Infineon® LITIX™ Power Multitopology LITIXTM Power DC/DC Controller IC TLD5095EL Infineon® LITIX™ Power Multitopology LITIXTM Power DC/DC Controller IC Data Sheet Revision 1.4 2015-03-11 Automotive Power Infineon® LITIX™ Power TLD5095EL Table of Contents Table of Contents Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 3.1 3.2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 4.1 4.2 4.3 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5 5.1 5.2 Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 6 6.1 6.2 Oscillator and Synchronisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Electrical Characteristics Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Typical Performance Characteristics of Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 7 7.1 Enable and Dimming Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 8 8.1 Linear Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 9 9.1 9.2 Protection and Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 10 10.1 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 11 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Data Sheet 2 Revision 1.4 2015-03-11 Not for Customers TLD5095EL 1 Infineon® LITIX™ Power Overview • Wide Input Voltage Range from 4.75 V to 45 V • Constant Current or Constant Voltage Regulation • Drives LEDs in Boost, Buck, Buck-Boost, SEPIC and Flyback • Topology • Very Low Shutdown Current: IQ< 10 µA • Flexible Switching Frequency Range, 100 kHz to 500 kHz • Synchronization with external clock source • Output Open Circuit Diagnostic Output • PWM Dimming • Internal Soft Start • 300mV High Side Current Sense to ensure highest flexibility and LED current accuracy • Internal 5 V Low Drop Out Voltage Regulator • Wide LED current range via simple adaptation of external components • Available in a small thermally enhanced PG-SSOP-14 package • Output Overvoltage Protection • Over Temperature Shutdown • Automotive AEC Qualified • Green Product (RoHS) Compliant PG-SSOP-14 Description The TLD5095EL is a smart multitopology LED controller with built in protection and diagnostic features. The main function of this device is to regulate a constant LED current. The constant current regulation is especially beneficial for LED color accuracy and longer lifetime. The controller concept of the TLD5095EL allows a multi-purpose usage such as Boost, Buck, Buck-Boost, SEPIC and Flyback configuration with various load current levels by simply adjusting the external components. The TLD5095EL has a PWM output for dimming a LED load. The diagnostics are communicated on a status output (pin ST) to indicate a fault condition such as an LED open circuit. The switching frequency is adjustable in the range of 100 kHz to 500 kHz and can be synchronized to an external clock source. The TLD5095EL features an enable function reducing the shut-down current consumption to <10 µA. The current mode regulation scheme of this device provides a stable regulation loop maintained by small external compensation components. The integrated softstart feature limits the current peak as well as voltage overshoot at start-up. This IC is suited for use in the harsh automotive environments and provides protection functions such as output overvoltage protection and overtemperature shutdown. Application • Automotive Exterior and Interior Lighting Type Package Marking TLD5095EL PG-SSOP-14 TLD5095 Data Sheet 3 Revision 1.4, 2015-03-11 Infineon® LITIX™ Power TLD5095EL Block Diagram 2 Block Diagram IN EN / PWMI FREQ/ SYNC 14 LDO 13 EN_INT/ PWM_INT On/Off Logic Oscillator Power Switch Gate Driver Soft Start 2 PWM Generator 11 4 Switch Current Error Amplifier 3 Diagnostics Logic Over Volage Protection 9 Open Load Detection COMP SWO SWCS SGND Leading Edge Blanking Thermal Protection 10 IVCC Power On Reset Internal Supply Slope Comp. ST 1 OVFB FBH Feedback Voltage Error Amplifier 8 EN_INT/ PWM_INT Dimming Switch Gate Driver 6 7 5 FBL PWMO 12 BlockDiagram .vsd GND Figure 2-1 Data Sheet Block Diagram TLD5095EL 4 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL Pin Configuration 3 Pin Configuration 3.1 Pin Assignment IVCC 1 14 IN SWO 2 13 EN/PWMI SGND 3 12 GND SWCS 4 11 FREQ/SYNC PWMO 5 10 ST FBH FBL Figure 3-1 3.2 Table 3-1 6 EP 9 OVFB 7 8 COMP Pin Configuration TLD5095EL Pin Definitions and Functions Pin Definition and Function # Symbol 1 IVCC Internal LDO Output; Used for internal biasing and gate drive. Bypass with external capacitor. Pin must not left open. 2 SWO Switch Output; Connect to gate of external switching MOSFET 3 SGND Current Sense Ground; Ground return for current sense switch 4 SWCS Current Sense Input; Detects the peak current through switch 5 PWMO PWM Dimming Output; Connect to gate of external MOSFET 6 FBH Voltage Feedback Positive; Non inverting Input (+) 7 FBL Voltage Feedback Negative; Inverting Input (-) Data Sheet Direction Type Function 5 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL Pin Configuration Table 3-1 Pin Definition and Function # Symbol Direction Type Function 8 COMP Compensation Input; Connect R and C network to pin for stability 9 OVFB Output Overvoltage Protection Feedback; Connect to resistive voltage divider to set overvoltage threshold. 