TLD5097EL Data Sheet

Infineon® LITIX™ Power
Multitopology LITIXTM Power DC/DC Controller IC
TLD5097EL
Infineon® LITIX™ Power
Multitopology LITIXTM Power DC/DC Controller IC
Data Sheet
Revision 1.0
2015-03-12
Automotive Power
Infineon® LITIX™ Power
TLD5097EL
Table of Contents
Table of Contents
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
3.1
3.2
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
4.1
4.2
4.3
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5
5.1
5.2
Switching Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6
6.1
6.2
6.3
Oscillator and Synchronisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Typical Performance Characteristics of Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7
7.1
Enable and Dimming Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8
8.1
Linear Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9
9.1
9.2
Protection and Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
10
10.1
10.2
10.3
Analog Dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Purpose of Analog Dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
11
11.1
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
12
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Data Sheet
2
Revision 1.0 2015-03-12
Not for Customers
TLD5097EL
1
Infineon® LITIX™ Power
Overview
•
Wide Input Voltage Range from 4.5 V to 45 V
•
Constant Current or Constant Voltage Regulation
•
Drives LEDs in Boost, Buck, Buck-Boost, SEPIC and Flyback
Topology
•
Very Low Shutdown Current: Iq_OFF < 10 µA
•
Flexible Switching Frequency Range, 100 kHz to 500 kHz
•
Synchronization with external clock source
•
PWM Dimming
•
Analog Dimming feature to adjust average LED current
•
Internal 5 V Low Drop Out Voltage Regulator
•
Open Circuit Detection
•
Output Overvoltage Protection
•
Internal Soft Start
•
Over Temperature Shutdown
•
Wide LED current range via simple adaptation of external components
•
300mV High Side Current Sense to ensure highest flexibility and LED current accuracy
•
Available in a small thermally enhanced PG-SSOP-14 package
•
Automotive AEC Qualified
•
Green Product (RoHS) Compliant
PG-SSOP-14
Description
The TLD5097EL is a LED boost controller with built in protection features. The main function of this device is to regulate
a constant LED current. The constant current regulation is especially beneficial for LED color accuracy and longer lifetime.
The controller concept of the TLD5097EL allows multiple configurations such as Boost, Buck, Buck-Boost, SEPIC and
Flyback by simply adjusting the external components. The TLD5097EL offers the most flexible dimming options. Dimming
can be achieved with analog or PWM input.The switching frequency is adjustable in the range of 100 kHz to 500 kHz and
can be synchronized to an external clock source. The TLD5097EL features an enable function reducing the shut-down
current consumption to Iq_OFF < 10 µA. The current mode regulation scheme of this device provides a stable regulation
loop maintained by small external compensation components. The integrated soft start feature limits the current peak as
well as voltage overshoot at start-up. This IC is suited for use in the harsh automotive environments and provides output
overvoltage protection and device overtemperature shutdown.
Application
•
Automotive Exterior and Interior Lighting
Type
Package
Marking
TLD5097EL
PG-SSOP-14
TLD5097
Data Sheet
3
Revision 1.0, 2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Block Diagram
2
Block Diagram
IN
14
LDO
13
2
SWO
4
SWCS
3
SGND
9
OVFB
6
FBH
7
FBL
EN_INT/
PWM_INT
On/Off
Logic
Power Switch
Gate Driver
Soft
Start
Oscillator
FREQ / SYNC
IVCC
Power On
Reset
Internal
Supply
EN / PWMI
1
11
Slope
Comp.
PWM
Generator
Switch Current
Error Amplifier
Thermal
Protection
ST
5
Diagnostic
Logic
Leading Edge
Blanking
Open
Load
Over Voltage
Protection
SET
10
COMP
8
Reference
Current
Generation
Feedback Voltage
Error Amplifier
12
GND
Figure 2-1
Data Sheet
Block Diagram TLD5097EL
4
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Pin Configuration
3
Pin Configuration
3.1
Pin Assignment
Figure 3-1
3.2
Table 3-1
IVCC
1
14
IN
SWO
2
13
EN/PWMI
SGND
3
12
GND
SWCS
4
11
FREQ/SYNC
ST
5
10
SET
FBH
6
9
OVFB
FBL
7
8
COMP
exposed
Pad
Pin Configuration TLD5097EL
Pin Definitions and Functions
Pin Definition and Function
#
Symbol
1
IVCC
Internal LDO Output;
Used for internal biasing and gate drive. Bypass with
external capacitor. Pin must not be left open.
2
SWO
Switch Output;
Connect to gate of external switching MOSFET
3
SGND
Current Sense Ground;
Ground return for current sense switch
4
SWCS
Current Sense Input;
Detects the peak current through switch
5
ST
Status Output;to indicate fualt conditions
6
FBH
Voltage Feedback Positive;
Non inverting Input (+)
7
FBL
Voltage Feedback Negative;
Inverting Input (-)
8
COMP
Compensation Input;
Connect R and C network to pin for stability
Data Sheet
Direction
Type
Function
5
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Pin Configuration
Table 3-1
#
Symbol
9
OVFB
Pin Definition and Function
Direction
Type
Function
Output Overvoltage Protection Feedback;
Connect to resistive voltage divider to set overvoltage
threshold.
10 SET
Analog Dimming Input;
Load current adjustment Pin. Pin must not be left open. If
analog dimming feature is not used connect to IVCC pin.
11 FREQ / SYNC
Frequency Select or Synchronization Input;
Connect external resistor to GND to set frequency.
Or apply external clock signal for synchronization within
frequency capture range.
12 GND
Ground;
Connect to system ground.
13 EN / PWMI
Enable or PWM Input;
Apply logic HIGH signal to enable device or PWM signal for
dimming LED.
14 IN
Supply Input;
Supply for internal biasing.
EP
Data Sheet
Exposed Pad;
Connect to external heat spreading GND Cu area (e.g.
inner GND layer of multilayer PCB with thermal vias)
6
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
General Product Characteristics
4
General Product Characteristics
4.1
Absolute Maximum Ratings
Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise
specified)
Table 4-1
Absolute Maximum Ratings1)
Parameter
Symbol
Values
Min.
Typ.
Unit
Max.
Note or
Test Condition
Number
Voltages
IN
Supply Input
VIN
-0.3
45
V
P_4.1.1
EN / PWMI
Enable or PWM Input
VEN
-40
45
V
P_4.1.2
FBH-FBL;
Feedback Error Amplifier
Differential
VFBH-VFBL
-40
61
V
The maximum
delta must not
exceed 61V
FBH;
Feedback Error Amplifier
Positive Input
VFBH
-40
61
V
The difference
P_4.1.4
between VFBH and
VFBL must not
exceed 61V, refer
to Parameter
4.1.3
FBL
Feedback Error Amplifier
Negative Input
VFBL
-40
61
V
The difference
P_4.1.5
between VFBH and
VFBL must not
exceed 61V, refer
to Parameter
4.1.3
FBH and FBL Current
IFBL,FBH
mA
t < 100ms,
VFBH-VFBL =0.3V
OVFB
Over Voltage Feedback
Input
VOVP
-0.3
5.5
V
OVFB
Over Voltage Feedback
Input
VOVP
-0.3
6.2
V
SWCS
VSWCS
Switch Current Sense Input
-0.3
5.5
V
SWCS
VSWCS
Switch Current Sense Input
-0.3
6.2
V
Data Sheet
1
7
P_4.1.3
P_4.1.6
P_4.1.7
t < 10s
P_4.1.8
P_4.1.9
t < 10s
P_4.1.10
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
General Product Characteristics
Table 4-1
Absolute Maximum Ratings1)
Parameter
Symbol
Values
Min.
