SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet SiI-DS-1084-C February 2016 SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet Contents Acronyms in This Document ................................................................................................................................................. 6 1. General Description ...................................................................................................................................................... 7 1.1. Video Input ........................................................................................................................................................... 7 1.2. Audio Input ........................................................................................................................................................... 7 1.3. HDMI Output ........................................................................................................................................................ 7 1.4. Control Capability ................................................................................................................................................. 7 1.5. Packaging .............................................................................................................................................................. 7 2. Product Family .............................................................................................................................................................. 8 3. Functional Description .................................................................................................................................................. 9 3.1. Video Data Input and Conversion ......................................................................................................................... 9 3.1.1. Input Clock Multiplier/Divider .................................................................................................................... 10 3.1.2. Video Data Capture ..................................................................................................................................... 10 3.1.3. Embedded Sync Decoder ............................................................................................................................ 10 3.1.4. Data Enable Generator ............................................................................................................................... 10 3.1.5. Combiner .................................................................................................................................................... 10 3.1.6. 4:2:2 to 4:4:4 Upsampler ............................................................................................................................ 10 3.1.7. RGB Range Expansion ................................................................................................................................. 10 3.1.8. Color Space Converter ................................................................................................................................ 11 3.1.9. RGB/YCbCr Range Compression ................................................................................................................. 11 3.1.10. 4:4:4 to 4:2:2 Downsampler ....................................................................................................................... 11 3.1.11. Clipping ....................................................................................................................................................... 11 3.1.12. 18-to-8/10/12/16-Dither ............................................................................................................................ 11 3.2. Audio Data Capture............................................................................................................................................. 11 3.3. Framer ................................................................................................................................................................. 11 3.4. HDCP Encryption Engine/XOR Mask ................................................................................................................... 11 3.5. HDCP Key ROM ................................................................................................................................................... 12 3.6. TMDS Transmitter ............................................................................................................................................... 12 3.7. GPIO .................................................................................................................................................................... 12 3.8. Hot Plug Detector ............................................................................................................................................... 12 3.9. CEC Interface ....................................................................................................................................................... 12 2 3.10. DDC Master I C Interface ................................................................................................................................ 12 3.11. Receiver Sense and Interrupt Logic ................................................................................................................ 13 3.12. Configuration Logic and Registers .................................................................................................................. 13 2 3.13. I C Slave Interface ........................................................................................................................................... 13 4. Electrical Specifications .............................................................................................................................................. 14 4.1. Absolute Maximum Conditions .......................................................................................................................... 14 4.2. Normal Operating Conditions ............................................................................................................................. 14 4.2.1. I/O Specifications ........................................................................................................................................ 15 4.2.2. DC Power Supply Specifications .................................................................................................................. 16 4.3. AC Specifications ................................................................................................................................................. 16 4.3.1. Video/HDMI Timing Specifications ............................................................................................................. 16 4.3.2. Audio AC Timing Specifications ................................................................................................................... 17 4.3.3. Video AC Timing Specifications ................................................................................................................... 18 4.3.4. Control Signal Timing Specifications ........................................................................................................... 18 4.3.5. CEC Timing Specifications ........................................................................................................................... 19 4.4. Timing Diagrams ................................................................................................................................................. 19 4.4.1. Input Timing Diagrams ................................................................................................................................ 19 4.4.2. Reset Timing Diagrams ............................................................................................................................... 20 4.4.3. TMDS Timing Diagram ................................................................................................................................ 20 4.4.4. Audio Timing Diagrams ............................................................................................................................... 21 2 4.4.5. I C Timing Diagrams .................................................................................................................................... 21 5. Pin Diagram and Descriptions ..................................................................................................................................... 22 © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 2 SiI-DS-1084-C SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 5.1. Pin Diagram......................................................................................................................................................... 22 5.2. Pin Descriptions .................................................................................................................................................. 23 5.2.1. Video Data Input ......................................................................................................................................... 23 5.2.2. TMDS Output .............................................................................................................................................. 24 5.2.3. Audio Input ................................................................................................................................................. 24 5.2.4. DDC, CEC, Configuration, and Control ........................................................................................................ 25 5.2.5. Power and Ground ...................................................................................................................................... 25 5.2.6. Not Connected and Reserved ..................................................................................................................... 25 6. Feature Information ................................................................................................................................................... 26 6.1. RGB to YCbCr Color Space Converter.................................................................................................................. 26 6.2. YCbCr to RGB Color Space Converter.................................................................................................................. 26 2 6.3. I C Register Information ..................................................................................................................................... 27 2 6.4. I S Audio Input .................................................................................................................................................... 27 6.5. Direct Stream Digital Input ................................................................................................................................. 27 6.6. S/PDIF Input ........................................................................................................................................................ 27 2 6.7. I S and S/PDIF Supported MCLK Frequencies ..................................................................................................... 27 6.8. Audio Downsampler Limitations......................................................................................................................... 28 6.9. High Bitrate Audio on HDMI ............................................................................................................................... 29 6.10. Power Domains ............................................................................................................................................... 29 6.11. Internal DDC Master ....................................................................................................................................... 30 6.12. Deep Color Support ........................................................................................................................................ 30 6.13. Source Termination ........................................................................................................................................ 31 6.14. 3D and 4K Video Formats ............................................................................................................................... 31 6.15. Control Signal Connections ............................................................................................................................. 32 6.16. Input Data Bus Mapping ................................................................................................................................. 33 6.16.1. Common Video Input Formats .................................................................................................................... 33 6.16.2. RGB and YCbCr 4:4:4 Separate Sync ........................................................................................................... 34 6.16.3. YC 4:2:2 Separate Sync Formats ................................................................................................................. 36 6.16.4. YC 4:2:2 Embedded Syncs Formats ............................................................................................................. 38 6.16.5. YC Mux 4:2:2 Separate Sync Formats ......................................................................................................... 40 6.16.6. YC Mux 4:2:2 Embedded Sync Formats ...................................................................................................... 42 6.16.7. RGB and YCbCr 4:4:4 Dual Edge Mode Formats ......................................................................................... 44 7. Design Recommendations .......................................................................................................................................... 47 7.1. Power Supply Decoupling ................................................................................................................................... 47 7.2. Power Supply Sequencing ................................................................................................................................... 47 7.3. ESD Recommendations ....................................................................................................................................... 47 7.4. High-Speed TMDS Signals ................................................................................................................................... 48 7.4.1. Layout Guidelines ....................................................................................................................................... 48 7.4.2. TMDS Output Recommendation ................................................................................................................ 48 7.4.3. EMI Considerations ..................................................................................................................................... 48 8. Packaging .................................................................................................................................................................... 