HI3276 ® NS W DESIG S E N R O T NDED F NT PAR COMME REPLACEME Data7Sheet 8 E 6 R Q T O N D C-1 ME N D E AD2708 M K O R C O E R 68 08L-17Q KAD27 September 7, 2010 FN4717.3 8-Bit, 160MSPS, Flash A/D Converter Features The HI3276 is an 8-bit, high-speed, flash analog-to-digital converter optimized for high speed, low power, and ease of use. With a 160MSPS encode rate capability and full-power analog bandwidth of 250MHz, this component is ideal for applications requiring the highest possible dynamic performance. • Differential Linearity Error. . . . . . . . . . . . . . . . . . ±0.5 LSB To minimize system cost and power dissipation, only a +5V power supply is required. The HI3276 clock input interfaces directly to TTL, ECL or PECL logic and will operate with single-ended inputs. The user may select 16-bit demultiplexed output or 8-bit single channel digital outputs. The demultiplexed mode interleaves the data through two 8-bit channels at 1/2 the clock rate. Operation in demultiplexed mode reduces the speed and cost of external digital interfaces, while allowing the A/D converter to be clocked to the full 160MSPS conversion rate. Fabricated with an advanced Bipolar process, the HI3276 is provided in a space-saving 48 lead MQFP surface mount plastic package and is specified over the -20°C to +75°C temperature range. HI3276JCQ • Low Input Capacitance. . . . . . . . . . . . . . . . . . . . . . . 10pF • Wide Analog Input Bandwidth . . . . . . . . . . . . . . . 250MHz • Low Power Consumption . . . . . . . . . . . . . . . . . . . 550mW • 1:2 Demultiplexed Output Pin • Internal 1/2 Frequency Divider Circuit (w/Reset Function) • CLK/2 Clock Output • Compatible with PECL, ECL and TTL Digital Input Levels • Direct Replacement for Sony CXA3276Q Applications • LCD/PDP Monitors and Projectors (RGB Video) • Digital Oscilloscopes • Digital Communications (QPSK, QAM) • Magnetic Recording (PRML) Ordering Information PART NUMBER (Note) • Integral Linearity Error . . . . . . . . . . . . . . . . . . . . ±0.5 LSB • Pb-Free (RoHS Compliant) TEMP. RANGE (°C) PACKAGE (Pb-Free) -20 to +75 48 Ld MQFP PKG. DWG # Q48.12x12-S Pinout HI3276 (48 LD MQFP) TOP VIEW RESETN/E RESET/E RESETN/T SELECT INV CLKOUT DVCC2 DGND2 PBD7 PBD6 PBD5 PBD4 NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and NiPdAu plate - e4 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 48 47 46 45 44 43 42 41 40 39 38 37 36 35 2 34 3 33 4 32 5 31 6 30 7 29 8 28 9 27 10 26 11 25 12 13 14 15 16 17 18 19 20 21 22 23 24 1 PBD3 PBD2 PBD1 PBD0 DGND2 DVCC2 DVCC1 DGND1 PAD7 PAD6 PAD5 PAD4 CLK/E CLKN/E CLK/T NC NC NC DVCC2 DGND2 PAD0 PAD1 PAD2 PAD3 DVEE3 VRB AGND VRM1 AVCC VIN VRM2 AVCC VRM3 AGND VRT DGND3 1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright Intersil Americas Inc. 2001, 2010. All Rights Reserved All other trademarks mentioned are the property of their respective owners. HI3276 Block Diagram AVCC 5 8 INV DVCC1 44 30 DVCC2 DGND3 19 31 42 12 VRT 11 R1 R/2 R/2 (MSB) 40 PBD7 1 R 39 PBD6 2 6 BITS 38 PBD5 9 (8 BITS) R 64 R 37 PBD4 TTLOUT 63 VRM3 LATCHA R 36 PBD3 35 PBD2 65 6 BITS 126 7 VIN 6 127 R 128 ENCODER R VRM2 R 129 34 PBD1 6-BIT LATCH AND ENCODER R 33 P1D0 (LSB) 8 BITS (MSB) 28 PAD7 6 BITS R 27 PAD6 191 4 R 26 