AON7240 40V N-Channel MOSFET General Description Product Summary The AON7240 uses trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance.Power losses are minimized due to an extremely low combination of RDS(ON) and Crss.In addition,switching behavior is well controlled with a "Schottky style" soft recovery body diode. VDS ID (at VGS=10V) 40V 40A RDS(ON) (at VGS=10V) < 5.1mΩ RDS(ON) (at VGS = 4.5V) < 7mΩ 100% UIS Tested 100% Rg Tested Top View DFN 3x3 EP Bottom View D Top View 1 8 2 7 3 6 4 5 G Pin 1 S Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Symbol Drain-Source Voltage VDS Gate-Source Voltage VGS TC=25°C Continuous Drain Current G Pulsed Drain Current C V A 144 19 IDSM TA=70°C ±20 31 IDM TA=25°C Continuous Drain Current Units V 40 ID TC=100°C Maximum 40 A 15 Avalanche Current C IAS, IAR 40 A Avalanche energy L=0.1mH C TC=25°C EAS, EAR 80 mJ Power Dissipation B TC=100°C TA=25°C Power Dissipation A Junction and Storage Temperature Range Rev 2: Mar. 2011 3.1 Steady-State Steady-State RθJA RθJC www.aosmd.com W 2 TJ, TSTG Symbol t ≤ 10s W 14 PDSM TA=70°C Thermal Characteristics Parameter Maximum Junction-to-Ambient A Maximum Junction-to-Ambient A D Maximum Junction-to-Case 36.7 PD -55 to 150 Typ 30 60 2.8 °C Max 40 75 3.4 Units °C/W °C/W °C/W Page 1 of 6 Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol Parameter STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage Min Conditions ID=250µA, VGS=0V Typ 40 1 Zero Gate Voltage Drain Current IGSS Gate-Body leakage current VGS(th) Gate Threshold Voltage VDS=VGS ID=250µA 1.4 ID(ON) On state drain current VGS=10V, VDS=5V 144 TJ=55°C µA 5 VDS=0V, VGS= ±20V 100 VGS=10V, ID=20A 1.9 2.4 4.2 5.1 6.3 7.6 VGS=4.5V, ID=15A 5.6 7 VDS=5V, ID=20A 67 Static Drain-Source On-Resistance gFS Forward Transconductance VSD Diode Forward Voltage IS=1A,VGS=0V 0.7 Maximum Body-Diode Continuous Current G DYNAMIC PARAMETERS Ciss Input Capacitance nA V A RDS(ON) TJ=125°C Units V VDS=40V, VGS=0V IDSS IS Max mΩ mΩ S 1 V 40 A pF 1460 1830 2200 365 521 680 pF 20 43 73 pF 0.4 0.8 1.2 Ω SWITCHING PARAMETERS Qg(10V) Total Gate Charge 22 27.8 35 nC Qg(4.5V) Total Gate Charge 10 12.8 15 nC 3 3.9 5 nC 6 10 nC Coss Output Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance Qgs Gate Source Charge Qgd Gate Drain Charge tD(on) Turn-On DelayTime tr Turn-On Rise Time tD(off) Turn-Off DelayTime tf Turn-Off Fall Time trr Qrr VGS=0V, VDS=20V, f=1MHz VGS=0V, VDS=0V, f=1MHz VGS=10V, VDS=20V, ID=20A 2 VGS=10V, VDS=20V, RL=1Ω, RGEN=3Ω IF=20A, dI/dt=500A/µs Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge IF=20A, dI/dt=500A/µs 7.2 ns 3 ns 23 ns 3.5 ns 11 16.5 21 28 40 52 ns nC A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The Power dissipation PDSM is based on R θJA t ≤ 10s value and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 150°C may be u sed if the PCB allows it. B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The RθJA is the sum of the thermal impedence from junction to case RθJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse ratin g. G. The maximum current rating is package limited. H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev 2: Mar. 2011 www.aosmd.com Page 2 of 6 