49 8.1. ePad Requirements............................................................................................................................................. 49 8.2. PCB Layout Guidelines ........................................................................................................................................ 49 8.3. Package Dimensions ........................................................................................................................................... 50 8.4. Marking Specification ......................................................................................................................................... 51 8.5. Ordering Information .......................................................................................................................................... 51 References .......................................................................................................................................................................... 52 Standards Documents..................................................................................................................................................... 52 Standards Groups ........................................................................................................................................................... 52 Lattice Semiconductor Documents ................................................................................................................................. 52 Technical Support ........................................................................................................................................................... 53 Revision History .................................................................................................................................................................. 54 © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1084-C 3 SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet Figures Figure 1.1. Typical Application for Streaming Sticks ............................................................................................................. 7 Figure 3.1. SiI9136-3/SiI1136 Functional Block Diagram ...................................................................................................... 9 Figure 3.2. Transmitter Video Data Processing Path ............................................................................................................ 9 Figure 4.1. VCCTP Test Point for VCC Noise Tolerance ....................................................................................................... 14 Figure 4.2. IDCK Clock Duty Cycle ....................................................................................................................................... 19 Figure 4.3. Control and Data Single-Edge Setup and Hold Times—EDGE = 1 ..................................................................... 19 Figure 4.4. Control and Data Single-Edge Setup and Hold Times—EDGE = 0 ..................................................................... 19 Figure 4.5. Control and Data Dual-Edge Setup and Hold Times ......................................................................................... 19 Figure 4.6. VSYNC and HSYNC Delay Times Based on DE ................................................................................................... 20 Figure 4.7. DE HIGH and LOW Times .................................................................................................................................. 20 Figure 4.8. Conditions for Use of RESET# ............................................................................................................................ 20 Figure 4.9. RESET# Minimum Timings................................................................................................................................. 20 Figure 4.10. Differential Transition Times .......................................................................................................................... 20 2 Figure 4.11. I S Input Timings ............................................................................................................................................. 21 Figure 4.12. S/PDIF Input Timings ....................................................................................................................................... 21 Figure 4.13. MCLK Timings .................................................................................................................................................. 21 Figure 4.14. DSD Input Timings ........................................................................................................................................... 21 2 Figure 4.15. I C Data Valid Delay (Driving Read Cycle Data) ............................................................................................... 21 Figure 5.1. Pin Diagram ....................................................................................................................................................... 22 Figure 6.1. High Speed Data Transmission .......................................................................................................................... 29 Figure 6.2. High Bitrate Stream Before and After Reassembly and Splitting ...................................................................... 29 Figure 6.3. High Bitrate Stream After Splitting ................................................................................................................... 29 2 Figure 6.4. Simplified Host I C Interface Using Master DDC Port ....................................................................................... 30 2 Figure 6.5. Master I C Supported Transactions .................................................................................................................. 30 Figure 6.6. Controller Connections Schematic .................................................................................................................... 32 Figure 6.7. 8-Bit Color Depth RGB/YCbCr/xvYCC 4:4:4 Timing ........................................................................................... 35 Figure 6.8. 10-Bit Color Depth RGB/YCbCr/xvYCC 4:4:4 Timing ......................................................................................... 35 Figure 6.9. 12-Bit Color Depth RGB/YCbCr/xvYCC 4:4:4 Timing ......................................................................................... 35 Figure 6.10. 8-Bit Color Depth YC 4:2:2 Timing .................................................................................................................. 37 Figure 6.11. 10-Bit Color Depth YC 4:2:2 Timing................................................................................................................. 37 Figure 6.12. 12-Bit Color Depth YC 4:2:2 Timing................................................................................................................. 37 Figure 6.13. 8-Bit Color Depth YC 4:2:2 Embedded Sync Timing ........................................................................................ 39 Figure 6.14. 10-Bit Color Depth YC 4:2:2 Embedded Sync Timing ...................................................................................... 39 Figure 6.15. 12-Bit Color Depth YC 4:2:2 Embedded Sync Timing ...................................................................................... 39 Figure 6.16. 8-Bit Color Depth YC Mux 4:2:2 Timing .......................................................................................................... 40 Figure 6.17. 10-Bit Color Depth YC Mux 4:2:2 Timing ........................................................................................................ 41 Figure 6.18. 12-Bit Color Depth YC Mux 4:2:2 Timing ........................................................................................................ 41 Figure 6.19. 8-Bit Color Depth YC Mux 4:2:2 Embedded Sync Timing ................................................................................ 42 Figure 6.20. 10-Bit Color Depth YC Mux 4:2:2 Embedded Sync Timing .............................................................................. 43 Figure 6.21. 12-Bit Color Depth YC Mux 4:2:2 Embedded Sync Timing .............................................................................. 43 Figure 6.22. 8-Bit Color Depth 4:4:4 Dual Edge Timing ...................................................................................................... 45 Figure 6.23. 10-Bit Color Depth 4:4:4 Dual Edge Timing .................................................................................................... 45 Figure 6.24. 12-Bit Color Depth 4:4:4 Dual Edge Timing .................................................................................................... 45 Figure 6.25. 16-Bit Color Depth 4:4:4 Dual Edge Timing .................................................................................................... 46 Figure 7.1. Decoupling and Bypass Schematic .................................................................................................................... 47 Figure 7.2. Decoupling and Bypass Capacitor Placement ................................................................................................... 47 Figure 8.1. 100-Pin Package Diagram ................................................................................................................................. 50 Figure 8.2. Marking Diagram .............................................................................................................................................. 51 © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 4 SiI-DS-1084-C SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet Tables Table 2.1. Product Selection Guide ...................................................................................................................................... 8 Table 4.1. Absolute Maximum Conditions .......................................................................................................................... 14 Table 4.2. Normal Operating Conditions ............................................................................................................................ 14 Table 4.3. DC Digital I/O Specifications............................................................................................................................... 15 Table 4.4. TMDS I/O Specifications ..................................................................................................................................... 15 Table 4.5. DC Specifications ................................................................................................................................................ 16 Table 4.6. Video Input AC Specifications ............................................................................................................................ 16 Table 4.7. TMDS AC Output Specifications ......................................................................................................................... 16 Table 4.8. S/PDIF Input Port Timings .................................................................................................................................. 17 2 Table 4.9. I S Input Port Timings ......................................................................................................................................... 17 Table 4.10. DSD Input Port Timings .................................................................................................................................... 17 Table 4.11. Video AC Timing Specifications ........................................................................................................................ 18 Table 4.12. Control Signal Timing Specifications ................................................................................................................ 18 Table 6.1. RGB to YCbCr Conversion Formulas ................................................................................................................... 26 Table 6.2. YCbCr-to-RGB Conversion Formula .................................................................................................................... 26 2 Table 6.3. Control of the Default I C Addresses with the CI2CA Pin ................................................................................... 27 Table 6.4. Supported MCLK Frequencies ............................................................................................................................ 28 Table 6.5. Channel Status Bits Used for Word Length ........................................................................................................ 28 Table 6.6. Supported 3D and 4K Video Formats ................................................................................................................. 31 Table 6.7. Video Input Formats .......................................................................................................................................... 33 Table 6.8. RGB/YCbCr 4:4:4 Separate Sync Data Mapping ................................................................................................. 34 Table 6.9. YC 4:2:2 Separate Sync Data Mapping ............................................................................................................... 36 Table 6.10. YC 4:2:2 Embedded Sync Data Mapping .......................................................................................................... 38 Table 6.11. YC Mux 4:2:2 Separate Sync Data Mapping ..................................................................................................... 40 Table 6.12. YC Mux 4:2:2 Embedded Sync Data Mapping .................................................................................................. 42 Table 6.13. RGB/YCbCr 4:4:4 Separate Sync Dual-Edge Data Mapping .............................................................................. 44 © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1084-C 5 SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet Acronyms in This Document A list of acronyms used in this document. Acronym ACPI Definition Advanced Configuration and Power Interface CBUS Control Bus CEC Consumer Electronics Control CPI CEC Programming Interface CSC Color Space Converters DDC Display Data Channel DSC Display Stream Compression DVI Digital Visual Interface EDDC Enhanced Display Data Channel EDID Extended Display Identification Data EMI Electromagnetic interference ESD Electrostatic Discharge GPIO General Purpose Input/Output HDCP High-bandwidth Digital Content Protection HDMI High-Definition Multimedia Interface HDTV High-Definition Television HPD Hot Plug Detect 2 IC Inter-Integrated Circuit KSV Key Selection Vector MCLK Master Clock SPDIF Sony/Philips Digital Interface Format TMDS Transition Minimized Differential Signaling TPI Transmitter Programming Interface VSIF Vendor Specific InfoFrame © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 6 SiI-DS-1084-C SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 1. General Description 1.3. The Lattice Semiconductor SiI9136-3/SiI1136 transmitter is an HDMI® Deep Color transmitter with 3D and 4K x 2K support for consumer electronics products such as set-top boxes, Blu-ray players and recorders, A/V Receivers, DVD players and recorders, personal video recorders, home theater-in-a-box systems, and home theater PCs. Figure 1.1 shows an example of system architecture using the SiI9136-3/SiI1136 device. The SiI9136-3/SiI1136 transmitter, with the latest generation 300 MHz TMDS™ core, enables home theater devices to deliver up to 16-bit Deep Color at 1080p/30 resolutions and up to 12-bit Deep Color at 1080p/60 resolutions. On the audio side, high bitrate audio formats such as Dolby® TrueHD and DTS-HD are supported for an enhanced digital audio experience. 