Typ.
Unit
Max.
Note or
Test Condition
Number
SWO
Switch Gate Drive Output
VSWO
-0.3
5.5
V
SWO
Switch Gate Drive Output
VSWO
-0.3
6.2
V
SGND
Current Sense Switch GND
VSGND
-0.3
0.3
V
P_4.1.13
COMP
Compensation Input
VCOMP
-0.3
5.5
V
P_4.1.14
COMP
Compensation Input
VCOMP
-0.3
6.2
V
FREQ / SYNC; Frequency
VFREQ / SYNC
and Synchronization Input
-0.3
5.5
V
FREQ / SYNC; Frequency
VFREQ / SYNC
and Synchronization Input
-0.3
6.2
V
PWMO
PWM Dimming Output
VPWMO
-0.3
5.5
V
PWMO
PWM Dimming Output
VPWMO
-0.3
6.2
V
ST
VST
-0.3
5.5
V
ST
VST
-0.3
6.2
V
ST current
IST
-2
2
mA
P_4.1.22
SET
VSET
-0.3
45
V
P_4.1.23
IVCC
Internal Linear Voltage
Regulator Output
VIVCC
-0.3
5.5
V
P_4.1.24
IVCC
Internal Linear Voltage
Regulator Output
VIVCC
-0.3
6.2
V
Junction Temperature
Tj
-40
150
°C
P_4.1.26
Storage Temperature
Tstg
-55
150
°C
P_4.1.27
VESD,HBM
-2
2
kV
HBM2)
P_4.1.28
ESD Resistivity of IN,
VESD,HBM
EN/PWMI, FBH, FBL and SET
pin to GND
-4
4
kV
HBM2)
P_4.1.29
P_4.1.11
t < 10s
t < 10s
P_4.1.12
P_4.1.15
P_4.1.16
t < 10s
P_4.1.17
P_4.1.18
t < 10s
P_4.1.19
P_4.1.20
t < 10s
t < 10s
P_4.1.21
P_4.1.25
Temperatures
ESD Susceptibility
ESD Resistivity of all pins
1) Not subject to production test, specified by design.
2) ESD susceptibility, Human Body Model “HBM” according to ANSI/ESDA/JEDEC JS-001 (1.5kΩ, 100pF)
Data Sheet
8
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
General Product Characteristics
Note:
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are
not designed for continuous repetitive operation.
4.2
Functional Range
Table 4-2
Functional Range
Parameter
Symbol
Values
Min.
Typ.
Unit
Note or
Test Condition
Number
V
VIVCC > VIVCC,RTH,d;
P_4.2.1
Max.
451)
Extended Supply
Voltage Range
VIN
Nominal Supply
Voltage Range
VIN
8
34
V
P_4.2.2
Feedback Voltage
Input
VFBH;
VFBL
3
60
V
P_4.2.3
Junction
Temperature
Tj
-40
150
°C
P_4.2.4
4.5
Parameter
deviations possible
1) Not subject to production test, specified by design
Note: Within the functional range the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics table.
Data Sheet
9
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
General Product Characteristics
4.3
Thermal Resistance
Note: This thermal data was generated in accordance with JEDEC JESD51 standards.
For more information, go to www.jedec.org.
Table 4-3
Thermal Resistance
Parameter
Symbol
Values
Min.
1)2)
Typ.
Unit
Max.
Note or
Test Condition
Number
Junction to Case
RthJC
10
K/W
Junction to
Ambient3)
RthJA
47
K/W
2s2p
Junction to Ambient RthJA
54
K/W
1s0p + 600mm2
P_4.3.3
K/W
2
P_4.3.4
Junction to Ambient RthJA
64
P_4.3.1
P_4.3.2
1s0p + 300mm
1) Not subject to production test, specified by design.
2) Specified RthJC value is simulated at natural convection on a cold plate setup (all pins and the exposed pad are fixed to
ambient temperature). Ta=25°C is dissipating 1W.
3) Specified RthJA value is according to JEDEC 2s2p (JESD 51-7) + (JESD 51-5) and JEDEC 1s0p (JESD 51-3) + heatsink
area at natural convection on FR4 board; The device was simulated on a 76.2 x 114.3 x 1.5mm board. The 2s2p board
has 2 outer copper layers (2 x 70µm Cu) and 2 inner copper layers (2 x 35µm Cu), A thermal via (diameter = 0.3mm and
25µm plating) array was applied under the exposed pad and connected the first outer layer (top) to the first inner layer and
second outer layer (bottom) of the JEDEC PCB. Ta=25°C, IC is dissipating 1W
Data Sheet
10
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Switching Regulator
5
Switching Regulator
5.1
Description
The TLD5097EL regulator is suitable for Boost, Buck, Buck-Boost, SEPIC and Flyback configurations. The
constant output current is especially useful for light emitting diode (LED) applications. The switching
regulator function is implemented by a pulse width modulated (PWM) current mode controller.
The PWM current mode controller uses the peak current through the external power switch and error in the
output current to determine the appropriate pulse width duty cycle (on time) for constant output current. The
current mode controller provides a PWM signal to an internal gate driver which then outputs to an external nchannel enhancement mode metal oxide field effect transistor (MOSFET) power switch.
The current mode controller also has built-in slope compensation to prevent sub-harmonic oscillations which
is a characteristic of current mode controllers operating at high duty cycles (>50% duty).
An additional built-in feature is an integrated soft start that limits the current through the inductor and
external power switch during initialization. The soft start function gradually increases the inductor and switch
current over tSS (Parameter 5.2.9) to minimize potential overvoltage at the output.
