Data Sheet

74HC4020-Q100;
74HCT4020-Q100
14-stage binary ripple counter
Rev. 1 — 23 May 2013
Product data sheet
1. General description
The 74HC4020-Q100; 74HCT4020-Q100 are 14-stage binary ripple counters with a clock
input (CP), an overriding asynchronous master reset input (MR) and 12 buffered parallel
outputs (Q0, and Q3 to Q13). The counter advances on the HIGH-to-LOW transition of
CP. A HIGH on MR clears all counter stages and forces all outputs LOW, independent of
the state of CP. Each counter stage is a static toggle flip-flop.. Inputs include clamp
diodes. This enables the use of current limiting resistors to interface inputs to voltages in
excess of VCC.
This product has been qualified to the Automotive Electronics Council (AEC) standard
Q100 (Grade 1) and is suitable for use in automotive applications.
2. Features and benefits
 Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 Specified from 40 C to +85 C and from 40 C to +125 C
 Input levels:
 For 74HC4020-Q100: CMOS level
 For 74HCT4020-Q100: TTL level
 Complies with JEDEC standard no. 7A
 ESD protection:
 MIL-STD-883, method 3015 exceeds 2000 V
 HBM JESD22-A114F exceeds 2000 V
 MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 )
 Multiple package options
3. Applications
 Frequency dividing circuits
 Time delay circuits
 Control counters
74HC4020-Q100; 74HCT4020-Q100
NXP Semiconductors
14-stage binary ripple counter
4. Ordering information
Table 1.
Ordering information
Type number
Package
74HC4020D-Q100
Temperature range
Name
Description
Version
40 C to +125 C
SO16
plastic small outline package; 16 leads;
body width 3.9 mm
SOT109-1
40 C to +125 C
TSSOP16
plastic thin shrink small outline package; 16
leads; body width 4.4 mm
SOT403-1
40 C to +125 C
DHVQFN16 plastic dual in-line compatible thermal
SOT763-1
enhanced very thin quad flat package; no leads;
16 terminals; body 2.5  3.5  0.85 mm
74HCT4020D-Q100
74HC4020PW-Q100
74HCT4020PW-Q100
74HC4020BQ-Q100
74HCT4020BQ-Q100
5. Functional diagram
&3
05
7
67$*(&2817(5
&'
4 4 4 4 4 4 4 4 4 4 4 4
DDO
Fig 1.
Functional diagram
CTR14
10
11
CP
MR
Q0
9
10
+
Q3
7
11
CT = 0
Q4
5
5
Q5
4
4
Q6
6
6
Q7
13
Q8
12
Q9
14
14
Q10
15
15
Q11
1
1
Q12
2
Q13
3
Logic symbol
74HC_HCT4020_Q100
Product data sheet
9
7
13
CT
12
2
13
3
001aal203
001aal202
Fig 2.
0
Fig 3.
IEC logic symbol
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 23 May 2013
© NXP B.V. 2013. All rights reserved.
2 of 18
74HC4020-Q100; 74HCT4020-Q100
NXP Semiconductors
14-stage binary ripple counter
Q
CP
Q
FF
T 1
FF
T 2
Q
Q
Q
RD
RD
Q
FF
T 3
Q
FF
T 4
Q
FF
T 6
Q
RD
Q
RD
RD
MR
Q0
Q3
Q13
001aal204
Fig 4.
Logic diagram
6. Pinning information
6.1 Pinning
4
WHUPLQDO
LQGH[DUHD
+&4
+&74
4
4
4
4
4
4
4
4
4
4
4
4
4
4
05
4
4
4
&3
*1'
4
4
9&&
05
&3
4
9&&
4
*1'
4
4
9&&
+&4
+&74
DDD
7UDQVSDUHQWWRSYLHZ
DDD
(1) This is not a supply pin. The substrate is attached to this
pad using conductive die attach material. There is no
electrical or mechanical requirement to solder this pad.
However, if it is soldered, the solder land should remain
floating or be connected to VCC.
Fig 5.
Pin configuration SO16 and TSSOP16
74HC_HCT4020_Q100
Product data sheet
Fig 6.
