIC
CMRR
Common-Mode Rejection Ratio
-5
4
nA
4
nA
5
nA
101
dB
123
dB
89
dB
105
123
dB
100
112
dB
105
123
dB
97
112
dB
Common Mode Input Voltage
Range
Guaranteed by CMRR test
Power Supply Rejection Ratio
VS = 3V to 10V, VCMIR = Valid Input Voltage
7
0
nA
VCM = V- -0.2V to V+ -1.8V
VCM = V- to V+ -1.8V
ISL28408 SOIC
PSRR
-4
3
VCM = V- -0.5V to V+ -1.8V
VCM = V- to V+ -1.8V
VCMIR
nA/°C
-0.067
V- - 0.5
V+ - 1.8
V
V-
V+ - 1.8
V
110
126
dB
109
123
dB
FN6935.3
November 1, 2011
ISL28108, ISL28208, ISL28408
Electrical Specifications
VS ±5V, VCM = 0, VO = 0V, TA = +25°C, unless otherwise noted. Boldface limits apply over the operating
temperature range, -40°C to +125°C. Temperature data established by characterization. (Continued)
MIN
PARAMETER
AVOL
DESCRIPTION
Open-Loop Gain
CONDITIONS
VO = -3V to +3V, RL = 10kΩ to ground
(Note 8)
TYP
117
124
MAX
(Note 8)
dB
99
VOL
VOH
IS
Output Voltage Low,
VOUT to V-
RL = 10kΩ
Output Voltage High,
V+ to VOUT
RL = 10kΩ
Supply Current/Amplifier
RL = Open
UNIT
dB
23
38
mV
48
mV
65
mV
70
mV
165
250
µA
240
350
µA
30
ISC+
Output Short Circuit Source Current RL = 10Ω to V-
14
mA
ISC-
Output Short Circuit Sink Current
RL = 10Ω to V+
22
mA
AC SPECIFICATIONS
GBW
Gain Bandwidth Product
ACL = 101, VO = 100mVP-P, RL = 2kΩ
1.2
MHz
enp-p
Noise Voltage
0.1Hz to 10Hz
600
nVP-P
en
Noise Voltage Density
f = 10Hz
18
nV/√Hz
en
Noise Voltage Density
f = 100Hz
16
nV/√Hz
en
Noise Voltage Density
f = 1kHz
15.8
nV/√Hz
en
Noise Voltage Density
f = 10kHz
15.8
nV/√Hz
in
Noise Current Density
f = 10kHz
90
fA/√Hz
TRANSIENT RESPONSE
SR
Slew Rate, VOUT 20% to 80%
AV = 1, RL = 2kΩ, VO = 4VP-P
0.4
V/µs
tr, tf, Small
Signal
Rise Time, VOUT 10% to 90%
AV = 1, VOUT = 100mVP-P, Rf = 0Ω, RL = 2kΩ to
VCM
264
ns
Fall Time, VOUT 90% to 10%
AV = 1, VOUT = 100mVP-P, Rf = 0Ω, RL = 2kΩ to
VCM
254
ns
Settling Time to 0.01%
4V Step; 10% to VOUT
AV = -1, VOUT = 4VP-P, Rg = Rf =10k, RL = 2kΩ to
VCM
14.4
µs
ts
NOTE:
8. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.
8
FN6935.3
November 1, 2011
ISL28108, ISL28208, ISL28408
Typical Performance Curves
400
VOS (µV)
FIGURE 3. ISL28408 SOIC INPUT OFFSET VOLTAGE
DISTRIBUTION, VS = ±15V
160
140
120
80
100
40
60
0
300
VS = ±15V
VS = ±5V
250
NUMBER OF AMPLIFIERS
NUMBER OF AMPLIFIERS
VOS (µV)
FIGURE 4. ISL28408 SOIC INPUT OFFSET VOLTAGE
DISTRIBUTION, VS = ±5V
300
200
150
100
50
0
250
200
150
100
50
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100
110
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100
110
0
VOS (µV)
FIGURE 5. ISL28208 INPUT OFFSET VOLTAGE DISTRIBUTION,
VS = ±15V
VOS (µV)
FIGURE 6. ISL28208 INPUT OFFSET VOLTAGE DISTRIBUTION,
VS = ±5V
200
200
VS = ±5V
NUMBER OF AMPLIFIERS
VS = ±15V
150
100
50
150
100
50
0
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100
110
0
VOS (µV)
FIGURE 7. ISL28108 SOIC INPUT OFFSET VOLTAGE
DISTRIBUTION, VS = ±15V
9
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100
110
NUMBER OF AMPLIFIERS
20
160
140
120
80
100
60
40
0
20
-20
-40
-60
-80
0
-100
0
-120
50
-140
50
-20
100
-40
100
150
-60
150
200
-80
200
250
-100
250
300
-120
300
VS = ±5V
350
-140
NUMBER OF AMPLIFIERS
350
-160
VS = ±15V
-160
NUMBER OF AMPLIFIERS
400
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified.
VOS (µV)
FIGURE 8. ISL28108 SOIC INPUT OFFSET VOLTAGE
DISTRIBUTION, VS = ±5V
FN6935.3
November 1, 2011
ISL28108, ISL28208, ISL28408
Typical Performance Curves
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)
25
25
NUMBER OF AMPLIFIERS
20
15
10
5
0
20
15
10
5
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100
110
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100
110
0
VOS (µV)
FIGURE 9. ISL28108 TDFN INPUT OFFSET VOLTAGE
DISTRIBUTION, VS = ±15V
VOS (µV)
FIGURE 10. ISL28108 TDFN INPUT OFFSET VOLTAGE
DISTRIBUTION, VS = ±5V
30
25
VS = ±5V
NUMBER OF AMPLIFIERS
20
15
10
5
25
20
15
10
5
0
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
NUMBER OF AMPLIFIERS
VS = ±15V
0
VS = ±5V
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
NUMBER OF AMPLIFIERS
VS = ±15V
TCVOS (µV/C)
TCVOS (µV/C)
FIGURE 12. ISL28408 SOIC TCVOS vs NUMBER OF AMPLIFIERS,
VS = ±5V
TCVOS (µV/C)
FIGURE 13. ISL28208 SOIC TCVOS vs NUMBER OF AMPLIFIERS,
VS = ±15V
10
24
22
20
18
16
14
12
10
8
6
4
2
0
VS = ±5V
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
VS = ±15V
NUMBER OF AMPLIFIERS
24
22
20
18
16
14
12
10
8
6
4
2
0
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
NUMBER OF AMPLIFIERS
FIGURE 11. ISL28408 SOIC TCVOS vs NUMBER OF AMPLIFIERS,
VS = ±15V
TCVOS (µV/C)
FIGURE 14. ISL28208 SOIC TCVOS vs NUMBER OF AMPLIFIERS,
VS = ±5V
FN6935.3
November 1, 2011
ISL28108, ISL28208, ISL28408
24
22
20
18
16
14
12
10
8
6
4
2
0
VS = ±5V
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
VS = ±15V
NUMBER OF AMPLIFIERS
24
22
20
18
16
14
12
10
8
6
4
2
0
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
NUMBER OF AMPLIFIERS
Typical Performance Curves
TCVOS (µV/C)
FIGURE 15. ISL28208 TDFN TCVOS vs NUMBER OF AMPLIFIERS,
VS = ±15V
TCVOS (µV/C)
FIGURE 16. ISL28208 TDFN TCVOS vs NUMBER OF AMPLIFIERS,
VS = ±5V
VS = ±5V
25
20
15
10
5
0
25
20
15
10
5
0
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
NUMBER OF AMPLIFIERS
30
30
VS = ±15V
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
NUMBER OF AMPLIFIERS
35
TCVOS (µV/C)
FIGURE 17. ISL28108 SOIC TCVOS vs NUMBER OF AMPLIFIERS,
VS = ±15V
TCVOS (µV/C)
FIGURE 18. ISL28108 SOIC TCVOS vs NUMBER OF AMPLIFIERS,
VS = ±5V
14
14
VS = ±5V
12