10 ST Status Output; Open drain diagnostic output to indicate fault condition. Connect pull up resistor to pin. 11 FREQ / SYNC Frequency Select or Synchronization Input; Connect external resistor to GND to set frequency. Or apply external clock signal for synchronization within frequency capture range. 12 GND Ground; Connect to system ground. 13 EN / PWMI Enable or PWM Input; Apply logic high signal to enable device or PWM signal for dimming LED. 14 IN Supply Input; Supply for internal biasing. 15 EP Exposed Pad; Connect to external heat spreading Cu area with electrically GND (e.g. inner GND layer of multilayer PCB with thermal vias) Data Sheet 6 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Tj = -40°C to +150°C; all voltages with respect to ground (unless otherwise specified) Table 4-1 Absolute Maximum Ratings1) Parameter Symbol Values Min. Typ. Unit Max. Note or Number Test Condition Voltages IN Supply Input VIN -0.3 45 V P_4.1.1 EN / PWMI Enable or PWM Input VEN -40 45 V P_4.1.2 FBH-FBL; Feedback Error Amplifier Differential VFBH-VFBL -5.5 5.5 V P_4.1.3 FBH; Feedback Error Amplifier Positive Input VFBH -0.3 45 V P_4.1.4 FBL Feedback Error Amplifier Negative Input VFBL -0.3 45 V P_4.1.5 OVFB Over Voltage Feedback Input VOVP -0.3 5.5 V P_4.1.6 OVFB Over Voltage Feedback Input VOVP -0.3 45 V SWCS Switch Current Sense Input VSWCS -0.3 5.5 V SWCS Switch Current Sense Input VSWCS -0.3 6.2 V SWO Switch Gate Drive Output VSWO -0.3 5.5 V SWO Switch Gate Drive Output VSWO -0.3 6.2 V SGND Current Sense Switch GND VSGND -0.3 0.3 V P_4.1.12 COMP Compensation Input VCOMP -0.3 5.5 V P_4.1.13 COMP Compensation Input VCOMP -0.3 6.2 V Data Sheet 7 t < 10s P_4.1.7 P_4.1.8 t < 10s P_4.1.9 P_4.1.10 t < 10s t < 10s P_4.1.11 P_4.1.14 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL General Product Characteristics Table 4-1 Absolute Maximum Ratings1) Parameter Symbol Values Min. Typ. Unit Max. Note or Number Test Condition FREQ / SYNC; Frequency and Synchronization Input VFREQ / SYNC -0.3 5.5 V FREQ / SYNC; Frequency and Synchronization Input VFREQ / SYNC -0.3 6.2 V PWMO PWM Dimming Output VPWMO -0.3 5.5 V PWMO PWM Dimming Output VPWMO -0.3 6.2 V ST VST -0.3 45 V P_4.1.19 Diagnostic Status Output IST -5 5 mA P_4.1.20 IVCC Internal Linear Voltage Regulator Output VIVCC -0.3 5.5 V P_4.1.21 IVCC Internal Linear Voltage Regulator Output VIVCC -0.3 6.2 V Junction Temperature Tj -40 150 °C P_4.1.23 Storage Temperature Tstg -55 150 °C P_4.1.24 VESD,HBM -2 2 kV P_4.1.15 t < 10s P_4.1.16 P_4.1.17 t < 10s t < 10s P_4.1.18 P_4.1.22 Temperatures ESD Susceptibility ESD Resistivity to GND ESD Resistivity to GND ESD Resistivity Pin 1,7,8,14 (corner pins) to GND VESD,CDM VESD,CDM,C -500 500 -750 750 V V HBM2) P_4.1.25 CDM 3) P_4.1.26 CDM 3) P_4.1.27 1) Not subject to production test, specified by design. 2) ESD susceptibility, Human Body Model “HBM” according to ANSI/ESDA/JEDEC JS-001 (1.5kW, 100pF) 3) ESD susceptibility, Charged Device Model “CDM” ESDA STM5.3.1 or ANSI/ESD S.5.3.1 Note: 1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Data Sheet 8 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL General Product Characteristics 4.2 Functional Range Table 4-2 Functional Range Parameter Symbol Values Min. Typ. Unit Note or Test Condition Number VIVCC > VIVCC,RTH,d P_4.2.1 Max. Supply Voltage VIN 4.75 45 V Feedback Voltage Input VFBH; VFBL 4.5 45 V P_4.2.2 Junction Temperature Tj -40 150 °C P_4.2.3 Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. 4.3 Thermal Resistance Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org. Table 4-3 Thermal Resistance Parameter Symbol Values Min. 1)2) Junction to Case 3) Junction to Ambient Typ. Unit Max. RthJC 10 K/W RthJA 42 K/W Note or Test Condition Number P_4.3.1 2s2p P_4.3.2 2 P_4.3.3 P_4.3.4 Junction to Ambient RthJA 42 K/W 1s0p + 600mm Junction to Ambient RthJA 42 K/W 1s0p + 300mm2 1) Not subject to production test, specified by design. 2) Specified RthJC value is simulated at natural convection on a cold plate setup (all pins and the exposed pad are fixed to ambient temperature). Ta=25°C is dissipating 1W. 3) Specified RthJA value is according to JEDEC 2s2p (JESD 51-7) + (JESD 51-5) and JEDEC 1s0p (JESD 51-3) + heatsink area at natural convection on FR4 board; The device was simulated on a 76.2 x 114.3 x 1.5mm board. The 2s2p board has 2 outer copper layers (2 x 70µm Cu) and 2 inner copper layers (2 x 35µm Cu), A thermal via (diameter = 0.3mm and 25µm plating) array was applied under the exposed pad and connected the first outer layer (top) to the first inner layer and second outer layer (bottom) of the JEDEC PCB. Ta=25°C, IC is dissipating 1W Data Sheet 9 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL Regulator 