PAD5 192 193 R TTLOUT R LATCHB VRM1 25 PAD4 24 PAD3 6 BITS 23 PAD2 254 R 22 PAD1 255 R/2 VRB 2 CLK/T 15 CLK/E 13 CLKN/E 14 21 PAD0 (LSB) R/2 DELAY 17 NC 18 NC D RESETN/T 46 RESETN/E 48 RESET/E 47 16 NC Q Q 3 10 AGND 2 43 CLKOUT SELECT 45 29 SELECT DGND1 20 32 41 DGND2 1 DVEE3 FN4717.3 September 7, 2010 HI3276 Absolute Maximum Ratings TA = +25°C Thermal Information Supply Voltage (AVCC , DVCC1, DVCC2) . . . . . . . . . . -0.5V to +7.0V (DGND3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to +7.0V (DVEE3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -7.0V to +0.5V (DGND3 - DVEE3) . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to +7.0V Analog Input Voltage (VIN). . . . . . . . . . . . . . . . . VRT - 2.7V to AVCC Reference Input Voltage (VRT) . . . . . . . . . . . . . . . . +2.7V to AVCC (VRB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VIN - 2.7V to AVCC (|VRT - VRB|) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +2.5V Digital Input Voltage PECL/ECL . . . . . . . . . . . . . . . . . . . DVEE3 - 0.5 to DGND3 + 0.5 TTL . . . . . . . . . . . . . . . . . . . . . . . . . DGND3 - 0.5 to DVCC1 + 0.5 VID (|***/E - ***N/E| (Note 1)) . . . . . . . . . . . . . . . . . . . . . . . . . 2.7V Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . 150°C Maximum Storage Temperature Range . . . . . . . . . . -65°C to 150°C Pb-Free Reflow Profile. . . . . . . . . . . . . . . . . . . . . . . . .see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp Recommended Operating Conditions WITH A SINGLE POWER SUPPLY MIN TYP MAX Supply Voltage DVCC1 , DVCC2 , AVCC. . . . . . . . . . . . . . . +4.75 +5.0 +5.25V DGND1, DGND2, AGND . . . . . . . . . . . . . -0.05 0 +0.05V DGND3. . . . . . . . . . . . . . . . . . . . . . . . . . . +4.75 +5.0 +5.25V DVEE3 . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.05 0 +0.05V Analog Input Voltage (VIN). . . . . . . . . . . . . . VRB VRT Reference Input Voltage VRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +2.9 +4.1V VRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +1.4 +2.6V |VRT - VRB|. . . . . . . . . . . . . . . . . . . . . . . . +1.5 +2.1V Digital Input Voltage PECL (***/E) VIH . . . . . . . . . . . . . . DVEE3 + 1.5 DGND3 PECL (***/E) VIL . . . . . . . . . . . . . . . DVEE3 + 1.1 VIH - 0.4V TTL (***/T, INV) VIH . . . . . . . . . . . . . . . . . +2.0V TTL (***/T, INV) VIL . . . . . . . . . . . . . . . . . +0.8V Other (SELECT) VIH . . . . . . . . . . . . . . . . DVCC1 Other (SELECT) VIL . . . . . . . . . . . . . . . . . DGND1 VID (Note 1) (|***/E- ***N/E|) . . . . . . . . . . +0.4 +0.8 Max Conversion Rate (fC , Straight Mode) . . . 125 MSPS Max Conversion Rate (fC , DMUX Mode) . . . . 160 MSPS Ambient Temperature (TA) . . . . . . . . . . . . . . . . . . . . .-20°C to +75°C WITH DUAL POWER SUPPLIES MIN TYP MAX Supply Voltage DVCC1 , DVCC2 , AVCC . . . . . . . . . . . . . . +4.75 +5.0 +5.25V DGND1, DGND2, AGND . . . . . . . . . . . . . -0.05 0 +0.05V DGND3. . . . . . . . . . . . . . . . . . . . . . . . . . . -0.05 0 +0.05V DVEE3 . . . . . . . . . . . . . . . . . . . . . . . . . . . -5.5 -5.0 -4.75V Analog Input Voltage (VIN). . . . . . . . . . . . . . VRB VRT Reference Input Voltage VRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +2.9 +4.1V VRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +1.4 +2.6V |VRT - VRB|. . . . . . . . . . . . . . . . . . . . . . . . +1.5 +2.1V Digital Input Voltage PECL/ECL VIH. . . . . . . . . . . . . . . . . . . . . . . DVEE3 + 1.5 DGND3 PECL/ECL VIL . . . . . . . . . . . . . . . . . . . . . . . DVEE3 + 1.1 VIH 0.4 TTL (***/T, INV) VIH . . . . . . . . . . . . . . . . . 