1.1. Video Input Supports most common standard and nonstandard video input formats Supports most common 3D formats Supports video resolutions up to 8-bit 4K (30 Hz), 12-bit 1080p (60 Hz), 12-bit 720p/1080i (120 Hz), and 16-bit 1080p (30 Hz) DVI, HDCP (on SiI9136-3 only), and HDMI transmitter with xvYCC extended color gamut, Deep Color up to 16-bit color, 3D, and high bitrate audio support 300 MHz HDMI transmitter Supports all mandatory and some optional 3D modes Preprogrammed HDCP key set (on SiI9136-3 only) simplifies the manufacturing process, lowers cost, and provides the highest level of HDCP key security 1.4. Audio Input S/PDIF input supports PCM and compressed audio formats (Dolby Digital, DTS, AC-3) DSD input supports Super Audio CD applications (SACD) I²S input supports PCM, DVD-Audio input (up to 8-channel 192 kHz) High Bitrate audio support such as DTS HD and Dolby True HD Control Capability Consumer Electronics Control (CEC) interface that incorporates an HDMI-compliant CEC I/O and the Lattice CEC Programming Interface (CPI) reduces the need for system-level control by the system microcontroller and simplifies firmware overhead Four General Purpose I/O (GPIO) pins Three dynamic power management modes as required in the Advanced Configuration and Power Interface (ACPI) Specification, according to system needs 1.5. 1.2. HDMI Output Packaging 100-pin, 14 mm x 14 mm, 0.5 mm pitch TQFP package with ePad Figure 1.1. Typical Application for Streaming Sticks © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1084-C 7 SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 2. Product Family Table 2.1 summarizes the differences between the SiI9136-3/SiI1136 transmitter and the SiI9134 transmitter. Table 2.1. Product Selection Guide Transmitter Video Input Digital Video Input Ports I/O Voltage Core Voltage SiI9134 SiI9136 SiI9136-3/SiI1136 1 1 1 3.3 V 3.3 V 3.3 V 1.8 V 1.2 V 1.2 V Input Pixel Clock Multiply/Divide 0.5x, 2x, 4x 0.5x, 2x, 4x 0.5x, 2x, 4x Maximum Pixel Input Clock Rate 165 MHz 165 MHz 300 MHz Maximum TMDS Output Clock 225 MHz 225 MHz 300 MHz BTA-T1004 Format Support Video Format Conversion 36-bit and 30-bit Deep Color Yes Yes Yes Yes Yes Yes 48-bit Deep Color No Yes Yes xvYCC No Yes Yes YCbCr RGB CSC Yes Yes Yes RGB YCbCr CSC Yes Yes Yes 4:2:2 4:4:4 Upsampling Yes Yes Yes 4:4:4 4:2:2 Decimation Yes Yes Yes 16–235 0–255 Expansion Yes Yes Yes 0–255 16–235 Compression Yes Yes Yes 16–235/240 Clipping Audio Input S/PDIF Input Ports Yes Yes Yes 1 1 1 4 (8-channel) 4 (8-channel) 4 (8-channel) High Bitrate Audio Support Compressed DTS-HD and Dolby True-HD Yes Yes Yes One-bit Audio (DSD/SACD) Yes 2 I S Input Bits 1 2-Channel Maximum Sample Rate 8-Channel Maximum Sample Rate Down Sampling Internal MCLK Generator 2 I C Address Bus Device Address Select 1 Yes 2 192 kHz on I S 192 kHz on S/PDIF Yes 2 192 kHz on I S 192 kHz on S/PDIF 2 192 kHz on I S 192 kHz on S/PDIF 192 kHz 192 kHz 192 kHz 96 kHz to 48 kHz 192 kHz to 48 kHz 96 kHz to 48 kHz 192 kHz to 48 kHz 96 kHz to 48 kHz 192 kHz to 48 kHz No Yes Yes 2 2 CI2CA Pin CI2CA Pin CI2CA Pin Master DDC Bus Other CEC Interface Yes Yes Yes No Yes Yes xvYCC Gamut Data Yes Yes Yes 3D Support Yes Yes Yes Programming Interface HDCP Reset No Yes Yes Software Register Software Register Software Register 100-pin TQFP 100-pin TQFP Package 100-pin TQFP Notes: 2 1. Shared with I S Input Interface. 2. Internal MCLK generation is ON by default. 3. HDCP Reset does not apply to the SiI1136 transmitter. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 8 SiI-DS-1084-C SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 3. Functional Description Figure 3.1 shows the functional diagram of the SiI9136-3/SiI1136 transmitter. Pin descriptions begin on page 23. A description of each of the blocks shown in the diagram follows the figure. The power domains are described in the Power Domains section on page 29. Note: HDCP blocks do not apply to the SiI1136 transmitter. CEC Interface I2C Slave Interface CSDA CSCL DDC Master I2C Interface Configuration Logic and Registers CI2CA CEC DSDA DSCL INT RESET# Hot Plug Detect Hot-Plug Detector Receiver Sense and Interrupt Logic GPIO HPD GPIO[3:0] IDCK D[35:0] Video Data Input and Conversion HSYNC EXT_SWING VSYNC DE HDCP ROM SPDIF_IN MCLK SCK TMDS Transmitter TX0± TX1± TX2± Audio Data Capture WS TXC± HDCP Encryption Engine XOR Mask Framer SD[3:0] DL[3],DR[3] Figure 3.1. SiI9136-3/SiI1136 Functional Block Diagram 3.1. Video Data Input and Conversion Figure 3.2 shows the video data processing stages through the transmitter. Each of the processing blocks can be bypassed by setting the appropriate register bits. The HSYNC and VSYNC input signals are required, except in embedded sync modes. The DE input signal is optional, because it can be created with the DE generator using the HSYNC and VSYNC signals. IDCK Input Clock Multiplier/ Divider Clock Data Embedded Sync Decoder D[35:0] Video Data Capture DE HSYNC, VSYNC HSYNC, VSYNC Combiner DE Data Enable Generator HSYNC VSYNC DE 4:2:2 to 4:4:4 Upsampler bypass 422 YCbCr to RGB Color Space Converter bypass CSC DE can be explicit input, decoded from embedded syncs, or generated from Hsync and Vsync edges. external DE RGB Range Expansion RGB to YCbCr Color Space Converter RGB/YCbCr Range Compression 4:4:4 to 4:2:2 Downsampler Clipping Dither 18 to 8/10/12/16 bypass Expansion bypass CSC bypass Compression bypass 444 bypass Clipping bypass Dither To HDCP XOR Mask Figure 3.2. Transmitter Video Data Processing Path © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1084-C 9 SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 3.1.1. Input Clock Multiplier/Divider The input pixel clock can be multiplied by 0.5, 2, or 4. Video input formats that use a 2x clock, such as YC Mux mode, can be transmitted across the HDMI link with a 1x clock. Similarly, 1x-to-2x, 1x-to-4x, and 2x-to-4x conversions are possible. 3.1.2. Video Data Capture The bus configurations support most standardized video input formats as well as other widely used non-standard formats. Each configuration has four key attributes: data width, input mode, clock mode, and synchronization. The video input port is a 36-bit wide bus that can be configured to any of the following data widths: 8-, 10-, or 12-bit input in double speed clock mode 12-, 15-, 18-, or 24-bit input in dual edge clock mode 16-, 20-, 24-, 30-, or 36-input in single speed clock mode The input mode includes color format such as RGB, YCbCr, or xvYCC, and color sampling such as 4:4:4 or 4:2:2. Clock mode refers to the input clock rate relative to the pixel clock rate. The SiI9136-3/SiI1136 device supports 1x mode and 2x mode, or dual edge mode. 1x mode and 2x mode means that the input clock operates at one or two times the pixel clock rate. Dual edge mode means that the input clock rate equals the pixel clock rate, but a sample is captured on both the rising edge and the falling edge of the input clock. Thus, with the Video Input configured for 24 bits with a dual edge clock, 48 bits of video data are received per clock cycle. The 24 MSBs of the video data are latched on the first clock edge, and the 24 LSBs are latched on the next clock edge. The first clock edge is programmable and can be either the rising or falling edge. Synchronization attributes refer to how the horizontal and vertical sync signals are configured. Separate synchronization involves placing the horizontal sync, vertical sync, and data enable signals on separate input pins. Embedded synchronization combines these signals with one or more of the data inputs. 3.1.3. Embedded Sync Decoder The transmitter can create DE, HSYNC, and VSYNC signals using the Start of Active Video (SAV) and End of Active Video (EAV) codes within the ITU-R BT.656-format video stream. 3.1.4. Data Enable Generator The transmitter includes logic to construct a Data Enable (DE) signal from the incoming HSYNC, VSYNC, and IDCK. This signal is used to correct timing from sync extraction to conform to CEA-861D timing specifications. By programming registers, the DE signal can define the size of the active display region. This feature is particularly useful when the transmitter connects to MPEG decoders that do not provide a specific DE output signal. 3.1.5. Combiner The clock, data, and sync information is combined into a complete set of signals required for TMDS encoding. From here, the signals are manipulated by the register-selected video processing blocks. 3.1.6. 4:2:2 to 4:4:4 Upsampler Chrominance upsampling doubles the number of chrominance samples per line, converting 4:2:2 sampled video to 4:4:4. 3.1.7. RGB Range Expansion The SiI9136-3/SiI1136 transmitter can scale the input color range from limited-range into full-range using the range expansion block. When enabled by itself, the range expansion block expands 16–235 (64–943 to 256–3775, 409660415 for 30/36/48-bit color depth) limited-range data into 0–255 (0–1023, 0–4095 to 0-65535 for 30/36/48-bit color depth) full-range data for each video channel. When range expansion and the YCbCr to RGB color space converter are both enabled, the input conversion range for the Cb and Cr channels is 16–240 (64–963, 256–3855 to 4096-61695 for 30/36/48-bit color depth). © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 10 SiI-DS-1084-C SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 3.1.8. Color Space Converter Two Color Space Converters (CSCs) (YCbCr to RGB and RGB to YCbCr) are available to interface to the many video formats supplied by A/V processors and to provide full DVI backward compatibility. The CSC can be adjusted to perform standard-definition conversions (ITU.601) or high-definition conversions (ITU.709) by setting the appropriate registers. 3.1.9. RGB/YCbCr Range Compression When enabled by itself, the range compression block compresses 0–255/0–1023/0–4095/0–65535 full-range data into 16–235/64–943/256–3775/4096–60415 limited-range data for each video channel. When enabled with the RGB to YCbCr converter, this block compresses to 16–240/64–963/256–3855/4096–61695 for the Cb and Cr channels. The color range scaling is linear. 3.1.10. 4:4:4 to 4:2:2 Downsampler Downsampling reduces the number of chrominance samples per line by half, converting 4:4:4 sampled video to 4:2:2. 3.1.11. Clipping The clipping block, when enabled, clips the values of the output video to 16–235 for RGB video or the Y channel, and to 16–240 for the Cb and Cr channels. 3.1.12. 18-to-8/10/12/16-Dither The 18-to-8/10/12/16-dither block dithers internally processed, 18-bit data to 8, 10, 12, or 16 bits for output on the HDMI link. It can be bypassed to output 10/12-bit modes when supplied by the A/V processor or converted in the decimator and CSC. 3.2. Audio Data Capture 2 The audio capture block supports I S, Direct Stream Digital, and S/PDIF audio input formats. The appropriate registers must be configured to describe the audio format provided to the SiI9136-3/SiI1136 transmitter. This information is passed over the HDMI link in the CEA-861D Audio Info (AI) packets. 3.3. Framer The framer block handles the packetizing and framing of the data stream sent across the HDMI link. Audio and video data packets are inserted into the respective HDMI Video Data and Data Island periods. This block handles the correct insertion of all HDMI packet types. 3.4. HDCP Encryption Engine/XOR Mask The HDCP encryption engine contains the logic necessary to encrypt the incoming audio and video data and includes support for HDCP authentication and repeater checks. The system microcontroller or microprocessor controls the encryption process by using a set sequence of register reads and writes. An algorithm uses HDCP keys and a Key Selection Vector (KSV) stored in the HDCP key ROM to calculate a number that is then applied to an XOR mask. This process encrypts the audio and video data on a pixel-by-pixel basis during each clock cycle. The HDCP encryption engine/XOR mask does not apply to the SiI1136 transmitter. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1084-C 11 SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 3.5. HDCP Key ROM The SiI9136-3/SiI1136 transmitter comes preprogrammed with a set of production HDCP keys stored in an internal ROM. System manufacturers do not need to purchase key sets from the Digital-Content Protection LLC. Lattice Semiconductor handles all purchasing, programming, and security for the HDCP keys. The preprogrammed HDCP keys provide the highest level of security because there is no way to read the keys once the device is programmed. Customers must sign the HDCP license agreement (www.digital-cp.com) or be under a specific NDA with Lattice Semiconductor before receiving SiI9136-3/SiI1136 samples. The SiI1136 transmitter is functionally equivalent to the SiI9136-3 except the HDCP keys are not preprogrammed and therefore does not support HDCP encryption. 3.6. TMDS Transmitter The TMDS digital core performs 8-to-10-bit TMDS encoding on the data received from the HDCP XOR mask, and is then sent over three TMDS data and a TMDS clock differential lines. A resistor connected to the EXT_SWING pin controls the swing amplitude of the TMDS signal. 3.7. GPIO The SiI9136-3/SiI1136 transmitter has four General Purpose I/O pins. Each pin supports the following functions: 2 Input mode: The value can be read through local I C bus access; an interrupt can be generated on either the falling or the rising edge of the input signal. 2 Output mode: The value can be set through the local I C bus access. 3.8. Hot Plug Detector When HIGH, the Hot Plug Detection signal indicates to the transmitter that the EDID of the connected receiver is readable. A HIGH voltage is at least 2.0 V, and a LOW voltage is less than 0.8 V. 3.9. CEC Interface The Consumer Electronics Control (CEC) Interface block provides CEC-compliant signals between CEC devices and a CEC master. A CEC controller compatible with the Lattice Semiconductor CEC API is included on-chip. The controller has a 2 high-level register interface accessible through the I C interface, and can be used to send and receive CEC commands. This controller makes CEC control easy and straightforward by removing the burden of programming the host processor to perform these low-level transactions on the CEC bus. See the CEC Programming Interface (CPI) Programmer Reference for details on the API (see the Lattice Semiconductor Documents section on page 52). The Programmer’s Reference requires an NDA with Lattice Semiconductor. 3.10. DDC Master I2C Interface The host uses the DDC master logic to read the EDID by programming the target address, offset, and number of bytes. Upon completion, or when the DDC master FIFO becomes full, an interrupt signal is sent to the host so that the host can read data out of the FIFO. The TPI hardware uses the DDC master logic to carry out HDCP authentication tasks. The arbitration logic arbitrates the access from host and the internal TPI hardware. See the Internal DDC Master section on page 30 for more information. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 12 SiI-DS-1084-C SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 3.11. Receiver Sense and Interrupt Logic The Interrupt logic of this block buffers interrupt events from different sources. Receiver Sense and Hot Plug Interrupts are also available in power down mode. The logic for handling these interrupts when all clocks are disabled is also part of this block. The INT pin provides an interrupt signal to the system microcontroller when any of the following occur: Monitor Detect (either from the HPD input level or from the Receiver Sense feature) changes VSYNC (useful for synchronizing a microcontroller to the vertical timing interval) Error in the audio format DDC FIFO status change HDCP authentication error. 3.12. Configuration Logic and Registers This block contains the configuration registers that control the operation of the transmitter. The registers are accessed 2 via the I C interface. This block also contains logic for simplifying the configuration of the transmitter by automatically programming different parameters. 3.13. I2C Slave Interface 2 The controller I C interface on the transmitter (signals CSCL and CSDA) is a slave interface with an operating frequency from 3 kHz to 400 kHz and with an input tolerance of up to 4.0 V when all device operating voltages are present. The host uses this interface to configure the transmitter by reading from and writing to appropriate registers. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1084-C 13 SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 4. Electrical Specifications 4.1. Absolute Maximum Conditions Table 4.1. Absolute Maximum Conditions Symbol IOVCC33 Parameter I/O Pin Supply Voltage Min –0.3 Typ — Max 4.0 Units V Note 2 CVCC12 Digital Core Supply Voltage –0.5 — 1.5 V 2 AVCC Analog Supply Voltage 1.2 V –0.5 — 1.5 V 2 VI Input Voltage –0.3 — IOVCC + 0.3 V — VO Output Voltage –0.3 — IOVCC + 0.3 V — TJ Junction Temperature — — 125 C — TSTG Storage Temperature –65 — 150 C — Notes: 1. Permanent device damage can occur if absolute maximum conditions are exceeded. 2. Functional operation should be restricted to the conditions described in the Normal Operating Conditions section. 4.2. Normal Operating Conditions Table 4.2. Normal Operating Conditions Symbol IOVCC33 Parameter I/O Pin Supply Voltage Min 3.135 Typ 3.3 Max 3.465 Units V Note — CVCC12 Digital Core Supply Voltage 1.14 1.2 1.26 V — AVCC Analog Supply Voltage, 1.2 V 1.14 1.2 1.26 V — VCCN Supply Voltage Noise Tolerance — — 100 mVP-P * TA Ambient Temperature (with power applied) 0 25 70 C — ja Thermal Resistance (Theta JA) — — 29.3 C/W — jc Junction to case resistance (Theta JC) — — 12.8 C/W — *Note: The supply voltage noise is measured at test point VCCTP. See Figure 4.1. The ferrite bead provides filtering of power supply noise. The figure is representative and applies to the IOVCC33, CVCC12, and AVCC pins. VCCTP Ferrite VCC 0.1 F 10 F 0.1 F SiI9136-3/ SiI1136 1 nF GND Figure 4.1. VCCTP Test Point for VCC Noise Tolerance © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 14 SiI-DS-1084-C SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 4.2.1. I/O Specifications Under normal operating conditions unless otherwise specified. Table 4.3. DC Digital I/O Specifications Symbol VIH VIL Parameter * HIGH-level Input Voltage * LOW-level Input Voltage VTH+ VTHVTH+ LOW to HIGH Threshold HIGH to LOW Threshold LOW to HIGH Threshold VTHVTH+ VTH- HIGH to LOW Threshold LOW to HIGH Threshold HIGH to LOW Threshold VOH VOL HIGH-level Output Voltage LOW-level Output Voltage High Impedance Output Leakage Current IOZ Signal Type Conditions LVTTL — Schmitt RESET#, CSCL, CSDA Schmitt DSCL, DSDA Schmitt CEC_A LVTTL IOH HIGH level Output Current IOL LOW level Output Current *Note: All unused input signals should be tied LOW. Min 2.0 –0.3 Typ — — Max 5.5 0.8 Units V V 1.9 — 3.0 — — — — 0.7 — V V V — 2.0 — — — — 1.5 — 0.8 V V V — 2.4 — — — — 0.4 V V — @ VO = 3.3 V or 0 V –10 — 10 A — — @ VOH {Min} @ VOL {Max} — — — — 8 8 mA mA Table 4.4. TMDS I/O Specifications Symbol Parameter Signal Type VOD Differential outputs: single-ended swing * amplitude VODD Differential outputs: differential swing amplitude VDOH Differential HIGH level output voltage TMDS Differential LOW level output voltage TMDS Differential output short circuit current TMDS VDOL IDOS Conditions Min Typ Max Units RLOAD = 50 Ω REXT_SWING as defined in TMDS the Pin Descriptions section 400 500 600 mV TMDS 800 1000 1200 mV AVCC – 10 mV — AVCC + 10 mV V AVCC – 200 mV — AVCC + 10 mV V AVCC – 600 mV — AVCC – 400 mV V AVCC – 700 mV — AVCC – 400 mV V — — 5 μA — ≤ 165 MHz TMDS clock > 165 MHz TMDS clock ≤ 165 MHz TMDS clock > 165 MHz TMDS clock VOUT = 0 V *Note: Single-ended swing amplitude limits are defined by the HDMI Specification. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1084-C 15 SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 4.2.2. DC Power Supply Specifications Table 4.5 shows the power consumption in the three power modes. Measurement uses Dot Moiré pattern with 2 8-chanel I S audio and HDCP enabled. Table 4.5. DC Specifications Symbol Parameter Mode IPON Power On Current D0 IPSTBY IPOFF Power Standby Current D2 D3 Power Off current 74.25 MHz IOVCC33 Typ Max 1.8 1.7 AVCC Typ Max 10.9 12.2 CVCC12 Typ Max 36.3 40.0 148.5 MHz 225 MHz 297 MHz 3.6 4.7 2 3.8 18.2 25.4 33.1 68.4 83.9 94.9 Frequency 1 — — 3.1 3.8 2 3.2 4.70 4.70 20.3 28.3 37.3 0.50 0.50 Units mA 75.6 92.9 105.2 9.10 5.10 mA mA mA mA mA Notes: 1. TMDS clock frequency does not matter in D3 and D2 modes. 2. Current measurement for IOVCC33 is lower at 297 MHz since only 24-bits per pixel is used. At 225 MHz used for deep color, each pixel is 36-bits wide. 4.3. AC Specifications 4.3.1. Video/HDMI Timing Specifications Under normal operating conditions unless otherwise specified. Table 4.6. Video Input AC Specifications Symbol TDDF TDDR Parameter VSYNC and HSYNC Delay from DE falling edge VSYNC and HSYNC Delay to DE rising edge Conditions Min Typ Max Units Figure — 1 — — TCIP Figure 4.6 — 1 — — TCIP Figure 4.6 THDE DE HIGH Time — — — 8191 TCIP Figure 4.7 TLDE DE LOW Time — 138* — — TCIP Figure 4.7 *Note: TLDE minimum is defined for HDMI mode carrying 480p video with 192 kHz audio, which requires at least 138 pixel clock cycles of blanking to carry the audio packets. If only HDCP is running, the minimum DE LOW time is 58 clock cycles, according to the HDCP Specification. If neither HDCP nor audio are running, the minimum DE LOW time is 12 clock cycles for TMDS. The minimum vertical blanking time is three horizontal line times. Table 4.7. TMDS AC Output Specifications Symbol Parameter SLHT Differential Swing LOW-to-HIGH Transition Time SHLT Differential Swing HIGH-to-LOW Transition Time Conditions REXT_SWING = 3.83 kΩ Internal Source Termination On REXT_SWING = 3.83 kΩ Internal Source Termination On Min Typ Max Units Figure 95.5 — 181.81 ps Figure 4.10 86.5 — 172.3 ps Figure 4.10 Notes: 1. These limits are defined by the HDMI Specification. 2. Refer to the Source Termination section on page 31 for information about internal source termination. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 16 SiI-DS-1084-C SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 4.3.2. Audio AC Timing Specifications Table 4.8. S/PDIF Input Port Timings Symbol FS_SPDIF TSPCYC Parameter Sample Rate S/PDIF Cycle Time Conditions 2 Channel CL = 10 pF Min 32 — Typ — — Max 192 1.0 Units kHz UI Figure — Figure 4.12 Notes — 1 TSPDUTY TMCLKCYC S/PDIF Duty Cycle MCLK Cycle Time CL = 10 pF CL = 10 pF 90% 13.3 — — 110% — UI ns Figure 4.12 Figure 4.13 1 3 FMCLK TMCLKDUTY MCLK Frequency MCLK Duty Cycle CL = 10 pF CL = 10 pF — 40% — — 75 60% MHz TMCLKCYC — Figure 4.13 3 3 TAUDDLY Audio Pipeline Delay — — 30 70 s — 4 Conditions — CL = 10 pF CL = 10 pF Min 32 — 90% Typ — — — Max 192 1.0 110% Units kHz UI UI Figure — Figure 4.11 Figure 4.11 Notes — 1 — CL = 10 pF CL = 10 pF 15 0 — — — — ns ns Figure 4.11 Figure 4.11 2 2 Note: Refer to the notes for Table 4.10. 2 Table 4.9. I S Input Port Timings Symbol FS_I2S TSCKCYC TSCKDUTY Parameter Sample Rate 2 I S Cycle Time 2 I S Duty Cycle 2 TI2SSU I S Setup Time 2 TI2SHD I S Hold Time Note: Refer to the notes for Table 4.10. Table 4.10. DSD Input Port Timings Symbol FS_DSD Parameter Sample Rate Conditions — Min — Typ 44.1 Max 88.2 Units kHz Figure — Notes — TDCKCYC TDCKDUTY TDSDSU DSD Cycle Time DSD Duty Cycle DSD Setup Time CL = 10 pF CL = 10 pF CL = 10 pF — 90% 20 — — — 2.0 110% — UI UI ns Figure 4.14 Figure 4.14 Figure 4.14 1 1 — TDSDHD DSD Hold Time CL = 10 pF 20 — — ns Figure 4.14 — Notes: 2 1. Proportional to unit time (UI) according to sample rate. Refer to the I S, S/PDIF, or DSD Specifications. 2 2. Setup and hold minimum times are based on 13.388 MHz sampling, which is adapted from Figure 3 of the Philips I S Specification. 3. If a separate master clock input (MCLK) is used for time-stamping purposes, it has to be coherent with the audio input. Coherent means that the MCLK and audio input have been created from the same clock source. This requirement usually uses the original MCLK to strobe the audio out from the sourcing chip. 4. Audio pipeline delay is measured from the transmitter input pins to the TMDS output. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1084-C 17 SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 4.3.3. Video AC Timing Specifications Under normal operating conditions unless otherwise specified. Table 4.11. Video AC Timing Specifications Symbol TCIP FCIP Parameter IDCK period, one pixel per clock IDCK frequency, one pixel per clock Conditions — — Min 3.3 25 Typ — — Max 40 300 Units ns MHz Figure Figure 4.2 — Notes 1 1 TCIP12 FCIP12 IDCK period, dual-edge clock IDCK frequency, dual-edge clock — — 12.3 25 — — 40 82.5 ns MHz Figure 4.2 — 2 2 TDUTY IDCK duty cycle Worst case IDCK clock jitter, DJ Worst case IDCK clock jitter, RJ — — — 45% — — — — — 55% 0.20 0.25 TCIP TBIT TBIT Figure 4.2 — — — TSIDF THIDF Setup time to IDCK falling edge Hold time to IDCK falling edge EDGE = 0 1.36 0.45 — — — — ns ns Figure 4.4 5 TSIDR THIDR TSIDD Setup time to IDCK rising edge Hold time to IDCK rising edge Setup time to IDCK rising or falling edge 1.57 1.16 1.57 — — — — — — ns ns ns Figure 4.3 5 TIJIT EDGE = 1 3, 4 Dual-edge Figure 4.5 6 clocking THIDD Hold time to IDCK rising or falling edge 1.16 — — ns Notes: 1. TCIP and FCIP apply in single-edge clocking modes. TCIP is the inverse of FCIP and is not a controlling specification. 2. TCIP12 and FCIP12 apply in dual-edge mode. TCIP12 is the inverse of FCIP12 and is not a controlling specification. 3. TBIT is the TMDS bit time. 4. Total jitter (TJ) is calculated from DJ (deterministic jitter), RJ (random jitter, rms) and required BER (Bit Error Rate). For BER of 1E-9, TJ = DJ + 12 • RJ = 3.2 TBIT. 5. Setup and hold time specifications apply to Data, DE, VSYNC, and HSYNC input pins, relative to IDCK input clock. 6. Setup and hold limits are not affected by the setting of the EDGE bit for 12/15/18/24-bit dual-edge clocking mode. 4.3.4. Control Signal Timing Specifications Under normal operating conditions unless otherwise specified. Table 4.12. Control Signal Timing Specifications Symbol TRESET Parameter RESET# signal LOW time required for reset Conditions — Min 50 Typ — Max — Units µs TI2CDVD SDA Data Valid Delay from SCL falling edge on READ command CL = 400pF — — 700 ns THDDAT TINT I C data hold time Response time for INT output pin from change in input condition (HPD, Receiver Sense, VSYNC change, etc.). 0–400 kHz RESET# = HIGH 2.0 — — — — 100 ns µs 2 Figure Figure 4.8 Figure 4.9 Figure 4.15 Note 1, 5 — — 3, 6 — 2, 6 FSCL Frequency on master DDC SCL signal — 40 70 100 kHz — 4 FCSCL Frequency on master CSCL signal — 40 — 400 kHz — — Notes: 1. Reset on RESET# signal can be LOW as the supply becomes stable (shown in Figure 4.8), or pulled LOW for at least TRESET (shown in Figure 4.9). 2 2 2. All standard-mode (100 kHz) I C timing requirements are guaranteed by design. These timings apply to the slave I C port (pins 2 CSDA and CSCL) and to the master I C port (pins DSDA and DSCL). 2 3. This minimum hold time is required by CSCL and CSDA signals as an I C slave. The device does not include the 300 ns internal 2 delay required by the I C Specification (Version 2.1, Table 5, note 2). 2 4. The master DDC block provides an SCL signal for the E-DDC bus. The HDMI Specification limits this to I C Standard Mode or 100 kHz. Use of the Master DDC block does not require an active IDCK. 5. Not a Schmitt trigger. 2 6. Operation of I C pins above 100 kHz is defined by LVTTL levels VIH, VIL, VOH, and VOL (see Table 4.3 on page 15). For these levels, 2 I C speeds up to 400 kHz are supported. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 18 SiI-DS-1084-C SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 4.3.5. CEC Timing Specifications See the HDMI 1.4 Specification – Supplement 1 Consumer Electronics Control (CEC). 4.4. Timing Diagrams 4.4.1. Input Timing Diagrams TCIP/TCIP12 50% 50% 50% TDUTY Figure 4.2. IDCK Clock Duty Cycle TCIP IDCK 50 % 50 % TSIDR D[23:0], DE, HSYNC,VSYNC THIDR no change allowed 50 % 50 % Signals may change only in the unshaded portion of the waveform, to meet both the minimum setup and minimum hold time specifications. Figure 4.3. Control and Data Single-Edge Setup and Hold Times—EDGE = 1 IDCK 50 % 50 % TSIDF D[23:0], DE, HSYNC,VSYNC THIDF no change allowed 50 % 50 % Signals may change only in the unshaded portion of the waveform, to meet both the minimum setup and minimum hold time specifications. Figure 4.4. Control and Data Single-Edge Setup and Hold Times—EDGE = 0 TCIP12 IDCK 50 % TSIDD D[11:0], DE, HSYNC,VSYNC 50 % 50 % THIDD no change allowed TSIDD 50 % THIDD no change allowed 50 % Signals may change only in the unshaded portion of the waveform, to meet both the minimum setup and minimum hold time specifications. Figure 4.5. Control and Data Dual-Edge Setup and Hold Times © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1084-C 19 SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet DE 50% 50% TDDR TDDF VSYNC, HSYNC 50% 50% Figure 4.6. VSYNC and HSYNC Delay Times Based on DE THDE DE 2.0 V 2.0 V 0.8 V 0.8 V TLDE Figure 4.7. DE HIGH and LOW Times 4.4.2. Reset Timing Diagrams VCC must be stable between its limits listed in the Normal Operating Conditions section on page 14 for TRESET before RESET# goes HIGH, as shown in Figure 4.8. Before accessing registers, RESET# must be pulled LOW for TRESET. This can be done by holding RESET# LOW until TRESET after stable power, as described above, or by pulling RESET# LOW from a HIGH state for at least T RESET, as shown in Figure 4.9. VCCmax VCCmin VCC RESET# TRESET Figure 4.8. Conditions for Use of RESET# RESET# TRESET Figure 4.9. RESET# Minimum Timings 4.4.3. TMDS Timing Diagram SLHT SHLT 80% VOD 20% VOD Figure 4.10. Differential Transition Times © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 20 SiI-DS-1084-C SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 4.4.4. Audio Timing Diagrams TSCKCYC TSCKDUTY SCK 50 % 50 % TI2SSU SD[0:3], WS TI2SHD no change allowed 50 % 50 % Figure 4.11. I2S Input Timings TSPCYC T SPDUTY 50% SPDIF Figure 4.12. S/PDIF Input Timings TMCLKCYC MCLK 50% 50% TMCLKDUTY Figure 4.13. MCLK Timings TDCKCYC TDCKDUTY DCLK 50 % TDSDSU DL[3:0], DR[3:0] 50 % TDSDHD no change allowed 50 % 50 % Figure 4.14. DSD Input Timings 4.4.5. I2C Timing