NUMBER OF AMPLIFIERS
NUMBER OF AMPLIFIERS
VS = ±15V
10
8
6
4
2
0
12
10
8
6
4
2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
0
TCVOS (µV/C)
TCVOS (µV/C)
FIGURE 19. ISL28108 TDFN TCVOS vs NUMBER OF AMPLIFIERS,
VS = ±15V
11
FIGURE 20. ISL28108 TDFN TCVOS vs NUMBER OF AMPLIFIERS,
VS = ±5V
FN6935.3
November 1, 2011
ISL28108, ISL28208, ISL28408
Typical Performance Curves
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)
70
0
60
-5
20
VOS (µV)
VS = ± 15V
VS = ±5V
10
0
VS = ±15V
-10
VS = ±5V
-10
IBIAS (nA)
40
30
VS = ±21V
VS = ±2.25V
50
-15
VS = ±20V
-20
-20
-30
-40
-50
-40
-20
0
20
40
60
80
100
VS = ±2.25V
-25
-40
120
-20
0
20
40
60
80
TEMPERATURE (°C)
TEMPERATURE (°C)
FIGURE 21. VOS vs TEMPERATURE
500
400
500
-40°C
100
+25°C
300
+125°C
200
0
-100
-300
-400
-400
-14.5 -14 13
13.5
14
14.5
15
-500
-6
-5.5
INPUT COMMON MODE VOLTAGE (V)
FIGURE 23. INPUT OFFSET VOLTAGE vs INPUT COMMON MODE
VOLTAGE, VS = ±15V
130
CHANNEL-B
5
VS = ±5V
CHANNEL-B
125
120
CMRR (dB)
CMRR (dB)
125
CHANNEL-A
115
110
105
100
-40
3.5
4
4.5
-5
-4.5 -4 3
INPUT COMMON MODE VOLTAGE (V)
FIGURE 24. INPUT OFFSET VOLTAGE vs INPUT COMMON MODE
VOLTAGE, VS = ±5V
130
VS = ±15V
+125°C
0
-200
-15
+25°C
-100
-300
-15.5
-40°C
100
-200
-500
-16
120
VS = ±5V
400
VOS (µV)
VOS (µV)
200
100
FIGURE 22. IBIAS vs TEMPERATURE vs SUPPLY
VS = ±15V
300
VS = ±1.5V
120
CHANNEL-A
115
110
105
-20
0
20
40
60
80
TEMPERATURE (°C)
100
FIGURE 25. CMRR vs TEMPERATURE, VS = ±15V
12
120
100
-40
-20
0
20
40
60
80
TEMPERATURE (°C)
100
120
FIGURE 26. CMRR vs TEMPERATURE, V S = ±5V
FN6935.3
November 1, 2011
ISL28108, ISL28208, ISL28408
150
140
130
120
110
100
90
80
70
60
50
40
30 VS = ±15V
20 SIMULATION
10
0
1m 0.01 0.1 1
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)
120
110
100
90
PSRR (dB)
CMRR (dB)
Typical Performance Curves
70
60
50 VS = ±5V, ±15V
40 AV = 1
30 CL = 4pF
20 RL = 10k
10 VSOURCE = 1VP-P
0
10
10 100 1k 10k 100k 1M 10M 100M 1G
FREQUENCY (Hz)
FIGURE 27. CMRR vs FREQUENCY, VS = ±15V
100
1k
10k
100k
FREQUENCY (Hz)
10M
VS = ±5V
135
PSRR (dB)
135
130
125
130
125
120
-40
-20
0
20
40
60
80
100
120
-40
120
-20
0
TEMPERATURE (°C)
FIGURE 29. PSRR (DC) vs TEMPERATURE, VS = ±15V
20
40
60
80
TEMPERATURE (°C)
1
VS = ±5V and ±15V
0.1
VS = ±5V and ±15V
0.1
VOL - V- (V)
+25°C
+25°C
0.01
-40°C
0.01
0.1
1
LOAD CURRENT (mA)
-40°C
10
FIGURE 31. OUTPUT OVERHEAD VOLTAGE HIGH vs LOAD CURRENT,
VS = ±5V and ±15V
13
120
125°C
0.01
0.001
0.001
100
FIGURE 30. PSRR (DC) vs TEMPERATURE, V S = ±5V
125°C
V+ - VOH (V)
1M
140
VS = ±15V
1
PSRR-
FIGURE 28. PSRR vs FREQUENCY, VS = ±5V & ±15V
140
PSRR (dB)
PSRR+
80
0.001
0.001
0.01
0.1
1
LOAD CURRENT (mA)
10
FIGURE 32. OUTPUT OVERHEAD VOLTAGE LOW vs LOAD CURRENT,
VS = ±5V and ±15V
FN6935.3
November 1, 2011
ISL28108, ISL28208, ISL28408
15
5
14
4
13
125°C
12
-40°C
10
-10
3
125°C
-12
-13
-14
0
2
4
6
VOL(V)
+25°C
VS = ±15V
AV = 2
RF = RG = 100k
VIN = ±7.5V-DC
+75°C
8
-40°C
1
-1
0°C
-11
-15
+75°C
2
11
VOL(V)
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)
VOH(V)
VOH(V)
Typical Performance Curves
10
12
14
16
18
20
22
-5
24
0°C
-2 VS = ±5V
A =2
-3 RV = R = 100k
F
G
-4 VIN = ±2.5V-DC
0
2
4
6
FIGURE 33. ISL28208 OUTPUT VOLTAGE SWING vs LOAD CURRENT
VS = ±15V
VOH AND VOL (mV)
VOH AND VOL (mV)
VS = ±5V
90 R = 10k
L
80
VOH (V+ TO VOUT)
70
60
50
40
VOL (VOUT TO V-)
30
14
16
18
20
22
24
60
50
40
30
20
10
10
0
20
40
60
80
TEMPERATURE (°C)
100
0
-40
120
VOH (V+ TO VOUT)
70
20
FIGURE 35. VOUT HIGH AND LOW vs TEMPERATURE,
VS = ±15V, RL = 10k
VOL (VOUT TO V-)
-20
0
20
40
60
80
TEMPERATURE (°C)
100
120
FIGURE 36. VOUT HIGH AND LOW vs TEMPERATURE,
VS = ±5V, RL = 10k
50
50
VS = ±15V
45 R = 10k
L
40
VS = ±5V
45 R = 10k
L
40
ISC-SINK
35
35
30
Isc (mA)
Isc (mA)
12
100
VS = ±15V
90 R = 10k
L
80
25
20
ISC-SINK
30
25
20
15
15
10
10
ISC-SOURCE
5
0
-40
10
FIGURE 34. ISL28208 OUTPUT VOLTAGE SWING vs LOAD CURRENT
VS = ±5V
100
-20
8
I-FORCE (mA)
I-FORCE (mA)
0
-40
+25°C
-20
0
20
40
60
5
80
100
120
TEMPERATURE (°C)
FIGURE 37. SHORT CIRCUIT CURRENT vs TEMPERATURE,
VS = ±15V
14
0
-40
ISC-SOURCE
-20
0
20
40
60
80
100
120
TEMPERATURE (°C)
FIGURE 38. SHORT CIRCUIT CURRENT vs TEMPERATURE, VS = ±5V
FN6935.3
November 1, 2011
ISL28108, ISL28208, ISL28408
30
28
26
24
22
20
18
16
14
12
10
8
6
4
2
0
1k
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)
6
VS = ±15V
AV = 1
VS = ±5V
VIN = ±5.9V
5
INPUT AND OUTPUT (V)
VOUT (VP-P)
Typical Performance Curves
4
INPUT
3
2
1
OUTPUT
0
-1
-2
-3
-4
-5
10k
100k
FREQUENCY (Hz)
-6
1M
0
FIGURE 39. MAX OUTPUT VOLTAGE vs FREQUENCY
110
100
-60
-40
-20
0
20 40 60 80 100 120 140 160
TEMPERATURE (°C)
ISUPPLY PER AMPLIFIER (µA)
FIGURE 41. AVOL vs TEMPERATURE
210
200
190
180
170
160
150
140
130
120
110
100
90
80
70
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
VSUPPLY (V)
FIGURE 43. SUPPLY CURRENT vs SUPPLY VOLTAGE
15
6
8
10
12
TIME (ms)
14
16
18
20
200
180
160
140
120
100
80
60
40
20
0
GAIN
-20
V
=
±15V
-40 S
-60 RL = 1MΩ
-80 SIMULATION
-100
1
10 100
0.1
PHASE
1k 10k 100k 1M
FREQUENCY (Hz)
10M 100M 1G
FIGURE 42. OPEN-LOOP GAIN, PHASE vs FREQUENCY, V S = ±15V
70
60
RF = 10kΩ, RG = 10Ω
ACL = 1001
RF = 10kΩ, RG = 100Ω
50
GAIN (dB)
AVOL (dB)
VS = ±5V
GAIN (dB), PHASE (°)
VS = ± 15V
120
4
FIGURE 40. NO PHASE REVERSAL
140
130
2
40
VS = ±5V, ±15V
CL = 4pF
RL = 2k
VOUT = 100mVP-P
ACL = 101
30
20
ACL = 10
RF = 10kΩ, RG = 1.1kΩ
10
0
ACL = 1
-10
100
RF = 0, RG = ∞
1k
10k
100k
1M
10M
FREQUENCY (Hz)
FIGURE 44. FREQUENCY RESPONSE vs CLOSED LOOP GAIN
FN6935.3
November 1, 2011