5 Regulator 5.1 Description The TLD5095 regulator is suitable for Boost, Buck, Buck-Boost, SEPIC and Flyback configurations. The constant output current is especially useful for light emitting diode (LED) applications. The regulator function is implemented by a pulse width modulated (PWM) current mode controller. The PWM current mode controller uses the peak current through the external power switch and error in the output current to determine the appropriate pulse width duty cycle (on time) for constant output current. The current mode controller it provides a PWM signal to an internal gate driver which then outputs the same PWM signal to external n-channel enhancement mode metal oxide field effect transistor (MOSFET) power switch. The current mode controller also has built-in slope compensation to prevent sub-harmonic oscillations which is a characteristic of current mode controllers operating at high duty cycles (>50% duty). An additional built-in feature is an integrated soft start that limits the current through the inductor and external power switch during initialization. The soft start function gradually increases the inductor and switch current over 1 ms (typical) to minimize potential overvoltage at the output. OV FB TLD5095 H when OVFB >1.25V OVFB VRef = 1.25V High when IVCC < 4.0V UV IVCC COMP FBH x1 EA gmEA High when lEA - ISLOPE - I CS > 0 OFF when H 0.3 V Oscillator Low when Tj > 175 °C Soft start I R & > 1 Output Stage OFF when Low Slope Comp R S Clock & Q INV 1 Q S t & Gate Driver Supply & Q Error -FF SWO Current Sense PWM-FF Q IVCC Gate Driver I SLOPE VRef = = VRef 4 .0V NOR IEA FBL FREQ/ SYNC Current Comp NAND 2 & SWCS ICS SGND Figure 5-1 Data Sheet Block Diagram Buck Regulator 10 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL Regulator 5.2 Electrical Characteristics VIN = 6 V to 40 V; 4.5V≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Table 5-1 Electrical Characteristics: Buck Regulator Parameter Symbol Values Unit Note or Test Condition Number P_5.2.1 Min. Typ. Max. 0.28 0.30 0.32 V VIN = 19 V; VREF= VFBH -VFBL VIN = 6 to 19 V; P_5.2.2 VBO= 30 V; IBO = 500 mA Figure 10-11 VIN = 6 V; P_5.2.3 VBO = 30V; IBO = 100 to 500 mA Figure 10-11 Regulator Feedback Reference VREF Voltage Voltage Line Regulation ΔVREF /ΔVIN – – 0.15 %/V Voltage Load Regulation (ΔVREF / VREF) /ΔIBO – – 5 %/A Switch Peak Over Current Threshold VSWCS 130 150 170 mV VIN = 6 V VFBH = VFBL = 5 V VCOMP = 3.5V P_5.2.4 Maximum Duty Cycle DMAX,fixed 90 93 95 % Fixed frequency mode P_5.2.5 Maximum Duty Cycle DMAX,sync 88 – – % Synchronization mode P_5.2.6 Soft Start Ramp tSS 350 1000 1500 µs VFB rising from 5% to 95% of VFB, typ. P_5.2.7 Feedback Input Current IFBx -10 -50 -100 µA VFBH - VFBL = 0.3 V P_5.2.8 Switch Current ISWCS Sense Input Current 10 50 100 µA VSWCS = 150 mV P_5.2.9 Input Undervoltage Shutdown VIN,off 3.75 – – V VIN decreasing P_5.2.10 Input Voltage Startup VIN,on – – 4.75 V VIN increasing P_5.2.11 Gate Driver for External Switch Gate Driver Peak Sourcing Current1) ISWO,SRC – 380 – mA VSWO = 3.5V P_5.2.12 Gate Driver Peak Sinking Current ISWO,SNK – 550 – mA VSWO = 1.5V P_5.2.13 tR,SWO – 30 60 ns CL,SWO = 3.3nF; VSWO = 1V to 4V P_5.2.14 Gate Driver Output Rise Time Data Sheet 11 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL Regulator Table 5-1 Electrical Characteristics: Buck Regulator Parameter Gate Driver Output Fall Time Symbol tF,SWO Values Note or Test Condition Number Min. Typ. Max. – 20 40 ns CL,SWO = 3.3nF; VSWO = 1V to 4V P_5.2.15 5.5 V CL,SWO = 3.3nF P_5.2.16 Gate Driver Output VSWO 4.5 – Voltage 1) Not subject to production test, specified by design Data Sheet Unit 12 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL Oscillator and Synchronisation 6 Oscillator and Synchronisation Description R_OSC vs. switching frequency The internal oscillator is used to determine the switching frequency of the multitopology regulator. The switching frequency can be selected from 100 kHz to 500 kHz with an external resistor to GND. To set the switching frequency with an external resistor the following formula can be applied. (6.1) ( R FREQ = (141 ⋅ 10 − 12 1 − 3 . 5 ⋅ 10 ⎡ s ⎤ ⎛ ⎡1 ⎤ ⎞ ⋅ ) f ⎜ ⎟ FREQ ⎢⎣ Ω ⎥⎦ ⎢⎣ s ⎥⎦ ⎝ ⎠ 3 [Ω ])[Ω ] In addition, the oscillator is capable of changing from the frequency set by the external resistor to a synchronized frequency from an external clock source. If an external clock source is provided on the pin FREQ/SYNC, then the internal oscillator synchronizes to this external clock frequency and the multitopology regulator switches at the synchronized frequency. The synchronization frequency capture range is 250 kHz to 500 kHz. TLD5095 FREQ / SYN C Oscillator C lock Frequency D etector VCLK Multiplexer PWM Logic Gate Driver SW O R FREQ Oscillator_ BlkDiag_ SyncFixedM ode .vsd Figure 6-1 Oscillator and Synchronization Block Diagram and Simplified Application Circuit TSYNC = 1 / fSYNC VSYNC tSYNC,PWH VSYNC,H VSYNC,L t Figure 6-2 Data Sheet