Diagrams CSDA, DSDA TI2CDVD CSCL, DSCL 2 Figure 4.15. I C Data Valid Delay (Driving Read Cycle Data) © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1084-C 21 SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 5. Pin Diagram and Descriptions 5.1. Pin Diagram 63 62 61 60 59 58 57 56 55 54 NC 64 GND NC 65 EXT_SWING NC 66 TXC- NC 67 AVCC NC 68 TXC+ NC 69 TX0+ NC 70 TX0- NC 71 TX1- NC 72 AVCC NC 73 TX1+ NC 74 TX2+ NC 75 TX2- NC Figure 5.1 shows the pin diagram for the SiI9136-3/SiI1136 transmitter. A description of the pin functions begins on the next page. 53 52 51 HPD 76 50 GPIO1 77 49 GPIO3 D35 78 48 GND D34 79 47 RESET# D33 80 46 INT D32 81 45 CSCL D31 82 44 CSDA D30 83 43 CI2CA D29 84 42 DSCL D28 85 41 DSDA D27 86 40 CEC_A D26 87 39 GPIO2 CVCC12 88 38 CVCC12 D25 89 37 IOVCC33 D24 90 36 MCLK IOVCC33 91 35 SCK D23 92 34 WS_DR0 D22 93 33 SD0_DL0 D21 94 32 SD1_DR1 D20 95 31 SD2_DL1 D19 96 30 SD3_DR2 D18 97 29 SPDIF_IN_DL2 D17 98 28 DR3 D16 99 27 DL3 GND 100 26 GPIO0 SiI9136-3 SiI9136-3/SiI1136 (TopView) View) (Top D9 17 18 19 20 21 22 23 24 25 DE D10 16 HSYNC D11 15 IDCK D12 14 VSYNC CVCC12 13 D0 D13 12 CVCC12 D14 11 D1 D15 10 D2 9 D3 8 D4 7 CVCC12 6 D5 5 D6 4 IOVCC33 3 D7 2 D8 1 IOVCC33 ePad (GND) NC Figure 5.1. Pin Diagram © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 22 SiI-DS-1084-C SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 5.2. Pin Descriptions 5.2.1. Video Data Input Name D0 Pin 20 D1 19 D2 18 D3 17 D4 15 D5 14 D6 13 D7 11 D8 10 Type LVTTL 5 V tolerant Dir Input Description Video Data Inputs. The video data inputs can be configured to support a wide variety of input formats, including multiple RGB and YCbCr bus formats, using the VID_CONFIG registers. See the Common Video Input Formats section on page 33 for details. D9 9 D10 8 D11 7 D12 6 D13 4 D14 3 D15 2 D16 99 D17 98 D18 97 D19 96 D20 95 D21 94 D22 93 D23 92 D24 90 D25 89 D26 87 D27 86 D28 85 D29 84 D30 83 D31 82 D32 81 D33 80 D34 79 D35 78 IDCK 22 LVTTL 5 V tolerant Input Input Data Clock. Input configurable using the VID_CONFIG registers. DE 25 LVTTL 5 V tolerant Input Data Enable. This signal is HIGH when the transmitter input pixel data is valid and LOW otherwise. DE is optional for some input formats, such as ITU-R BT.656. HSYNC 24 LVTTL 5 V tolerant Input Horizontal Sync input control signal. HSYNC is optional for some input formats, such as ITU-R BT.656. VSYNC 23 LVTTL 5 V tolerant Input Vertical Sync input control signal. VSYNC is optional for some input formats, such as ITU-R BT.656. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1084-C 23 SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 5.2.2. TMDS Output Name TX0+ Pin 58 TX0- 57 TX1+ 60 TX1- 59 TX2+ 63 TX2- 62 TXC+ 55 TXC- 54 EXT_SWING 52 Type TMDS Dir Output Description HDMI Transmitter Output Port Data. TMDS low voltage differential signal output data pairs. TMDS Output HDMI Transmitter Output Port Clock. TMDS low voltage differential signal output clock pair. Analog Input Output External Swing Voltage Control. Recommended values (actual value depends on board design): 5.6 k resistor to ground without using internal termination. 4.02 k resistor to ground using internal termination. Type Dir 5.2.3. Audio Input Name Pin Description 2 I S Mode; S/PDIF Mode DSD Mode — MCLK 36 LVTTL 5 V tolerant Input Audio Input Master Clock. SCK 35 LVTTL 5 V tolerant Input I S Serial Clock. WS_DR0 34 LVTTL 5 V tolerant Input I S Word Select. SD0_DL0 33 LVTTL 5 V tolerant Input I S Data 0. SD1_DR1 32 LVTTL 5 V tolerant Input I S Data 1. SD2_DL1 31 LVTTL 5 V tolerant Input I S Data 2. SD3_DR2 30 LVTTL 5 V tolerant Input SPDIF_IN_DL2 29 LVTTL 5 V tolerant DR3 28 DL3 27 2 DSD Clock. 2 DSD Data Right Bit 0. 2 DSD Data Left Bit 0. 2 DSD Data Right Bit 1. 2 DSD Data Left Bit 1. I S Data 3. 2 DSD Data Right Bit 2. Input S/PDIF Input. DSD Data Left Bit 2. LVTTL 5 V tolerant Input — DSD Data Right Bit 3. LVTTL 5 V tolerant Input — DSD Data Left Bit 3. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 24 SiI-DS-1084-C SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 5.2.4. DDC, CEC, Configuration, and Control Name INT Pin 46 Type LVTTL Dir Output Description Interrupt Output. RESET# 47 Schmitt Input Reset signal. Active LOW asynchronous reset input for entire chip. HPD 76 LVTTL Input Hot Plug Detect. General Purpose I/O Data 0. GPIO0 26 LVTTL Input Output GPIO1 77 LVTTL Input Output General Purpose I/O Data 1. GPIO2 39 LVTTL Input Output General Purpose I/O Data 2. GPIO3 49 LVTTL Input Output General Purpose I/O Data 3. DSCL 42 Schmitt Open drain 5 V tolerant Input Output DDC I2C Clock. HDCP KSV, An, and Ri values are exchanged over this I2C port during authentication. True open drain, so does not pull to ground if power not applied. DSDA 41 Schmitt Open drain 5 V tolerant Input Output DDC I2C Data. HDCP KSV, An, and Ri values are exchanged over this I2C port during authentication. True open drain, it does not pull to ground if power not applied. CI2CA 43 LVTTL 5 V tolerant Input Selects base address group for CSCL/CSDA interface. See Table 6.3 on page 27. CSCL 45 Schmitt 5 V tolerant Input Local Configuration/Status I2C Clock. Chip configuration/status registers are accessed through this I2C port. CSDA 44 Schmitt Open drain 5 V tolerant Input Output Local Configuration/Status I2C Data. Chip configuration/status registers are accessed through this I2C port. CEC_A 40 CEC Compliant Input 5 V tolerant Output HDMI compliant CEC I/O. As an input, this pin acts as a LVTTL Schmitt-triggered input and is 5 V tolerant. As an output, the pin acts as an NMOS driver with resistive pull-up. This pin has an internal pull-up resistor. 5.2.5. Power and Ground Name CVCC12 Pin 5, 16, 21, 38, 88 Type Power Description Digital Core VCC. Supply 1.2 V IOVCC33 1, 12, 37, 91 Power I/O VCC. 3.3 V AVCC 56, 61 Power Analog VCC. 1.2 V GND 48, 53, 100 Ground These pins must be connected to ground. Ground Description These pins should be left unconnected. Supply None 5.2.6. Not Connected and Reserved Name NC Pin 50, 51, 64–75 Type Not connected © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1084-C 25 SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 6. Feature Information 6.1. RGB to YCbCr Color Space Converter The RGBYCbCr color space converter can convert from video data RGB to standard definition or to high definition YCbCr formats. Table 6.1 shows the conversion formulas that are used. The HDMI AVI packet defines the color space of the incoming video. Table 6.1. RGB to YCbCr Conversion Formulas Video Format Conversion 640 x 480 480i ITU-R BT.601 ITU-R BT.601 576i 480p 576p ITU-R BT.601 ITU-R BT.601 ITU-R BT.601 240p 288p ITU-R BT.601 ITU-R BT.601 720p 1080i 1080p ITU-R BT.709 ITU-R BT.709 ITU-R BT.709 6.2. Formulas CE Mode 16-235 RGB Y = 0.299R′ + 0.587G′ + 0.114B′ Cb = –0.172R′ – 0.339G′ + 0.511B′ + 128 Cr = 0.511R′ – 0.428G′ – 0.083B′ + 128 Y = 0.213R′ + 0.715G′ + 0.072B′ Cb = –0.117R′ – 0.394G′ + 0.511B′ + 128 Cr = 0.511R′ – 0.464G′ – 0.047B′ + 128 YCbCr to RGB Color Space Converter The YCbCrRGB color space converter allows MPEG decoders to interface with RGB-only inputs. The CSC can convert from YCbCr in standard-definition (ITU.601) or high-definition (ITU.709) to RGB. See the detailed formulas in Table 6.2. Note the difference between RGB range for CE modes and PC modes. Table 6.2. YCbCr-to-RGB Conversion Formula Format change Conversion 2, 3, 4 YCbCr 16-235 Input to 2, 3, 4 RGB 16-235 Output 1 601 1 709 2, 3, 4 YCbCr 16-235 Input to 2, 3, 4 RGB 0-255 Output 601 709 YCbCr Input Color Range 2, 3 R′ = Y + 1.371(Cr – 128) G′ = Y – 0.698(Cr – 128) – 0.336(Cb – 128) B′ = Y + 1.732(Cb – 128) R′ = Y + 1.540(Cr – 128) G′ = Y – 0.459(Cr – 128) – 0.183(Cb – 128) B′ = Y + 1.816(Cb – 128) R′ = 1.164((Y-16) + 1.371(Cr – 128)) G′ = 1.164((Y-16) – 0.698(Cr – 128) – 0.336(Cb – 128)) B′ = 1.164((Y-16) + 1.732(Cb – 128)) R′ = 1.164((Y-16) + 1.540(Cr – 128)) G′ = 1.164((Y-16) – 0.459(Cr – 128) – 0.183(Cb – 128)) B′ = 1.164((Y-16) + 1.816(Cb – 128)) Notes: 1. 2. 3. 4. No clipping can be done. For 10-bit deep color, multiply all occurrences of the values 16, 128, 235, and 255 by 4. For 12-bit deep color, multiply all occurrences of the values 16, 128, 235, and 255 by 16. For 16-bit deep color, multiply all occurrences of the values 16, 128, 235, and 255 256. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 26 SiI-DS-1084-C SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 6.3. I2C Register Information 2 2 I C registers monitor and control all functions of the transmitter. The four local I C slave addresses can be altered by setting the CI2CA signal LOW or HIGH as shown in Table 6.3. An external pull-up or pull-down resistor, depending on 2 the desired set of I C addresses, is used to set the level on the CI2CA pin. Refer to the Programmer Reference (see the Lattice Semiconductor Documents section on page 52) for complete information. The Programmer’s Reference requires an NDA with Lattice Semiconductor. 2 Table 6.3. Control of the Default I C Addresses with the CI2CA Pin Block Configuration Registers TPI CI2CA = 0 0x7A 0x72 CI2CA = 1 0x7E 0x76 CPI 0xC0 0xC4 6.4. I2S Audio Input 2 2 The I S input has four I S data signals to support up to eight channels of linear pulse code modulation (LPCM) audio. 2 The I S interface also supports high bit rate audio formats such as Dolby ® TrueHD and DTS HD Master Audio. Twochannel PCM audio can be downsampled by a factor of 2 or 4 to support 32, 44.1, or 48 kHz basic sample rates as required by the HDMI standard. 6.5. Direct Stream Digital Input Nine pins are used for the Direct Stream Digital interface that provides 8-channel one-bit audio data (DSD). This interface is for SACD applications. Seven of the nine pins of this interface (four data left, four data right, and one clock) 2 share the I S and S/PDIF pins. The one-bit audio inputs are sampled on the positive edge of the DSD clock, assembled into 56-bit packets, and mapped to the appropriate FIFO. The Audio InfoFrame, instead of the Channel Status bits, carries the sampling information for one-bit audio. The one-bit audio interface supports an input clock frequency of 2.882 MHz (64 • 44.1 kHz). 6.6. S/PDIF Input The Sony/Philips Digital Interface Format (S/PDIF) interface is usually associated with compressed audio formats such as Dolby® Digital (AC-3), DTS, and the more advanced variants of these formats. 6.7. I2S and S/PDIF Supported MCLK Frequencies The transmitter includes an integrated MCLK generator for operation without an external clock PLL, although an 2 external MCLK can be used. The I S and S/PDIF interfaces support sampling frequencies of 32, 44.1, 48, 64, 88.2, 96, 128, 176.4, and 192 kHz. The 64 and 128 kHz sampling rates, however, are not part of the HDMI standard; and must be downsampled to 32 kHz before transmitting across the HDMI link. Table 6.4 lists the supported MCLK frequencies. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1084-C 27 SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet Table 6.4. Supported MCLK Frequencies 128 32 kHz 4.096 MHz 44.1 kHz 5.645 MHz Audio Sample Rate, Fs 2 I S and S/PDIF Supported Rates 48 kHz 88.2 kHz 96 kHz 6.144 MHz 11.290 MHz 12.288 MHz 192 256 6.144 MHz 8.192 MHz 8.467 MHz 11.290 MHz 9.216 MHz 12.288 MHz 16.934 MHz 22.579 MHz 18.432 MHz 24.576 MHz 33.868 MHz 45.158 MHz 36.864 MHz 49.152 MHz 384 512 768 12.288 MHz 16.384 MHz 24.576 MHz 16.934 MHz 22.579 MHz 33.869 MHz 18.432 MHz 24.576 MHz 36.864 MHz 33.864 MHz 45.158 MHz 67.738 MHz 36.864 MHz 49.152 MHz 73.728 MHz 67.737 MHz 73.728 MHz 1024 1152 32.768 MHz 36.864 MHz 45.158 MHz 50.803 MHz 49.152 MHz 55.296 MHz Multiple of Fs 6.8. 176.4 kHz 22.579 MHz 192 kHz 24.576 MHz Audio Downsampler Limitations The SiI9136-3/SiI1136 transmitter has an audio downsampler function that downsamples the incoming two-channel audio data and sends the result over the HDMI link. The audio data can be downsampled by one-half or one-fourth with register control. Supported conversions are: from 192 kHz to 48 kHz, 176.4 kHz to 44.1 kHz, 96 kHz to 48 kHz, and 88.2 kHz to 44.1 kHz. Some limitations in the audio sample word length when using this feature may need special consideration in a real application. When enabling the audio downsampler, the Channel Status registers for the audio sample word lengths sent over the HDMI link always indicate the maximum possible length. For example, if the input S/PDIF stream was in 20-bit mode with 16 bits valid, after enabling the downsampler the Channel Status indicates 20-bit mode with 20 bits valid. Audio sample word length is carried in bits 33 through 35 of the Channel Status register over the HDMI link, as shown in Table 6.5. These bits are always set to 0b101 when enabling the downsampler feature. Audio data is not affected because 0s are placed into the LSBs of the data, and the wider word length is sent across the HDMI link. Table 6.5. Channel Status Bits Used for Word Length Bit Audio Sample Word Length 35 34 33 0 0 0 Maximum Word Length 32 0 1 Sample Word Length (bits) Note Not indicated 0 0 1 0 1 0 1 0 0 0 0 0 16 18 19 2 2 2 1 1 0 0 1 0 1 0 0 0 0 1 20 17 Not indicated 2, 4 2 3 0 0 0 1 1 0 1 1 20 22 3 3 1 1 1 0 0 1 0 1 0 1 1 1 23 24 21 3 3, 4 3 Notes: 1. Maximum audio sample word length (MAXLEN) is 20 bits if MAXLEN = 0 and 24 bits if MAXLEN = 1. 2. Maximum audio sample word length is 20. 3. Maximum audio sample word length is 24. 