ISL28108, ISL28208, ISL28408
Typical Performance Curves
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)
1
0
0
-1
-1
NORMALIZED GAIN (dB)
NORMALIZED GAIN (dB)
1
-2
-3
RL = OPEN, 100k, 10k
-4
RL = 1k
-5
RL = 499
-6 VS = ±15V
-7 CL = 4pF
AV = +1
-8
VOUT = 100mVP-P
-9
1k
100
RL = 100
RL = 49.9
10k
100k
1M
10M
-2
-3
RL = OPEN, 100k, 10k
-4
RL = 1k
-5
-6 VS = ±5V
-7 CL = 4pF
AV = +1
-8
VOUT = 100mVp-p
-9
1k
100
1
1
0
0
-1
-1
-2
-3
VOUT = 10mVP-P
-6
-7
-8
VS = ±5V
VOUT = 50mVP-P
CL = 4pF
AV = +1
RL = INF
VOUT = 100mVP-P
-9100
VOUT = 500mVP-P
VOUT = 1VP-P
1k
10k
10k
100k
1M
10M
100k
1M
-2
-3
VS = ±2.5V
-4
VS = ±5V
-5
-6 CL = 4pF
R = 10k
-7 L
AV = +1
-8 VOUT = 100mVP-P
-9
100
10M
1k
VS = ±15V
VS = ±20V
10k
100k
FREQUENCY (Hz)
FREQUENCY (Hz)
1M
10M
FIGURE 47. GAIN vs FREQUENCY vs OUTPUT VOLTAGE
FIGURE 48. GAIN vs FREQUENCY vs SUPPLY VOLTAGE
100
100
VS = ±15V
VS = ±5V
G = 10
10
ZOUT (Ω)
G = 100
1
0.10
0.01
10
100
1k
10k
100k
FREQUENCY (Hz)
1M
10M
FIGURE 49. OUTPUT IMPEDANCE vs FREQUENCY, VS = ±15V
16
1
0.10
G=1
1
G = 10
10
G = 100
ZOUT (Ω)
RL = 49.9
FIGURE 46. GAIN vs FREQUENCY vs RL, VS = ±5V
NORMALIZED GAIN (dB)
NORMALIZED GAIN (dB)
FIGURE 45. GAIN vs FREQUENCY vs RL, VS = ±15V
-5
RL = 100
FREQUENCY (Hz)
FREQUENCY (Hz)
-4
RL = 499
0.01
1
G=1
10
100
1k
10k
100k
FREQUENCY (Hz)
1M
10M
FIGURE 50. OUTPUT IMPEDANCE vs FREQUENCY, V S = ±5V
FN6935.3
November 1, 2011
ISL28108, ISL28208, ISL28408
Typical Performance Curves
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)
10
INPUT NOISE VOLTAGE
1
1
INPUT NOISE CURRENT
0.1
0.1
0.01
0.1
1
10
100
1k
10k
0.01
100k
VS = ±5V
10
1
0.1
0.1
0.01
0.1
1
10
400
200
0
-200
-400
-600
-800
0
1
2
3
4
5
6
TIME (s)
7
8
9
160
100
80
RL_TRANSMIT = ∞
RL_RECEIVE = 10k
60
40
RL_TRANSMIT = 2k
20
0
10
200
0
-200
-400
-600
-800
0
1
2
200
3
4
5
6
TIME (s)
7
8
9
10
VS = ±15V
AV = 100
RL = 10k
VIN = 100mVP-P
OVERDRIVE = 1V
INPUT
160
INPUT (mV)
120
400
FIGURE 54. INPUT NOISE VOLTAGE 0.1Hz TO 10Hz, VS = ±5V
VS = ±15V
CL = 4pF
VTX = 1VP-P
140
600
-1000
10
VS = ±5V
AV = 10k
800
120
20
16
OUTPUT (V)
600
INPUT NOISE VOLTAGE (nV)
INPUT NOISE VOLTAGE (nV)
0.01
100k
10k
1000
VS = ±18V
AV = 10k
800
FIGURE 53. INPUT NOISE VOLTAGE 0.1Hz TO 10Hz, VS = ±18V
CROSSTALK (dB)
100
1k
FREQUENCY (Hz)
FIGURE 52. INPUT NOISE VOLTAGE (en) AND CURRENT (in) vs
FREQUENCY, VS = ±5V
1000
-1000
1
INPUT NOISE CURRENT
FREQUENCY (Hz)
FIGURE 51. INPUT NOISE VOLTAGE (en) AND CURRENT (in) vs
FREQUENCY, VS = ±18V
10
INPUT NOISE VOLTAGE
INPUT NOISE CURRENT (pA/√Hz)
10
100
100
INPUT NOISE VOLTAGE (nV/√Hz)
INPUT NOISE VOLTAGE (nV/√Hz)
VS = ±18V
INPUT NOISE CURRENT (pA/√Hz)
100
100
12
OUTPUT
80
8
40
4
RL_RECEIVE = 10k
100
1k
10k
100k
FREQUENCY (Hz)
1M
10M
FIGURE 55. ISL28208 CHANNEL SEPARATION vs FREQUENCY, VS =
±5V, ±15V
17
0
0
20
40
60
80 100 120
TIME (µs)
140
160
180
0
200
FIGURE 56. POSITIVE OUTPUT OVERLOAD RESPONSE TIME,
VS = ±15V
FN6935.3
November 1, 2011
ISL28108, ISL28208, ISL28408
Typical Performance Curves
-80
-8
OUTPUT
-120
-160
INPUT
-200
0
20
40
60
80 100 120
TIME (µs)
50
-12
VS = ±15V
AV = 100
RL = 10k
-16
VIN = 100mVP-P
OVERDRIVE = 1V
-20
140 160 180 200
20
2
10
1
-20
-2
OUTPUT
-3
-30
-40
INPUT
-50
0
20
40
60
80 100 120
TIME (µs)
-4
VS = ±5V
AV = 100
RL = 10k
-5
VIN = 50mVP-P
OVERDRIVE = 1V
-6
140 160 180 200
50
50
80 100 120
TIME (µs)
140
160
180
0
200
40
AV = -1
30
AV = 1
AV = 10
20
0.010
0.100
1
10
100
FIGURE 60. OVERSHOOT vs CAPACITIVE LOAD, VS = ±15V
6
VS = ±15V
AV = 1
4 R = 2k
L
CL = 4pF
2
VOUT (V)
AV = -1
AV = 10
20
0
-2
10
0
0.001
60
VS = ±15V
VOUT = 100mVP-P
0
0.001
40
AV = 1
40
10
VS = ±5V
VOUT = 100mVP-P
30
20
LOAD CAPACITANCE (nF)
FIGURE 59. NEGATIVE OUTPUT OVERLOAD RESPONSE TIME,
VS = ±5V
60
0
60
OVERSHOOT (%)
-1
3
OUTPUT
FIGURE 58. POSITIVE OUTPUT OVERLOAD RESPONSE TIME,
VS = ±5V
OUTPUT (V)
INPUT (mV)
-10
OVERSHOOT (%)
30
0
0
-60
40
0
FIGURE 57. NEGATIVE OUTPUT OVERLOAD RESPONSE TIME,
VS = ±15V
INPUT
OUTPUT (V)
-4
INPUT (mV)
-40
6
VS = ±5V
AV = 100
5
RL = 10k
VIN = 50mVP-P
OVERDRIVE = 1V 4
60
0
OUTPUT (V)
INPUT (mV)
0
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)
-4
0.010
0.100
1
10
100
LOAD CAPACITANCE (nF)
FIGURE 61. OVERSHOOT vs CAPACITIVE LOAD, VS = ±5V
18
-6
0
100
200
TIME (µs)
300
400
FIGURE 62. LARGE SIGNAL 10V STEP RESPONSE, VS = ±15V
FN6935.3
November 1, 2011
ISL28108, ISL28208, ISL28408
Typical Performance Curves
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)
2.4
100
60
40
0.4
0
-0.4
-0.8
20
0
-20
-40
-1.2
-60
-1.6
-2.0
-2.4
VS = ±15V
AND
VS = ±5V
AV = 1
RL = 2k
CL = 4pF
80
VOUT (mV)
VOUT (V)
2.0 VS = ±5V
AV = 1
1.6
RL = 2k
1.2 CL = 4pF
0.8
-80
0
100
200
TIME (µs)
300
400
FIGURE 63. LARGE SIGNAL 4V STEP RESPONSE, VS = ±5V
19
-100
0
0.5
1.0
1.5
2.0
2.5
TIME (µs)
3.0
3.5
4.0
FIGURE 64. SMALL SIGNAL TRANSIENT RESPONSE VS = ±5V, ±15V
FN6935.3
November 1, 2011
ISL28108, ISL28208, ISL28408
Applications Information
Functional Description
The ISL28108, ISL28208, and ISL28408 are single, dual and
quad, 1.2MHz, single supply rail-to-rail output amplifiers with a
common mode input voltage range extending to a range of 0.5V
below the V- rail. Their input stages are optimized for precision
sensing of ground referenced signals in low voltage, single supply
applications. The input stage has the capability of handling large
input differential voltages without phase inversion making them
suitable for high voltage comparator applications. Their bipolar
design features high open loop gain and excellent DC input and