Synchronization Timing Diagram 13 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL Oscillator and Synchronisation 6.1 Electrical Characteristics Oscillator VIN = 6 V to 40 V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Table 6-1 Electrical Characteristics Parameter Symbol Values Unit Note or Test Condition Number P_6.1.1 Min. Typ. Max. Oscillator Frequency fFREQ 250 300 350 kHz RFREQ = 20kΩ Oscillator Frequency fFREQ Adjustment Range 100 – 500 kHz 17% internal P_6.1.2 tolerance + external resistor tolerance FREQ / SYNC Supply IFREQ Current – – -700 µA VFREQ = 0 V P_6.1.3 Frequency Voltage VFREQ 1.16 1.24 1.32 V fFREQ = 100 kHz P_6.1.4 Synchronization Frequency Capture Range fSYNC 250 – 500 kHz Synchronization Signal High Logic Level Valid VSYNC,H 3.0 – – V 1) P_6.1.6 Synchronization VSYNC,L Signal Low Logic Level Valid – – 0.8 V 1) P_6.1.7 Synchronization Signal Logic High Pulse Width 200 – – ns 1) P_6.1.8 Oscillator Synchronisation tSYNC,PWH P_6.1.5 1) Synchronization of external PWM ON signal to falling edge Data Sheet 14 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL Oscillator and Synchronisation 6.2 Typical Performance Characteristics of Oscillator 600 500 fFREQ [kHz] 400 T j = 25 °C 300 200 100 0 0 10 20 30 40 50 60 70 80 RFREQ/SYNC [kohm] Oscillator _fFreq_vs_Rfreq.vsd Figure 6-3 Switching Frequency fSW versus Frequency Select Resistor to GND RFREQ/SYNC Data Sheet 15 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL Enable and Dimming Function 7 Enable and Dimming Function Description The enable function powers on or off the device. A valid logic low signal on enable pin EN/PWMI powers off the device and current consumption is less than 10 µA. A valid logic high enable signal on enable pin EN/PWMI powers on the device. The enable function features an integrated pull down resistor which ensures that the IC is shut down and the power switch is off in case the enable pin EN is left open. In addition to the enable function described above, the EN/PWMI pin detects a pulse width modulated (PWM) input signal that is fed through to an internal gate driver. The internal gate driver outputs the same PWM signal on the PWMO pin to an external n-channel enhancement mode MOSFET for PWM dimming an LED load. PWM dimming an LED is a commonly practiced dimming method to prevent color shift in an LED light source. Moreover the PWM output function may also be used for to drive other types of loads besides LED. The enable and PWM input function share the same pin. Therefore a valid logic low signal at the EN/PWMI pin needs to differentiate between an enable power off signal or an PWM low signal. The device differentiates between an enable off command and PWM dimming signal by requiring the signal at the EN/PWMI pin to stay low for a minimum of 8 ms. IN 14 Enable Microcontroller EN / PWMI 13 Enable / PWMI Logic LDO Enable 1 Gate Driver PWMI 2 Gate Driver 5 IVCC SWO PWMO EN_PWMI_BlockDiagram.svg Figure 7-1 Data Sheet Block Diagram and Simplified Application Circuit Enable and LED Dimming 16 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL Enable and Dimming Function tEN,START TPWMI tPWMI,H tEN,OFF,DEL VEN/PWMI VEN/PWMI,ON VEN/PWMI,OFF t VIVCC VIVCC,ON VIVCC,RTH t VPWMO t 1 fFREQ TFREQ = VSWO t Power On Normal Dim Normal Dim Normal SWO On PWMO Off SWO On PWMO Off SWO On PWMO On SWO Off PWMO On SWO Off PWMO On Power Off Delay Time Power Off Iq < 10 μA EN_PWMI_Timing.svg Figure 7-2 7.1 Timing Diagram Enable and LED Dimming Electrical Characteristics VIN = 6 V to 40 V, Tj = -40°C to +150°C, all voltages with respect to ground (unless otherwise specified) Table 7-1 Electrical Characteristics Parameter Symbol Values Min. Typ. 3.0 – Unit Max. Note or Test Condition Number Enable / PWM Input Enable/PWMI Turn On Threshold VEN/PWMI,ON Enable/PWMI Turn Off Threshold VEN/PWMI,OFF – – Enable/PWMI Hysteresis VEN/PWMI,HYS 50 Enable/PWMI High Input Current IEN/PWMI,H Data Sheet – V P_7.1.1 0.8 V P_7.1.2 200 400 mV P_7.1.3 – 30 µA 17 VEN/PWMI = 16.0 V P_7.1.4 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL Enable and Dimming Function Table 7-1 Electrical Characteristics Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number VEN/PWMI = 0.5 V P_7.1.5 Enable/PWMI Low Input Current IEN/PWMI,L – 0.1 1 µA Enable Turn Off Delay Time tEN,OFF,DEL 8 10 12 ms P_7.1.6 PWMI Min Duty Time tPWMI,H 4 – – µs P_7.1.7 100 – – µs P_7.1.8 IPWMO,SR – C 230 – mA VPWMO = 3.5V P_7.1.9 PWMO Gate Driver IPWMO,SN – Peak Sinking Current K 370 – mA VPWMO = 1.5V P_7.1.10 Enable Startup Time tEN,START Gate Driver for Dimming Switch PWMO Gate Driver Peak Sourcing Current1) PWMO Gate Driver Output Rise Time tR,PWMO – 50 100 ns CL,PWMO = 3.3nF; VPWMO = 1V to 4V P_7.1.11 PWMO Gate Driver Output Fall Time tF,PWMO – 30 60 ns CL,PWMO = 3.3nF; VPWMO = 1V to 4V P_7.1.12 PWMO Gate Driver Output Voltage VPWMO 4.5 – 5.5 V CL,PWMO = 3.3nF P_7.1.13 Iq_off – – 10 µA VEN/PWMI = 0.8 V; P_7.1.14 Tj ≤ 105C; VIN = 16V Iq_on – – 7 mA