OV FB
H when
OVFB >1.25 V
OVFB 9
VRef
=
1.25V
High when
IVCC < 4.0V
COMP 8
FBH 6
x1
EA
Current
Comp
gmEA
FBL 7
High when
l EA - I SLOPE - I CS > 0
OFF
when H
I EA
SET 10
VRef
L ow when
T j > 175 °C
1
V
= VRef
Figure 5-1
Data Sheet
&
Output Stage
OFF when
L ow
I
Slope Comp
R
t
Clock
&
Q
INV
1
Q
S
S
&
Gate Driver
Supply
&
Q
Error-FF
2 SWO
Current
Sense
PWM-FF
Q
1 IVCC
Gate
Driver
0.3V
Oscillator
FREQ/
11
SYNC
Soft start
R
>
1
I SLOPE
( SET − 0.1V )
5
= VRef
4.0 V
NOR
0 if SET < 1.6V
0
UV IVCC
NAND 2
&
I CS
4 SWCS
3 SGND
Switching Regulator Block Diagram
11
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Switching Regulator
5.2
Electrical Characteristics
VIN = 8 V to 34 V; Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin;
(unless otherwise specified)
Table 5-1
Electrical Characteristics: Switching Regulator
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
Regulator
Feedback Reference
Voltage
VREF
0.29
0.30
0.31
V
refer to
Figure 11-11
VREF= VFBH -VFBL
VSET= 5V
ILED= 350 mA
P_5.2.1
Feedback Reference
Voltage
VREF
0.057
0.06
0.063
V
refer to
Figure 11-11
VREF= VFBH -VFBL
VSET= 0.4V
ILED= 70mA
P_5.2.2
Feedback Reference
Voltage Offset
VREF_offset
–
–
5
mV
refer to
Figure 10-2 and
Figure 11-11
VREF= VFBH -VFBL
VSET= 0.1V
VOUT>VIN
P_5.2.3
Voltage Line
Regulation
(ΔVREF / VREF) –
/ ΔVIN
–
0.15
%/V
refer to
Figure 11-11
VIN = 8V to 19V;
VSET = 5V;
ILED = 350mA
P_5.2.4
Voltage Load
Regulation
(ΔVREF /
VREF) / ΔIBO
–
–
5
%/A
refer to
P_5.2.5
Figure 11-11
VSET = 5V;
ILED = 100 to 500mA
Switch Peak Over
Current Threshold
VSWCS
130
150
170
mV
VFBH = VFBL = 5 V
VCOMP = 3.5V
P_5.2.6
Maximum Duty Cycle DMAX,fixed
91
93
95
%
Fixed frequency
mode
P_5.2.7
Maximum Duty Cycle DMAX,sync
88
–
–
%
Synchronization
mode
P_5.2.8
Soft Start Ramp
tSS
350
1000
1500
µs
VFB rising from 5%
to 95% of VFB, typ.
P_5.2.9
IFBH
Feedback High Input
Current
IFBH
38
46
54
µA
VFBH - VFBL = 0.3 V
P_5.2.10
Data Sheet
12
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Switching Regulator
Table 5-1
Electrical Characteristics: Switching Regulator
Parameter
Symbol
Values
Unit
Note or
Test Condition
Number
Min.
Typ.
Max.
15
21
27
µA
VFBH - VFBL = 0.3 V
P_5.2.11
Switch Current Sense ISWCS
Input Current
10
50
100
µA
VSWCS = 150 mV
P_5.2.12
Input Undervoltage
Shutdown
3.5
–
4.5
V
VIN decreasing
P_5.2.13
–
–
4.85
V
VIN increasing
P_5.2.14
IFBL
Feedback Low Input
Current
IFBL
VIN,off
Input Voltage Startup VIN,on
Gate Driver for External Switch
Gate Driver Peak
Sourcing Current
ISWO,SRC
–
380
–
mA
1)
VSWO = 1 V to 4 V P_5.2.15
Gate Driver Peak
Sinking Current
ISWO,SNK
–
550
–
mA
1)
VSWO = 4 V to 1 V P_5.2.16
Gate Driver Output
Rise Time
tR,SWO
–
30
60
ns
1)
CL,SWO = 3.3 nF;
VSWO = 1 V to 4 V
P_5.2.17
Gate Driver Output
Fall Time
tF,SWO
–
20
40
ns
1)
CL,SWO = 3.3 nF;
VSWO = 4 V to 1 V
P_5.2.18
Gate Driver Output
Voltage
VSWO
4.5
–
5.5
V
1)
P_5.2.19
CL,SWO = 3.3 nF
1) Not subject to production test, specified by design
Data Sheet
13
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Oscillator and Synchronisation
6
Oscillator and Synchronisation
6.1
Description
R_OSC vs. switching frequency
The internal oscillator is used to determine the switching frequency of the boost regulator. The switching
frequency can be selected from 100 kHz to 500 kHz with an external resistor to GND. To set the switching
frequency with an external resistor the following formula can be applied.
(6.1)
(
R FREQ =
(141 ⋅ 10
− 12
1
− 3 . 5 ⋅ 10
⎡ s ⎤ ⎛
⎡1 ⎤ ⎞
⋅
)
f
⎜
⎟
FREQ
⎢⎣ Ω ⎥⎦
⎢⎣ s ⎥⎦
⎝
⎠
3
[Ω ])[Ω ]
In addition, the oscillator is capable of changing from the frequency set by the external resistor to a
synchronized frequency from an external clock source. If an external clock source is provided on the pin
FREQ/SYNC, then the internal oscillator synchronizes to this external clock frequency and the boost regulator
switches at the synchronized frequency. The synchronization frequency capture range is 250 kHz to 500 kHz.
Oscillator
FREQ / SYNC
11
RFREQ
VCLK
Figure 6-1
Clock Frequency
Detector
Multiplexer
PWM
Logic
Gate
Driver
SWO
2
Oscillator and Synchronization Block Diagram and Simplified Application Circuit
TSYNC = 1 / fSYNC
VSYNC
tSYNC,PWH
VSYNC,H
VSYNC,L
t
Figure 6-2
Data Sheet
Synchronization Timing Diagram
14
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Oscillator and Synchronisation
6.2
Electrical Characteristics
VIN = 8 V to 34 V; Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin;
(unless otherwise specified)
Table 6-1
Electrical Characteristics: Oscillator and Synchronisation
Parameter
Symbol
Values
Unit
Note or
Test Condition
Number
RFREQ = 20kΩ
P_6.2.1
Min.
Typ.
Max.
Oscillator Frequency fFREQ
250
300
350
kHz
Oscillator Frequency fFREQ
Adjustment Range
100
–
500
kHz
FREQ / SYNC Supply
Current
IFREQ
–
–
-700
µA
VFREQ = 0 V
P_6.2.3
Frequency Voltage
VFREQ
1.16
1.24
1.32
V
fFREQ = 100 kHz
P_6.2.4
fSYNC
250
–
500
kHz
Synchronization
VSYNC,H
Signal
High Logic Level Valid
3.0
–
–
V
1)2)
P_6.2.6
Synchronization
VSYNC,L
Signal
Low Logic Level Valid
–
–
0.8
V
1)2)
P_6.2.7
Synchronization
Signal
Logic High Pulse
Width
200
–
–
ns
1)2)
P_6.2.8
Oscillator
P_6.2.2
Synchronisation
Synchronization
Frequency Capture
Range
tSYNC,PWH
P_6.2.5
1) Synchronization of external PWM ON signal to falling edge
2) Not subject to production test, specified by design
Data Sheet
15
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Oscillator and Synchronisation
6.3
Typical Performance Characteristics of Oscillator
600
500
fFREQ [kHz]
400
T j = 25 °C
300
200
100
0
0
10 20
30
40 50
60 70
80
RFREQ/SYNC [kohm]
Oscillator _fFreq_vs_Rfreq.vsd
Figure 6-3
Data Sheet
Switching Frequency fSW versus Frequency Select Resistor to GND RFREQ/SYNC
16
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Enable and Dimming Function
7
Enable and Dimming Function
Description
The enable function powers ON or OFF the device. A valid logic LOW signal on enable pin EN/PWMI powers OFF
the device and current consumption is less than Iq_OFF (Parameter 7.2.8). A valid logic HIGH enable signal on
enable pin EN/PWMI powers on the device. The enable function features an integrated pull down resistor
which ensures that the IC is shut down and the power switch is OFF in case the enable pin EN is left open.