output temperature stability. These op amps feature low
quiescent current of 165µA, and a maximum temperature drift
ranging from 1.1µV/°C for the ISL28208 and ISL28408 in the
SOIC package to 1.4µV/°C for the ISL28208 in the TDFN
package and the ISL28408 in the SOIC package (see Figures 11
through 20. All devices are fabricated in a new precision 40V
complementary bipolar DI process and immune from latch-up.
Operating Voltage Range
The devices are designed to operate over the 3V (±1.5V) to 40V
(±20V) range and are fully characterized at ±5V and ±15V. Both DC
and AC performance remain virtually unchanged over the ±5V to
±15V operating voltage range. Parameter variation with operating
voltage is shown in the “Typical Performance Curves” beginning on
page 9.
Input Stage Performance
The PNP input stage has a common mode input range extending
up to 0.5V below ground at +25°C (see Figures 23 and 24). Full
amplifier performance is guaranteed down to ground (V-) over the 40°C to +125°C temperature range. For common mode voltages
down to -0.5V the amplifiers are fully functional, but performance
degrades slightly over the full temperature range. This feature
provides excellent CMRR, AC performance and DC accuracy when
amplifying low level ground referenced signals.
The input stage has a maximum input differential voltage equal
to a diode drop greater than the supply voltage (max 42V) and
does not contain the back-to-back input protection diodes found
on many similar amplifiers. This feature enables the device to
function as a precision comparator by maintaining very high
input impedance for high voltage differential input comparator
voltages. The high differential input impedance also enables the
device to operate reliably in large signal pulse applications
without the need for anti-parallel clamp diodes required on
MOSFET and most bipolar input stage op amps. Thus, input
signal distortion caused by nonlinear clamps under high slew
rate conditions are avoided.
V+
VINVIN+
RIN-
-
RIN+
+
RG
RF
RL
V-
FIGURE 65. INPUT ESD DIODE CURRENT LIMITING
Output Drive Capability
The bipolar rail-to-rail output stage features low saturation levels
that enable an output voltage swing to less than 10mV when the
total output load (including feedback resistance) is held below
50µA (Figures 31 and 32). With ±15V supplies this can be
achieved by using feedback resistor values >300kΩ. The low input
bias and offset currents (-43nA and ±3nA +25°C max
respectively) minimize DC offset errors at these high resistance
values. For example, a balanced 4 resistor gain circuit (Figure 65)
with 1MΩ feedback resistors (RF, RG) generates a worst case
input offset error of only ±3mV. Furthermore, the low noise
current reduces the added noise associated with high feedback
resistance.
The output stage is internally current limited. Output current limit
over-temperature is shown in Figures 37 and 38. The amplifiers
can withstand a short circuit to either rail as long as the power
dissipation limits are not exceeded. This applies to only one
amplifier at a time for the dual op amp. Continuous operation
under these conditions may degrade long-term reliability.
The amplifiers perform well driving capacitive loads (Figures 60
and 61). The unity gain, voltage follower (buffer) configuration
provides the highest bandwidth, but is also the most sensitive to
ringing produced by load capacitance found in BNC cables. Unity
gain overshoot is limited to 30% at capacitance values to 0.33nF.
At gains of 10 and higher, the device is capable of driving more
than 10nF without significant overshoot.
Output Phase Reversal
Output phase reversal is a change of polarity in the amplifier
transfer function when the input voltage exceeds the supply
voltage. These devices are immune to output phase reversal, out
to 0.5V beyond the rail (VABS MAX) limit (see Figure 40).
In applications where one or both amplifier input terminals are at
risk of exposure to voltages beyond the supply rails, current
limiting resistors may be needed at each input terminal (see
Figure 65 RIN+, RIN-) to limit current through the power supply
ESD diodes to 20mA.
20
FN6935.3
November 1, 2011
ISL28108, ISL28208, ISL28408
Unused Channels
ISL28108, ISL28208, ISL28408 SPICE Model
If the application requires only one channel, the user must
configure any unused channel to prevent it from oscillating.
Unused channels can oscillate if the input and output pins are
floating. This will result in higher-than-expected supply currents
and possible noise injection into the channel being used. The
proper way to prevent oscillation is to short the output to the
inverting input, and ground the positive input (Figure 66).
Figure 67 shows the SPICE model schematic and Figure 68 shows
the net list for the SPICE model. The model is a simplified version
of the actual device and simulates important AC and DC
parameters. AC parameters incorporated into the model are: 1/f
and flatband noise voltage, Slew Rate, CMRR, Gain and Phase. The
DC parameters are IOS, total supply current and output voltage
swing. The model uses typical parameters given in the “Electrical
Specifications” Table beginning on page 5. The AVOL is adjusted
for 122dB with the dominant pole at 1Hz. The CMRR is set 128dB,
f = 6kHz. The input stage models the actual device to present an
accurate AC representation. The model is configured for ambient
temperature of +25°C.