VEN/PWMI ≥ 4.75 V; IBO = 0 mA; VIN = 16V VSWO = 0% Duty Current Consumption Current Consumption, Shutdown Mode Current Consumption, Active Mode2) P_7.1.15 1) Not subject to production test, specified by design 2) Dependency on switching frequency and gate charge of external switches. Data Sheet 18 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL Linear Regulator 8 Linear Regulator Description The internal linear voltage regulator supplies the internal gate drivers with a typical voltage of 5 V and current up to ILIM,min (parameter 8.2.2). An external output capacitor with ESR lower than RIVCC,ESR (parameter 8.2.5) is required on pin IVCC for stability and buffering transient load currents. During normal operation the external MOSFET switches will draw transient currents from the linear regulator and its output capacitor. Proper sizing of the output capacitor must be considered to supply sufficient peak current to the gate of the external MOSFET switches. Integrated Undervoltage Protection for the External Switching MOSFET An integrated undervoltage reset threshold circuit monitors the linear regulator output voltage (VIVCC) and resets the device in case the output voltage falls below the IVCC undervoltage reset switch OFF threshold (VIVCC,RTH,d). The undervoltage reset threshold for the IVCC pin helps to protect the external switches from excessive power dissipation by ensuring the gate drive voltage is sufficient to enhance the gate of an external logic level n-channel MOSFET. IN 14 1 IVCC Linear Regulator EN / PWMI 13 Gate Drivers LinReg_BlckDiag.vsd Figure 8-1 Data Sheet Voltage Regulator Block Diagram and Simplified Application Circuit 19 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL Linear Regulator 8.1 Electrical Characteristics VIN = 6 V to 40 V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Table 8-1 Electrical Characteristics Parameter Output Voltage Symbol VIVCC Values Min. Typ. Max. 4.6 5 5.4 Unit Note or Test Condition Number V 6 V ≤ VIN ≤ 45 V P_8.1.1 0.1 mA ≤ IIVCC ≤ 35 mA Output Current Limitation ILIM Drop out Voltage VDR 51 0.47 90 mA VIN = 13.5 V VIVCC = 4.5V P_8.1.2 1.4 V IIVCC = 50mA 1) P_8.1.3 – µF 2) P_8.1.4 0.5 W f = 10kHz P_8.1.5 Output Capacitor CIVCC Output Capacitor ESR RIVCC,ESR Undervoltage Reset Headroom VIVCC,HDRM 100 – – mV VIVCC decreasing VIVCC - VIVCC,RTH,d P_8.1.6 Undervoltage Reset Threshold VIVCC,RTH,d 4.0 – – V VIVCC decreasing P_8.1.7 Undervoltage Reset Threshold VIVCC,RTH,i – – 4.5 V VIVCC increasing P_8.1.8 1) Measured when the output voltage VCC has dropped 100 mV from its nominal value. 2) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum. Data Sheet 20 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL Protection and Diagnostic Functions 9 Protection and Diagnostic Functions 9.1 Description The TLD5095EL has integrated circuits to diagnose and protect against output overvoltage, open load, open feedback and overtemperature faults. In case any of the four fault conditions occur the Status output ST will output an active logic low signal to communicate that a fault has occurred. During an overvoltage or open load condition the gate driver outputs SWO and PWMO will turn off. Figure 9-3 illustrates the various open load and open feedback conditions. In the event of an overtemperature condition (Figure 9-6) the integrated thermal shutdown function turns off the gate drivers and internal linear voltage regulator. The typical junction shutdown temperature is 175°C. After cooling down the IC will automatically restart operation. Thermal shutdown is an integrated protection function designed to prevent immediate IC destruction and is not intended for continuous use in normal operation. Input Protection and Diagnostic Circuit Output Output Overvoltage Open Load SWO and PWMO Gate Driver Off OR Open Feedback Overtemperature Linear Regualtor Off OR Input Undervoltage Pro_Diag_BlckDiag.vsd Figure 9-1 Protection and Diagnostic Function Block Diagram Input Condition Overvoltage Open Load Open Feedback Overtemperature Level* False True False True False True False True ST H L H L H L H L Pro_Diag_TT.vsd *Note: Sw = Switching False = Condition does not exist True = Condition does exist Figure 9-2 Data Sheet Output SWO PWMO IVCC Sw* H or Sw * Active L L Active Sw* H or Sw * Active L L Active Sw* H or Sw * Active L L Active Sw* H or Sw * Active L L Shutdown Status Output Truth Table 21 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL Protection and Diagnostic Functions VBO Output Open Circuit Conditions Open Circuit 3 TLD5095 Open Circuit 1 ROVH Open Circuit 2 9 VOVFB,TH D1 ROVL D2 Fault Threshold Voltage VREF 1 Open FBH -20 to -100 mV 2 Open FBL 0.5 to 1.0 V 3 Open VBO VFBx < VFBx,min = 4.5V 4 Open PWMO Detected by overvoltage D3 Feedback Voltage Error Amplifier FBH FBL VREF D4 6 7 D5 + VREF - D6 Max Threshold = 1.0 V D7 D8 Min Threshold = 0.5 V D9 D10 Typical V REF = 0.3 V Open Circuit 4 Max Threshold = -20 mV TDIM PWMO Figure 9-3 