2.0 TTL (***/T, INV) VIL . . . . . . . . . . . . . . . . . +0.8V Other (SELECT) VIH . . . . . . . . . . . . . . . . DVCC1 Other (SELECT) VIL . . . . . . . . . . . . . . . . . DGND1 VID (Note 1) (|***/E- ***N/E|) . . . . . . . . . . +0.4 0.8 Max Conversion Rate (fC , Straight Mode) . . . 125 MSPS Max Conversion Rate (fC , DMUX Mode). . . . 160 MSPS Ambient Temperature (TA). . . . . . . . . . . . . . . . . . . . .-20°C to +75°C CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. NOTES: 1. VID : Input Voltage Differential. Electrical Specifications DVCC1 , 2 , AVCC , DGND3 = +5V, DGND1, 2, AGND, DVEE3 = 0V, VRT = 4V, VRB = 2V, TA = +25°C PARAMETER TEST CONDITIONS Resolution MIN TYP MAX UNITS - 8 - Bits - - ±0.5 LSB - - ±0.5 LSB DC CHARACTERISTICS Integral Linearity Error, INL VIN = 2VP-P, fC = 5MSPS Differential Linearity Error, DNL ANALOG INPUT Analog Input Capacitance, CIN Analog Input Resistance, RIN VIN = +3.0V, +0.07VRMS - 10 - pF 7 15 35 kΩ 0 100 285 µA Reference Resistance (Note 2), RREF 400 600 740 Ω Reference Current (Note 3), IREF 2.7 3.3 5.0 mA 6 8 10 mV Analog Input Current, IIN REFERENCE INPUT Offset Voltage VRT Side, EOT 3 FN4717.3 September 7, 2010 HI3276 Electrical Specifications DVCC1 , 2 , AVCC , DGND3 = +5V, DGND1, 2, AGND, DVEE3 = 0V, VRT = 4V, VRB = 2V, TA = +25°C (Continued) PARAMETER TEST CONDITIONS MIN TYP MAX UNITS 0 1.5 3 mV Digital Input Voltage: High, VIH DVEE3 + 1.5 - DGND3 V Digital Input Voltage: Low, VIL DVEE3 + 1.1 - VIH - 0.4 V Offset Voltage VRB Side, EOB DIGITAL INPUT (PECL/ECL) Threshold Voltage, VTH - DGND3 - 1.2 - V Digital Input Current: High, IIH VIH = DGND3 - 0.8V -50 - 20 µA Digital Input Current: Low, IIL VIL = DGND3 - 1.6V -50 - 20 µA - - 5 pF Digital Input Voltage: High, VIH 2.0 - - V Digital Input Voltage: Low, VIL - - 0.8 V Digital Input Capacitance DIGITAL INPUT (TTL) Threshold Voltage, VTH - 1.5 - V Digital Input Current: High, IIH VIH = 3.5V -10 - 0 µA Digital Input Current: Low, IIL VIL = 0.2V -20 - 0 µA - - 5 pF Digital Input Capacitance DIGITAL OUTPUT (TTL) Digital Output Voltage: High, VOH IOH = -2mA 2.4 - - V Digital Output Voltage: Low, VOL IOL = 1mA - - 0.5 V 160 - - MSPS SWITCHING CHARACTERISTICS Maximum Conversion Rate, fC DMUX Mode Aperture Jitter, tAJ Sampling Delay, tDS - 10 - ps 1.2 1.3 1.5 ns ns Clock High Pulse Width, tPW1 CLK 2.5 - - Clock Low Pulse Width, tPW0 CLK 2.9 - - ns RESET Signal Setup Time, tRS RESETN-CLK 1.0 - - ns RESET Signal Hold Time, tRH RESETN-CLK -0.5 - - ns CLKOUT Output Delay, tDCLK CL = 5pF 3.0 4.5 6.5 ns (CL = 5pF) - t + 0.5 - ns (CL = 5pF) 3.5 4.5 7.0 ns Data Output Delay (Note 4), tDO1 tDO2 DMUX Mode Output Rise Time, tr 0.8 to 2.0V (CL = 5pF) - 1 - ns Output Fall Time, tf 0.8 to 2.0V (CL = 5pF) - 1 - ns DYNAMIC CHARACTERISTICS Input Bandwidth VIN = 2VP-P, -3dB 250 - - MHz S/N Ratio fC = 160MSPS, fIN = 1kHz Full Scale, DMUX Mode - 46 - dB fC = 160MSPS, fIN = 29.999MHz Full Scale, DMUX Mode - 42 - dB fC = 160MSPS, fIN = 1kHz Full Scale, DMUX Mode, Error > 16 LSB - - 10-12 TPS fC = 160MSPS, fIN = 29.999MHz Full Scale, DMUX Mode, Error > 16 LSB - - 2 x 10-8 TPS fC = 125MSPS, fIN = 24.999MHz Full Scale, Straight Mode, Error > 16 LSB - - 10-9 TPS Error Rate (Note 5) POWER SUPPLY OPERATING Total Supply Current, ICC + IEE 89 108 140 mA AVCC Pin Supply Current, AICC 62 - 87 mA DVCC1 Pin Supply Current, DICC1 22 - 36 mA DVCC2 Pin Supply Current, DICC2 4.0 - 15 mA 4 FN4717.3 September 7, 2010 HI3276 Electrical Specifications DVCC1 , 2 , AVCC , DGND3 = +5V, DGND1, 2, AGND, DVEE3 = 0V, VRT = 4V, VRB = 2V, TA = +25°C (Continued) MIN TYP MAX DGND3 Pin Supply Current, IEE PARAMETER TEST CONDITIONS 0.5 - 1.5 UNITS mA Power Consumption, PD*6 480 550 700 mW NOTES: 2. RREF: Resistance value between VRT and VRB V RT – V RB 3. I REF = ---------------------------R REF 1 4. t = ----fC 5. The unit of measure TPS: Times Per Sample ( V RT – V RB ) 2 6. P D = ( I CC + I EE ) • V CC + -----------------------------------V REF Timing Diagrams N-1 VIN N+2 N+3 tDS N t N+1 CLK tPW1 tD02 tPW0 PAD0 TO D7 N-2 PBD0 TO D7 N-1 2V 0.8V 2V 0.8V N N+2 N+1 N+3 tD01 tDCLK t + 1ns CLK OUT 2V 2V 0.8V 0.8V RESET PULSE tPWR FIGURE 1. DMUX MODE TIMING CHART (SELECT = VCC) 5 FN4717.3 September 7, 2010 HI3276 Timing Diagrams (Continued) N+2 N-1 VIN N+3 N+1 tDS N t CLK tPW1 tPW0 PAD0 TO D7 N-4 2.0V 0.8V N-3 N-2 N-1 PBD0 TO D7 N-5 2.0V 0.8V N-2 N-1 N N N+1 tD02 8ns 2.0V CLK OUT (CLK IS INVERTED AND OUTPUT) 0.8V tDCLK RESET PULSE FIGURE 2. STRAIGHT MODE TIMING CHART (SELECT = GND) DGND3 VIH (MAX) VIL VTH (DGND3 - 1.2V) VID VIH VIL (MIN) FIGURE 3. PECL SWITCHING LEVEL Pin Descriptions PIN NO SYMBOL TYPICAL VOLTAGE LEVEL I/O EQUIVALENT CIRCUIT DESCRIPTION 3, 10 AGND GND Analog Ground. Separated from the digital ground. 5, 8 AVCC +5V (Typ) Analog Power Supply. Separated from the digital power supply 29 DGND1 20, 32, 41 DGND2 GND Digital Ground 30 DVCC1 19, 31, 42 DVCC2 +5V (Typ) Digital Power Supply 12 DGND3 +5V (Typ) (with a Single Power Supply) Digital Power Supply. Ground for ECL input. +5V for PECL and TTL inputs. GND (with Dual Power Supplies) 6 FN4717.3 September 7, 2010 HI3276 Pin Descriptions PIN NO SYMBOL 1 DVEE3 (Continued) TYPICAL VOLTAGE LEVEL I/O EQUIVALENT CIRCUIT DESCRIPTION GND (With a Single Power Supply) Digital Power Supply. Apply -5V for PECL and TTL input. +5V (Typ) (With Dual Power Supplies) 16, 17, 18 NC No Connect Pin 13 CLK/E I 14 CLK/NE I PECL/ECL Clock Input CLK/E Complementary Input. When left open, this pin goes to the threshold potential. Only CLK/E can be used for operation, but complementary input is recommended to attain fast and stable operation. DGND3 13 48 48 RESETN/E I 47 RESET/E I 15 CLK/T I 46 RESETN/T I Reset Input. When the input is set to low level, the built-in CLK frequency divider circuit can be reset. 14 47 RESETN/E Complementary Input. When left open, this pin goes to the threshold voltage. Only RESETN/E can be used for operation. DVEE3 TTL Clock input DVCC1 15 46 OR 44 , 45 Reset Input. When left open, this input goes to high level. When the input is set to low level, the built-in CLK frequency divider circuit can be reset. 