+
FIGURE 66. PREVENTING OSCILLATIONS IN UNUSED CHANNELS
Power Dissipation
It is possible to exceed the +150°C maximum junction
temperatures under certain load and power supply conditions. It
is therefore important to calculate the maximum junction
temperature (TJMAX) for all applications to determine if power
supply voltages, load conditions, or package type need to be
modified to remain in the safe operating area. These parameters
are related using Equation 1:
T JMAX = T MAX + θ JA xPD MAXTOTAL
(EQ. 1)
where:
• PDMAXTOTAL is the sum of the maximum power dissipation of
each amplifier in the package (PDMAX)
• PDMAX for each amplifier can be calculated using Equation 2:
V OUTMAX
PD MAX = V S × I qMAX + ( V S - V OUTMAX ) × -----------------------RL
(EQ. 2)
where:
• TMAX = Maximum ambient temperature
• θJA = Thermal resistance of the package
• PDMAX = Maximum power dissipation of 1 amplifier
• VS = Total supply voltage
• IqMAX = Maximum quiescent supply current of 1 amplifier
• VOUTMAX = Maximum output voltage swing of the application
Figures 69 through 83 show the characterization vs simulation
results for the Noise Voltage, Open Loop Gain Phase, Closed Loop
Gain vs Frequency, Gain vs Frequency vs RL, CMRR, Large Signal
10V Step Response, Small Signal 0.05V Step and Output Voltage
Swing ±15V supplies.
LICENSE STATEMENT
The information in this SPICE model is protected under the
United States copyright laws. Intersil Corporation hereby grants
users of this macro-model hereto referred to as “Licensee”, a
nonexclusive, nontransferable licence to use this model as long
as the Licensee abides by the terms of this agreement. Before
using this macro-model, the Licensee should read this license. If
the Licensee does not accept these terms, permission to use the
model is not granted.
The Licensee may not sell, loan, rent, or license the macromodel, in whole, in part, or in modified form, to anyone outside
the Licensee’s company. The Licensee may modify the macromodel to suit his/her specific applications, and the Licensee may
make copies of this macro-model for use within their company
only.
This macro-model is provided “AS IS, WHERE IS, AND WITH NO
WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED,
INCLUDING BUY NOT LIMITED TO ANY IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.”
In no event will Intersil be liable for special, collateral, incidental,
or consequential damages in connection with or arising out of
the use of this macro-model. Intersil reserves the right to make
changes to the product and the macro-model without prior
notice.
• RL = Load resistance
21
FN6935.3
November 1, 2011
V++
V++
DX
I1
D3
G1
+
R5
13
GAIN = 0.477
12e-6
I2
6E-6
I3
6E-6
Vin-
9
Q7
7
DN
D14
PNP_LATERAL
5
CinDif
1.21e-12
R1
5e11
2
Q8
PNP_input
Q9
D2DBREAK
PNP_input
8
IOS
3e-9
0
EOS
++
-E
Vc
Vmid
GAIN = 1
11
R3
15 G2
6250
6
GAIN = 0.3
4.19e-12
V--
4.19e-12
DX
Vmid
GAIN = 261.74e-6
-6.74
V+
E2
++
- GAIN = 1
V++
L1
L3
1.59E-08
1.59E-08
G5
G7
+
+
18
21
GAIN = 0.6 R9 GAIN = 0.6
1e-3
R11
1e-3
19
C1
R7
2.31e-11
7.62e9
V3
Vg
V++
R19
R13
3.183e3
3.183e3
G15
G9
+
+
GAIN = 314.15e-6 GAIN = 314.15e-6
28
Vc
G13
D11
GAIN = 12.5e-3
D7
C3
DX
10e-12
C5
10e-12
D10
DX
16
D4
1st Gain Stage
DX
G3
+
-
D5
1
V--
Input Stage
0
R6
GAIN = 0.477
Cin1
DX
Cin2
V2
-6.76
R4
6250
Vin+
14
PNP_LATERAL
12
24
-0.4
23
R15
80
V5
26
VOUT
27
Vmid
+
DX
GAIN = 0.6
L2
1.59E-08
GAIN = 0.6
V--
22
FN6935.3
November 1, 2011
Mid Supply ref V
G10
C4
10e-12
GAIN = 314.15e-6 GAIN = 314.15e-6
L4
R14
1.59E-08
R20
3.183e3
3.183e3
G11
+
D9 GAIN = 12.5e-3
-0.4
G12
+
-
D12
GAIN = 12.5e-3
V-V-
2nd Gain Stage
V6
25
DY
G8
G16
DY
20
G6
+
-
GAIN = 261.74e-6
C2
2.31e-11
R8
7.62e9
+
-
17
R12
1e-3
+
-
Vmid
R10
1e-3
+
-
G4
V4
D8
DX
-6.76
C6
10e-12
E4
++
-GAIN = 0.5
Common Mode
Gain Stage
with Zero
E3
++
-GAIN = 1
0
FIGURE 67. SPICE MODEL SCHEMATIC
Output Stage Correction Current Sources
G14
+
-
ISY
185e-6
GAIN = 12.5e-3
R16
80
ISL28108, ISL28208, ISL28408
+
+
-
1150
DN
22
0
R2
D13
10
+
-
V7
1
V1
-6.74
D1DBREAK
Q6
+
-
0.1
1
ISL28108, ISL28208, ISL28408
*ISL28108_208 Macromodel - covers following
*products
*ISL28108
*ISL28208
*ISL28408
*
*Revision History:
* Revision A, LaFontaine March 5th 2011
* Model for Noise, supply currents, CMRR
*128dB f=6kHz ,AVOL 122dB f=1Hz
* SR = 0.45V/us, GBWP 1.2MHz.
*Copyright 2011 by Intersil Corporation
*Refer to data sheet "LICENSE STATEMENT"
*Use of this model indicates your acceptance
*with the terms and provisions in the License
*Statement.
*
*Intended use:
*This Pspice Macromodel is intended to give
*typical DC and AC performance characteristics
*under a wide range of external circuit
*configurations using compatible simulation
*platforms – such as iSim PE.
*
*Device performance features supported by this
*model
*Typical, room temp., nominal power supply
*voltages used to produce the following
*characteristics:
*Open and closed loop I/O impedances,
*Open loop gain and phase,
*Closed loop bandwidth and frequency
*response,
*Loading effects on closed loop frequency
*response,
*Input noise terms including 1/f effects,
*Slew rate,
*Input and Output Headroom limits to I/O
*voltage swing,
*Supply current at nominal specified supply
*voltages.
*
*Device performance features NOT supported
*by this model:
*Harmonic distortion effects,
*Output current limiting (current will limit at
*40mA),
*Disable operation (if any),
*Thermal effects and/or over temperature
*parameter variation,
*Limited performance variation vs. supply
*voltage is modeled,
*Part to part performance variation due to
*normal process parameter spread,
*Any performance difference arising from
*different packaging source,
*Load current reflected into the power supply
*current.