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 80 10V VDS=5V 4.5 80 60 3.5V 6V ID(A) ID (A) 60 40 125°C 40 VGS=3V 20 20 25°C 0 0 0 1 2 3 4 1 5 1.5 2.5 3 3.5 4 VGS(Volts) Figure 2: Transfer Characteristics (Note E) VDS (Volts) Fig 1: On-Region Characteristics (Note E) 8 Normalized On-Resistance 1.8 7 RDS(ON) (mΩ ) 2 VGS=4.5V 6 5 4 VGS=10V 3 2 VGS=10V ID=20A 1.6 1.4 17 5 2 VGS=4.5V 10 1.2 ID=15A 1 0.8 0 5 10 15 20 25 30 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E) 0 25 50 75 100 125 150 175 0 Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature 18 (Note E) 1.0E+02 15 ID=20A 1.0E+01 12 40 9 125°C IS (A) RDS(ON) (mΩ ) 1.0E+00 6 125°C 1.0E-01 1.0E-02 25°C 3 1.0E-03 25°C 1.0E-04 0 2 4 6 8 10 1.0E-05 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E) Rev 2: Mar. 2011 www.aosmd.com 0.0 0.2 0.4 0.6 0.8 1.0 1.2 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) Page 3 of 6 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 2500 10 VDS=20V ID=20A Capacitance (pF) VGS (Volts) Ciss 2000 8 6 4 2 1500 1000 Coss 500 Crss 0 0 0 5 10 15 20 25 Qg (nC) Figure 7: Gate-Charge Characteristics 30 0 10µs 100µs 1ms 10ms DC 1.0 TJ(Max)=150°C TC=25°C 0.1 160 10µs RDS(ON) limited Power (W) 100.0 ID (Amps) 20 30 VDS (Volts) Figure 8: Capacitance Characteristics 40 200 1000.0 10.0 10 TJ(Max)=150°C TC=25°C 17 5 2 10 120 80 40 0.0 0 0.01 0.1 1 VDS (Volts) 10 100 0.0001 0.001 0.01 0.1 1 0 10 Pulse Width (s) 18 Figure 10: Single Pulse Power Rating Junction-toCase (Note F) Figure 9: Maximum Forward Biased Safe Operating Area (Note F) Zθ JC Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 40 RθJC=3.4°C/W 1 PD 0.1 Ton T Single Pulse 0.01 0.00001 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) Rev 2: Mar. 2011 www.aosmd.com Page 4 of 6 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 40 35 TA=25°C 100 TA=100°C TA=150°C TA=125°C Power Dissipation (W) IAR (A) Peak Avalanche Current 1000 30 25 20 15 10 5 10 0 1 10 100 1000 µs) Time in avalanche, tA (µ Figure 12: Single Pulse Avalanche capability (Note C) 0 25 50 75 100 125 150 TCASE (°C) Figure 13: Power De-rating (Note F) 50 10000 40 1000 Power (W) Current rating ID(A) TA=25°C 30 20 17 5 2 10 100 10 10 1 0.00001 0 0 25 50 75 100 125 TCASE (°C) Figure 14: Current De-rating (Note F) Zθ JA Normalized Transient Thermal Resistance 10 1 0.001 0.1 10 1000 0 18 150 Pulse Width (s) Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H) D=Ton/T TJ,PK=TA+PDM.ZθJA.RθJA In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse RθJA=75°C/W 40 0.1 PD 0.01 Single Pulse Ton T 0.001 0.0001 0.001 0.01 0.1 1 10 100 1000 Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H) Rev 2: Mar. 2011 www.aosmd.com Page 5 of 6 Gate Charge Test Circuit & Waveform Vgs Qg 10V + + Vds VDC - Qgs Qgd VDC - DUT Vgs Ig Charge Resistive Switching Test Circuit & Waveforms RL Vds Vds 90% + Vdd DUT Vgs VDC - Rg 10% Vgs Vgs t d(on) tr t d(off) t on tf toff Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L 2 E AR = 1/2 LIAR Vds BVDSS Vds Id + Vdd Vgs Vgs I AR VDC - Rg Id DUT Vgs Vgs Diode Recovery Test Circuit & Waveforms Q rr = - Idt Vds + DUT Vds Isd Vgs Ig Rev 2: Mar. 2011 Vgs L Isd + Vdd t rr dI/dt I RM Vdd VDC - IF Vds www.aosmd.com Page 6 of 6