In addition to the enable function described above, the EN/PWMI pin detects a pulse width modulated (PWM)
input signal that is fed through to the internal gate driver. The EN/PWMI enables and disables the gate driver
for the main switch during PWM operation. PWM dimming an LED is a commonly practiced dimming method
and can prevent color shift in an LED light source.
The enable and PWM input function share the same pin. Therefore a valid logic LOW signal at the EN/PWMI pin
needs to differentiate between an enable power OFF or an PWM dimming LOW signal. The device
differentiates between enable OFF and PWM dimming signal by requiring the enable OFF at the EN/PWMI pin
to stay LOW for the Enable Turn OFF Delay Time (tEN,OFF,DEL Parameter 7.2.6).
IN
14
Enable
Microcontroller
Figure 7-1
Data Sheet
EN / PWMI
Enable / PWMI
Logic
13
LDO
Enable / PWMI
1
Gate
Driver
2
IVCC
SWO
Block Diagram and Simplified Application Circuit Enable and LED Dimming
17
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Enable and Dimming Function
tEN,START
TPWMI
tPWMI,H
tEN,OFF,DEL
VEN/PWMI
VEN/PWMI,ON
VEN/PWMI,OFF
t
VIVCC
VIVCC,ON
VIVCC,RTH
t
VST
t
1
fFREQ
TFREQ =
VSWO
t
Power ON
Figure 7-2
Normal
Dim
Normal
Dim
Normal
SWO ON
ST OFF
SWO ON
ST OFF
SWO ON
ST ON
SWO OFF
ST ON
SWO OFF
ST ON
Power OFF Delay Time
Power OFF
Iq_OFF
Timing Diagram Enable and LED Dimming
Note: The ST signal is LOW during soft-start.
7.1
Electrical Characteristics
VIN = 8V to 34V; Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin;
(unless otherwise specified)
Table 7-1
Electrical Characteristics: Enable and Dimming
Parameter
Symbol
Values
Min.
Typ.
3.0
–
Unit
Max.
Note or
Test Condition
Number
Enable / PWM Input
Enable/PWMI
Turn On Threshold
VEN/PWMI,ON
Enable/PWMI
Turn Off Threshold
VEN/PWMI,OFF –
–
Enable/PWMI
Hysteresis
VEN/PWMI,HYS 50
Enable/PWMI
High Input Current
IEN/PWMI,H
Enable/PWMI
Low Input Current
IEN/PWMI,L
Data Sheet
V
P_7.1.1
0.8
V
P_7.1.2
200
400
mV
1)
P_7.1.3
–
–
30
µA
VEN/PWMI = 16.0 V
P_7.1.4
–
0.1
1
µA
VEN/PWMI = 0.5 V
P_7.1.5
18
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Enable and Dimming Function
Table 7-1
Electrical Characteristics: Enable and Dimming
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note or
Test Condition
Number
Enable Turn Off
Delay Time
tEN,OFF,DEL
8
10
12
ms
P_7.1.6
Enable Startup Time
tEN,START
100
–
–
µs
P_7.1.7
Iq_OFF
–
–
10
µA
VEN/PWMI = 0.8 V;
Tj ≤ 105°C;
VIN = 16V
P_7.1.8
Current Consumption, Iq_ON
Active Mode2)
–
–
7
mA
VEN/PWMI ≥ 4.75 V;
IBO = 0 mA;
VSWO = 0% Duty
P_7.1.9
Current Consumption
Current
Consumption,
Shutdown Mode
Cycle
1) Not subject to production test, specified by design
2) Dependency on switching frequency and gate charge of external switches.
Data Sheet
19
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Linear Regulator
8
Linear Regulator
Description
The internal linear voltage regulator supplies the internal gate drivers with a typical voltage of 5 V and current
up to ILIM,min (parameter P_8.1.2). An external output capacitor with ESR lower than RIVCC,ESR (parameter
P_8.1.5) is required on pin IVCC for stability and buffering transient load currents. During normal operation
the external MOSFET switches will draw transient currents from the linear regulator and its output capacitor.
Proper sizing of the output capacitor must be considered to supply sufficient peak current to the gate of the
external MOSFET switches.
Integrated Undervoltage Protection for the External Switching MOSFET
An integrated undervoltage reset threshold circuit monitors the linear regulator output voltage (VIVCC) and
resets the device in case the output voltage falls below the IVCC undervoltage reset switch OFF threshold
(VIVCC,RTH,d). The undervoltage reset threshold for the IVCC pin helps to protect the external switches from
excessive power dissipation by ensuring the gate drive voltage is sufficient to enhance the gate of an external
logic level n-channel MOSFET.
IN
14
1
IVCC
Linear Regulator
EN / PWMI
Figure 8-1
Data Sheet
13
Gate
Drivers
Voltage Regulator Block Diagram and Simplified Application Circuit
20
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Linear Regulator
8.1
Electrical Characteristics
VIN = 8V to 34V; Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin; (unless
otherwise specified)
Table 8-1
Electrical Characteristics:Line Regulator
Parameter
Symbol
Values
Note or
Test Condition
Number
Min.
Typ.
Max.
5
5.15
V
6 V ≤ VIN ≤ 45 V
P_8.1.1
0.1 mA≤IIVCC≤40mA
90
mA
VIN = 13.5 V
VIVCC = 4.5V
P_8.1.2
0.5
V
VIN = 4.5V
IIVCC = 25mA
P_8.1.3
100
µF
1)2)
P_8.1.4
P_8.1.5
Output Voltage
VIVCC
4.85
Output Current
Limitation
ILIM
51
Drop out Voltage
VDR
IVCC Buffer Capacitor CIVCC
Unit
0.47
1
IVCC Buffer Capacitor RIVCC,ESR
ESR
–
–
0.5
Ω
1)
Undervoltage Reset
Headroom
VIVCC,HDRM
100
–
–
mV
VIVCC decreasing
VIVCC - VIVCC,RTH,d
P_8.1.6
IVCC Undervoltage
Reset switch OFF
Threshold
VIVCC,RTH,d
3.6
–
4.0
V
3)
P_8.1.7
IVCC Undervoltage
Reset switch ON
Threshold
VIVCC,RTH,i
–
–
4.5
V
VIVCC increasing
P_8.1.8
VIVCC decreasing
1) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum.
2) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum.
3) Selection of external switching MOSFET is crucial and the VIVCC,RTH,d min. as worst case VGS must be considered.
Data Sheet
21
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Protection and Diagnostic Functions
9
Protection and Diagnostic Functions
9.1
Description
The TLD5097EL has integrated circuits to diagnose and protect against output overvoltage, open load, open
feedback and overtemperature faults. In case of a fault condition, the SWO signal stops operation. The ST
signal will change to an active logic LOW signal to communicate that a fault has occurred (detailed overview
in Figure 9-1and Figure 9-2 below). Figure 9-3 illustrates the various open load and open feedback
conditions. In case of an overtemperature condition the integrated thermal shutdown function turns off the
gate driver and internal linear voltage regulator. The typical junction shutdown temperature is 175°C (Tj,SD
Parameter 9.2.3). After cooling down the IC will automatically restart. Thermal shutdown is an integrated
protection function designed to prevent IC destruction and is not intended for continuous use in normal
operation (Figure 9-5). To calculate the proper overvoltage protection resistor values an example is given in
Figure 9-6.