1.5V DGND1 DVEE3 44 INV I TTL DVCC1 Data Output Polarity Inversion Input. When left open, this input goes to high level. (See Table 1; I/O Correspondence Table). 44 DGND1 DVEE3 45 SELECT VCC or Ground DVCC1 Data Output Mode Selection. (See Table 2; Operating Mode Table). 45 DGND1 DVEE3 7 FN4717.3 September 7, 2010 HI3276 Pin Descriptions (Continued) PIN NO SYMBOL I/O 11 VRT I TYPICAL VOLTAGE LEVEL EQUIVALENT CIRCUIT 4.0V (Typ) 11 DESCRIPTION Top Reference Voltage. Bypass to AGND with a 1µF tantal capacitor and a 0.1µF chip capacitor. R1 R/2 9 VRM3 VRB + 3/4 (VRT - VRB) 7 VRM2 VRB + 2/4 (VRT - VRB) 4 VRM1 VRB + 1/4 (VRT - VRB) Reference Voltage Mid Point. Bypass to AGND with a 0.1µF chip capacitor. R COMPARATOR 1 2 VRB I 2.0V (Typ) Reference Voltage Mid Point. Bypass to AGND with a 0.1µF chip capacitor. R COMPARATOR 63 9 R 7 R COMPARATOR 64 COMPARATOR 127 COMPARATOR 128 Reference Voltage Mid Point. Bypass to AGND with a 0.1µF chip capacitor. Bottom Reference Voltage. Bypass to AGND with a 1µF tantal capacitor and a 0.1µF chip capacitor. COMPARATOR 191 4 R COMPARATOR 192 R COMPARATOR 255 R/2 2 R2 6 VIN I VRT to VRB Analog Input. COMPARATOR AVCC AVCC VREF 6 AGND DVEE3 21 to 28 33 to 40 PAD0 to PAD7 O PBD0 to PBD7 O TTL DVCC1 DVCC2 21 TO 28 43 CLKOUT 33 TO 40 O 43 DGND2 DGND1 8 DVEE3 Port A side data output. TTL output; the high level is clamped to approximately 2.8V. Port B side data output. TTL output; the high level is clamped to approximately 2.8V. Clock Output. (See Table 2; Operating Mode Table). TTL output; the high level is clamped to approximately 2.8V. FN4717.3 September 7, 2010 HI3276 TABLE 1. A/D CODE INV 1 0 VIN STEP D7 VRT 255 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 254 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 D0 • • • 128 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 127 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 • • • • • • • • • VRB D7 • • • • • • VRM2 D0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 Notes on Operation • The HI3276 is a high-speed A/D converter which is capable of TTL, ECL and PECL level clock input. Characteristic impedance should be properly matched to ensure optimum performance during high-speed operation. • The power supply and grounding have a profound influence on converter performance. The power supply and grounding method are particularly important during highspeed operation. General points for caution are as follows: - The ground pattern should be as large as possible. It is recommended to make the power supply and ground patterns wider at an inner layer using a multi-layer board. - To prevent interference between AGND and DGND and between AVCC and DVCC , make sure the respective patterns are separated. To prevent a DC offset in the power supply pattern, connect the AVCC and DVCC lines at one point each, via a ferrite-bead filter. Shorting the AGND and DGND patterns in one place immediately under the A/D converter improves A/D converter performance. - Ground the power supply pins (AVCC , DVCC1 , DVCC2 , DVEE3) as close to each pin as possible with a 0.1µF or larger ceramic chip capacitor. (Connect the AVCC pin to