*
* Connections:
+input
*
| -input
*
| | +Vsupply
*
| | | -Vsupply
*
| | | | output
*
| | | |
.subckt ISL28108_208 Vin+ Vin-V+ V- VOUT
* source ISL28118_218_subckt_check_0
*
*Voltage Noise
E_En
VIN+ 6 2 0 0.3
D_D13
1 2 DN
D_D14
1 2 DN
V_V7
1 0 0.1
R_R17
2 0 1150
*
*Input Stage
Q_Q6
11 10 9 PNP_input
Q_Q7
8 7 9 PNP_input
Q_Q8
V-- VIN- 7 PNP_LATERAL
Q_Q9
V-- 12 10 PNP_LATERAL
I_I1
V++ 9 DC 12e-6
I_I2
V++ 7 DC 6E-6
I_I3
V++ 10 DC 6E-6
I_IOS
6 VIN- DC 3e-9
*D_D1
7 10 DBREAK
*D_D2
10 7 DBREAK
R_R1
5 6 5e11
R_R2
VIN- 5 5e11
R_R3
V-- 8 6250
R_R4
V-- 11 6250
C_Cin1
V-- VIN- 4.19e-12
C_Cin2
V-- 6 4.19e-12
C_CinDif
6 VIN- 1.21E-12
*
*1st Gain Stage
G_G1
V++ 14 8 11 0.4779867
G_G2
V-- 14 8 11 0.4779867
V_V1
13 14 -6.74
V_V2
14 15 -6.76
D_D3
13 V++ DX
D_D4
V-- 15 DX
R_R5
14 V++ 1
R_R6
V-- 14 1
*
*2nd Gain Stage
G_G3
V++ VG 14 VMID 261.748e-6
G_G4
V-- VG 14 VMID 261.748e-6
V_V3
16 VG -6.74
V_V4
VG 17 -6.76
D_D5
16 V++ DX
D_D6
V-- 17 DX
R_R7
VG V++ 7.62283e9
R_R8
V-- VG 7.62283e9
C_C1
VG V++ 2.31e-11
C_C2
V-- VG 2.31e-11
*
*Mid supply Ref
E_E2
V++ 0 V+ 0 1
E_E3
V-- 0 V- 0 1
E_E4
VMID V-- V++ V-- 0.5
I_ISY
V+ V- DC 185E-6
*
*Common Mode Gain Stage with Zero
G_G5
V++ 19 5 VMID 0.6
G_G6
V-- 19 5 VMID 0.6
G_G7
V++ VC 19 VMID 0.6
G_G8
V-- VC 19 VMID 0.6
E_EOS
12 6 VC VMID 1
L_L1
18 V++ 1.59159E-08
L_L2
20 V-- 1.59159E-08
L_L3
21 V++ 1.59159E-08
L_L4
22 V-- 1.59159E-08
R_R9
19 18 1e-3
R_R10
20 19 1e-3
R_R11
VC 21 1e-3
R_R12
22 VC 1e-3
*
*Pole Satge
G_G15
V++ 28 VG VMID 314.15e-6
G_G16
V-- 28 VG VMID 314.15e-6
R_R19
28 V++ 3.18319e3
R_R20
V-- 28 3.18319e3
C_C5
28 V++ 10e-12
C_C6
V-- 28 10e-12
*
G_G9
V++ 23 28 VMID 314.15e-6
G_G10
V-- 23 28 VMID 314.15e-6
R_R13
23 V++ 3.18319e3
R_R14
V-- 23 3.18319e3
C_C3
23 V++ 10e-12
C_C4
V-- 23 10e-12
*
*Output Stage with Correction Current Sources
G_G11
26 V-- VOUT 23 12.5e-3
G_G12
27 V-- 23 VOUT 12.5e-3
G_G13
VOUT V++ V++ 23 12.5e-3
G_G14
V-- VOUT 23 V-- 12.5e-3
D_D7
23 24 DX
D_D8
25 23 DX
D_D9
V-- 26 DY
D_D10
V++ 26 DX
D_D11
V++ 27 DX
D_D12
V-- 27 DY
V_V5
24 VOUT -0.4
V_V6
VOUT 25 -0.4
R_R15
VOUT V++ 80
R_R16
V-- VOUT 80
.model PNP_LATERAL pnp(is=1e-016 bf=250
va=80
+ ik=0.138 rb=0.01 re=0.101 rc=180 kf=0 af=1)
.model PNP_input pnp(is=1e-016 bf=100
va=80
+ ik=0.138 rb=0.01 re=0.101 rc=180 kf=0 af=1)
.model DBREAK D(bv=43 rs=1)
.model DN D(KF=6.69e-9 AF=1)
.MODEL DX D(IS=1E-12 Rs=0.1)
.MODEL DY D(IS=1E-15 BV=50 Rs=1)
.ends ISL28108_208
FIGURE 68. SPICE NET LIST
23
FN6935.3
November 1, 2011
ISL28108, ISL28208, ISL28408
Characterization vs Simulation Results
100
INPUT NOISE VOLTAGE (nV/√Hz)
INPUT NOISE VOLTAGE (nV/√Hz)
100
10
0.1
1
10
100
1k
10k
10
0.1
100k
1
10
150
GAIN (dB), PHASE (°)
PHASE
1k 10k 100k 1M
FREQUENCY (Hz)
10M 100M 1G
60
GAIN (dB)
30
20
ACL = 10
0
0
GAIN
V = ±15V
-50 RS = 1MΩ
L
SIMULATION
-100
1
10 100
0.1
1k 10k 100k 1M
FREQUENCY (Hz)
10M 100M 1G
RF = 10kΩ, RG = 10Ω
RF = 10kΩ, RG = 100Ω
VS = ±5V, ±15V
CL = 4pF
RL = 2k
VOUT = 100mVP-P
40
30
20
10
ACL = 1
-10
100
50
50
RF = 10kΩ, RG = 1.1kΩ
10
100
60
VS = ±5V, ±15V
CL = 4pF
RL = 2k
VOUT = 100mVP-P
ACL = 101
PHASE
70
RF = 10kΩ, RG = 100Ω
50
40
100k
FIGURE 72. SIMULATED OPEN-LOOP GAIN, PHASE vs FREQUENCY
RF = 10kΩ, RG = 10Ω
ACL = 1001
10k
200
FIGURE 71. CHARACTERIZED OPEN-LOOP GAIN, PHASE vs
FREQUENCY
70
1k
FIGURE 70. SIMULATED INPUT NOISE VOLTAGE
GAIN (dB)
GAIN (dB), PHASE (°)
FIGURE 69. CHARACTERIZED INPUT NOISE VOLTAGE
200
180
160
140
120
100
80
60
40
20
0
GAIN
-20
V
=
±15V
-40 S
-60 RL = 1MΩ
-80 SIMULATION
-100
0.1
1
10 100
100
FREQUENCY (Hz)
FREQUENCY (Hz)
RF = 10kΩ, RG = 1.1kΩ
0
RF = 0, RG = ∞
1k
10k
100k
1M
10M
FREQUENCY (Hz)
FIGURE 73. CHARACTERIZED CLOSED LOOP GAIN vs FREQUENCY
24
-10
100
RF = 0, RG = ∞
1k
10k
100k
1M
10M
FREQUENCY (Hz)
FIGURE 74. SIMULATED CLOSED LOOP GAIN vs FREQUENCY
FN6935.3
November 1, 2011
ISL28108, ISL28208, ISL28408
Characterization vs Simulation Results (Continued)
1
0
0
-1
-1
NORMALIZED GAIN (dB)
NORMALIZED GAIN (dB)
1
-2
-3
-4
RL = OPEN, 100k, 10k
RL = 1k
-5
-6 VS = ±15V
-7 CL = 4pF
AV = +1
-8
VOUT = 100mVP-P
-9
1k
100
RL = 499
RL = 100
RL = 49.9
10k
100k
1M
10M
-2
-3
RL = OPEN, 100k, 10k
-4
RL = 1k
-5
-6 VS = ±15V
-7 CL = 4pF
AV = +1
-8
VOUT = 100mVP-P
-9
1k
100
CMRR (dB)
CMRR (dB)
1M
10M
100
50
0
1m 0.01 0.1
10 100 1k 10k 100k 1M 10M 100M 1G
FREQUENCY (Hz)
6
VOUT (V)
2
0
0
-2
-2
-4
-4
300
400
FIGURE 79. CHARACTERIZED LARGE SIGNAL 10V STEP RESPONSE
25
10 100 1k 10k 100k 1M 10M 100M 1G
FREQUENCY (Hz)
VS = ±15V
AV = 1
RL = 2k
CL = 4pF
4
200
TIME (µs)
1
FIGURE 78. SIMULATED CMRR vs FREQUENCY
VS = ±15V
AV = 1
4 R = 2k
L
CL = 4pF
2
VOUT (V)
100k
VS = ±15V
SIMULATION
6
100
10k
150
FIGURE 77. CHARACTERIZED CMRR vs FREQUENCY
0
RL = 49.9
FIGURE 76. SIMULATED GAIN vs FREQUENCY vs RL
FIGURE 75. CHARACTERIZED GAIN vs FREQUENCY vs RL
-6
RL = 100
FREQUENCY (Hz)
FREQUENCY (Hz)
150
140
130
120
110
100
90
80
70
60
50
40
30 VS = ±15V
20 SIMULATION
10
0
1m 0.01 0.1 1
RL = 499
-6
0
100
200
TIME (µs)
300
400
FIGURE 80. SIMULATED LARGE SIGNAL 10V STEP RESPONSE
FN6935.3
November 1, 2011
ISL28108, ISL28208, ISL28408
Characterization vs Simulation Results (Continued)
100
100
VS = ±15V
AND
VS = ±5V
AV = 1
RL = 2k
CL = 4pF
60
VOUT (mV)
40
20
60
40
0
-20
20
0
-20
-40
-40
-60
-60
-80
-80
-100
-100
0
0.5
1.0
1.5
2.0
2.5
TIME (µs)
3.0
3.5
VS = ±15V
AND
VS = ±5V
AV = 1
RL = 2k
CL = 4pF
80
VOUT (mV)
80
4.0
0
0.5
1.0
1.5
2.0
2.5
TIME (µs)
3.0
3.5
4.0
FIGURE 82. SIMULATED SMALL SIGNAL TRANSIENT RESPONSE
FIGURE 81. CHARACTERIZED SMALL SIGNAL TRANSIENT
RESPONSE
OUTPUT VOLTAGE SWING (V)
20
VOH = 14.93V
10
0
-10
VOL = -14.94V
-20
0
0.5
1.0
TIME (m s)
1.5
2.0
FIGURE 83. SIMULATED OUTPUT VOLTAGE SWING
For additional products, see www.intersil.com/product_tree
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted
in the quality certifications found at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
26
FN6935.3
November 1, 2011
ISL28108, ISL28208, ISL28408
Revision History
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make
sure you have the latest Rev.