Pin configuration DHVQFN16
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 23 May 2013
© NXP B.V. 2013. All rights reserved.
3 of 18
74HC4020-Q100; 74HCT4020-Q100
NXP Semiconductors
14-stage binary ripple counter
6.2 Pin description
Table 2.
Pin description
Symbol
Pin
Description
Q0, Q3 to Q13
9, 7, 5, 4, 6, 13, 12, 14, 15, 1, 2, 3
output
GND
8
ground (0 V)
CP
10
clock input (HIGH-to-LOW, edge-triggered)
MR
11
master reset input (active HIGH)
VCC
16
positive supply voltage
7. Functional description
Table 3.
Function table
Input
Output
CP
MR

L
no change

L
count
X
H
L
[1]
Q0, Q3 to Q13
H = HIGH voltage level; L = LOW voltage level; X = don’t care;  = LOW-to-HIGH clock transition;  = HIGH-to-LOW clock transition.
7.1 Timing diagram
1
2
4
8
16
32
64
128
256
512 1024 2048 4096 8192 16384
CP input
MR input
Q0
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11
Q12
Q13
001aal207
Fig 7.
Timing diagram
74HC_HCT4020_Q100
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 23 May 2013
© NXP B.V. 2013. All rights reserved.
4 of 18
NXP Semiconductors
74HC4020-Q100; 74HCT4020-Q100
14-stage binary ripple counter
8. Limiting values
Table 4.
Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).
Symbol
Parameter
VCC
supply voltage
Conditions
Min
Max
Unit
0.5
+7
V
IIK
input clamping current
VI < 0.5 V or VI > VCC + 0.5 V
-
20
mA
IOK
output clamping current
VI < 0.5 V or VI > VCC + 0.5 V
-
20
mA
IO
output current
0.5 V < VO < VCC + 0.5 V
-
25
mA
ICC
supply current
-
50
mA
IGND
ground current
-
50
mA
Tstg
storage temperature
65
+150
C
-
500
mW
[1]
Tamb = 40 C to +125 C
total power dissipation
Ptot
[1]
For SO16 package: Ptot derates linearly with 8 mW/K above 70 C.
For TSSOP16 package: Ptot derates linearly with 5.5 mW/K above 60 C.
For DHVQFN16 package: Ptot derates linearly with 4.5 mW/K above 60 C.
9. Recommended operating conditions
Table 5.
Recommended operating conditions
Symbol Parameter
Conditions
74HC4020-Q100
Min
Typ
74HCT4020-Q100
Max
Min
Typ
Unit
Max
VCC
supply voltage
2.0
5.0
6.0
4.5
5.0
5.5
V
VI
input voltage
0
-
VCC
0
-
VCC
V
VO
output voltage
0
-
VCC
0
-
VCC
V
t/V
input transition rise and
fall rate
VCC = 2.0 V
-
-
625
-
-
-
ns/V
VCC = 4.5 V
-
1.67
139
-
1.67
139
ns/V
VCC = 6.0 V
-
-
83
-
-
-
ns/V
40
+25
+125
40
+25
+125
Tamb
ambient temperature
74HC_HCT4020_Q100
Product data sheet
except for
Schmitt trigger inputs
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 23 May 2013
C
© NXP B.V. 2013. All rights reserved.
5 of 18
NXP Semiconductors
74HC4020-Q100; 74HCT4020-Q100
14-stage binary ripple counter
10. Static characteristics
Table 6.
Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
Symbol Parameter
25 C
Conditions
40 C to +85 C 40 C to +125 C Unit
Min
Typ
Max
Min
Max
Min
Max
VCC = 2.0 V
1.5
1.2
-
1.5
-
1.5
-
V
VCC = 4.5 V
3.15
2.4
-
3.15
-
3.15
-
V
VCC = 6.0 V
4.2
3.2
-
4.2
-
4.2
-
V
74HC4020-Q100
VIH
VIL
VOH
VOL
HIGH-level
input voltage
LOW-level
input voltage
HIGH-level
output voltage
LOW-level
output voltage
VCC = 2.0 V
-
0.8
0.5
-
0.5
-
0.5
V
VCC = 4.5 V
-
2.1
1.35
-
1.35
-
1.35
V
VCC = 6.0 V
-
2.8
1.8
-
1.8
-
1.8
V
VI = VIH or VIL
IO = 20 A; VCC = 2.0 V
1.9
2.0
-
1.9
-
1.9
-
V
IO = 20 A; VCC = 4.5 V
4.4
4.5
-
4.4
-
4.4
-
V
IO = 20 A; VCC = 6.0 V
5.9
6.0
-
5.9
-
5.9
-
V
IO = 4.0 mA; VCC = 4.5 V
3.98
4.32
-
3.84
-
3.7
-
V
IO = 5.2 mA; VCC = 6.0 V
5.48
5.81
-
5.34
-
5.2
-
V
IO = 20 A; VCC = 2.0 V
-
0
0.1
-
0.1
-
0.1
V
IO = 20 A; VCC = 4.5 V
-
0
0.1
-
0.1
-
0.1
V
VI = VIH or VIL
IO = 20 A; VCC = 6.0 V
-
0
0.1
-
0.1
-
0.1
V
IO = 4.0 mA; VCC = 4.5 V
-
0.15
0.26
-
0.33
-
0.4
V
IO = 5.2 mA; VCC = 6.0 V
-
0.16
0.26
-
0.33
-
0.4
V
II
input leakage
current
VI = VCC or GND;
VCC = 6.0 V
-
-
0.1
-
1
-
1
A
ICC
supply current
VI = VCC or GND; IO = 0 A;
VCC = 6.0 V
-
-
8.0
-
80
-
160
A
CI
input
capacitance
-
3.5
-
-
-
-
-
pF
74HCT4020-Q100
VIH
HIGH-level
input voltage
VCC = 4.5 V to 5.5 V
2.0
1.6
-
2.0
-
2.0
-
V
VIL
LOW-level
input voltage
VCC = 4.5 V to 5.5 V
-
1.2
0.8
-
0.8
-
0.8
V
VOH
HIGH-level
output voltage
VI = VIH or VIL; VCC = 4.5 V
IO = 20 A
4.4
4.5
-
4.4
-
4.4
-
V
IO = 4.0 mA
3.98
4.32
-
3.84
-
3.7
-
V
LOW-level
output voltage
VI = VIH or VIL; VCC = 4.5 V
IO = 20 A; VCC = 4.5 V
-
0
0.1
-
0.1
-
0.1
V
IO = 4.0 mA; VCC = 4.5 V
-
0.15
0.26
-
0.33
-
0.4
V
-
-
0.1
-
1
-
1
A
VOL
II
input leakage
current
74HC_HCT4020_Q100
Product data sheet
VI = VCC or GND;
VCC = 5.5 V
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 23 May 2013
© NXP B.V. 2013. All rights reserved.
6 of 18
NXP Semiconductors
74HC4020-Q100; 74HCT4020-Q100
14-stage binary ripple counter
Table 6.
Static characteristics …continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
Symbol Parameter
25 C
Conditions
Min
Typ
Max
Min
Max
Min
Max
-
-
8.0
-
80
-
160
A
pin MR
-
110
396
-
495
-
539
A
pin CP
-
85
306
-
383
-
417
A
-
3.5
-
-
-
-
-
pF
ICC
supply current
VI = VCC or GND; IO = 0 A;
VCC = 5.5 V
ICC
additional
supply current
VI = VCC  2.1 V; IO = 0 A;
other inputs at VCC or GND;
VCC = 4.5 V to 5.5 V
CI
40 C to +85 C 40 C to +125 C Unit
input
capacitance
11. Dynamic characteristics
Table 7.