Input
Protection and
Diagnostic Circuit
Output
Output
Overvoltage
Open Load
OR
SWO Gate Driver
OFF
Open Feedback
Overtemperature
Linear Regul ator
OFF
OR
Input
Undervoltage
Figure 9-1
Data Sheet
Protection and Diagnostic Function Block Diagram
22
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Protection and Diagnostic Functions
Input
Condition
Overvoltage @
Output
Level*
False
True
False
True
False
True
False
True
False
True
Open Load
Open Feedback
Overtemperature
Undervoltage @
Input
ST
H or Sw*
L
H or Sw*
L
H or Sw*
L
H or Sw*
L
H or Sw*
L
Output
SWO
Sw*
L
Sw*
L
Sw*
L
Sw*
L
Sw*
L
IVCC
Active
Active
Active
Active
Active
Active
Active
Shutdown
Active
Shutdown
*Note:
Sw = Switching
False = Condition does not exist
True = Condition does exist
Diagnosis Truth Table
VBO
Open Circuit 3
Open Circuit 1
ROVH
Overvoltage
Compartor
OVFB
Open Circuit 2
9
VOVFB,TH
RFB
ROVL
D1
D2
Output Open Circuit Conditions
Open Circuit
Condition
Fault Condition
Fault Threshold Voltage
VREF
1
Open FBH
-20 to -100 mV
2
Open FBL
0.5 to 1.0 V
3
Open VBO
-20 to -100 mV
4
Open LEDGND
Detected by overvoltage
D3
Feedback Voltage
Error Amplifier
FBH
FBL
VREF
D4
6
7
+
VREF
-
D5
D6
Max Threshold = 1.0 V
D7
D8
Open FBL
Figure 9-2
Min Threshold = 0.5 V
D9
D10
Typical V REF = 0.3 V
Figure 9-3
Data Sheet
Min Threshold = -100 mV
Open FBH
Open VBO
Max Threshold = -20 mV
Open Circuit 4
Open Load and Open Feedback Conditions
23
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Protection and Diagnostic Functions
Diagnosis Timing Diagram
Startup
Normal
VIVCC
Thermal
Shutdown
Overvoltage
Open Load /
Feedback
1
2
3
Shutdown
VIVCC,RTH,i
VIVCC,RTH,d
Tj
t
Tj,SD,HYST
1
Tj,SD
VBO
VOVFB,HYS
t
2
VOVFB ≥ VOVFB,TH
VIN
3
VFBH-VFBL
t
VREF,2
tSS
tSS
0.3 V Typ
t
VREF,1
VST
t
Figure 9-4
Data Sheet
Open load, Overvoltage and Overtemperature Timing Diagram
24
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Protection and Diagnostic Functions
VEN/PWMI
H
L
t
Tj
TjSD
ΔΤ
TjSO
t
Ta
VSWO
t
ILED
Ipeak
t
VST and
VIVCC
5V
t
Device
OFF
Figure 9-5
Normal Operation
Overtemp
Fault
ON
Overtemp
ON
Fault
Overtemp
ON
Fault
Overtemp
Fault
Device Overtemperature Protection Behavior
VOVFB
example: VOUT,max ≈ 40V
VOVP,max
1.25mA
ROVH
OVFB
VOVFB,TH
9
ROVL
GND
Overvoltage Protection
ACTIVE
40V
≅ 33.2kΩ
1.25mA
1kΩ 1.25V
1.25V
Overvoltage Protection is
disabled
12
t
Figure 9-6
Data Sheet
Overvoltage Protection Description
25
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Protection and Diagnostic Functions
9.2
Electrical Characteristics
VIN = 8V to 34V; Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin;
(unless otherwise specified)
Table 9-1
Electrical Characteristics: Protection and Diagnosis
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
Status Output
Status Output
Voltage Low
VST,LOW
–
–
0.4
V
1)
IST= 1mA
P_9.2.1
Status Output
Voltage High
VST,HIGH
VIVCC -0.4
–
VIVCC
V
1)
IST = -1mA
P_9.2.2
Temperature Protection
Overtemperature
Shutdown
Tj,SD
160
175
190
°C
1)
refer to
Figure 9-5
P_9.2.3
Overtemperature
Shutdown
Hystereses
Tj,SD,HYST
–
15
–
°C
1)
P_9.2.4
Output Over Voltage VOVFB,TH
Feedback Threshold
Increasing
1.21
1.25
1.29
V
refer to Figure 9-6 P_9.2.5
Output Over Voltage VOVFB,HYS
Feedback Hysteresis
50
–
150
mV
1)
Output Voltage
decreasing
P_9.2.6
Over Voltage
Reaction Time
tOVPRR
2
–
10
µs
1)
Output Voltage
decreasing
P_9.2.7
Over Voltage
Feedback Input
Current
IOVFB
-1
0.1
1
µA
VOVFB = 1.25 V
P_9.2.8
–
-20
mV
refer to Figure 9-3 P_9.2.9
VREF = VFBH - VFBL
Overvoltage Protection
Open Load and Open Feedback Diagnostics
Open
Load/Feedback
Threshold
VREF,1,3
Open Feedback
Threshold
VREF,2
-100
Open Circuit 1 or 3
0.5
–
1
V
VREF = VFBH - VFBL
P_9.2.10
Open Circuit 2
1) Specified by design; not subject to production test.
Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in
the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions
are not designed for continuous repetitive operation.
Data Sheet
26
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Analog Dimming
10
Analog Dimming
This pin is influencing the Feedback Voltage Error Amplifier by generating an internal current accordingly to
an external reference voltage (VSET). If the analog dimming feature is not needed this pin must be connected
to IVCC or external > 1.6V supply. Different application scenarios are described in Figure 10-3. This pin can
also go outside of the ECU for instance if a thermistor is connected on a separated LED Module and the Analog
Dimming Input is used to thermally protect the LEDs. For reverse battery protection of this pin an external
series resistor should be placed to limit the current.
10.1
Purpose of Analog Dimming
1. It is difficult for LED manufacturers to deliver LEDs which have the same Brightness, Colorpoint and
Forward Voltage Class. Due to this relatively wide spread of the crucial LED parameters automotive
customers order LEDs from one or maximum two different colorpoint classes. The LED manufacturer must
preselect the LEDs to deliver the requested colorpoint class. Those preselected LEDs are matched in terms
of the colorpoint but a variation of the brightness remains. To correct the brightness deviation an analog
dimming feature is needed. The mean LED current can be adjusted by applying an external voltage VSET
at the SET pin.
2. If the DC/DC application is separated from the LED loads the ECU manufacturers aim is to develop one
hardware which should be able to handle different load current conditions (e.g. 80mA to 400mA) to cover
different applications. To achieve this average LED current adjustment the analog dimming is a crucial
feature.
10.2
Description
Application Example
Desired LED current = 400mA. For the calculation of the correct Feedback Resistor RFB the following equation can
be used: This formula is valid if the analog dimming feature is disabled and VSET > 1.6V.