DATE
REVISION
10/19/11
FN6935.3
CHANGE
• On page 1, Features: changed Low Input Offset Voltage from 230µV to (ISL28108)……150µV. Added Related
Literature section with AN1658, "ISL28208SOICEVAL2Z Evaluation Board User Guide".
• On page 2, Ordering Information: added ISL28208SOICEVAL2Z evaluation board. Removed "Coming Soon" from
ISL28408FBZ. Corrected Package Dwg. # for TDFN package from L8.3x3A to L8.3x3K. Corrected Package Dwg. #
for MSOP package from M8.118 to M8.118B.
• On page 5, Absolute Maximum Ratings, changed “ESD Tolerance (ISL28208)” to “ESD Tolerance (ISL28208,
ISL28408)”. Added ESD information for ISL28108 as follows:
ESD Tolerance (ISL28108)
Human Body Model (Tested per JESD22-A114F).....5.5kV
Machine Model (Tested per JESD22-A115-C).....300V
Charged Device Model (Tested per JESD22-C110D).....2kV
• On page 5, Thermal Information, changed package temperatures from:
•
•
•
•
•
•
•
•
•
•
27
8 Ld SOIC Package (108, 208, Notes 4, 7), θJA = 120, θJC = 55
8 Ld TDFN Package (108, 208, Notes 5, 6), θJA = 47, θJC = 6
8 Ld MSOP Package (108, 208, Notes 4, 7), θJA = 150, θJC = 45
14 Ld SOIC Package (408, Notes 4, 7), θJA = -, θJA = To:
8 Ld SOIC Package (208, Notes 4, 7), θJA = 120, θJC = 55
8 Ld SOIC Package (108, Notes 4, 7), θJA = 120, θJC = 60
8 Ld TDFN Package (208, Notes 5, 6), θJA = 47, θJC = 6
8 Ld TDFN Package (108, Notes 5, 6), θJA = 45, θJC = 3.5
8 Ld MSOP Package (208, Notes 4, 7), θJA = 150, θJC = 50
8 Ld MSOP Package (108, Notes 4, 7), θJA = 165, θJC = 57
14 Ld SOIC Package (408, Notes 4, 7), θJA = 71, θJC = 37
On page 5, ±15V Electrical Specifications table, added the following parameters:
- VOS ISL28108 SOIC, TDFN
- TCVOS ISL28108 SOIC, TDFN
- IOS ISL28108 SOIC, TDFN
On page 5 and 6, ±15V Electrical Specifications table, changed the following in Conditions column:
- VOS: changed “ISL28208 SOIC, TDFN” to “ISL28208 SOIC, TDFN; ISL28408 SOIC”
- TCVOS: changed “ISL28208 TDFN” to”ISL28208 TDFN, ISL28408 SOIC”
- IOS: changed “ISL28108 SOIC, TDFN” to “ISL28108 SOIC, TDFN; ISL28408 SOIC”
On page 7, ±5V Electrical Specifications table, added the following:
- VOS ISL28108 SOIC, TDFN
- TCVOS ISL28108 SOIC, TDFN
- IOS ISL28108 SOIC, TDFN
On page 7, ±5V Electrical Specifications table, changed the following in Conditions column:
- VOS: changed “ISL28208 SOIC, TDFN” to “ISL28208 SOIC, TDFN; ISL28408 SOIC”
- TCVOS: changed “ISL28208 TDFN” to”ISL28208 TDFN, ISL28408 SOIC”
- IOS: changed “ISL28108 SOIC, TDFN” to “ISL28108 SOIC, TDFN; ISL28408 SOIC”
On page 9 through page 11, added the following to Typical Performance Curves:
- Figures 3, 4: ISL28408 SOIC Input Offset Distribution Voltage, ±15V and ±5V
- Figures 7, 8: ISL28108 SOIC ±15V VOS distribution, and ±5V VOS distribution
- Figures 9, 10: ISL28108 TDFN ±15V VOS distribution, and ±5V VOS distribution
- Figures 11, 12: ISL28408 SOIC TCVOS vs. number of Amplifiers ±15V and ±5V
- Figures 17, 18: ISL28108 SOIC ±15V TCVOS distribution, and ±5V TCVOS distribution
- Figures 19, 20: ISL28108 TDFN ±15V TCVOS distribution, and ±5V TCVOS distribution
On page 20, Applications: minor edits to re-align figures with curves
On page 21: changed heading from “Using Only One Amplifier to “Unused Channels” and edited for clarity.
On page 30: changed Package Outline Drawing L8.3x3A to L8.3x3K
On page 31: changed Package Outline Drawing M8.118 to M8.118B
On page 32: added Package Outline Drawing M14.15
FN6935.3
November 1, 2011
ISL28108, ISL28208, ISL28408
Revision History
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make
sure you have the latest Rev. (Continued)
DATE
REVISION
CHANGE
4/20/11
FN6935.2
• Added discussion of ISL28408 throughout datasheet.
• On page 2 in “Ordering Information”: Added new part, “ISL28408FBZ”. Corrected part marking for
ISL28208FRTZ from 208Z to 208F. Added “ISL28408” to Note 3. Under” Pin Configurations,” added
ISL28408 (14 Ld SOIC) pin configuration diagram.
• On page 3: in Pin Descriptions table, added column for ISL28408 14Ld SOIC. Corrected schematic for
Circuit 2.
• On page 5: under “Thermal Information” added "14 Ld SOIC Package (408, Notes 4, 7)" and added
ISL28108 to 8 Ld TDFN and 8 Ld MSOP. Changed θJA and θJC for 8 Ld TDFN Package from 48 and 5.5 to 47
and 6. Added Note 6 regarding θJC “case temp” measurement, and applied it to 8 Ld TDFN Package.