Open FBL OVFB Fault Condition Min Threshold = -100 mV 5 Open FBH Open VBO Overvoltage Compartor RFB Open Circuit Condition Open Load and Open Feedback Conditions VOVFB example: VOUT,max=40V VOVP,max 1.25mA ROVH TLD5095 OVFB VOVFB,TH 9 ROVL GND Overvoltage Protection ACTIVE 40V ≅ 33.2kΩ 1.25mA 1kΩ 1.25V 1.25V Overvoltage Protection is disabled 12 t Figure 9-4 Data Sheet Overvoltage Protection Description 22 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL Protection and Diagnostic Functions Status Output Timing Diagram Startup Normal Thermal Shutdown 1 VIVCC Overvoltage Open Load / Feedback 2 3 Shutdown VIVCC,RTH,i VIVCC,RTH ,d TJ T J,SD,HYST t 1 TJ,SD VBO t 2 VOVFB ≥ VOVFB,TH VOVFB < V OVFB,T L VFBH -VFBL VREF,2 t 3 tSS tSS 0.3 V Typ t VREF,1 VST tSD tSD tSD t Figure 9-5 Data Sheet Status Output Timing Diagram 23 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL Protection and Diagnostic Functions VEN/PWMI H L t Tj TjSD ΔΤ TjSO t Ta VSWO t ILED Ipeak t VPWMO t VST and VIVCC 5V t Device OFF Figure 9-6 Data Sheet Normal Operation Overtemp Fault ON Overtemp ON Fault Overtemp ON Fault Overtemp Fault Device Overtemperature Protection Behavior 24 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL Protection and Diagnostic Functions 9.2 Electrical Characteristics VIN = 6 V to 40 V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Table 9-1 Electrical Characteristics Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Status Output Status Output Voltage Low VST,LOW – – 0.4 V IST = 1mA P_9.2.1 Status Sink Current Limit IST,MAX 2 – – mA VST = 1V P_9.2.2 Status Output Current IST,HIGH – – 1 µA VST = 5V P_9.2.3 Status Delay Time tSD 8 10 12 ms P_9.2.4 Temperature Protection Overtemperature Shutdown Tj,SD 160 175 190 °C P_9.2.5 Overtemperature Shutdown Hystereses Tj,SD,HYST – 15 – °C P_9.2.6 Output Over Voltage VOVFB,TH Feedback Threshold Increasing 1.21 1.25 1.29 V P_9.2.7 Output Over Voltage VOVFB,HYS Feedback Hysteresis 50 – 150 mV Output Voltage decreasing P_9.2.8 Over Voltage Reaction Time tOVPRR 2 – 10 µs Output Voltage decreasing P_9.2.9 Over Voltage Feedback Input Current IOVFB -1 0.1 1 µA VOVFB = 1.25 V P_9.2.10 – -20 mV VREF = VFBH - VFBL P_9.2.11 Overvoltage Protection Open Load and Open Feedback Diagnostics Open Load/Feedback VREF,1,3 Threshold -100 Open Feedback Threshold 0.5 VREF,2 Open Circuit 1 or 3 – 1 V VREF = VFBH - VFBL P_9.2.12 Open Circuit 2 Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Data Sheet 25 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL Application Information 10 Application Information Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. LBO DBO VIN = 4.75V to 45V CIN CBO RFB 1 IN IVCC SWO 2 SWCS 4 D1 CIVCC VCC or VIVCC RCS RST STATUS 10 IC2 Microcontroller (e.g. XC866) ST 13 Spread Spectrum 3 OVFB 9 D2 D3 ROVH D4 D5 IC1 TLD5095 PWMI Digital Dimming SGND ROVL D6 D7 Classic Boost Setup: VOUT > VIN 14 VREF TSW D8 EN / PWMI 11 FREQ / SYNC 8 COMP FBH 6 FBL 7 PWMO 5 D9 ILED D10 CCOMP PWMO RFREQ TDIM GND RCOMP 12 Figure 10-1 Boost to Ground Application Circuit - B2G (Boost configuration) Reference Designator Value Manufacturer Part Number Type Quantity D1 - 10 White Osram LUW H9GP LED 10 DBO Schottky, 3 A, 100 VR Vishay SS3H10 Diode 1 CIN , CBO 100 uF, 50V Panasonic EEEFK1H101GP Capacitor 2 CCOMP 10 nF EPCOS X7R Capacitor 1 CIVCC 1uF , 6.3V EPCOS MLCC CCNPZC105KBW X7R Capacitor 1 IC1 -- Infineon TLD5095 IC 1 IC2 -- Infineon XC866 IC 1 LBO 100 uH Coilcraft MSS1278T-104ML Inductor 1 RCOMP 10 kΩ, 1% Panasonic ERJ3EKF1002V Resistor 1 RFB 820 mΩ, 1% Panasonic ERJ14BQFR82U Resistor 1 RFREQ, RST 20 kΩ, 1% Panasonic ERJ3EKF2002V Resistor 2 ROVH 33.2 kΩ, 1% Panasonic ERJ3EKF3322V Resistor 1 ROVL 1 kΩ, 1% Panasonic ERJ3EKF1001V Resistor 1 RCS 50 mΩ, 1% Panasonic ERJB1CFR05U Resistor 1 TDIM,TSW Dual N-ch enh. (60V, 20A) Infineon IPG20N06S4L-26 Transistor 1 alternativ: 100V N-ch, 35A Infineon IPG20N10S4L-22 Transistor 2 alternativ : 60V N-ch, 2.6A Infineon BSP318S Transistor 2 Figure 10-2 Bill of Materials for B2G Application Circuit Data Sheet 27 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL Application Information L1 DBO CSEPIC VIN CIN ISW RFB L2 14 TSW SWO 2 SWCS 4 IN ILED VCC or VIVCC RCS SGND 3 OVFB 9 RST STATUS IC2 Microcontroller (e.g. XC866) VREF CBO 10 ST PWMI Digital Dimming 13 Spread Spectrum D1 R OVH D2 D3 IC1 TLD5095 D4 R OVL D5 D6 D7 EN / PWMI 11 FREQ / SYNC 8 COMP FBH 6 FBL 7 IVCC 1 CCOMP DPOL Number of LEDs could be variable independent from VIN: Æ BUCK-BOOST configuration VIN = 4.75V to 45V Dn RPOL CIVCC RFREQ RCOMP PWMO PWMO TDIM 5 GND 12 Figure 10-3 SEPIC Application Circuit (Buck-Boost configuration) Reference Designator Value Manufacturer Part Number D1 - n White Osram DBO Schottky, 3 A, 100 VR Vishay DPOL 80V Diode CSEPIC Type Quantity LUW H9GP LED variable SS3H10 Diode 1 Infineon BAS1603W Diode 1 3.3 uF, 20V EPCOS X7R, Low ESR Capacitor 1 CIN , CBO 100 uF, 50V Panasonic EEEFK1H101GP Capacitor 2 CCOMP 10 nF EPCOS X7R Capacitor 