the AGND pattern and the DVCC1 , DVCC2 , DVEE3 pins to the DGND pattern). - The digital output wiring should be as short as possible. If the digital output wiring is long, the wiring capacitance will increase, deteriorating the output slew rate and resulting in reflection to the output waveform since the original output slew rate is quite fast. • The analog input pin VIN has an input capacitance of approximately 10pF. To drive the A/D converter with proper frequency response, it is necessary to prevent performance deterioration due to parasitic capacitance or parasitic inductance by using a large capacity drive circuit; keeping wiring as short as possible, and using chip parts for resistors and capacitors, etc. • The VRT and VRB pins must have adequate bypass to protect them from high-frequency noise. Bypass them to AGND with approximately 1µF tantal capacitor and, 0.1µF capacitor. At this time, approximately DGND3 - 1.2V voltage is generated. However, this is not recommended for use as threshold voltage VBB as it is too weak. • The TTL output high level is clamped to approximately 2.8V in the IC. This makes it possible to directly interface with 3.3V CMOS ICs. When the digital input level is PECL level, ***/E pins should be used and ***/T pins left open. When the digital input level is TTL, ***/T pins should be used and III/E pins left open. Test Circuits +V 4V 1.95V VRT 5V 5V A ICC A AVCC DVCC1 DVCC2 VIN S2 - IEE VRB -V CLK/E DGND2 DGND1 AGND S1: ON WHEN A < B S2: ON WHEN A > B DGND3 A<B A>B COMPARATOR 5MHz PECL VIN 2V S1 + DVEE3 HI3276 8 “0” A8 TO A1 B8 TO B1 A0 B0 DVM CONTROLLER FIGURE 4. CURRENT CONSUMPTION MEASUREMENT CIRCUIT 9 8 BUFFER “1” 000...00 TO 111..10 FIGURE 5. INTEGRAL LINEARITY ERROR/DIFFERENTIAL LINEARITY ERROR MEASUREMENT CIRCUIT FN4717.3 September 7, 2010 HI3276 Test Circuits (Continued) A SIGNAL SOURCE fC 4 HI3276 VIN 8 B CLK CLK -1kHz LATCH COMPARATOR A>B PULSE COUNTER LATCH + 2VP-P SINE WAVE SIGNAL SOURCE 1/ fC 16 LSB 8 FIGURE 6. ERROR RATE MEASUREMENT CIRCUIT VRT 100MHz VIN VRM2 AMP VRB OSC1 φ: VARIABLE fR CLK VIN 8 HI3276 LOGIC ANALYZER Δυ 129 Δt 128 127 VIN CLK σ (LSB) 126 125 1024 SAMPLES CLK OSC2 PECL BUFFER SAMPLING TIMING FLUCTUATION (= APERTURE JITTER) NOTE: Where σ (LSB) is the deviation of the output codes when the largest slew rate point is sampled at the clock which has exactly the same frequency as the analog input signal, the aperture jitter tAJ is shown in Equation 1. Δυ 256 t AJ = ⎛ σ / -------⎞ = σ/ ⎛ ---------- x 2πf⎞ (EQ. 1) ⎝ ⎝ 2 ⎠ Δt ⎠ 100MHz FIGURE 7. SAMPLING DELAY/APERTURE JITTER MEASUREMENT CIRCUIT FIGURE 8. APERTURE JITTER MEASUREMENT METHOD Operating Modes The HI3276 has two types of operating modes which are selected with Pin 45 (SELECT). TABLE 2. OPERATING MODE MAXIMUM OPERATING MODE SELECT CONVERSIONRATE DATA OUTPUT CLOCK OUTPUT DMUX Mode VCC 160MSPS Demultiplexed Output 80MBPS The input clock is 1/2 frequency divided and output at 80MHz. Straight Mode GND 125MSPS Straight Output 125MBPS The input clock is inverted and output at 100MHz. DMUX Mode (See Application Circuits, Figures 18, 19) input timing. The A/D converter can operate at fC (Min) = 160MSPS in this mode. Set the SELECT pin to VCC for this mode. In this