• On page 5: in Electrical Specifications table, changed TYP spec for TCIB from 70 pA/° C to 0.07nA/° C. On
page 7, changed TYP spec for TCIB from -67 pA/° C to -0.067nA/° C. These are not spec changes since the
values are the same.
• On page 13, Figs. 31 and 32: changed y axis units label from (mV) to (V); changed x axis units label from (µA)
to (mA).
• On page 20, under “Output Drive Capability,” para 2, changed "The output stage can swing at moderate
levels of output current (Figures 21 and 22) and the output stage is internally current limited. Output current
limit over-termperature..." to "The output stage is internally current limited. Output current limit overtemperature..."
3/11/11
FN6935.1
• On page 1, in the first paragraph - added the following after V-rail: "a rail-to-rail differential input voltage
range for use as a comparator,…"
• On page 1 in “Features:
- Added bullet - “Rail-to-rail Input Differential Voltage Range for Comparator Applications”
- Changed Low Noise Current from "100fA/sq.root Hz" to "80fA/sq.root Hz"
• On page 2 in “Ordering Information” - Removed "coming soon" from ISL28208FRTZ part since it is
releasing.
• On page 5, changed “ESD Tolerance (ISL28208, ISL28408)” as follows:
- Human Body Model changed from "3kV" to "6kV"
- Machine Model changed from "300V" to "400V"
- Added JEDEC Test information for all ESD ratings
• On page 5 and page 7, added test conditions for SOIC TCVos specs. Added TCVos specs for TDFN.
• On page 6 changed “Noise Current Density” Typical from "100" to "80"
• On page 20, updated Applications Information Functional Description
• On page 20 Updated Input Stage Performance Section
• On page 20 Updated Output Drive Capability Section
• On page 21 Added ISL28108 AND ISL28208 SPICE MODEL and License Agreement section
• On page 22 Added SPICE NET LIST
• On page 24 Added Characterization vs Simulation Results curves
2/16/11
FN6935.0
Initial Release
Products
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a
complete list of Intersil product families.
For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on
intersil.com: ISL28108, ISL28208, ISL28408.
To report errors or suggestions for this datasheet, please go to: www.intersil.com/askourstaff
FITs are available from our website at: http://rel.intersil.com/reports/search.php
28
FN6935.3
November 1, 2011
ISL28108, ISL28208, ISL28408
Package Outline Drawing
M8.15E
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE
Rev 0, 08/09
4
4.90 ± 0.10
A
DETAIL "A"
0.22 ± 0.03
B
6.0 ± 0.20
3.90 ± 0.10
4
PIN NO.1
ID MARK
5
(0.35) x 45°
4° ± 4°
0.43 ± 0.076
1.27
0.25 M C A B
SIDE VIEW “B”
TOP VIEW
1.75 MAX
1.45 ± 0.1
0.25
GAUGE PLANE
C
SEATING PLANE
0.10 C
0.175 ± 0.075
SIDE VIEW “A
0.63 ±0.23
DETAIL "A"
(0.60)
(1.27)
NOTES:
(1.50)
(5.40)
1.
Dimensions are in millimeters.
Dimensions in ( ) for Reference Only.
2.
Dimensioning and tolerancing conform to AMSE Y14.5m-1994.
3.
Unless otherwise specified, tolerance : Decimal ± 0.05
4.
Dimension does not include interlead flash or protrusions.
Interlead flash or protrusions shall not exceed 0.25mm per side.
5.
The pin #1 identifier may be either a mold or mark feature.
6.
Reference to JEDEC MS-012.
TYPICAL RECOMMENDED LAND PATTERN
29
FN6935.3
November 1, 2011
ISL28108, ISL28208, ISL28408
Package Outline Drawing
L8.3x3K
8 LEAD THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE
Rev 1, 9/11
2X 1.95
3.00
6X 0.65
A
B
1
PIN #1
INDEX AREA
3.00
6
6
PIN 1
INDEX AREA
(4X)
1.50 ±0.10
0.15
8
TOP VIEW
8X 0.25 ±0.05
0.40 ± 0.05
4
0.10 M C A B
2.30 ±0.10
BOTTOM VIEW
SEE DETAIL "X"
C
0.10 C
0.75 ±0.05
0 . 203 REF
5
C
0 . 02 NOM.
0 . 05 MAX.
0.08 C
SIDE VIEW
DETAIL "X"
( 2.30)
( 1.95)
NOTES:
( 8X 0.50)
1.
Dimensions are in millimeters.
Dimensions in ( ) for Reference Only.
2.
Dimensioning and tolerancing conform to AMSE Y14.5m-1994.
3.
Unless otherwise specified, tolerance : Decimal ± 0.05
4.
Dimension applies to the metallized terminal and is measured
(1.50)
( 2.90 )
between 0.15mm and 0.20mm from the terminal tip.
PIN 1
5.
Tiebar shown (if present) is a non-functional feature.
6.
The configuration of the pin #1 identifier is optional, but must be
located within the zone indicated. The pin #1 identifier may be
(6x 0.65)
( 8 X 0.25)
either a mold or mark feature.
TYPICAL RECOMMENDED LAND PATTERN
7.
30
Compliant to JEDEC MO-229 WEEC-2 except for the foot length.
FN6935.3
November 1, 2011
ISL28108, ISL28208, ISL28408
Package Outline Drawing
M8.118B
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE
Rev 0, 7/11
3.0±0.10mm
5
A
D
8
4.9±0.20mm
DETAIL "X"
3.0±0.10mm
5
1.10 MAX
0.15 - 0.05mm
PIN# 1 ID
SIDE VIEW 2
1
2
B
0.65mm BSC
TOP VIEW
0.95 REF
0.86±0.05mm
H
GAUGE
PLANE
C
0.25
SEATING PLANE
0.23 - 0.36mm
0.08 M C A-B D
0.10 ± 0.05mm
3°±3°
0.10 C
0.53 ± 0.10mm
SIDE VIEW 1
DETAIL "X"
(5.80)
NOTES:
(4.40)
(3.00)
1. Dimensions are in millimeters.
(0.65)
(0.40)
(1.40)
TYPICAL RECOMMENDED LAND PATTERN
31
2. Dimensioning and tolerancing conform to JEDEC MO-187-AA
and AMSEY14.5m-1994.
3. Plastic or metal protrusions of 0.15mm max per side are not
included.
4. Plastic interlead protrusions of 0.15mm max per side are not
included.
5. Dimensions are measured at Datum Plane "H".
6. Dimensions in ( ) are for reference only.
FN6935.3
November 1, 2011
ISL28108, ISL28208, ISL28408
Package Outline Drawing
M14.15
14 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE
Rev 1, 10/09
8.65
A 3
4
0.10 C A-B 2X
6
14
DETAIL"A"
8
0.22±0.03
D
6.0
3.9
4
0.10 C D 2X
0.20 C 2X
7
PIN NO.1
ID MARK
5
0.31-0.51
B 3
(0.35) x 45°
4° ± 4°
6
0.25 M C A-B D
TOP VIEW
0.10 C
1.75 MAX
H
1.25 MIN
0.25
GAUGE PLANE C
SEATING PLANE
0.10 C
0.10-0.25
1.27
SIDE VIEW
(1.27)
DETAIL "A"
(0.6)
NOTES:
1. Dimensions are in millimeters.
Dimensions in ( ) for Reference Only.
2. Dimensioning and tolerancing conform to AMSEY14.5m-1994.
3. Datums A and B to be determined at Datum H.
(5.40)
4. Dimension does not include interlead flash or protrusions.
Interlead flash or protrusions shall not exceed 0.25mm per side.
5. The pin #1 indentifier may be either a mold or mark feature.
(1.50)
6. Does not include dambar protrusion. Allowable dambar protrusion
shall be 0.10mm total in excess of lead width at maximum condition.
7. Reference to JEDEC MS-012-AB.
TYPICAL RECOMMENDED LAND PATTERN
32
FN6935.3
November 1, 2011