MC14512B 8-Channel Data Selector The MC14512B is an 8−channel data selector constructed with MOS P−channel and N−channel enhancement mode devices in a single monolithic structure. This data selector finds primary application in signal multiplexing functions. It may also be used for data routing, digital signal switching, signal gating, and number sequence generation. http://onsemi.com Features • • • • • • • Diode Protection on All Inputs Single Supply Operation 3−State Output (Logic “1”, Logic “0”, High Impedance) Supply Voltage Range = 3.0 Vdc to 18 Vdc Capable of Driving Two Low−power TTL Loads or One Low−power Schottky TTL Load Over the Rated Temperature Range NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable This Device is Pb−Free and is RoHS Compliant MAXIMUM RATINGS (Voltages Referenced to VSS) Parameter Symbol Value Unit VDD −0.5 to +18.0 V Vin, Vout −0.5 to VDD + 0.5 V Iin, Iout ± 10 mA PD 500 mW Ambient Temperature Range TA −55 to +125 °C Storage Temperature Range Tstg −65 to +150 °C Lead Temperature (8−Second Soldering) TL 260 °C DC Supply Voltage Range Input or Output Voltage Range (DC or Transient) Input or Output Current (DC or Transient) per Pin Power Dissipation, Per Package (Note 1) Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Temperature Derating: “D/DW” Package: –7.0 mW/_C From 65_C To 125_C This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high−impedance circuit. For proper operation, Vin and Vout should be constrained to the range VSS ≤ (Vin or Vout) ≤ VDD. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open. © Semiconductor Components Industries, LLC, 2014 July, 2014 − Rev. 10 1 1 SOIC−16 D SUFFIX CASE 751B PIN ASSIGNMENT X0 1 16 VDD X1 2 15 DIS X2 3 14 Z X3 4 13 C X4 5 12 B X5 6 11 A X6 7 10 INH VSS 8 9 X7 MARKING DIAGRAM 16 14512BG AWLYWW 1 A WL YY, Y WW G = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet. Publication Order Number: MC14512B/D MC14512B TRUTH TABLE C B A Inhibit Disable Z 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 X0 X1 X2 X3 1 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 X4 X5 X6 X7 X X X X X X 1 X 0 1 0 High Impedance NOTE: X = Don’t Care ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS) − 55_C Symbol Characteristic Output Voltage Vin = VDD or 0 Min Max Min Typ (Note 2) Max Min Max Unit 5.0 10 15 − − − 0.05 0.05 0.05 − − − 0 0 0 0.05 0.05 0.05 − − − 0.05 0.05 0.05 Vdc “1” Level VOH 5.0 10 15 4.95 9.95 14.95 − − − 4.95 9.95 14.95 5.0 10 15 − − − 4.95 9.95 14.95 − − − Vdc “0” Level VIL 5.0 10 15 − − − 1.5 3.0 4.0 − − − 2.25 4.50 6.75 1.5 3.0 4.0 − − − 1.5 3.0 4.0 5.0 10 15 3.5 7.0 11 − − − 3.5 7.0 11 2.75 5.50 8.25 − − − 3.5 7.0 11 − − − 5.0 5.0 10 15 –3.0 –0.64 –1.6 –4.2 − − − − –2.4 –0.51 –1.3 –3.4 –4.2 –0.88 –2.25 –8.8 − − − − –1.7 –0.36 –0.9 –2.4 − − − − IOL 5.0 10 15 0.64 1.6 4.2 − − − 0.51 1.3 3.4 0.88 2.25 8.8 − − − 0.36 0.9 2.4 − − − mAd c Iin 15 − ±0.1 − ±0.00001 ±0.1 − ±1.0 mAdc “1” Level (VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc) VDD Vdc VOL (VO = 0.5 or 4.5 Vdc) (VO = 1.0 or 9.0 Vdc) (VO = 1.5 or 13.5 Vdc) Output Drive Current (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc) 125_C “0” Level Vin = 0 or VDD Input Voltage (VO = 4.5 or 0.5 Vdc) (VO = 9.0 or 1.0 Vdc) (VO = 13.5 or 1.5 Vdc) 25_C Source Sink Input Current Vdc VIH Vdc IOH mAd c Input Capacitance (Vin = 0) Cin − − − − 5.0 7.5 − − pF Quiescent Current (Per Package) IDD 5.0 10 15 − − − 5.0 10 20 − − − 0.005 0.010 0.015 5.0 10 20 − − − 150 300 600 mAdc Total Supply Current (Note 3) (Note 4) (Dynamic plus Quiescent, Per Package) (CL = 50 pF on all outputs, all buffers switching) IT 5.0 10 15 3−State Leakage Current ITL 15 IT = (0.8 mA/kHz) f + IDD IT = (1.6 mA/kHz) f + IDD IT = (2.4 mA/kHz) f + IDD ±0.1 − − ±0.0001 ±0.1 mAdc − ±3.0 mAdc Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance. 3. The formulas given are for the typical characteristics only at 25_C. 4. To calculate total supply current at loads other