1 CIVCC 1uF , 6.3V EPCOS X7R Capacitor 1 IC1 -- Infineon TLD5095 IC 1 IC2 -- Infineon XC866 IC 1 L1 , L2 47 uH Coilcraft MSS1278T-473ML Inductor 2 alternativ: 22uH coupled inductor Coilcraft MSD1278-223MLD Inductor 1 RCOMP, RPOL 10 kΩ, 1% Panasonic ERJ3EKF1002V Resistor 2 RFB 820 mΩ, 1% Panasonic ERJ14BQFR82U Resistor 1 RFREQ, RST 20 kΩ, 1% Panasonic ERJ3EKF2002V Resistor 2 ROVH 33.2 kΩ, 1% Panasonic ERJ3EKF3322V Resistor 1 ROVL 1 kΩ, 1% Panasonic ERJ3EKF1001V Resistor 1 RCS 50 mΩ, 1% Panasonic ERJB1CFR05U Resistor 1 TDIM,TSW Dual N-ch enh. (60V, 20A) Infineon IPG20N06S4L-26 Transistor 1 alternativ: 100V N-ch, 35A Infineon IPD35N10S3L-26 Transistor 2 alternativ : 60V N-ch, 2.6A Infineon BSP318S Transistor 2 Figure 10-4 Bill of Materials for SEPIC Application Circuit Data Sheet 28 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL Application Information DBO VIN VIN = 4.75V to 45V L1 CIN ISW RFB L2 14 TSW SWO 2 SWCS 4 IN ILED VCC or V IVCC RCS 3 10 ST OVFB 9 PWMI Digital Dimming 13 Output ROVH D1 D2 IC1 TLD5095 D3 ROVL D4 D5 D6 EN / PWMI 11 FREQ / SYNC 8 COMP FBH 6 FBL 7 IVCC 1 D7 CCOMP DPOL Number of LEDs could be variable independent from VIN: Æ BUCK-BOOST configuration SGND RST STATUS IC2 Microcontroller (e.g. XC866) VREF CBO RPOL Dn CIVCC RFREQ RCOMP PWMO GND TDIM 5 PWMO 12 Figure 10-5 Flyback Application Circuit (Buck-Boost configuration) Reference Designator Value Manufacturer Part Number Type Quantity D1 - n White Osram LUW H9GP LED variable DBO Schottky, 3 A, 100 VR Vishay SS3H10 Diode 1 CBO 3.3 uF, 50V (100V) EPCOS X7R, Low ESR Capacitor 1 CIN 100 uF, 50V Panasonic EEEFK1H101GP Capacitor 1 CCOMP 47 nF EPCOS X7R Capacitor 1 CIVCC 1 uF , 6.3V EPCOS X7R Capacitor 1 IC1 -- Infineon TLD5095 IC 1 IC2 -- Infineon XC866 IC 1 L1 , L2 1 µH / 9 uH EPCOS Transformer EHP 16 Inductor 1 RCOMP, RPOL 10 kΩ, 1% Panasonic ERJ3EKF1002V Resistor 2 DPOL 80 V Diode Infineon BAS1603W Diode 1 RFB 820 mΩ, 1% Isabellenhütte SMS – Power Resistor Resistor 1 RFREQ, RST 10 kΩ, 1% Panasonic ERJ3EKF1002V Resistor 2 ROVH 56.2 kΩ, 1% Panasonic ERJ3EKF5622V Resistor 1 ROVL 1.24 kΩ, 1% Panasonic ERJ3EKF1241V Resistor 1 RCS 5 mΩ, 1% Isabellenhütte SMS - Power Resistor Resistor 1 TDIM,TSW Dual N-ch enh. (60V, 20A) Infineon IPG20N06S4L-26 Transistor 1 alternativ: 100V N-ch, 35A Infineon IPG20N10S4L-22 Transistor 2 alternativ : 60V N-ch, 2.6A Infineon BSP318S Transistor 2 Figure 10-6 Bill of Materials for Flyback Application Circuit Data Sheet 29 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL Application Information CBO RFB TDIM2 VIN = 4.75V to 45V CIN DZ Dn RDIM2 D1 Number of LEDs could be variable independent from VIN: Æ BUCK-BOOST configuration RDIM1 LBO DBO TDIM1 ILED ISW PWMO VOUT 5 PWMO VCC or V IVCC RST STATUS 6 FBH 7 FBL 14 IN 10 ST SWO 2 SWCS 4 SGND 3 OVFB 9 TSW RCS ROVH IC1 TLD5095 IC2 Microcontroller (e.g. XC866) PWMI Digital Dimming 13 EN / PWMI Spread Spectrum 11 FREQ / SYNC ROVL COMP 8 IVCC 1 CCOMP CIVCC GND RFREQ RCOMP 12 Figure 10-7 Boost to Battery Application Circuit - B2B (Buck-Boost configuration) Reference Designator Value Manufacturer Part Number Type Quantity D1 - n White Osram LUW H9GP Diode variable DBO Schottky, 3 A, 100 VR Vishay SS3H10 Diode 1 DZ 5V Vishay Zener Diode 1 CBO 100 uF, 80V Panasonic EEVFK1K101Q Capacitor 1 CIN 100 uF, 50V Panasonic EEEFK1H101GP Capacitor 1 CCOMP 10 nF EPCOS X7R Capacitor 1 CIVCC 1 uF, 6.3V EPCOS MLCC CCNPZC105KBW X7R Capacitor 1 IC1 -- Infineon TLD5095 IC 1 IC2 -- Infineon XC866 IC 1 LBO 100 uH Coilcraft MSS1278T-104ML_ Inductor 1 RCOMP, RDIM1, RDIM2 10 kΩ, 1% Panasonic ERJ3EKF1002V Resistor 3 RFB 820 mΩ, 1% Panasonic ERJ14BQFR82U Resistor 1 RFREQ, RST 20 kΩ, 1% Panasonic ERJ3EKF2002V Resistor 2 ROVH 33.2 kΩ, 1% Panasonic ERJP06F5102V Resistor 1 ROVL 1 kΩ, 1% Panasonic ERJ3EKF1001V Resistor 1 RCS 50 mΩ, 1% Panasonic ERJB1CFR05U Resistor 1 TDIM1,TDIM2 60V Dual N-ch (3.1A) and P-ch. enh. (2A) Infineon BSO615CG Transistor 1 alternativ: 100V N-ch (0.37A), Infineon BSP123 Transistor 1 alternativ: 60V P-ch (1.9A) Infineon BSP171P Transistor 1 N-ch, OptiMOS-T2 100V, 35A Infineon IPD35N10S3L-26 Transistor 1 alternativ: 60V N-ch, 30A Infineon IPD30N06S4L-23 Transistor 1 alternativ : 60V N-ch, 2.6A Infineon BSP318S Transistor 1 TSW Applicationdrawing _plus _BOM_B2B_T LD5095 _April2012 .vsd Figure 10-8 Bill of Materials for B2B Application Circuit Data Sheet 30 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL Application Information D BO CBO VREF D1 D2 LBO VIN = 4.75V to 45V CIN RFB 14 CIVCC 1 IVCC I LED TSW SWO 2 SWCS 4 IN BUCK Setup: VIN > VOUT VCC or VIVCC RCS RST STATUS 10 ST 13 EN / PWMI 11 Spread Spectrum FREQ / SYNC 8 COMP 3 OVFB 9 FBH 6 FBL 7 PWMO 5 IC1 TLD5095 IC2 Microcontroller (e.g. XC866) Enable SGND CCOMP RFREQ GND RCOMP 12 Figure 10-9 Buck Application Circuit Reference Designator Value Manufacturer Part Number Type Quantity D1 -2 White Osram LE UW Q9WP LED 2 DBO Schottky , 3 A, 100 VR Vishay SS3H10 Diode 1 CBO 4.7 uF, 50V EPCOS X7R Capacitor 1 