(10.1)
I LED =
VREF
V
0.3V
→ RFB = REF → RFB =
= 750mΩ
RFB
I LED
400mA
A decrease of the average LED current can be achieved by controlling the voltage at the SET pin (VSET) between
0V and 1.6V. The mathematical relation is given in the formula below:
(10.2)
I LED =
VSET − 0.1V
5 ⋅ RFB
If VSET is 100mV the LED current is only determined by the internal offset voltages of the comparators. For this
example ILED = 0A if VSET < 100mV. Refer to the concept drawing in Figure 10-2.
Data Sheet
27
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Analog Dimming
VREF
[V]
typ. 300mV
VSET
1.6V
100 mV
[V]
Analog Dimming
Disabled
Analog Dimming Feature Enabled
V − 0.1V
I LED = SET
5 * RFB
I LED =
VREF
RFB
Figure 10-1 Basic relationship between VREF and VSET Voltage
VREF
VOUT
RFB
ILED
FBL
FBH
7
6
IFBL
IFBH
R2
R1
Vint
VBandgap = 1.6V
VREF_offset
+
+
+
-
-
Feedback Voltage
Error Amplifier
ISET
SET
10
VSET
ISET
n*ISET
R3
100mV
COMP
GND
8
12
CCOMP
RCOMP
Figure 10-2 Concept Drawing Analog Dimming
Data Sheet
28
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Analog Dimming
Multi-purpose usage of the Analog dimming feature
1. A µC integrated digital analog converter (DAC) output or a stand alone DAC can be used to supply the SET
pin of the TLD5097EL. The integrated voltage Regulator (VIVCC) can be used to supply the µC or external
components if the current consumption does not exceed 20mA.
2. The analog dimming feature is directly connected to the input voltage of the system. In this configuration
the LED current is reduced if the input voltage VIN is decreasing. The DC/DC boost converter is changing
(increasing) the switching duty cycle if VIN drops to a lower potential. This is causing an increase of the
input current consumption. If applications require a decrease of the LED current in respect to VIN
variations this setup can be choosen.
3. The usage of an external resistor divider connected between IVCC (integrated 5V regulator output and gate
buffer pin) SET and GND can be choosen for systems without µC on board. The concept allows to control
the LED current via placing cheap low power resistors. Furthermore a temperature sensitive resistor
(Thermistor) to protect the LED loads from thermal destruction can be connected additionally.
4. If the analog dimming feature is not needed the SET pin must be connected directly to >1.6V potential (e.g.
IVCC potential)
5. Instead of an DAC the µC can provide a PWM signal and an external R-C filter is producing a constant
voltage for the analog dimming. The voltage level is depending on the PWM frequency (fPWM) and duty
cycle (DC) which can be controlled by the µc software after reading the coding resistor placed at the LED
module.
Data Sheet
29
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Analog Dimming
+5V
1
2
CIVCC
Vbb
1
14
IVCC
D/A-Output
µC
10
IN
RSET2
SET
10
SET
VSET
VSET RSET1
GND
Cfilter
GND
12
12
3
4
VIVCC = +5V
1
RSET2
Rfilter
CIVCC
10
VSET RSET1
VIVCC = +5V
IVCC
GND
VSET ~ VIVCC
12
IVCC
10
SET
CIVCC
SET
Cfilter
1
Cfilter
GND
12
5
+5V
1
IVCC
10
SET
CIVCC
PWM
PWM output
Rfilter
µC
(e.g. XC866)
Cfilter
VSET
GND
12
Figure 10-3 Analog Dimming in various applications
Data Sheet
30
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Analog Dimming
10.3
Electrical Characteristics
VIN = 8V to 34V; Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin;
(unless otherwise specified)
Table 10-1 Electrical Characteristics: Protection and Diagnosis
Parameter
Symbol
SET programming VSET
range
Values
Min.
Typ.
Max.
0
–
1.6
Unit
Note or
Test Condition
V
1)
Number
refer to Figure 10-1 P_10.3.1
1) Specified by design; not subject to production test.
Data Sheet
31
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Application Information
11
Application Information
Note: The following information is given as a hint for the implementation of the device only and shall not be
regarded as a description or warranty of a certain functionality, condition or quality of the device.
LBO
VIN
VIN = 4.5V to 45V
RFB
DBO
CIN
CBO
ILED
VREF
14
IN
TSW
SWO
2
SWCS
4
SGND
3
OVFB
9
RCS
VCC or VIVCC
PWM
Analog Dimming
D2
VSET
10
Rfilter
IC2
Microcontroller
(e.g. XC866)
D1
ROVH
SET
Cfilter
Status
5
PWMI
ST
IC1
TLD5097
Digital Dimming
13
EN / PWMI
Spread
Spectrum
11
FREQ / SYNC
8
COMP
D3
ROVL
D4
D5
FBH
6
FBL
7
IVCC
1
D6
D7
D8
D9
CCOMP
D10
CIVCC
RFREQ
RCOMP
GND
12
Figure 11-1 Boost to Ground Application Circuit - B2G (Boost configuration)
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D1 - 10
White
Osram
LUW H9GP
LED
10
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
CIN
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
1
CBO
10 uF, 50V
Panasonic
Electrolytic or Ceramic Bank
Capacitor
1
CCOMP
100 nF
EPCOS
X7R
Capacitor
1
CIVCC
1uF , 6.3V
EPCOS
MLCC CCNPZC105KBW X7R
Capacitor
1
IC1
--
Infineon
TLD5097
IC
1
IC2
--
Infineon
XC866
IC
1
LBO
100 uH
Coilcraft
MSS1278T-104ML
Inductor
1
RCOMP
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
1
RFB
820 mΩ, 1%
Panasonic
ERJ14BQFR82U
Resistor
1
RFREQ
20 kΩ, 1%
Panasonic
ERJ3EKF2002V
Resistor
1
ROVH
33.2 kΩ, 1%
Panasonic
ERJ3EKF3322V
Resistor
1
ROVL
1 kΩ, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RCS
50 mΩ, 1%
Panasonic
ERJB1CFR05U
Resistor
1
100V N-ch, 35A
Infineon
IPG20N10S4L-22
Transistor
1
alternativ: 60V N-ch, 30A
Infineon
IPD30N06S4L-23
Transistor
1
TSW
Figure 11-2 Bill of Materials for B2G Application Circuit
Data Sheet
32
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Application Information
L1
DBO
CSEPIC
VIN
CIN
ISW
RFB
L2
14
TSW
SWO
2
SWCS
4
IN
VREF
CBO
ILED
D1
RCS
VCC or VIVCC
PWM
10
Rfilter
Status
3
OVFB
9
VSET
Analog Dimming
IC2
Microcontroller
(e.g. XC866)
SGND
SET
Cfilter
PWMI
Digital Dimming
Spread
Spectrum
ROVH
D3
IC1
TLD5097
5
ST
13
EN / PWMI
11
FREQ / SYNC
8
COMP
D2
D4
ROVL
D5
D6
D7
FBH
6
FBL
7
IVCC
1
CCOMP
DPOL
Number of LEDs could be
variable independent from VIN:
Æ BUCK-BOOST configuration
VIN = 4.5V to 45V
Dn
RPOL
C IVCC
RFREQ
RCOMP
GND