than 50 pF: IT(CL) = IT(50 pF) + (CL – 50) Vfk where: IT is in mA (per package), CL in pF, V = (VDD – VSS) in volts, f in kHz is input frequency, and k = 0.001. http://onsemi.com 2 MC14512B SWITCHING CHARACTERISTICS (Note 5) (CL = 50 pF, TA = 25_C, See Figure 1) All Types Symbol Characteristic Output Rise and Fall Time tTLH, tTHL = (1.5 ns/pF) CL + 25 ns tTLH, tTHL = (0.75 ns/pF) CL + 12.5 ns tTLH, tTHL = (0.55 ns/pF) CL + 9.5 ns tTLH, tTHL Propagation Delay Time (Figure 2) Inhibit, Control, or Data to Z tPLH Propagation Delay Time (Figure 2) Inhibit, Control, or Data to Z tPHL 3−State Output Delay Times (Figure 3) “1” or “0” to High Z, and High Z to “1” or “0” tPHZ, tPLZ, tPZH, tPZL VDD Typ (Note 6) Max 5.0 10 15 100 50 40 200 100 80 5.0 10 15 330 125 85 650 250 170 5.0 10 15 330 125 85 650 250 170 5.0 10 15 60 35 30 150 100 75 Unit ns ns ns ns 5. The formulas given are for the typical characteristics only at 25_C. 6. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance. ORDERING INFORMATION Package Shipping† MC14512BDG SOIC−16 (Pb−Free) 48 Units / Rail NLV14512BDG* SOIC−16 (Pb−Free) 48 Units / Rail MC14512BDR2G SOIC−16 (Pb−Free) 2500 / Tape & Reel NLV14512BDR2G* SOIC−16 (Pb−Free) 2500 / Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable. http://onsemi.com 3 MC14512B ID Vin DISABLE INHIBIT A B C X0 X1 X2 X3 X4 X5 X6 X7 PULSE GENERATOR 50% 50% DUTY CYCLE Z CL VSS Figure 1. Power Dissipation Test Circuit and Waveform VDD 20 ns 20 ns DISABLE INHIBIT A B C X0 X1 X2 X3 X4 X5 X6 X7 tPLH Z VSS tPHL 90% 50% 10% Z CL VDD 90% 50% 10% DATA PULSE GENERATOR VDD VOH VOL tTLH tTHL TEST CONDITIONS: INHIBIT = VSS A, B, C = VSS 20 ns INHIBIT, A, B, OR C Test Conditions Inhibit to Z A, B, C = VSS, XO = VDD A, B, C to Z Inh = VSS, XO = VDD VDD 90% 50% 10% tPHL Parameter VSS 20 ns VSS 90% 50% 10% Z tTHL tPLH VOH VOL tTLH Figure 2. AC Test Circuit and Waveforms VDD PULSE GENERATOR VDD S3 S4 VSS 20 ns VDD DISABLE INHIBIT A B C X0 X1 X2 X3 X4 X5 X6 X7 Z DISABLE INPUT CL S1 1k 20 ns 90% 50% 10% tPLZ S2 10% OUTPUT tPHZ VSS OUTPUT 90% Switch Positions for 3−State Test VSS Test S1 S2 S3 S4 tPHZ tPLZ tPZL tPZH Open Closed Closed Open Closed Open Open Closed Closed Open Open Closed Open Closed Closed Open Figure 3. 3−State AC Test Circuit and Waveform http://onsemi.com 4 VDD VSS tPZL VOH 90% VOL tPZH VOH 10% VOL ≈ 2.5 V @ VDD = 5 V, 10 V, AND 15 V ≈ 2 V @ VDD = 5 V ≈ 6 V @ VDD = 10 V ≈ 10 V @ VDD = 15 V MC14512B LOGIC DIAGRAM C B A X0 X1 X2 13 12 15 11 1 DISABLE 10 2 INHIBIT VDD X4 IOD MC14512B 3 IL 14 X3 DATA BUS SELECTED DEVICE 4 LOAD ITL Z MC14512B 5 ITL X5 X6 X7 6 MC14512B VSS 7 9 1 1 OUT IN IN 2 TRANSMISSION GATE OUT 2 3−STATE MODE OF OPERATION Output terminals of several MC14512B 8−Bit Data Selectors can be connected to a single date bus as shown. One MC14512B is selected by the 3−state control, and the remaining devices are disabled into a high−impedance “off” state. The number of 8−bit data selectors, N, that may be connected to a bus line is determined from the output drive current, IOD, 3−state or disable output leakage current, ITL, and the load current, IL, required to drive the bus line (including fanout to other device inputs), and can be calculated by: N= IOD – IL +1 ITL N must be calculated for both high and low logic state of the bus line. http://onsemi.com 5 MC14512B PACKAGE DIMENSIONS SOIC−16 CASE 751B−05 ISSUE K NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. −A− 16 9 1 8 −B− P 8 PL 0.25 (0.010) M B S G R K F X 45 _ C −T− SEATING PLANE J M D DIM A B C D F G J K M P R MILLIMETERS MIN MAX 9.80 10.00 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.386 0.393 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.229 0.244 0.010 0.019 16 PL 0.25 (0.010) M T B S A S SOLDERING FOOTPRINT 8X 6.40 16X 1 1.12 16 16X 0.58 1.27 PITCH 8 9 DIMENSIONS: MILLIMETERS ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 http://onsemi.com 6 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MC14512B/D