CIN 100 uF, 50V Panasonic EEEFK1H101GP Capacitor 1 CCOMP 47 nF EPCOS X7R Capacitor 1 CIVCC 1 uF , 6.3V EPCOS MLCC CCNPZC105KBW X7R Capacitor 1 IC1 -- Infineon TLD5095 IC 1 IC2 -- Infineon XC866 IC 1 L1 22 µH Coilcraft MSS1278T Inductor 1 RCOMP 10 kΩ, 1% Panasonic ERJ3EKF1002V Resistor 1 RFB 820 mΩ, 1% Isabellenhütte SMS – Power Resistor Resistor 1 RFREQ, RST 20 kΩ, 1% Panasonic ERJ3EKF2002V Resistor 2 RCS 50 mΩ, 1% Isabellenhütte SMS - Power Resistor Resistor 1 TSW 100V, N-ch, 35A Infineon IPG20N10S4L-22 Transistor 1 alternativ : 60V N-ch, 30A Infineon IPD30N06S4L-23 Transistor 1 Figure 10-10 Bill of Materials for Buck Application Circuit Data Sheet 31 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL Application Information LBO D BO ILoad VIN = 4.75V to 45V CBO C IN constant VOUT RL CIVCC VCC or VIVCC SWO 2 SWCS 4 IVCC 1 R CS SGND 3 OVFB 9 RST STATUS 10 IC2 Microcontroller (e.g. XC866) 5 ST PWMO Enable 13 EN / PWMI 11 FREQ / SYNC 8 COMP ROVL RFB1 FBH 6 R FB2 CCOMP RCOMP ROVH IC1 TLD5095 Spread Spectrum RFREQ TSW IN 14 FBL VREF 7 RFB3 GND 12 Figure 10-11 Boost Voltage Application Circuit Reference Designator Value Manufacturer Part Number Type Quantity DBO Schottky , 3 A, 100 VR Vishay SS3H10 Diode 1 CBO 100 uF, 80V Panasonic EEVFK 1K101Q Capacitor 1 CIN 100 uF, 50V Panasonic EEEFK1H101GP Capacitor 1 CCOMP 10 nF, 16V EPCOS X7R Capacitor 1 CIVCC 1 uF, 6.3V Panasonic X7R Capacitor 1 IC1 -- Infineon TLD5095 IC 1 IC2 -- Infineon XC866 IC 1 LBO 100 uH Coilcraft MSS1278T-104ML_ Inductor 1 RCOMP 10 kohms, 1% Panasonic ERJ3EKF1002V Resistor 1 RFB1,RFB3 51 kohms, 1% Panasonic ERJ3EKF5102V Resistor 1 RFB2 1 kohms, 1% Panasonic ERJ3EKF1001V Resistor 1 RFREQ, RST 20 kohms, 1% Panasonic ERJ3EKF2002V Resistor 2 ROVH 33.2 kohms, 1% Panasonic ERJ3EKF3322V Resistor 1 ROVL 1 kohms, 1% Panasonic ERJ3EKF1001V Resistor 1 RCS 50 mohms, 1% Panasonic ERJB1CFR05U Resistor 1 TSW N-ch, OptiMOS-T2 100V Infineon IPD35N10S3L-26 Transistor 1 Figure 10-12 Bill of Materials for Boost Voltage Application Circuit Note: The application drawings and corresponding bill of materials are simplified examples. Optimization of the external components must be done accordingly to specific application requirements. Data Sheet 32 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL Application Information 10.1 Further Application Information • For further information you may contact http://www.infineon.com/ • Application Note: TLD509x DC-DC Multitopology Controller IC “Dimensioning and Stability Guideline Theory and Practice” Data Sheet 33 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL Package Outlines 11 Package Outlines 0.19 +0.06 0.08 C 0.15 M C A-B D 14x 0.64 ±0.25 1 8 1 7 0.2 M D 8x Bottom View 3 ±0.2 A 14 6 ±0.2 D Exposed Diepad B 0.1 C A-B 2x 14 7 8 2.65 ±0.2 0.25 ±0.05 2) 0.1 C D 8˚ MAX. C 0.65 3.9 ±0.11) 1.7 MAX. Stand Off (1.45) 0 ... 0.1 0.35 x 45˚ 4.9 ±0.11) Index Marking 1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Does not include dambar protrusion PG-SSOP-14-1,-2,-3-PO V02 Figure 11-1 Outline PG-SSOP-14 Dimensions in mm Green Product (RoHS Compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). Note: For further package information, please visit our website: http://www.infineon.com/packages. Data Sheet 34 Revision 1.4 2015-03-11 Infineon® LITIX™ Power TLD5095EL Revision History Revision 1.4, 2015-03-11 Page or Item Subjects (major changes since previous revision) Rev1.0 to Rev 1.4 Initial Data Sheet for TLD5095EL Data Sheet Responsible Date 2009-11-30 to 2014-03-10 35 Revision 1.4 2015-03-11 Trademarks of Infineon Technologies AG AURIX™, C166™, CanPAK™, CIPOS™, CoolGaN™, CoolMOS™, CoolSET™, CoolSiC™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, DrBLADE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, Infineon™, ISOFACE™, IsoPACK™, iWafer™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OPTIGA™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, ReverSave™, SatRIC™, SIEGET™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, SPOC™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™. Other Trademarks Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. ANSI™ of American National Standards Institute. AUTOSAR™ of AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. CIPURSE™ of OSPT Alliance. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. HYPERTERMINAL™ of Hilgraeve Incorporated. MCS™ of Intel Corp. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ of Openwave Systems Inc. RED HAT™ of Red Hat, Inc. RFMD™ of RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Trademarks Update 2014-11-12 www.infineon.com Edition 2015-03-11 Published by Infineon Technologies AG 81726 Munich, Germany © 2014 Infineon Technologies AG. All Rights Reserved. Do you have a question about any aspect of this document? Email: [email protected] Document reference Doc_Number Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of noninfringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.