Dynamic characteristics
GND (ground = 0 V); CL = 50 pF unless otherwise specified; for test circuit, see Figure 10
Symbol Parameter
25 C
Conditions
40 C to +85 C 40 C to +125 C Unit
Min
Typ
Max
Min
Max
Min
Max
VCC = 2.0 V; CL = 50 pF
-
39
VCC = 4.5 V; CL = 50 pF
-
14
140
-
28
-
175
-
210
ns
35
-
42
ns
VCC = 5.0 V; CL = 15 pF
-
11
-
-
-
-
-
ns
VCC = 6.0 V; CL = 50 pF
-
11
24
-
30
-
36
ns
VCC = 2.0 V; CL = 50 pF
-
22
75
-
95
-
110
ns
VCC = 4.5 V; CL = 50 pF
-
8
15
-
19
-
22
ns
VCC = 5.0 V; CL = 15 pF
-
6
-
-
-
-
-
ns
74HC4020-Q100
tpd
propagation
delay
[1]
CP to Q0; see Figure 8
Qn to Qn+1; see Figure 9
tPHL
tt
VCC = 6.0 V; CL = 50 pF
-
6
13
-
16
-
19
ns
HIGH to LOW MR to Qn; see Figure 8
propagation
VCC =2.0 V; CL = 50 pF
delay
VCC = 4.5 V; CL = 50 pF
-
55
170
-
215
-
225
ns
-
20
34
-
43
-
51
ns
VCC = 5.0 V; CL = 15 pF
-
17
-
-
-
-
-
ns
VCC = 6.0 V; CL = 50 pF
-
16
29
-
37
-
43
ns
VCC = 2.0 V; CL = 50 pF
-
19
75
-
95
-
110
ns
VCC = 4.5 V; CL = 50 pF
-
7
15
-
19
-
22
ns
VCC = 6.0 V; CL = 50 pF
-
6
13
-
16
-
19
ns
transition
time
74HC_HCT4020_Q100
Product data sheet
[2]
Qn; see Figure 8
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 23 May 2013
© NXP B.V. 2013. All rights reserved.
7 of 18
NXP Semiconductors
74HC4020-Q100; 74HCT4020-Q100
14-stage binary ripple counter
Table 7.
Dynamic characteristics …continued
GND (ground = 0 V); CL = 50 pF unless otherwise specified; for test circuit, see Figure 10
Symbol Parameter
tW
25 C
Conditions
40 C to +85 C 40 C to +125 C Unit
Min
Typ
Max
Min
Max
Min
Max
VCC = 2.0 V; CL = 50 pF
80
14
-
100
-
120
-
ns
VCC = 4.5 V; CL = 50 pF
16
4
-
20
-
24
-
ns
VCC = 6.0 V; CL = 50 pF
14
3
-
17
-
20
-
ns
VCC = 2.0 V; CL = 50 pF
80
17
-
100
-
120
-
ns
VCC = 4.5 V; CL = 50 pF
16
6
-
20
-
24
-
ns
VCC = 6.0 V; CL = 50 pF
14
5
-
17
-
20
-
ns
VCC = 2.0 V; CL = 50 pF
50
6
-
65
-
75
-
ns
VCC = 4.5 V; CL = 50 pF
10
2
-
13
-
15
-
ns
VCC = 6.0 V; CL = 50 pF
9
2
-
11
-
13
-
ns
VCC = 2.0 V; CL = 50 pF
6.0
30
-
4.8
-
4.0
-
MHz
VCC = 4.5 V; CL = 50 pF
30
92
-
24
-
20
-
MHz
VCC = 5.0 V; CL = 15 pF
-
101
-
-
-
-
-
MHz
35
109
-
28
-
24
-
MHz
-
19
-
-
-
-
-
pF
VCC = 4.5 V; CL = 50 pF
-
18
36
-
45
-
54
ns
VCC = 5.0 V; CL = 15 pF
-
15
-
-
-
-
-
ns
VCC = 4.5 V; CL = 50 pF
-
8
15
-
19
-
22
ns
VCC = 5.0 V; CL = 15 pF
-
6
-
-
-
-
-
ns
HIGH to LOW MR to Qn; see Figure 8
propagation
VCC = 4.5 V; CL = 50 pF
delay
VCC = 5.0 V; CL = 15 pF
-
22
45
-
56
-
68
ns
-
19
-
-
-
-
-
ns
-
7
15
-
19
-
22
ns
20
7
-
25
-
30
-
ns
20
8
-
25
-
30
-
ns
10
2
-
13
-
15
-
ns
pulse width
CP HIGH or LOW;
see Figure 8
MR HIGH; see Figure 8
trec
fmax
recovery time MR to CP; see Figure 8
maximum
frequency
see Figure 8
VCC = 6.0 V; CL = 50 pF
CPD
[3]
power
dissipation
capacitance
74HCT4020-Q100
tpd
propagation
delay
[1]
CP to Q0; see Figure 8
Qn to Qn+1; see Figure 9
tPHL
tt
tW
transition
time
Qn; see Figure 8
pulse width
CP HIGH or LOW;
see Figure 8
[2]
VCC = 4.5 V; CL = 50 pF
VCC = 4.5 V; CL = 50 pF
MR HIGH; see Figure 8
VCC = 4.5 V; CL = 50 pF
trec
recovery time MR to CP; see Figure 8
VCC = 4.5 V; CL = 50 pF
74HC_HCT4020_Q100
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 23 May 2013
© NXP B.V. 2013. All rights reserved.