mode, the clock frequency is divided by 2 in the IC, and the data is output after being demultiplexed by this1/2 frequency divided clock. The 1/2 frequency divided clock, which has adequate setup time and hold time for the output data, is output from the CLKOUT pin. Straight Mode (See Application Circuits, Figures 20, 21) When using multiple HI3276 units in parallel in this mode, differences in the start timing of the1/2 frequency divided clock may cause operation as shown in Figure 9. As a countermeasure, the HI3276 is equipped with a function which resets the 1/2 frequency divided clock. When resetting this clock, the RESET pulse must be input to the RESET pin. See the “Timing Diagrams” on page 5 for the RESET pulse 10 Set the SELECT pin to GND for this mode. In this mode, data output can be obtained in accordance with the clock frequency applied to the A/D converter for applications which use the clock applied to the A/D converter as the system clock. The A/D converter can operate at fC (Min) = 100MSPS in this mode. Digital Input Level and Supply Voltage Settings The logic input level for the HI3276 supports PECL and TTL levels. The power supplies (DVEE3 , DGND3) for the logic input block must be set to match the logic input (CLK and RESET signals) level. FN4717.3 September 7, 2010 HI3276 TABLE 3. LOGIC INPUT LEVEL AND POWER SUPPLY SETTINGS DIGITAL INPUT LEVEL DVEE3 DGND3 SUPPLY VOLTAGE APPLICATION CIRCUITS PECL 0V +5V +5V Figures 18, 20 TTL 0V +5V +5V Figures 19, 21 CLK HI3276 CLK CLK CLKOUT A 8 BITS DATA RESETN HI3276 CLK CLKOUT B 8 BITS DATA RESETN FIGURE 9. WHEN THE RESET PULSE IS NOT USED CLK RESET PULSE HI3276 CLK CLK CLKOUT A 8 BITS DATA RESETN HI3276 CLK RESET PULSE CLKOUT B 8 BITS DATA RESETN FIGURE 10. WHEN THE RESET PULSE IS USED Typical Performance Curves 120 CURRENT CONSUMPTION (mA) CURRENT CONSUMPTION (mA) 120 115 110 105 100 -25 25 TA , AMBIENT TEMPERATURE (°C) FIGURE 11. CURRENT CONSUMPTION vs AMBIENT TEMPERATURE CHARACTERISTICS 11 75 115 110 105 f fIN = CLK -1kHz 4 DMUX MODE CL = 5pF 100 0 60 fC , CONVERSION RATE (MSPS) 160 FIGURE 12. CURRENT CONSUMPTION vs CONVERSION RATE CHARACTERISTICS RESPONSE FN4717.3 September 7, 2010 HI3276 (Continued) VRT = 4V VRB = 2V 4 REFERENCE CURRENT (mA) ANALOG INPUT CURRENT (µA) Typical Performance Curves 100 50 3 2 0 2 3 25 -25 4 FIGURE 13. ANALOG INPUT CURRENT vs ANALOG INPUT VOLTAGE CHARACTERISTICS FIGURE 14. REFERENCE CURRENT vs AMBIENT TEMPERATURE CHARACTERISTICS 50 fC = 160MSPS 10-5 ERROR RATE (TPS) 40 30 fIN = fCLK -1kHz 4 ERROR > 16 LSB 10-6 10-7 10-8 10-9 20 1 3 5 10 30 120 50 FIGURE 15. SNR vs INPUT FREQUENCY RESPONSE 180 170 140 180 fC , CONVERSION RATE (MSPS) INPUT FREQUENCY (MHz) fC , MAXIMUM CONVERSION (MSPS) SNR (dB) 75 TA , AMBIENT TEMPERATURE (°C) ANALOG INPUT VOLTAGE (V) fIN = FIGURE 16. ERROR RATE vs CONVERSION RATE CHARACTERISTICS fCLK -1kHz 4 ERROR > 16 LSB ERROR RATE: 10-8 TPS 160 150 140 -25 25 75 TA , AMBIENT TEMPERATURE (°C) FIGURE 17. MAXIMUM CONVERSION RATE vs AMBIENT TEMPERATURE CHARACTERISTICS 12 FN4717.3 September 7, 2010 HI3276 Application Circuits +5V (D) DG PECL RESET PULSE 48 47 46 45 44 43 42 41 40 39 38 37 DG 2 36 P1D0 TO P1D7 35 8-BIT DIGITAL DATA 3 34 4 33 +5V (A) 5 32 AG 6 31 7 30 8 29 