4. Bits [35:33] are always 0b101 when the downsampler is enabled © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 28 SiI-DS-1084-C SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 6.9. High Bitrate Audio on HDMI The high bitrate compression standards such as Dolby TrueHD and DTS-HD transmit data at bit rates as high as 18 or 24 Mb/s. Because these bit rates are so high, DVD decoders and HDMI transmitters operating as source devices, and 2 DSP and HDMI receivers as sink devices, must carry the data using four I S lines rather than a single very-high-speed 2 S/PDIF interface or I S bus. See Figure 6.1. MPEG Transmitter Receiver DSP Figure 6.1. High Speed Data Transmission 2 The High Bitrate audio stream is originally encoded as a single stream. To send the stream over four I S lines, the DVD 2 decoder splits it into four streams. Figure 6.2 shows the High Bitrate stream before it has been split into four I S lines, 2 and Figure 6.3 shows the same audio stream after being split. Each sample requires 16 cycles of the I S clock (SCK). Sample 0 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 ... Sample N-1 Sample N 16-Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Figure 6.2. High Bitrate Stream Before and After Reassembly and Splitting WS Left Right Left Right SD0 Sample 0 Sample 1 Sample 8 Sample 9 SD1 Sample 2 Sample 3 Sample 10 Sample 11 SD2 Sample 4 Sample 5 Sample 12 Sample 13 SD3 Sample 6 Sample 7 Sample 14 Sample 15 Figure 6.3. High Bitrate Stream After Splitting 6.10. Power Domains To reduce standby power, the SiI9136-3/SiI1136 transmitter supports three power modes. Each mode complies with the ACPI Specification. Power-On mode (D0): The System is powered up and running completely. All functions are available. Power-Standby mode (D2): Some sub-systems are enabled, but the audio and video processing pipelines are disabled. The configuration interface, CEC, GPIO, and DDC master are active. The TMDS core is configured independently. The Host is able to perform the following functions during this mode: CEC: send and receive messages DDC: read EDID from HDMI receiver optional: TMDS core enabled for generating receiver-sense interrupt requests Power-Off mode (D3): The chip is in its lowest power-state. All clocks are disabled. No register access is possible. The only active function is the interrupt request generation for Hot-plug events, if that function has been © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1084-C 29 SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet configured before entering this mode. An IRQ is asserted in this mode, but cannot be deasserted, as register access is not possible. The host must assert RESET# to the chip to properly leave Power-Off mode. 6.11. Internal DDC Master 2 Figure 6.4 illustrates how the transmitter contains a master I C port for direct connection to the HDMI cable. A 2 pass-through mechanism allows direct control of the DDC lines by the host I C controller. CEC Programming Interface registers Audio HDMI Transmitter Programming Interface registers MPEG Chip I2C DDC DDC Master access HDMI Connnector SiI9136-3/SiI1136 Transmitter Video 2 Figure 6.4. Simplified Host I C Interface Using Master DDC Port 2 The DDC Master Interface supports the I C transactions specified by the VESA Enhanced Display Data Channel 2 Standard. The DDC master block complies with the 100 kHz Standard Mode timing of the I C Specification and supports slave clock stretching, as required by E-DDC. Figure 6.5 shows the supported transactions and timing sequences. Current Read S slv addr + R As data 0 Am As device offset As data 1 Am data n Am N/As P Sequential Read S slv addr + W Sr slv addr + R As data 0 Am N/As* Sr slv addr + W As device offset As data n Am N/As P Enhanced DDC Read S 0x60 N/As segment Sr slv addr + R data n N/As As data 0 Am Am data n N/As P Sequential Write S slv addr + W As device offset As data 0 As As P S = start Sr = restart As = slave acknowledge Am = master acknowledge N = no ack P = stop *Do not care for segment 0, ACK for segment 1 and above 2 Figure 6.5. Master I C Supported Transactions 6.12. Deep Color Support The SiI9136-3/SiI1136 transmitter provides support for Deep Color video data up to the maximum specified link speed of 2.25 Gb/s, at a 225 MHz internal clock rate for the Deep Color packetized data. It supports 30-bit, 36-bit, and 48-bit video input formats, and converts the data to 8-bit packets for encryption and encoding for transferring across the TMDS link. When the input data width is wider than desired, the device can be programmed to dither or truncate the video data to the desired size. For instance, if the input data width is 12 bits per pixel component, but the sink device only supports 10 bits, the transmitter can be programmed either to dither or to truncate the 12-bit input data to the desired 10-bit output data. Dither processing is the final block in the video processing path and occurs after all other video processing has been performed; refer to the Video Data Input and Conversion section on page 9. Note that the actual maximum © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 30 SiI-DS-1084-C SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet link speed for 3D FP or 4K formats is 300 MHz. However, Deep Color is only supported up to 1080p60. Thus, for Deep Color the maximum link speed is 225 MHz. 6.13. Source Termination TMDS transmitters use a current source to develop the low-voltage differential signal at the receiver end of the DC-coupled TMDS transmission line, which constitutes open termination for reflected waveforms. Thus, signal reflections created by traces, packaging, connectors, and the cable can arrive at the transmitter with increased amplitude. To reduce these reflections, the transmitter chip has an internal termination option of 150 Ω for single-ended termination and 300 Ω for differential termination. This termination reduces the amplitude of the reflected signal, but it also lowers the common-mode input voltage at the sink. As a result, Lattice Semiconductor recommends turning internal source termination off when the transmitter operates at less than or equal to 165 MHz and turning it on for frequencies above 165 MHz Using internal source termination at the higher frequencies while still maintaining conformance to the HDMI Specification is possible because the sink input voltage range tolerance is wider above 165 MHz. 6.14. 3D and 4K Video Formats The SiI9136-3/SiI1136 transmitter supports the 3D and 4K video modes described in the HDMI Specification. All modes support RGB 4:4:4, YCbCr 4:2:2, and YCbCr 4:4:4 color formats, and 8-, 10-, and 12-bit data width per color component. External separate HSYNC, VSYNC, and DE signals can be supplied, or these signals can be supplied as embedded EAV/SAV sequences in the video stream. Table 6.6 shows only the maximum possible resolution with a given frame rate. For example, Side-by-Side mode is defined for 1080p60, which implies that 720p60 and 480p60 are also supported. Furthermore, a frame rate of 24 Hz also means that a frame rate of 23.98 Hz is supported, and a frame rate of 60 Hz also means that a frame rate of 59.94 Hz is supported. Input pixel clock changes accordingly. When using Side-by-Side format, 4:4:4 to 4:2:2 downsampling and 4:2:2 dithering and upsampling to 4:4:4 should be avoided because these combinations may result in visible artifacts. Dithering should also be avoided when using frame packing formats. Video processing should be bypassed in the case of L + depth format. The SiI9136-3/SiI1136 device supports transmission of the Vendor Specific InfoFrame (VSIF), which carries 3D and 4K information to the receiver. Table 6.6. Supported 3D and 4K Video Formats 3D Format Frame Packing L + depth Side-by-Side Top and Bottom 4K Format 4K Extended Definition Resolution Frame Rate (Hz) Input Pixel Clock (MHz) 1080p 50/60 297.00 progressive 1080p 24 720p 50/60 interlaced 1080i 50/60 progressive 1080p 50/60 full 1080p 50/60 1080p 50/60 1080i 50/60 74.25 progressive 1080p 50/60 148.5 interlaced 1080i 50/60 progressive 720p 50/60 Extended Definition Resolution Frame Rate (Hz) 29.97/30 Input Pixel Clock (MHz) 296.703/297.000 — 3840 x 2160 SMPTE 4096 x 2160 25 23.98/24 24 297.000 296.703/297.000 297.000 half 148.5 297.00 297.00 74.25 © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1084-C 31 SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 6.15. Control Signal Connections Figure 6.6 shows the interconnection between the host processor and transmitter. The INT output can be connected as an interrupt to the processor, or the processor can poll a register to determine if any of the enabled interrupts have occurred. IOVCC IOVCC Stuff only one of two 4.7 k resistors to set chip I2C address. Host processor 4.7 k 4.7 k 4.7 k C_SCL SiI9136-3/SiI1136 Transmitter CSCL C_SDA CSDA CI2CA 4.7 k RESET# CEC_A INT GPIO C_CEC GPIO Figure 6.6. Controller Connections Schematic © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 32 SiI-DS-1084-C SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 6.16. Input Data Bus Mapping 6.16.1. Common Video Input Formats The video data capture block receives uncompressed 8- to 16-bit color depth, or bits per color component, digital video from the digital video input interface and provides a data path width of 8 to 36 bits. The data path is divided internally into three 16-bit data channels, which are configured for one of the video formats listed in Table 6.7. Table 6.7. Video Input Formats Color Video Space Format RGB 4:4:4 4:4:4 YCbCr xvYCC 4K Single Bus Input Pixel Clock (MHz) Width/ 6 SYNC 2, 3 VGA Color 480i 720p 1080i SXGA 1080p UXGA 2 XGA 480p Depth 36/12 Sep 27 25/27 65 74.25 74.25 108 148.5 — Single 30/10 Sep 27 25/27 65 74.25 74.25 108 148.5 162 Single 24/8 Sep 27 25/27 65 74.25 74.25 108 148.5 Dual 12/8 Sep 27 25/27 65 74.25 74.25 — — Dual 15/10 Sep 27 25/27 65 74.25 74.25 — Dual 18/12 Sep 27 25/27 65 74.25 74.25 — Clock Edge Mode Notes Page — 1 30 — 1 30 162 297 1, 7 30 — — 4 44 — — — 4 44 — — — 4 44 Dual 24/16 Sep 27 25/27 65 74.25 74.25 — — — — 4 44 Single 36/12 Sep 27 25/27 65 74.25 74.25 108 148.5 — — 1 30 Single 30/10 Sep 27 25/27 65 74.25 74.25 108 148.5 162 — 1 30 Single 24/8 Sep 27 25/27 65 74.25 74.25 108 148.5 162 297 1, 7 30 Dual 12/8 Sep 27 25/27 65 74.25 74.25 — — — — 4 44 Dual 15/10 Sep 27 25/27 65 74.25 74.25 — — — — 4 44 Dual 18/12 Sep 27 25/27 65 74.25 74.25 — — — — 4 44 Dual 24/16 Sep 27 25/27 65 74.25 74.25 — — — — 4 44 Sep 27 25/27 65 74.25 74.25 108 148.5 162 297 1, 7 36 Single 16/8 20/10 24/12 Emb 27 25/27 65 74.25 74.25 108 148.5 162 297 1, 4, 7 38 Single/ YC Mux 8/8 10/10 12/12 4:2:2 Sep 27 50/54 130 148.5 148.5 — — — — 1 40 Emb 27 50/54 130 148.5 148.5 — — — — 1, 4 42 T1004 — 50/54 130 — — — — 1, 4, 5 — — — Notes: 1. Latching edge is programmable. 2. 480i/p support also encompasses 576i/p support. 3. 480i must be provided at 27 MHz, using pixel replication, to be transmitted across the HDMI link. 4. If embedded syncs are provided, DE is generated internally from SAV/EAV sequences. Embedded syncs use ITU-R BT.656 SAV/EAV sequences of FF, 00, 00, XY. 5. BTA-T1004 format is defined for a single-channel (8/10/12-bit) bus. 6. Sep = separate sync; Emb = embedded sync; T1004 = BTA-T1004 encoded sync. 7. 4K resolution only supports capturing data at the falling edge of IDCK. The system configures registers that set the bus width, video format, and rising or falling edge latching, according to the format of the video data received by the transmitter. The logic also supports dual-edge clocking. Relevant format information must also be programmed into registers to be formed into AVI InfoFrame packets for passing over the HDMI link. In the tables which follow in this section, shaded cells labeled LOW should be held LOW when not used for a selected video format. When not used, they should be tied to ground. In the timing diagrams which follow in this chapter, data bits labeled val do not convey pixel information and contain values defined by the relevant specification. In the diagrams showing embedded sync, the SAV and EAV sequence FF, 00, 00, XY is specified by ITU-R BT.656. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1084-C 33 SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 6.16.2. RGB and YCbCr 4:4:4 Separate Sync The pixel clock runs at the pixel rate and a complete definition of each pixel is received on each clock cycle. Each column in Table 6.8 shows the first pixel of n + 1 pixels in the line of video. The figures below the table show RGB and YCbCr data; the YCbCr 4:4:4 data is given in braces {}. Table 6.8. RGB/YCbCr 4:4:4 Separate Sync Data Mapping D0 24-bit Data Bus 8-bit Color Depth RGB YCbCr LOW LOW 30-bit Data Bus 10-bit Color Depth RGB YCbCr LOW LOW 36-bit Data Bus 12-bit Color Depth RGB YCbCr B0[0] Cb0[0] D1 D2 LOW LOW LOW LOW LOW B0[0] LOW Cb0[0] B0[1] B0[2] Cb0[1] Cb0[2] D3 D4 D5 LOW B0[0] B0[1] LOW Cb0[0] Cb0[1] B0[1] B0[2] B0[3] Cb0[1] Cb0[2] Cb0[3] B0[3] B0[4] B0[5] Cb0[3] Cb0[4] Cb0[5] D6 D7 B0[2] B0[3] Cb0[2] Cb0[3] B0[4] B0[5] Cb0[4] Cb0[5] B0[6] B0[7] Cb0[6] Cb0[7] D8 D9 D10 B0[4] B0[5] B0[6] Cb0[4] Cb0[5] Cb0[6] B0[6] B0[7] B0[8] Cb0[6] Cb0[7] Cb0[8] B0[8] B0[9] B0[10] Cb0[8] Cb0[9] Cb0[10] D11 D12 D13 B0[7] LOW LOW Cb0[7] LOW LOW B0[9] LOW LOW Cb0[9] LOW LOW B0[11] G0[0] G0[1] Cb0[11] Y0[0] Y0[1] D14 D15 LOW LOW LOW LOW G0[0] G0[1] Y0[0] Y0[1] G0[2] G0[3] Y0[2] Y0[3] D16 D17 D18 G0[0] G0[1] G0[2] Y0[0] Y0[1] Y0[2] G0[2] G0[3] G0[4] Y0[2] Y0[3] Y0[4] G0[4] G0[5] G0[6] Y0[4] Y0[5] Y0[6] D19 D20 G0[3] G0[4] Y0[3] Y0[4] G0[5] G0[6] Y0[5] Y0[6] G0[7] G0[8] Y0[7] Y0[8] D21 D22 D23 G0[5] G0[6] G0[7] Y0[5] Y0[6] Y0[7] G0[7] G0[8] G0[9] Y0[7] Y0[8] Y0[9] G0[9] G0[10] G0[11] Y0[9] Y0[10] Y0[11] D24 D25 LOW LOW LOW LOW LOW LOW LOW LOW R0[0] R0[1] Cr0[0] Cr0[1] D26 D27 D28 LOW LOW R0[0] LOW LOW Cr0[0] R0[0] R0[1] R0[2] Cr0[0] Cr0[1] Cr0[2] R0[2] R0[3] R0[4] Cr0[2] Cr0[3] Cr0[4] D29 D30 D31 R0[1] R0[2] R0[3] Cr0[1] Cr0[2] Cr0[3] R0[3] R0[4] R0[5] Cr0[3] Cr0[4] Cr0[5] R0[5] R0[6] R0[7] Cr0[5] Cr0[6] Cr0[7] D32 D33 R0[4] R0[5] Cr0[4] Cr0[5] R0[6] R0[7] Cr0[6] Cr0[7] R0[8] R0[9] Cr0[8] Cr0[9] D34 D35 R0[6] R0[7] Cr0[6] Cr0[7] R0[8] R0[9] Cr0[8] Cr0[9] R0[10] R0[11] Cr0[10] Cr0[11] HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE Pin Name © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 34 SiI-DS-1084-C SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet blank Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixeln - 1 Pixel n blank blank blank D[35:20] val R0[7:0] {Cr0[7:0]} R1[7:0] {Cr1[7:0]} R2[7:0] {Cr2[7:0]} R3[7:0] {Cr3[7:0]} Rn-1[7:0] {Crn-1[7:0]} Rn[7:0] {Crn[7:0]} val val val D[23:16] val G0[7:0] {Y0[7:0]} G1[7:0] {Y1[7:0]} G2[7:0] {Y2[7:0]} G3[7:0] {Y3[7:0]} Gn-1[7:0] {Yn-1[7:0]} Gn[7:0] {Yn[7:0]} val val val D[11:4] val B0[7:0] {Cb0[7:0]} B1[7:0] {Cb1[7:0]} B2[7:0] {Cb2[7:0]} B3[7:0] {Cb3[7:0]} Bn-1[7:0] {Cbn-1[7:0]} Bn[7:0] {Cbn[7:0]} val val val IDCK DE HSYNC, VSYNC Figure 6.7. 8-Bit Color Depth RGB/YCbCr/xvYCC 4:4:4 Timing blank Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel n - 1 Pixel n blank blank blank D[35:26] val R0[9:0] {Cr0[9:0]} R1[9:0] {Cr1[9:0]} R2[9:0] {Cr2[9:0]} R3[9:0] {Cr3[9:0]} Rn-1[9:0] {Crn-1[9:0]} Rn[9:0] {Crn[9:0]} val val val D[23:14] val G0[9:0] {Y0[9:0]} G1[9:0] {Y1[9:0]} G2[9:0] {Y2[9:0]} G3[9:0] {Y3[9:0]} Gn-1[9:0] {Yn-1[9:0]} Gn[9:0] {Yn[9:0]} val val val D[11:2] val B0[9:0] {Cb0[9:0]} B1[9:0] {Cb1[9:0]} B2[9:0] {Cb2[9:0]} B3[9:0] {Cb3[9:0]} Bn-1[9:0] {Cbn-1[9:0]} Bn[9:0] {Cbn[9:0]} val val val IDCK DE HSYNC, VSYNC Figure 6.8. 10-Bit Color Depth RGB/YCbCr/xvYCC 4:4:4 Timing blank Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel n - 1 Pixel n blank blank blank D[35:24] val R0[11:0] {Cr0[11:0]} R1[11:0] {Cr1[11:0]} R2[11:0] {Cr2[11:0]} R3[11:0] {Cr3[11:0]} Rn-1[11:0] {Crn-1[11:0]} Rn[11:0] {Crn[11:0]} val val val D[23:12] val G0[11:0] {Y0[11:0]} G1[11:0] {Y1[11:0]} G2[11:0] {Y2[11:0]} G3[11:0] {Y3[11:0]} Gn-1[11:0] {Yn-1[11:0]} Gn[11:0] {Yn[11:0]} val val val D[11:0] val B0[11:0] {Cb0[11:0]} B1[11:0] {Cb1[11:0]} B2[11:0] {Cb2[11:0]} B3[11:0] {Cb3[11:0]} Bn-1[11:0] {Cbn-1[11:0]} Bn[11:0] {Cbn[11:0]} val val val IDCK DE HSYNC, VSYNC Figure 6.9. 12-Bit Color Depth RGB/YCbCr/xvYCC 4:4:4 Timing © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1084-C 35 SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 6.16.3. YC 4:2:2 Separate Sync Formats The YC 4:2:2 formats receive one pixel for every pixel clock period. A luma (Y) value is carried for every pixel, but the chroma values (Cb and Cr) change only every second pixel. The data bus can be 16, 20, or 24 bits. HSYNC and VSYNC are driven explicitly on their own signals. Each pair of columns in Table 6.9 shows the first and second pixel of n + 1 pixels in the line of video. The DE HIGH time must contain an even number of pixel clocks. Table 6.9. YC 4:2:2 Separate Sync Data Mapping Pin Name D[3:0] 16-bit Data Bus 8-bit Color Depth Pixel #0 Pixel #1 LOW LOW 20-bit Data Bus 10-bit Color Depth Pixel #0 Pixel #1 LOW LOW 24-bit Data Bus 12-bit Color Depth Pixel #0 Pixel #1 LOW LOW D4 D5 D6 LOW LOW LOW LOW LOW LOW LOW LOW Y0[0] LOW LOW Y1[0] Y0[0] Y0[1] Y0[2] Y1[0] Y1[1] Y1[2] D7 D8 LOW LOW LOW LOW Y0[1] LOW Y1[1] LOW Y0[3] Cb0[0] Y1[3] Cr0[0] D9 D10 D11 LOW LOW LOW LOW LOW LOW LOW Cb0[0] Cb0[1] LOW Cr0[0] Cr0[1] Cb0[1] Cb0[2] Cb0[3] Cr0[1] Cr0[2] Cr0[3] D[15:12] D16 D17 LOW Y0[0] Y0[1] LOW Y1[0] Y1[1] LOW Y0[2] Y0[3] LOW Y1[2] Y1[3] LOW Y0[4] Y0[5] LOW Y1[4] Y1[5] D18 D19 Y0[2] Y0[3] Y1[2] Y1[3] Y0[4] Y0[5] Y1[4] Y1[5] Y0[6] Y0[7] Y1[6] Y1[7] D20 D21 D22 Y0[4] Y0[5] Y0[6] Y1[4] Y1[5] Y1[6] Y0[6] Y0[7] Y0[8] Y1[6] Y1[7] Y1[8] Y0[8] Y0[9] Y0[10] Y1[8] Y1[9] Y1[10] D23 D[27:24] Y0[7] LOW Y1[7] LOW Y0[9] LOW Y1[9] LOW Y0[11] LOW Y1[11] LOW D28 D29 D30 Cb0[0] Cb0[1] Cb0[2] Cr0[0] Cr0[1] Cr0[2] Cb0[2] Cb0[3] Cb0[4] Cr0[2] Cr0[3] Cr0[4] Cb0[4] Cb0[5] Cb0[6] Cr0[4] Cr0[5] Cr0[6] D31 D32 D33 Cb0[3] Cb0[4] Cb0[5] Cr0[3] Cr0[4] Cr0[5] Cb0[5] Cb0[6] Cb0[7] Cr0[5] Cr0[6] Cr0[7] Cb0[7] Cb0[8] Cb0[9] Cr0[7] Cr0[8] Cr0[9] D34 D35 Cb0[6] Cb0[7] Cr0[6] Cr0[7] Cb0[8] Cb0[9] Cr0[8] Cr0[9] Cb0[10] Cb0[11] Cr0[10] Cr0[11] HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 36 SiI-DS-1084-C SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet blank Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixeln - 1 Pixel n blank blank blank D[35:28] val Cb0[7:0] Cr0[7:0] Cb2[7:0] Cr2[7:0] Crn-1[7:0] Cbn-1[7:0] val val val D[23:16] val Y0[7:0] Y1[7:0] Y2[7:0] Y3[7:0] Yn -1[7:0] Yn [7:0] val val val Pixel n blank blank blank val val IDCK DE HSYNC, VSYNC Figure 6.10. 