12
Figure 11-3 SEPIC Application Circuit (Buck-Boost configuration)
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D1 - n
White
Osram
LUW H9GP
LED
variable
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
DPOL
80V Diode
Infineon
BAS1603W
Diode
1
CSEPIC
3.3 uF, 20V
EPCOS
X7R, Low ESR
Capacitor
1
CIN
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
1
CBO
10 uF, 50V
Panasonic
EEEFK 1H100P
Capacitor
1
CCOMP
100 nF
EPCOS
X7R
Capacitor
1
CIVCC
1uF , 6.3V
EPCOS
X7R
Capacitor
1
IC1
--
Infineon
TLD5097
IC
1
IC2
--
Infineon
XC866
IC
1
L1 , L2
47 uH
Coilcraft
MSS1278T-473ML
Inductor
2
alternativ: 22uH coupled
inductor
Coilcraft
MSD1278-223MLD
Inductor
1
RCOMP, RPOL
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
2
RFB
820 mΩ, 1%
Panasonic
ERJ14BQFR82U
Resistor
1
RFREQ
20 kΩ, 1%
Panasonic
ERJ3EKF2002V
Resistor
1
ROVH
33.2 kΩ, 1%
Panasonic
ERJ3EKF3322V
Resistor
1
ROVL
1 kΩ, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RCS
50 mΩ, 1%
Panasonic
ERJB1CFR05U
Resistor
1
100V N-ch, 35A
Infineon
IPD35N10S3L-26
Transistor
1
alternativ: 60V N-ch, 30A
Infineon
IPD30N06S4L-23
Transistor
1
TSW
Figure 11-4 Bill of Materials for SEPIC Application Circuit
Data Sheet
33
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Application Information
DBO
VIN
VIN = 4.5V to 45V
L1
CIN
ISW
RFB
L2
14
TSW
SWO
2
SWCS
4
IN
VREF
CBO
ILED
RCS
PWM
3
OVFB
9
VSET
Analog Dimming
10
Rfilter
IC2
Microcontroller
(e.g. XC866)
Status
SGND
SET
Cfilter
PWMI
Digital Dimming
Output
R OVH
D2
IC1
TLD5097
5
ST
13
EN / PWMI
11
FREQ / SYNC
8
COMP
D1
D3
R OVL
D4
D5
D6
FBH
6
FBL
7
IVCC
1
D7
CCOMP
DPOL
Number of LEDs could be
variable independent from VIN:
Æ BUCK-BOOST configuration
VCC or VIVCC
RPOL
Dn
C IVCC
RFREQ
RCOMP
GND
12
Figure 11-5 Flyback Application Circuit (Buck-Boost configuration)
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D1 - n
White
Osram
LUW H9GP
LED
variable
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
CBO
3.3 uF, 50V (100V)
EPCOS
X7R, Low ESR
Capacitor
1
CIN
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
1
CCOMP
47 nF
EPCOS
X7R
Capacitor
1
CIVCC
1 uF , 6.3V
EPCOS
X7R
Capacitor
1
IC1
--
Infineon
TLD5097
IC
1
IC2
--
Infineon
XC866
IC
1
L1 , L2
1 µH / 9 uH
EPCOS
Transformer EHP 16
Inductor
1
RCOMP, RPOL
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
2
DPOL
80 V Diode
Infineon
BAS1603W
Diode
1
RFB
820 mΩ, 1%
Isabellenhütte
SMS – Power Resistor
Resistor
1
RFREQ
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
1
ROVH
56.2 kΩ, 1%
Panasonic
ERJ3EKF5622V
Resistor
1
ROVL
1.24 kΩ, 1%
Panasonic
ERJ3EKF1241V
Resistor
1
RCS
5 mΩ, 1%
Isabellenhütte
SMS - Power Resistor
Resistor
1
TSW
100V N-ch, 35A
Infineon
IPG20N10S4L-22
Transistor
1
alternativ: 60V N-ch, 30A
Infineon
IPD30N06S4L-23
Transistor
1
Figure 11-6 Bill of Materials for Flyback Application Circuit
Data Sheet
34
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Application Information
CBO
RFB
VIN = 4.5V to 45V
CIN
Dn
D1
Number of LEDs could be
variable independent from VIN:
Æ BUCK-BOOST configuration
LBO
ILED
D BO
I SW
VOUT
VCC or V IVCC
PWM
Status
FBH
7
FBL
14
IN
R filter
10
SET
C filter
ST
5
PWMI
2
SWCS
4
SGND
3
OVFB
9
TSW
R CS
VSET
Analog Dimming
IC2
Microcontroller
(e.g. XC866)
6
SWO
R OVH
IC1
TLD5097
Digital Dimming
13
EN / PWMI
Spread Spectrum
11
FREQ / SYNC
R OVL
COMP
8
IVCC
1
C COMP
CIVCC
GND
RFREQ
R COMP
12
Figure 11-7 Boost to Battery Application Circuit - B2B (Buck-Boost configuration)
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D1 - n
White
Osram
LUW H9GP
Diode
variable
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
CBO
10 uF, 80V
Panasonic
EEEFK1K100P
Capacitor
1
CIN
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
1
CCOMP
100 nF
EPCOS
X7R
Capacitor
1
CIVCC
1 uF, 6.3V
EPCOS
MLCC CCNPZC105KBW X7R
Capacitor
1
IC1
--
Infineon
TLD5097
IC
1
IC2
--
Infineon
XC866
IC
1
LBO
100 uH
Coilcraft
MSS1278T-104ML_
Inductor
1
RCOMP
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
1
RFB
820 mΩ, 1%
Panasonic
ERJ14BQFR82U
Resistor
1
RFREQ
20 kΩ, 1%
Panasonic
ERJ3EKF2002V
Resistor
1
ROVH
33.2 kΩ, 1%
Panasonic
ERJP06F5102V
Resistor
1
ROVL
1 kΩ, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RCS
50 mΩ, 1%
Panasonic
ERJB1CFR05U
Resistor
1
TSW
N-ch, OptiMOS-T2 100V, 35A
Infineon
IPD35N10S3L-26
_plus _BOM_B2B_T
TransistorApplicationdrawingLD5097
1
_Sept 2012 .vsd
alternativ: 60V N-ch, 30A
Infineon
IPD30N06S4L-23
Transistor
1
Figure 11-8 Bill of Materials for B2B Application Circuit
Data Sheet
35
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Application Information
D BO
D1
C BO
D2
VREF
ILED
VIN = 4.5V to 45V
C IN
RFB
BUCK Setup:
VIN > VOUT
14
IN
10
SET
LBO
VCC or VIVCC
PWM
VSET
Analog Dimming
Rfilter
IC2
Microcontroller
(e.g. XC866)
C filter
Status
ST
5
PWMI
Digital Dimming
13
Spread Spectrum
IC1
TLD5097
FREQ / SYNC
8
COMP
R COMP
FBL
7
IVCC
1
RPOL
RPOL
TSW
SWO
2
SWCS
4
SGND
3
OVFB
9
R CS
C COMP
R FREQ
6
C IVCC
EN / PWMI
11
FBH
GND
12
Figure 11-9 Buck Application Circuit
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D1 -2
White
Osram
LE UW Q9WP
LED
2
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
DPOL
80V Diode
Infineon
BAS1603W
Diode
1
CBO
4.7 uF, 50V
EPCOS
X7R
Capacitor
1
CIN
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
1
CCOMP
47 nF
EPCOS
X7R
Capacitor
1
CIVCC
1 uF , 6.3V
EPCOS
MLCC CCNPZC105KBW X7R
Capacitor
1
IC1
--
Infineon
TLD5097
IC
1
IC2
--
Infineon
XC866
IC
1
L1
22 µH
Coilcraft
MSS1278T
Inductor
1
RPOL
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
1
RFB
820 mΩ, 1%
Isabellenhütte
SMS – Power Resistor
Resistor
1
RFREQ
20 kΩ, 1%
Panasonic
ERJ3EKF2002V
Resistor
1
RCS
50 mΩ, 1%
Isabellenhütte
SMS - Power Resistor
Resistor
1
TSW
100V N-ch, 35A
Infineon
IPG20N10S4L-22
Transistor
1
alternativ: 60V N-ch, 30A
Infineon
IPD30N06S4L-23
Transistor
1
Figure 11-10 Bill of Materials for Buck Application Circuit
Data Sheet
36
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Application Information
LBO
DBO
ILoad