9 28 AG 10 27 AG 11 26 P2D0 TO P2D7 8-BIT DIGITAL DATA 25 1 DG AG 2V +5V (A) +5V (D) 4V 12 8-BIT DIGITAL DATA LATCH DG +5V (D) DG 8-BIT DIGITAL DATA LATCH 13 14 15 16 17 18 19 20 21 22 23 24 PECL - CLK DG +5V (D) FIGURE 18. DMUX PECL INPUT +5V (D) DG TTL RESET PULSE 48 47 46 45 44 43 42 41 40 39 38 37 DG 2 36 P1D0 TO P1D7 35 8-BIT DIGITAL DATA 3 34 4 33 +5V (A) 5 32 AG 6 31 7 30 8 29 9 28 AG 10 27 AG 11 26 P2D0 TO P2D7 8-BIT DIGITAL DATA 25 1 AG AG 2V +5V (A) +5V (D) 4V 12 8-BIT DIGITAL DATA LATCH DG +5V (D) DG 8-BIT DIGITAL DATA LATCH 13 14 15 16 17 18 19 20 21 22 23 24 TTL - CLK DG +5V (D) FIGURE 19. DMUX TTL INPUT 13 FN4717.3 September 7, 2010 HI3276 Application Circuits (Continued) DG +5V (D) DG 48 47 46 45 44 43 42 41 40 39 38 37 DG 2 36 P1D0 TO P1D7 35 8-BIT DIGITAL DATA 3 34 4 33 +5V (A) 5 32 AG 6 31 7 30 8 29 9 28 AG 10 27 AG 11 26 1 AG AG 2V +5V (A) +5V(D) 4V 8-BIT DIGITAL DATA LATCH DG +5V (D) DG 25 12 13 14 15 16 17 18 19 20 21 22 23 24 PECL - CLK PECL - TTL DG +5V (D) FIGURE 20. STRAIGHT PECL INPUT DG +5V (D) DG 48 47 46 45 44 43 42 41 40 39 38 37 DG 2 36 P1D0 TO P1D7 35 8-BIT DIGITAL DATA 3 34 4 33 +5V (A) 5 32 AG 6 31 7 30 8 29 9 28 AG 10 27 AG 11 26 AG AG 1 2V +5V (A) +5V(D) 4V 8-BIT DIGITAL DATA LATCH DG +5V (D) DG 25 12 13 14 15 16 17 18 19 20 21 22 23 24 TTL - CLK DG +5V (D) FIGURE 21. STRAIGHT TTL INPUT 14 FN4717.3 September 7, 2010 HI3276 Application Circuits (Continued) AG ANALOG INPUT AG + +5V (A) 1µF DG + + 1µF AG + 10µF AG 12 11 10 9 8 7 6 5 4 3 2 DGND3 VRT AGND VRM3 AVCC VRM2 VIN AVCC VRM1 AGND VRB 1 RESETN/E 48 13 CLK/E 14 CLKN/E 15 CLK/T 16 NC SELECT 45 17 NC INV 44 18 NC CLKOUT 43 19 DVCC2 DVCC2 42 20 DGND2 DGND2 41 21 P2D0 P1D7 40 22 P2D1 P1D6 39 23 P2D2 P1D5 38 24 P2D3 P1D4 37 RESET/E 47 P2D6 (MSB) P2D7 P1D3 P2D5 32 33 34 35 36 P1D3 31 P1D2 DVCC2 30 P1D2 DVCC1 29 P1D1 DGND1 28 P1D1 P2D7 27 P1D0 P2D6 26 (LSB) P1D0 P2D5 25 DGND2 P2D4 RESETN/T 46 P2D4 P2D2 P2D3 + 2V 10µF SHORT TTL CLK (LSB) P2D0 P2D1 + SHORT - P1D6 (MSB) P1D7 (D) AG + +5V P1D4 P1D5 - DVEE3 4V SHORT THE ANALOG SYSTEM AND DIGITAL SYSTEM AT ONE POINT IMMEDIATELY UNDER THE A/D CONVERTER. SEE THE NOTES ON OPERATION. IS THE CHIP CAPACITOR OF 0.1µF. FIGURE 22. STRAIGHT MODE TTL I/O (WHEN A SINGLE POWER SUPPLY IS USED) 15 FN4717.3 September 7, 2010 HI3276 Metric Plastic Quad Flatpack Packages (MQFP/PQFP) Q48.12x12-S D 48 LEAD METRIC PLASTIC QUAD FLATPACK PACKAGE D1 INCHES E E1 e MILLIMETERS SYMBOL MIN MAX MIN MAX NOTES A 0.081 0.100 2.05 2.55 - A1 0.000 0.011 0.00 0.30 - B 0.008 0.017 0.20 0.45 5 D 0.587 0.618 14.90 15.70 2 D1 0.469 0.488 11.90 12.40 3, 4 E 0.587 0.618 14.90 15.70 2 E1 0.469 0.488 11.90 12.40 3, 4 L 0.028 0.043 0.70 1.10 N 48 48 e 0.032 BSC 0.80 BSC 6 Rev. 0 2/96 PIN 1 NOTES: -H- A SEATING PLANE 1. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact. 2. Dimensions D and E to be determined at seating plane -C- . 0.24 0.15 3. Dimensions D1 and E1 to be determined at datum plane -H- . 0.006 4. Dimensions D1 and E1 do not include mold protrusion. -C- M 5. Dimension B does not include dambar protrusion. 6. “N” is the number of terminal positions. B A1 0o-10o L 0.10/0.25 0.004/0.010 All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com 16 FN4717.3 September 7, 2010