8-Bit Color Depth YC 4:2:2 Timing blank Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixeln - 1 D[35:28] val Cb0[9:2] Cr0[9:2] Cb2[9:2] Cr2[9:2] Crn-1[9:2] Cbn-1[9:2] val D[23:16] val Y0[9:2] Y1[9:2] Y2[9:2] Y3[9:2] Y n -1[9:2] Y n [9:2] val val val D[11:10] val Cb0[1:0] Cr0[1:0] Cb2[1:0] Cr2[1:0] Crn-1[1:0] Cbn-1[1:0] val val val D[7:6] val Y0[1:0] Y1[1:0] Y2[1:0] Y3[1:0] Y n -1[1:0] Y n [1:0] val val val IDCK DE HSYNC, VSYNC Figure 6.11. 10-Bit Color Depth YC 4:2:2 Timing blank Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixeln - 1 Pixel n blank blank blank D[35:28] val Cb0[11:4] Cr0[11:4] Cb2[11:4] Cr2[11:4] Crn-1[11:4] Cbn-1[11:4] val val val D[23:16] val Y0[11:4] Y1[11:4] Y2[11:4] Y3[11:4] Yn-1[11:4] Yn[11:4] val val val D[11:8] val Cb0[3:0] Cr0[3:0] Cb2[3:0] Cr2[3:0] Crn-1[3:0] Cbn-1[3:0] val val val D[7:4] val Y0[3:0] Y1[3:0] Y2[3:0] Y3[3:0] Yn-1[3:0] Yn[3:0] val val val IDCK DE HSYNC, VSYNC Figure 6.12. 12-Bit Color Depth YC 4:2:2 Timing © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1084-C 37 SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 6.16.4. YC 4:2:2 Embedded Syncs Formats The Embedded Sync format is identical to the YC 4:2:2 formats with Separate Syncs, except that the syncs are embedded and not explicit. The data bus can be 16, 20, or 24 bits. Each pair of columns in Table 6.10 shows the first and second pixel of n + 1 pixels in the line of video. Table 6.10. YC 4:2:2 Embedded Sync Data Mapping Pin Name D[3:0] 16-bit Data Bus 8-bit Color Depth Pixel #0 Pixel #1 LOW LOW 20-bit Data Bus 10-bit Color Depth Pixel #0 Pixel #1 LOW LOW 24-bit Data Bus 12-bit Color Depth Pixel #0 Pixel #1 LOW LOW D4 D5 LOW LOW LOW LOW LOW LOW LOW LOW Y0[0] Y0[1] Y1[0] Y1[1] D6 D7 D8 LOW LOW LOW LOW LOW LOW Y0[0] Y0[1] LOW Y1[0] Y1[1] LOW Y0[2] Y0[3] Cb0[0] Y1[2] Y1[3] Cr0[0] D9 D10 LOW LOW LOW LOW LOW Cb0[0] LOW Cr0[0] Cb0[1] Cb0[2] Cr0[1] Cr0[2] D11 D[15:12] D16 LOW LOW Y0[0] LOW LOW Y1[0] Cb0[1] LOW Y0[2] Cr0[1] LOW Y1[2] Cb0[3] LOW Y0[4] Cr0[3] LOW Y1[4] D17 D18 D19 Y0[1] Y0[2] Y0[3] Y1[1] Y1[2] Y1[3] Y0[3] Y0[4] Y0[5] Y1[3] Y1[4] Y1[5] Y0[5] Y0[6] Y0[7] Y1[5] Y1[6] Y1[7] D20 D21 Y0[4] Y0[5] Y1[4] Y1[5] Y0[6] Y0[7] Y1[6] Y1[7] Y0[8] Y0[9] Y1[8] Y1[9] D22 D23 D[27:24] Y0[6] Y0[7] LOW Y1[6] Y1[7] LOW Y0[8] Y0[9] LOW Y1[8] Y1[9] LOW Y0[10] Y0[11] LOW Y1[10] Y1[11] LOW D28 D29 Cb0[0] Cb0[1] Cr0[0] Cr0[1] Cb0[2] Cb0[3] Cr0[2] Cr0[3] Cb0[4] Cb0[5] Cr0[4] Cr0[5] D30 D31 D32 Cb0[2] Cb0[3] Cb0[4] Cr0[2] Cr0[3] Cr0[4] Cb0[4] Cb0[5] Cb0[6] Cr0[4] Cr0[5] Cr0[6] Cb0[6] Cb0[7] Cb0[8] Cr0[6] Cr0[7] Cr0[8] D33 D34 Cb0[5] Cb0[6] Cr0[5] Cr0[6] Cb0[7] Cb0[8] Cr0[7] Cr0[8] Cb0[9] Cb0[10] Cr0[9] Cr0[10] D35 Cb0[7] Cr0[7] Cb0[9] Cr0[9] Cb0[11] Cr0[11] HSYNC VSYNC DE LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 38 SiI-DS-1084-C SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet SAV D[35:28] FF 00 00 D[23:16] FF 00 00 EAV Pixel n - 1 Pixel n Pixel 0 Pixel 1 Pixel 2 Pixel 3 XY Cb0[7:0] Cr0[7:0] Cb2[7:0] Cr2[7:0] Crn-1[7:0] XY Y0[7:0] Y1[7:0] Y2[7:0] Y3[7:0] Yn-1[7:0] Cbn-1[7:0] FF 00 00 XY Yn[7:0] FF 00 00 XY IDCK Active video Figure 6.13. 8-Bit Color Depth YC 4:2:2 Embedded Sync Timing SAV Pixel 0 Pixel 1 Pixel 2 Pixel 3 EAV Pixel n - 1 Pixel n D[35:28] FF 00 00 XY Cb0[9:2] Cr0[9:2] Cb2[9:2] Cr2[9:2] Crn-1[9:2] Cbn-1[9:2] FF 00 00 XY D[23:16] FF 00 00 XY Y0[9:2] Y1[9:2] Y2[9:2] Y3[9:2] Yn-1[9:2] Yn[9:2] FF 00 00 XY D[11:10] FF 00 00 XY Cb0[1:0] Cr0[1:0] Cb2[1:0] Cr2[1:0] Crn-1[1:0] Cbn-1[1:0] FF 00 00 XY D[7:6] FF 00 00 XY Y0[1:0] Y1[1:0] Y2[1:0] Y3[1:0] Yn-1[1:0] Yn[1:0] FF 00 00 XY IDCK Active video Figure 6.14. 10-Bit Color Depth YC 4:2:2 Embedded Sync Timing SAV EAV Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel n - 1 Pixel n D[35:28] FF 00 00 XY Cb0[11:4] Cr0[11:4] Cb2[11:4] Cr2[11:4] Crn-1[11:4] Cbn-1[11:4] FF 00 00 XY D[23:16] FF 00 00 XY Y0[11:4] Y1[11:4] Y2[11:4] Y3[11:4] Yn-1[11:4] Yn[11:4] FF 00 00 XY D[11:8] FF 00 00 XY Cb0[3:0] Cr0[3:0] Cb2[3:0] Cr2[3:0] Crn-1[3:0] Cbn-1[3:0] FF 00 00 XY D[7:4] FF 00 00 XY Y0[3:0] Y1[3:0] Y2[3:0] Y3[3:0] Yn-1[3:0] Yn[3:0] FF 00 00 XY IDCK Active video Figure 6.15. 12-Bit Color Depth YC 4:2:2 Embedded Sync Timing © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1084-C 39 SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 6.16.5. YC Mux 4:2:2 Separate Sync Formats The video data is multiplexed onto fewer pins than the mapping described in the YC 4:2:2 Separate Sync Formats on page 36. The clock rate is doubled so a chroma value is sent for each pixel, followed by a corresponding luma value for the same pixel. Thus, a luma (Y) value is provided for each pixel, while the Cb and Cr values alternate on successive pixels. Each group of four columns in Table 6.11 shows the four clock cycles for the first two pixels of the line. Pixel values for Cb0 and Y0 values are sent with the first pixel (first two clock cycles). Then the Cr0 and Y1 values are sent with the second pixel (next two clock cycles). The figures below the table show how this pattern is extended for the rest of the pixels in a video line of n + 1 pixels. Table 6.11. YC Mux 4:2:2 Separate Sync Data Mapping 8-bit Data Bus 8-bit Color Depth Clock cycle Second Third Fourth LOW LOW Pin Name First D[3:0] D4 D5 D6 LOW LOW D7 D[15:8] D16 Cb0[0] LOW LOW Y0[0] Cr0[0] Y1[0] D17 D18 Cb0[1] Cb0[2] Y0[1] Y0[2] Cr0[1] Cr0[2] D19 D20 D21 Cb0[3] Cb0[4] Cb0[5] Y0[3] Y0[4] Y0[5] D22 D23 D[35:24] Cb0[6] Cb0[7] HSYNC VSYNC DE Y0[1] Y0[2] Y1[1] Cb0[3] Y0[3] Cb0[2] Y0[1] Cr0[1] LOW Y0[2] Cr0[2] Y1[2] Y1[1] Y1[2] Cb0[3] Cb0[4] Y0[3] Y0[4] Cr0[3] Cr0[4] Cr0[3] Cr0[4] Cr0[5] Y1[3] Y1[4] Y1[5] Cb0[5] Cb0[6] Cb0[7] Y0[5] Y0[6] Y0[7] Y0[6] Cr0[6] Y0[7] Cr0[7] LOW Y1[6] Y1[7] Cb0[8] Cb0[9] HSYNC VSYNC DE val Cb0[7:0] Cb0[0] Cb0[1] Cb0[2] Cb0[1] HSYNC VSYNC DE Y0[7:0] Y1[7:0] Y2[7:0] Y1[0] Y1[1] Y1[2] Y1[3] Cb0[4] Cr0[3] LOW Y0[4] Cr0[4] Y1[3] Y1[4] Cb0[5] Cb0[6] Y0[5] Y0[6] Cr0[5] Cr0[6] Y1[5] Y1[6] Cr0[5] Cr0[6] Cr0[7] Y1[5] Y1[6] Y1[7] Cb0[7] Cb0[8] Cb0[9] Y0[7] Y0[8] Y0[9] Cr0[7] Cr0[8] Cr0[9] Y1[7] Y1[8] Y1[9] Y0[8] Cr0[8] Y0[9] Cr0[9] LOW Y1[8] Y1[9] Cb0[10] Cb0[11] Y0[10] Cr0[10] Y0[11] Cr0[11] LOW Y1[10] Y1[11] HSYNC VSYNC DE Pixel 2 Cb2[7:0] Fourth Cr0[1] Cr0[2] HSYNC VSYNC DE Pixel 1 Cr0[7:0] LOW Y0[0] Cr0[0] First 12-bit Data Bus 12-bit Color Depth Clock cycle Second Third LOW Y0[0] Cr0[0] Y1[0] Cb0[0] Pixel 0 D[23:16] First 10-bit Data Bus 10-bit Color Depth Clock cycle Second Third Fourth LOW LOW Pixel 3 Cr2[7:0] Y3[7:0] HSYNC VSYNC DE Pixel n - 1 Cbn-1[7:0] Yn-1[7:0] Y1[4] HSYNC VSYNC DE Pixel n Crn-1[7:0] Yn[7:0] val IDCK DE HSYNC VSYNC Figure 6.16. 8-Bit Color Depth YC Mux 4:2:2 Timing © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 40 SiI-DS-1084-C SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet Pixel 0 Pixel 1 Pixel 2 Pixel 3 D[23:16] val Cb0[9:2] Y0[9:2] Cr0[9:2] Y1[9:2] Cb2[9:2] Y2[9:2] Cr2[9:2] Y3[9:2] D[7:6] val Cb0[1:0] Y0[1:0] Cr0[1:0] Y1[1:0] Cb2[1:0] Y2[1:0] Cr2[1:0] Y3[1:0] Pixel n - 1 Pixel n Cbn-1[9:2] Yn-1[9:2] Crn-1[9:2] Yn[9:2] val Cbn-1[1:0] Yn-1[1:0] Crn-1[1:0] Yn[1:0] val IDCK DE HSYNC VSYNC Figure 6.17. 10-Bit Color Depth YC Mux 4:2:2 Timing Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel n - 1 Pixel n D[23:16] val Cb0[11:4] Y0[11:4] Cr0[11:4] Y1[11:4] Cb2[11:4] Y2[11:4] Cr2[11:4] Y3[11:4] Cbn-1[11:4] Yn-1[11:4] Crn-1[11:4] Yn[11:4] val D[7:4] val Cb0[3:0] Y0[3:0] Cr0[3:0] Y1[3:0] Cb2[3:0] Y2[3:0] Cr2[3:0] Y3[3:0] Cbn-1[3:0] Yn-1[3:0] Crn-1[3:0] Yn[3:0] val IDCK DE HSYNC VSYNC Figure 6.18. 12-Bit Color Depth YC Mux 4:2:2 Timing © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1084-C 41 SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 6.16.6. YC Mux 4:2:2 Embedded Sync Formats This format is similar to the one described in the YC Mux 4:2:2 Separate Sync Formats section on page 40, except the syncs are embedded. A luma (Y) value is provided for each pixel, while the Cb and Cr values alternate on successive pixels. Each group of four columns in Table 6.12 shows the four clock cycles for the first two pixels of the line. Pixel values for Cb0 and Y0 values are sent with the first pixel (first two clock cycles). Then the Cr0 and Y1 values are sent with the second pixel (next two clock cycles). The figures following this table show only the first two pixels and last pixel of the line to make room to show the SAV and EAV sequences, but the remaining pixels are similar to those shown in the figures of the previous section. Table 6.12. YC Mux 4:2:2 Embedded Sync Data Mapping Pin Name First D[3:0] D4 8-bit Data Bus 8-bit Color Depth Clock cycle Second Third Fourth LOW LOW D5 D6 LOW LOW D7 D[15:8] D16 Cb0[0] LOW LOW Y0[0] Cr0[0] Y1[0] D17 D18 Cb0[1] Cb0[2] Y0[1] Y0[2] Cr0[1] Cr0[2] D19 D20 D21 Cb0[3] Cb0[4] Cb0[5] Y0[3] Y0[4] Y0[5] D22 D23 D[35:24] Cb0[6] Cb0[7] Y0[1] Y0[2] Cr0[3] Cr0[3] Y0[3] Cb0[2] Cb0[3] Cr0[1] LOW Y0[2] Cr0[2] Y1[2] Y1[1] Y1[2] Cb0[3] Cb0[4] Y0[3] Y0[4] Cr0[3] Cr0[4] Cr0[3] Cr0[4] Cr0[5] Y1[3] Y1[4] Y1[5] Cb0[5] Cb0[6] Cb0[7] Y0[5] Y0[6] Y0[7] Y0[6] Cr0[6] Y0[7] Cr0[7] LOW Y1[6] Y1[7] Cb0[8] Cb0[9] Cb0[1] 00 Pixel 0 00 XY Cb0[7:0] Y0[7:0] Y1[3] Cb0[4] Cb0[3] LOW Y0[4] Cr0[4] Y1[3] Y1[4] Cb0[5] Cb0[6] Y0[5] Y0[6] Cr0[5] Cr0[6] Y1[5] Y1[6] Cr0[5] Cr0[6] Cr0[7] Y1[5] Y1[6] Y1[7] Cb0[7] Cb0[8] Cb0[9] Y0[7] Y0[8] Y0[9] Cr0[7] Cr0[8] Cr0[9] Y1[7] Y1[8] Y1[9] Y0[8] Cr0[8] Y0[9] Cr0[9] LOW Y1[8] Y1[9] Cb0[10] Cb0[11] Y0[10] Cr0[10] Y0[11] Cr0[11] LOW Y1[10] Y1[11] Pixel 1 Cr0[7:0] Y1[0] Y1[1] Y1[2] LOW LOW LOW SAV Fourth Cr0[1] Cb0[2] LOW LOW LOW FF Cb0[0] Cb0[1] Cr0[2] Cb0[0] LOW Cb0[2] Cr0[0] First 12-bit Data Bus 12-bit Color Depth Clock cycle Second Third LOW Y0[0] Cr0[0] Cr0[2] HSYNC VSYNC DE D[23:16] First 10-bit Data Bus 10-bit Color Depth Clock cycle Second Third Fourth LOW LOW Y1[7:0] Y1[4] LOW LOW LOW EAV Pixel n Crn-1[7:0] Yn[7:0] FF 00 00 XY IDCK Active video Figure 6.19. 8-Bit Color Depth YC Mux 4:2:2 Embedded Sync Timing © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 42 SiI-DS-1084-C SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet SAV Pixel 0 Pixel 1 D[23:16] FF 00 00 XY Cb0[9:2] Y0[9:2] Cr0[9:2] Y1[9:2] D[7:6] FF 00 00 XY Cb0[1:0] Y0[1:0] Cr0[1:0] Y1[1:0] EAV Pixel n Crn-1[9:2] Yn[9:2] FF 00 00 XY Crn-1[1:0] Yn[1:0] FF 00 00 XY IDCK Active video Figure 6.20. 10-Bit Color Depth YC Mux 4:2:2 Embedded Sync Timing SAV Pixel 0 Pixel 1 EAV Pixel n D[23:16] FF 00 00 XY Cb0[11:4] Y0[11:4] Cr0[11:4] Y1[11:4] Crn-1[11:4] Yn[11:4] FF 00 00 XY D[7:4] FF 00 00 XY Cb0[3:0] Y0[3:0] Cr0[3:0] Y1[3:0] Crn-1[3:0] Yn[3:0] FF 00 00 XY IDCK Active video Figure 6.21. 12-Bit Color Depth YC Mux 4:2:2 Embedded Sync Timing © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1084-C 43 SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 6.16.7. RGB and YCbCr 4:4:4 Dual Edge Mode Formats The pixel clock runs at the pixel rate and a complete definition of each pixel is received on each clock cycle. One clock edge latches in half the pixel data. The opposite clock edge latches in the remaining half of the pixel data on the same pins. The same timing format is used for RGB and YCbCr 4:4:4. Each pair of columns in Table 6.13 shows the first pixel of n + 1 pixels in the line of video. The figures below the table show RGB and YCbCr data; the YCbCr 4:4:4 data is given in braces {}. Data and control signals (Dx, DE, HSYNC, and VSYNC) must change state to meet the setup and hold times specified for the dual edge mode, with respect to the first edge of IDCK as defined by the setting of the Edge Select bit. Refer to the Programmer Reference (see the Lattice Semiconductor Documents section on page 52). The figures show IDCK latching input data when the Edge Select bit is set to 1 (first edge is the rising edge). See Table 4.11 on page 18 for the required timing relationships. Table 6.13. RGB/YCbCr 4:4:4 Separate Sync Dual-Edge Data Mapping 12-bit Data Bus 8-bit Color Depth Pin RGB YCbCr Name First Second First Second Edge Edge Edge Edge D0 LOW LOW LOW LOW D1 LOW LOW LOW LOW LOW LOW 15-bit Data Bus 10-bit Color Depth RGB YCbCr First Second First Second Edge Edge Edge Edge LOW LOW LOW LOW LOW LOW LOW LOW 18-bit Data Bus 12-bit Color Depth RGB YCbCr First Second First Second Edge Edge Edge Edge B0[0] G0[6] Cb0[0] Y0[6] B0[1] G0[7] Cb0[1] Y0[7] 24-bit Data Bus 16-bit Color Depth RGB YCbCr First Second First Second Edge Edge Edge Edge B0[0] G0[8] Cb0[0] Y[08] B0[1] G0[9] Cb0[1] Y[09] B0[2] G0[10] Cb0[2] Y[010] B0[3] G0[11] Cb0[3] Y[011] D2 D3 LOW LOW LOW LOW LOW LOW B0[0] G0[5] Cb0[0] Y0[5] B0[1] G0[6] Cb0[1] Y0[6] B0[2] G0[8] Cb0[2] Y0[8] B0[3] G0[9] Cb0[3] Y0[9] D4 D5 D6 B0[0] B0[1] B0[2] G0[4] Cb0[0] Y0[4] G0[5] Cb0[1] Y0[5] G0[6] Cb0[2] Y0[6] B0[2] G0[7] Cb0[2] Y0[7] B0[3] G0[8] Cb0[3] Y0[8] B0[4] G0[9] Cb0[4] Y0[9] B0[4] G0[10] Cb0[4] Y0[10] B0[4] G0[12] Cb0[4] Y[012] B0[5] G0[11] Cb0[5] Y0[11] B0[5] G0[13] Cb0[5] Y[013] B0[6] R0[0] Cb0[6] Cr0[0] B0[6] G0[14] Cb0[6] Y[014] D7 D8 B0[3] B0[4] G0[7] Cb0[3] Y0[7] B0[5] R0[0] Cb0[4] Cr0[0] B0[6] R0[0] Cb0[5] Cr0[0] B0[7] R0[1] Cb0[7] Cr0[1] B0[7] G0[15] Cb0[7] Y[015] R0[1] Cb0[6] Cr0[1] B0[8] R0[2] Cb0[8] Cr0[2] B0[8] R0[0] Cb0[8] Cr[00] D9 D10 D11 B0[5] B0[6] B0[7] R0[1] Cb0[5] Cr0[1] B0[7] R0[2] Cb0[6] Cr0[2] B0[8] R0[3] Cb0[7] Cr0[3] B0[9] R0[2] Cb0[7] Cr0[2] B0[9] R0[3] Cb0[9] Cr0[3] B0[9] R0[1] Cb0[9] Cr[01] R0[3] Cb0[8] Cr0[3] B0[10] R0[4] Cb0[10] Cr0[4] B0[10] R0[2] Cb0[10] Cr[02] R0[4] Cb0[9] Cr0[4] B0[11] R0[5] Cb0[11] Cr0[5] B0[11] R0[3] Cb0[11] Cr[03] D12 D13 D14 LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW G0[0] R0[5] LOW LOW G0[0] R0[6] Y0[0] Cr0[6] B0[12] R0[4] Cb0[12] Cr[04] LOW LOW G0[1] R0[7] Y0[1] Cr0[7] B0[13] R0[5] Cb0[13] Cr[05] Y0[0] Cr0[5] G0[2] R0[8] Y0[2] Cr0[8] B0[14] R0[6] Cb0[14] Cr[06] D15 D16 LOW G0[0] LOW R0[4] LOW LOW G0[1] R0[6] Y0[0] Cr0[4] G0[2] R0[7] Y0[1] Cr0[6] G0[3] R0[9] Y0[3] Cr0[9] B0[15] R0[7] Cb0[15] Cr[07] Y0[2] Cr0[7] G0[4] R0[10] Y0[4] Cr0[10] G0[0] R0[8] Y0[0] Cr[08] D17 D18 D19 G0[1] G0[2] G0[3] R0[5] R0[6] R0[7] Y0[1] Cr0[5] G0[3] R0[8] Y0[2] Cr0[6] G0[4] R0[9] Y0[3] Cr0[7] LOW LOW Y0[3] Cr0[8] G0[5] R0[11] Y0[5] Cr0[11] G0[1] R0[9] Y0[1] Cr[09] Y0[4] Cr0[9] LOW LOW LOW LOW G0[2] R0[10] Y0[2] Cr[010] LOW LOW LOW LOW LOW LOW G0[3] R0[11] Y0[3] Cr[011] D20 D21 LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW G0[4] R0[12] Y0[4] Cr[012] G0[5] R0[13] Y0[5] Cr[013] D22 D23 LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW G0[6] R0[14] Y0[6] Cr[014] G0[7] R0[15] Y0[7] Cr[015] HS HS HS HS HS HS HS HS HS HS HS HS HS HS HS HS HS VS DE VS DE VS DE VS DE VS DE VS DE VS DE VS DE VS DE VS DE VS DE VS DE VS DE VS DE VS DE VS DE VS DE LOW LOW LOW © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 44 SiI-DS-1084-C SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet blank Pixel 0 Pixel 1 Pixel 2 Pixel n - 1 blank Pixel n blank D[19:16] val G0[3:0] {Y0[3:0]} R0[7:4] {Cr0[7:4]} G1[3:0] {Y1[3:0]} R1[7:4] {Cr1[7:4]} G2[3:0] {Y2[3:0]} R2[7:4] {Cr2[7:4]} Gn-1[3:0] {Yn-1[3:0]} Rn-1[7:4] {Crn-1[7:4]} Gn[3:0] {Yn[3:0]} Rn[7:4] {Crn[7:4]} val val val val D[11:8] val B0[7:4] {Cb0[7:4]} R0[3:0] {Cr0[3:0]} B1[7:4] {Cb1[7:4]} R1[3:0] {Cr1[3:0]} B2[7:4] {Cb2[7:4]} R0[3:0] {Cr2[3:0]} Bn-1[7:4] {Cbn-1[7:4]} Rn-1[3:0] {Crn-1[3:0]} Bn[7:4] {Cbn[7:4]} Rn[3:0] {Crn[3:0]} val val val val D[7:4] val B0[3:0] {Cb0[3:0]} G0[7:4] {Y0[7:4]} B1[3:0] {Cb1[3:0]} G1[7:4] {Y1[7:4]} B2[3:0] {Cb2[3:0]} G0[7:4] {Y2[7:4]} Bn-1[3:0] {Cbn-1[3:0]} Gn-1[7:4] {Yn-1[7:4]} Bn[3:0] {Cbn[3:0} Gn[7:4] {Yn[7:4]} val val val val IDCK DE HSYNC, VSYNC Figure 6.22. 