8 of 18
74HC4020-Q100; 74HCT4020-Q100
NXP Semiconductors
14-stage binary ripple counter
Table 7.
Dynamic characteristics …continued
GND (ground = 0 V); CL = 50 pF unless otherwise specified; for test circuit, see Figure 10
Symbol Parameter
fmax
maximum
frequency
40 C to +85 C 40 C to +125 C Unit
Min
Typ
Max
Min
Max
Min
Max
VCC = 4.5 V; CL = 50 pF
25
47
-
20
-
17
-
MHz
VCC = 5.0 V; CL = 15 pF
-
52
-
-
-
-
-
MHz
-
20
-
-
-
-
-
pF
see Figure 8
[3]
power
dissipation
capacitance
CPD
[1]
25 C
Conditions
tpd is the same as tPHL and tPLH.
[2]
tt is the same as tTHL and tTLH.
[3]
CPD is used to determine the dynamic power dissipation (PD in W).
PD = CPD  VCC2  fi + (CL  VCC2  fo) where:
fi = input frequency in MHz;
fo = output frequency in MHz;
 (CL  VCC2  fo) = sum of outputs;
CL = output load capacitance in pF;
VCC = supply voltage in V.
12. Waveforms
VI
VM
MR input
1/fmax
tW
trec
VI
VM
CP input
tPHL
tPLH
90 %
Q0 or Qn
output
tW
tPHL
90 %
10 %
VM
10 %
tTLH
tTHL
001aad590
Measurement points are given in Table 8.
VOL and VOH are typical voltage output levels that occur with the output load.
Fig 8.
Clock timing, propagation delays, pulse widths and measurement points
74HC_HCT4020_Q100
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 23 May 2013
© NXP B.V. 2013. All rights reserved.
9 of 18
74HC4020-Q100; 74HCT4020-Q100
NXP Semiconductors
14-stage binary ripple counter
VOH
Qn output
VM
VOL
tPLH
tPHL
VOH
VM
Qn+1 output
VOL
001aai120
Measurement points are given in Table 8.
VOL and VOH are typical voltage output levels that occur with the output load.
Fig 9.
Table 8.
Waveforms showing the output Qn to output Qn+1 propagation delays
Measurement points
Type
Input
Output
VM
VM
74HC4020-Q100
0.5  VCC
0.5  VCC
74HCT4020-Q100
1.3 V
1.3 V
74HC_HCT4020_Q100
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 23 May 2013
© NXP B.V. 2013. All rights reserved.
10 of 18
NXP Semiconductors
74HC4020-Q100; 74HCT4020-Q100
14-stage binary ripple counter
VI
negative
pulse
tW
90 %
VM
VM
10 %
GND
tr
tf
tr
tf
VI
90 %
positive
pulse
GND
VM
VM
10 %
tW
VCC
G
VI
VO
DUT
RT
CL
001aah768
Test data is given in Table 9.
Definitions test circuit:
RT = Termination resistance should be equal to output impedance Zo of the pulse generator.
CL = Load capacitance including jig and probe capacitance.
Fig 10. Test circuit for measuring switching times
Table 9.
Test data
Type
Input
VI
74HC4020-Q100
Load
tr, tf
CL
VCC
6 ns
15 pF, 50 pF
74HCT4020-Q100 3 V
6 ns
15 pF, 50 pF
74HC_HCT4020_Q100
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 23 May 2013
© NXP B.V. 2013. All rights reserved.