VIN = 4.5V to 45V
CBO
CIN
constant
VOUT
RL
CIVCC
1
TSW
2
SWO
14
IN
4
SWCS
IVCC
RCS
VCC or VIVCC
PWM
IC2
Microcontroller
(e.g. XC866)
SGND
3
OVFB
9
VSET
10
Rfilter
SET
IC1
TLD5097
Cfilter
Status
5
ST
Enable
13
EN / PWMI
Spread Spectrum
11
FREQ / SYNC
8
COMP
RCOMP
ROVL
RFB1
FBH
6
FBL
7
RFB2
CCOMP
RFREQ
ROVH
VREF
RFB3
GND
12
Figure 11-11 Boost Voltage Application Circuit
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
CBO
100 uF, 80V
Panasonic
EEVFK1K101Q
Capacitor
1
CIN
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
1
CCOMP
10 nF, 16V
EPCOS
X7R
Capacitor
1
CIVCC
1 uF, 6.3V
Panasonic
X7R
Capacitor
1
IC1
--
Infineon
TLD5097
IC
1
IC2
--
Infineon
XC866
IC
1
LBO
100 uH
Coilcraft
MSS1278T-104ML_
Inductor
1
RCOMP
10 kohms, 1%
Panasonic
ERJ3EKF1002V
Resistor
1
RFB1,RFB3
51 kohms, 1%
Panasonic
ERJ3EKF5102V
Resistor
1
RFB2
1 kohms, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RFREQ
20 kohms, 1%
Panasonic
ERJ3EKF2002V
Resistor
1
ROVH
33.2 kohms, 1%
Panasonic
ERJ3EKF3322V
Resistor
1
ROVL
1 kohms, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RCS
50 mohms, 1%
Panasonic
ERJB1CFR05U
Resistor
1
TSW
N-ch, OptiMOS-T2 100V
Infineon
IPG20N10S4L-22
Transistor
1
Figure 11-12 Bill of Materials for Boost Voltage Application Circuit
Note: The application drawings and corresponding bill of materials are simplified examples. Optimization of the
external components must be done accordingly to specific application requirements.
Data Sheet
37
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Application Information
11.1
Further Application Information
•
For further information you may contact http://www.infineon.com/
•
Application Note: TLD509x DC-DC Multitopology Controller IC “Dimensioning and Stability Guideline Theory and Practice”
Data Sheet
38
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Package Outlines
12
Package Outlines
0.19 +0.06
0.08 C
0.15 M C A-B D 14x
0.64 ±0.25
1
8
1
7
0.2
M
D 8x
Bottom View
3 ±0.2
A
14
6 ±0.2
D
Exposed
Diepad
B
0.1 C A-B 2x
14
7
8
2.65 ±0.2
0.25 ±0.05 2)
0.1 C D
8˚ MAX.
C
0.65
3.9 ±0.11)
1.7 MAX.
Stand Off
(1.45)
0 ... 0.1
0.35 x 45˚
4.9 ±0.11)
Index Marking
1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Does not include dambar protrusion
PG-SSOP-14-1,-2,-3-PO V02
Figure 12-1 Outline PG-SSOP-14 Dimensions in mm
Green Product (RoHS Compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant
with government regulations the device is available as a green product. Green products are RoHS-Compliant
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
Note: For further package information, please visit our website: http://www.infineon.com/packages.
Data Sheet
39
Revision 1.0
2015-03-12
Infineon® LITIX™ Power
TLD5097EL
Revision History
Revision 1.0, 2015-03-12
Page or Item
Subjects (major changes since previous revision)
Rev1.0
Initial Data Sheet for TLD5097EL
Data Sheet
Responsible Date
2013-11-12
40
Revision 1.0 2015-03-12
Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CoolGaN™, CoolMOS™, CoolSET™, CoolSiC™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, DrBLADE™, EasyPIM™,
EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, Infineon™, ISOFACE™, IsoPACK™, iWafer™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OPTIGA™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™,
PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, ReverSave™, SatRIC™, SIEGET™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, SPOC™, TEMPFET™,
thinQ!™, TRENCHSTOP™, TriCore™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited,
UK. ANSI™ of American National Standards Institute. AUTOSAR™ of AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT
Forum. CIPURSE™ of OSPT Alliance. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.
FLEXGO™ of Microsoft Corporation. HYPERTERMINAL™ of Hilgraeve Incorporated. MCS™ of Intel Corp. IEC™ of Commission Electrotechnique Internationale.
IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of
Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc.,
USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies,
Inc. Openwave™ of Openwave Systems Inc. RED HAT™ of Red Hat, Inc. RFMD™ of RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of
Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA,
Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design
Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.
Trademarks Update 2014-11-12
www.infineon.com
Edition 2015-03-12
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2014 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: [email protected]
Document reference
Doc_Number
Legal Disclaimer
The information given in this document shall in
no event be regarded as a guarantee of
conditions or characteristics. With respect to any
examples or hints given herein, any typical
values stated herein and/or any information
regarding the application of the device, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation, warranties of noninfringement of intellectual property rights of
any third party.
Information
For further information on technology, delivery
terms and conditions and prices, please contact
the nearest Infineon Technologies Office
(www.infineon.com).
Warnings
Due to technical requirements, components
may contain dangerous substances. For
information on the types in question, please
contact the nearest Infineon Technologies
Office. Infineon Technologies components may
be used in life-support devices or systems only
with the express written approval of Infineon
Technologies, if a failure of such components
can reasonably be expected to cause the failure
of that life-support device or system or to affect
the safety or effectiveness of that device or
system. Life support devices or systems are
intended to be implanted in the human body or
to support and/or maintain and sustain and/or
protect human life. If they fail, it is reasonable to
assume that the health of the user or other
persons may be endangered.