8-Bit Color Depth 4:4:4 Dual Edge Timing blank Pixel 0 Pixel 1 Pixel 2 Pixel n - 1 blank Pixel n blank D[18:14] val G0[4:0] {Y0[4:0]} R0[9:5] {Cr0[9:5]} G1[4:0] {Y1[4:0]} R1[9:5] {Cr1[9:5]} G2[4:0] {Y2[4:0]} R2[9:5] {Cr2[9:5]} Gn-1[4:0] {Yn-1[4:0]} Rn-1[9:5] {Crn-1[9:5]} Gn[4:0] {Yn[4:0]} Rn[9:5] {Crn[9:5]} val val val val D[11:7] val B0[9:5] {Cb0[9:5]} R0[4:0] {Cr0[4:0]} B1[9:5] {Cb1[9:5]} R1[4:0] {Cr1[4:0]} B2[9:5] {Cb2[9:5]} R0[4:0] {Cr2[4:0]} Bn-1[9:5] {Cbn-1[9:5]} Rn-1[4:0] {Crn-1[4:0]} Bn[9:5] {Cbn[9:5]} Rn[4:0] {Crn[4:0]} val val val val D[6:2] val B0[4:0] {Cb0[4:0]} G0[9:5] {Y0[9:5]} B1[4:0] {Cb1[4:0]} G1[9:5] {Y1[9:5]} B2[4:0] {Cb2[4:0]} G0[9:5] {Y2[9:5]} Bn-1[4:0] {Cbn-1[4:0]} Gn-1[9:5] {Yn-1[9:5} Bn[4:0] {Cbn[4:0} Gn[9:5] {Yn[9:5]} val val val val IDCK DE HSYNC, VSYNC Figure 6.23. 10-Bit Color Depth 4:4:4 Dual Edge Timing blank Pixel 0 Pixel 1 Pixel 2 Pixel n - 1 D[17:12] val G0[5:0] {Y0[5:0]} R0[11:6] {Cr0[11:6]} G1[5:0] {Y1[5:0]} R1[11:6] {Cr1[11:6]} G2[5:0] {Y2[5:0]} R2[11:6] {Cr2[11:6]} Gn-1[5:0] Rn-1[11:6] {Yn-1[5:0]} {Crn-1[11:6]} D[11:6] val B0[11:6] {Cb0[11:6]} R0[5:0] {Cr0[5:0]} B1[11:6] {Cb1[11:6]} R1[5:0] {Cr1[5:0]} B2[11:6] {Cb2[11:6]} R2[5:0] {Cr2[5:0]} Bn-1[11:6] {Cbn-1[11:6]} D[5:0] val B0[5:0] {Cb0[5:0]} G0[11:6] {Y0[11:6]} B1[5:0] {Cb1[5:0]} G1[11:6] {Y1[11:6]} B2[5:0] {Cb2[5:0]} G2[11:6] {Y2[11:6]} Bn-1[5:0] {Cbn-1[5:0]} blank Pixel n Rn[11:6] {Crn[11:6]} val val val val Bn[11:6] Rn-1[5:0] {Crn-1[5:0]} {Cbn[11:6]} Rn[5:0] {Crn[5:0]} val val val val Bn[5:0] {Cbn[5:0]} Gn[11:6] {Yn[11:6]} val val val val Gn-1[11:6] {Yn-1[11:6]} Gn[5:0] {Yn[5:0]} blank IDCK DE HSYNC, VSYNC Figure 6.24. 12-Bit Color Depth 4:4:4 Dual Edge Timing © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1084-C 45 SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet blank Pixel 0 Pixel 1 Pixel 2 Gn-1[7:0] Rn-1[15:8] {Yn-1[7:0]} {Crn-1[15:8]} B2[15:8] R1[7:0] {Cr1[7:0]} {Cb2[15:8]} R0[7:0] {Cr2[7:0]} Bn-1[15:8] {Cbn-1[15:8]} Bn[15:8] Rn-1[7:0] {Crn-1[7:0]} {Cbn[15:8]} B2[7:0] {Cb2[7:0]} G0[15:8] {Y2[15:8]} Bn-1[7:0] {Cbn-1[7:0]} Gn-1[15:8] {Yn-1[15:8} val G0[7:0] {Y0[7:0]} R0[15:8] {Cr0[15:8]} G1[7:0] {Y1[7:0]} R1[15:8] {Cr1[15:8]} D[15:8] val B0[15:8] {Cb0[15:8]} R0[7:0] {Cr0[7:0]} B1[15:8] {Cb1[15:8]} D[7:0] val B0[7:0] {Cb0[7:0]} G0[15:8] {Y0[15:8]} B1[7:0] {Cb1[7:0]} G1[15:8] {Y1[15:8]} blank Pixel n R2[15:8] {Cr2[15:8]} D[23:16] G2[7:0] {Y2[7:0]} Pixel n - 1 Gn[7:0] {Yn[7:0]} Bn[7:0] {Cbn[7:0} blank Rn[15:8] {Crn[15:8]} val val val val Rn[7:0] {Crn[7:0]} val val val val Gn[15:8] {Yn[15:8]} val val val val IDCK DE HSYNC, VSYNC Figure 6.25. 16-Bit Color Depth 4:4:4 Dual Edge Timing © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 46 SiI-DS-1084-C SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 7. Design Recommendations 7.1. Power Supply Decoupling Designers should include decoupling and bypass capacitors at each power pin in the layout. Figure 7.1 shows this schematically. Figure 7.2 shows a representative layout of the various types of power connections on the transmitter. Connections in any one group, such as all the CVCC12 pins, can share C2, C3, and the ferrite. Locate a separate C1 as close as possible to the VCC pin. The recommended impedance of the ferrite is 10 or more in the frequency range of 1 MHz to 2 MHz. 3.3 V L1 VCC Pin C1 C2 C3 GND Figure 7.1. Decoupling and Bypass Schematic VCC C1 C2 L1 VCC Ferrite GND C3 Via to GND Figure 7.2. Decoupling and Bypass Capacitor Placement 7.2. Power Supply Sequencing All power supplies in the SiI9136-3/SiI1136 transmitter are independent. However, identical supplies must be provided at the same time. Independent supplies do not have any sequencing requirements. 7.3. ESD Recommendations The SiI9136-3/SiI1136 transmitter can withstand electrostatic discharges due to handling during manufacture up to 4 kV HBM. In applications where higher protection levels are required, ESD-limiting components can be placed on the pins of the device. These components typically have a capacitive effect that reduces the signal quality on the differential lines at higher clock frequencies, so use the lowest capacitance devices possible on these lines. In no case should the capacitance value exceed 1 pF. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1084-C 47 SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 7.4. High-Speed TMDS Signals 7.4.1. Layout Guidelines These layout guidelines help to ensure signal integrity. Lattice Semiconductor encourages the board designer to follow these guidelines as closely as possible. Locate the output connector that carries the TMDS signals as close as possible to the device. Route the differential lines as directly as possible from the connector to the device pins. Route the two traces of each differential pair together. Minimize the number of vias through which the signal lines pass. Lay out the two traces of each differential pair with a controlled differential impedance of 100 Ω. Because Lattice Semiconductor devices are tolerant of skews between differential pairs, spiral skew compensation for path length differences is not required. 7.4.2. TMDS Output Recommendation The SiI9136-3/SiI1136 transmitter is capable of sending frequencies of up to 300 MHz over the TMDS clock line. If the output of the transmitter is connected to an HDMI connector, the output port must be HDMI-compliant. The TMDS output is designed to give the maximum horizontal eye opening by speeding up the rise and fall time to the minimum value of 75 ps allowed by the HDMI Specification. Depending on the design layout and with light loading, it is possible to see rise times slightly faster than 75 ps. Adding components such as common mode filters and ESD suppression devices slows down the rise and fall time to well within the specification. If these components are not in the design, adding a discrete capacitor of approximately 1 pF from each of the differential signal traces to ground can solve this compliance issue. The following external components have been tested for output compliance. Components with similar capacitance can also be used: Common mode filter: TDK ACM2012H ESD suppression diode: Semtech RClamp0524P. Semtech also makes a pin-compatible device, Semtech SRV05, that Lattice Semiconductor has not tested but for which similar compliance performance is expected. 7.4.3. EMI Considerations Electromagnetic interference is a function of board layout, shielding, operating voltage and frequency, and so on. When attempting to control emissions, do not place any passive components on the differential signal lines, except for the ESD protection described earlier. The differential signals used in HDMI are inherently low in EMI if the routing recommendations noted in the Layout Guidelines section are followed. The PCB ground plane should extend unbroken under as much of the transmitter chip and associated circuitry as possible, with all ground signals of the chip using a common ground. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 48 SiI-DS-1084-C SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 8. Packaging 8.1. ePad Requirements The SiI9136-3/SiI1136 HDMI Deep Color Transmitter chip is packaged in a 100-pin, 14 mm x 14mm TQFP package with an ePad that is used for the electrical ground of the device and for improved thermal transfer characteristics. The ePad dimensions are 5 mm x 5 mm ±0.20 mm. Soldering the ePad to the ground plane of the PCB is required to meet package power dissipation requirements at full speed operation, and to correctly connect the chip circuitry to electrical ground. A clearance of at least 0.25 mm should be designed on the PCB between the edge of the ePad and the inner edges of the lead pads to avoid the possibility of electrical shorts. The thermal land area on the PCB may use thermal vias to improve heat removal from the package. These thermal vias also double as the ground connections of the chip and must attach internally in the PCB to the ground plane. An array of vias should be designed into the PCB beneath the package. For optimum thermal performance, the via diameter should be 12 mils to 13 mils (0.30 mm to 0.33 mm) and the via barrel should be plated with 1-ounce copper to plug the via. This design helps to avoid any solder wicking inside the via during the soldering process, which may result in voids in solder between the pad and the thermal land. If the copper plating does not plug the vias, the thermal vias can be tented with solder mask on the top surface of the PCB to avoid solder wicking inside the via during assembly. The solder mask diameter should be at least 4 mils (0.1 mm) larger than the via diameter. Package stand-off when mounting the device also needs to be considered. For a nominal stand-off of approximately 0.1 mm the stencil thickness of 5 mils to 8 mils should provide a good solder joint between the ePad and the thermal land. 8.2. PCB Layout Guidelines PCB layout designers should refer to Lattice Semiconductor Application Note PCB Layout Guidelines: Designing with Exposed Pads (SiI-AN-0129) for basic design guidelines when designing with thermally enhanced packages using ePad. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1084-C 49 SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 8.3. Package Dimensions These drawings are not to scale. D D1 5.00 ± 0.20 100 76 R1 75 R2 GAGE PLANE .25 5.00 ± 0.20 PIN 1 IDENTIFIER E1 S E L L1 Detail A 51 25 26 e b 50 See Detail A A A2 A1 ccc C C Figure 8.1. 100-Pin Package Diagram JEDEC Package Code MS-026 Item Description A A1 A2 Thickness Stand-off Body thickness D E Footprint Footprint D1 E1 b Body size Body size Lead width Min — 0.05 0.95 0.17 Typ — — 1.00 Max 1.20 0.15 1.05 Item Description C e L Lead thickness Lead pitch Lead foot length 16.00 BSC 16.00 BSC L1 R1 Total lead length Lead radius, inside 14.00 BSC 14.00 BSC 0.22 R2 S ccc Lead radius, outside Lead horizontal run Lead coplanarity 0.27 Min 0.09 Typ 0.45 — 0.50 BSC 0.60 0.08 1.00 REF — 0.08 0.20 — — 0.08 Max 0.20 0.75 — 0.20 — Dimensions given in mm. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 50 SiI-DS-1084-C SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet 8.4. Marking Specification This marking drawing is not to scale. Logo Pin 1 location SiI9136CTU LLLLLL.LL-L YYWW XXXXXXX Silicon Image Part Number Lot # (= Job#) Date code Post top marking -3 SiIxxxxrpppp-sXXXX Product Designation Special Designation Revision Speed Package Type Figure 8.2. Marking Diagram 8.5. Ordering Information Production Part Numbers: Device Part Number Standard SiI9136CTU-3 Non-HDCP SiI1136CTU The universal package can be used in lead-free and ordinary process lines. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1084-C 51 SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet References Standards Documents This is a list of standards abbreviations appearing in this document, and references to their respective specifications documents. Abbreviation HDMI HCTS Standards publication, organization, and date High Definition Multimedia Interface, Revision 1.4a, HDMI Consortium, March 2010 HDMI Compliance Test Specification, Revision 1.4a, HDMI Consortium, March 2010 HDCP E-EDID E-DID IG High-bandwidth Digital Content Protection, Revision 1.4, Digital Content Protection, LLC; July 2009 Enhanced Extended Display Identification Data Standard, Release A Revision 1, VESA; Feb. 2000 VESA EDID Implementation Guide, VESA, June 2001 CEA-861-D EDDC A DTV Profile for Uncompressed High Speed Digital Interfaces, EIA/CEA; July 2006 Enhanced Display Data Channel Standard, Version 1.1, VESA; March 2004 Studio encoding parameters of digital television for standard 4:3 and wide screen 16:9 aspect ratios, International Telecommunications Union, January 2007 Interface for digital component video signals in 525-line and 625-line television systems operating at the 4:2:2 level of Recommendation ITU-R BT.601, International Telecommunications Union, December 2007 Parameter values for the HDTV standards for production and international programme exchange, International Telecommunications Union, April 2002 Multimedia systems and equipment - Colour measurement and management - Part 2-4: Colour management Extended-gamut YCC colour space for video applications – xvYCC, International Electrotechnical Commission, January 2006 Advanced Configuration and Power Interface, Revision 4.0, Hewlett-Packard/Intel/Microsoft/Phoenix/ Toshiba, June, 2009 ITU-R BT.601 ITU-R BT.656 ITU-R BT.709 IEC 61966-2-4 ACPI BTA T-1004 Video Signal Interfaces for EDTV-II Studio Equipment, Version 1.0, ARIB; June 1995 Standards Groups For information on the specifications that apply to this document, contact the responsible standards groups appearing on this list. Standards Organization ANSI/EIA/CEA VESA Web URL http://global.ihs.com http://www.vesa.org HDCP DVI HDMI http://www.digital-cp.com http://www.ddwg.org http://www.hdmi.org ITU IEC http://www.itu.int http://www.iec.org ARIB http://www.arib.or.jp Lattice Semiconductor Documents This is a list of the related documents that are available from your Lattice Semiconductor sales representative. The Programmer Reference requires an NDA with Lattice Semiconductor. Document SiI-PR-1032 SiI-PR-0041 Title Transmitter Programming Interface (TPI) Programmer Reference CEC Programming Interface (CPI) Programmer Reference SiI-AN-1029 SiI-PR-1018 SiI-UG-1068 PCB Layout Guidelines: Designing with Exposed Pads Repeater Programming Interface (RTPI) Programmer Reference CP9136-3/CP1136 Transmitter/Repeater Starter Kit User Guide © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 52 SiI-DS-1084-C SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet Technical Support For technical support questions, contact your regional sales manufacturer representative or distributor. For contact information, visit the Lattice Semiconductor web site at www.latticesemi.com. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1084-C 53 SiI9136-3/SiI1136 HDMI Deep Color Transmitter Data Sheet Revision History Revision C, February 2016 Added SiI1136 transmitter support and updated to latest template. Revision B, July 2013 1. Add YC Mux 480i support. 2. Update to 300 MHz maximum frequency in Deep Color Support section. 3. Update Table 19 for 4K formats. 4. Update Table 24 and Table 25 for correct order of sending Cr0 and Cb1. Revision A, October 2010 First Production release. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 54 SiI-DS-1084-C th th 7 Floor, 111 SW 5 Avenue Portland, OR 97204, USA T 503.268.8000 www.latticesemi.com