11 of 18
74HC4020-Q100; 74HCT4020-Q100
NXP Semiconductors
14-stage binary ripple counter
13. Package outline
SO16: plastic small outline package; 16 leads; body width 3.9 mm
SOT109-1
D
E
A
X
c
y
HE
v M A
Z
16
9
Q
A2
A
(A 3)
A1
pin 1 index
θ
Lp
1
L
8
e
0
detail X
w M
bp
2.5
5 mm
scale
DIMENSIONS (inch dimensions are derived from the original mm dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (1)
e
HE
L
Lp
Q
v
w
y
Z (1)
mm
1.75
0.25
0.10
1.45
1.25
0.25
0.49
0.36
0.25
0.19
10.0
9.8
4.0
3.8
1.27
6.2
5.8
1.05
1.0
0.4
0.7
0.6
0.25
0.25
0.1
0.7
0.3
0.01
0.019 0.0100 0.39
0.014 0.0075 0.38
0.039
0.016
0.028
0.020
inches
0.010 0.057
0.069
0.004 0.049
0.16
0.15
0.05
0.244
0.041
0.228
0.01
0.01
0.028
0.004
0.012
θ
8o
o
0
Note
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.
REFERENCES
OUTLINE
VERSION
IEC
JEDEC
SOT109-1
076E07
MS-012
JEITA
EUROPEAN
PROJECTION
ISSUE DATE
99-12-27
03-02-19
Fig 11. Package outline SOT109-1 (SO16)
74HC_HCT4020_Q100
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 23 May 2013
© NXP B.V. 2013. All rights reserved.
12 of 18
74HC4020-Q100; 74HCT4020-Q100
NXP Semiconductors
14-stage binary ripple counter
TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm
SOT403-1
E
D
A
X
c
y
HE
v M A
Z
9
16
Q
(A 3)
A2
A
A1
pin 1 index
θ
Lp
L
1
8
e
detail X
w M
bp
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (2)
e
HE
L
Lp
Q
v
w
y
Z (1)
θ
mm
1.1
0.15
0.05
0.95
0.80
0.25
0.30
0.19
0.2
0.1
5.1
4.9
4.5
4.3
0.65
6.6
6.2
1
0.75
0.50
0.4
0.3
0.2
0.13
0.1
0.40
0.06
8o
o
0
Notes
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.
OUTLINE
VERSION
SOT403-1
REFERENCES
IEC
JEDEC
JEITA
EUROPEAN
PROJECTION
ISSUE DATE
99-12-27
03-02-18
MO-153
Fig 12. Package outline SOT403-1 (TSSOP16)
74HC_HCT4020_Q100
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 23 May 2013
© NXP B.V. 2013. All rights reserved.
13 of 18
74HC4020-Q100; 74HCT4020-Q100
NXP Semiconductors
14-stage binary ripple counter
DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads;
SOT763-1
16 terminals; body 2.5 x 3.5 x 0.85 mm
A
B
D
A
A1
E
c
detail X
terminal 1
index area
terminal 1
index area
C
e1
e
2
7
y
y1 C
v M C A B
w M C
b
L
1
8
Eh
e
16
9
15
10
Dh
X
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
mm
A(1)
max.
A1
b
1
0.05
0.00
0.30
0.18
c
D (1)
Dh
E (1)
Eh
0.2
3.6
3.4
2.15
1.85
2.6
2.4
1.15
0.85
e
0.5
e1
L
v
w
y
y1
2.5
0.5
0.3
0.1
0.05
0.05
0.1
Note
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.
REFERENCES
OUTLINE
VERSION
IEC
JEDEC
JEITA
SOT763-1
---
MO-241
---
EUROPEAN
PROJECTION
ISSUE DATE
02-10-17
03-01-27
Fig 13. Package outline SOT763-1 (DHVQFN16)
74HC_HCT4020_Q100
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 23 May 2013
© NXP B.V. 2013. All rights reserved.
14 of 18
NXP Semiconductors
74HC4020-Q100; 74HCT4020-Q100
14-stage binary ripple counter
14. Abbreviations
Table 10.
Abbreviations
Acronym
Description
CMOS
Complementary Metal-Oxide Semiconductor
DUT
Device Under Test
ESD
ElectroStatic Discharge
HBM
Human Body Model
MIL
Military
MM
Machine Model
TTL
Transistor-Transistor Logic
15. Revision history
Table 11.
Revision history
Document ID
Release date
74HC_HCT4020_Q100 v.1 20130523
74HC_HCT4020_Q100
Product data sheet
Data sheet status
Change
notice
Supersedes
Product data sheet
-
-
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 23 May 2013
© NXP B.V. 2013. All rights reserved.
15 of 18
NXP Semiconductors
74HC4020-Q100; 74HCT4020-Q100
14-stage binary ripple counter
16. Legal information
16.1 Data sheet status
Document status[1][2]
Product status[3]
Definition
Objective [short] data sheet
Development
This document contains data from the objective specification for product development.
Preliminary [short] data sheet
Qualification
This document contains data from the preliminary specification.
Product [short] data sheet
Production
This document contains the product specification.
[1]
Please consult the most recently issued document before initiating or completing a design.
[2]
The term ‘short data sheet’ is explained in section “Definitions”.
[3]
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status
information is available on the Internet at URL http://www.nxp.com.
16.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is intended
for quick reference only and should not be relied upon to contain detailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local NXP Semiconductors sales
office. In case of any inconsistency or conflict with the short data sheet, the
full data sheet shall prevail.
Product specification — The information and data provided in a Product
data sheet shall define the specification of the product as agreed between
NXP Semiconductors and its customer, unless NXP Semiconductors and
customer have explicitly agreed otherwise in writing. In no event however,
shall an agreement be valid in which the NXP Semiconductors product is
deemed to offer functions and qualities beyond those described in the
Product data sheet.
16.3 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of NXP Semiconductors.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.
74HC_HCT4020_Q100
Product data sheet
Suitability for use in automotive applications — This NXP
Semiconductors product has been qualified for use in automotive
applications. Unless otherwise agreed in writing, the product is not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer's own
risk.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with their
applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress ratings only and (proper)
operation of the device at these or any other conditions above those given in
the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanently and irreversibly affect
the quality and reliability of the device.
Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 23 May 2013
© NXP B.V. 2013. All rights reserved.
16 of 18
NXP Semiconductors
74HC4020-Q100; 74HCT4020-Q100
14-stage binary ripple counter
No offer to sell or license — Nothing in this document may be interpreted or
construed as an offer to sell products that is open for acceptance or the grant,
conveyance or implication of any license under any copyrights, patents or
other industrial or intellectual property rights.
Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.
Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.
16.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
17. Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: [email protected]
74HC_HCT4020_Q100
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 23 May 2013
© NXP B.V. 2013. All rights reserved.
17 of 18
NXP Semiconductors
74HC4020-Q100; 74HCT4020-Q100
14-stage binary ripple counter
18. Contents
1
2
3
4
5
6
6.1
6.2
7
7.1
8
9
10
11
12
13
14
15
16
16.1
16.2
16.3
16.4
17
18
General description . . . . . . . . . . . . . . . . . . . . . . 1
Features and benefits . . . . . . . . . . . . . . . . . . . . 1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Ordering information . . . . . . . . . . . . . . . . . . . . . 2
Functional diagram . . . . . . . . . . . . . . . . . . . . . . 2
Pinning information . . . . . . . . . . . . . . . . . . . . . . 3
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4
Functional description . . . . . . . . . . . . . . . . . . . 4
Timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . 4
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 5
Recommended operating conditions. . . . . . . . 5
Static characteristics. . . . . . . . . . . . . . . . . . . . . 6
Dynamic characteristics . . . . . . . . . . . . . . . . . . 7
Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 12
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Revision history . . . . . . . . . . . . . . . . . . . . . . . . 15
Legal information. . . . . . . . . . . . . . . . . . . . . . . 16
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 16
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Contact information. . . . . . . . . . . . . . . . . . . . . 17
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.
© NXP B.V. 2013.
All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: [email protected]
Date of release: 23 May 2013
Document identifier: 74HC_HCT4020_Q100