INTERSIL CXD2559Q

HI2559, CXD2559
®
October 1997
Features
NO
C OM
T RE
DED
ME N
FO R
IG
DES
NEW
NS
1-Bit D/A Converter For Audio Application
Description
• Two-Channel D/A Converter and Oversampling Digital
Filter Into a Single Chip
• Distortion . . . . . . . . . . . . . . . . . . . . . . . . 0.012% or Less
• S/N Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . .96dB or More
• Master Clock . . . . . . . . . . . . . . . . . . . . . 384FS or 256FS
Applications
The HI2559, CXD2559 is a 1-bit stereo D/A converter featuring a 2nd-order ∆∑ system noise shaper. This good cost performance LSI has functions such as digital attenuator and
digital de-emphasis and others.
Ordering Information
PART
NUMBER
• CD Player and CD-ROM Player, etc.
Functions
TEMP.
RANGE ( oC)
PACKAGE
PKG. NO.
HI2559JCQ
-20 to 75
32 Ld MPQF
Q32.7x7-S
CXD2559Q
-20 to 75
32 Ld MPQF
Q32.7x7-S
• Data Can Be Input at Rate of 1 x FS with a Built-In Digital
Filter
• The 24-/32-Slot Serial Data Interface Enables
Independent Selection of Data Frontward Truncation/Rearward Truncation and MSB First/LSB First
• Two Channels Can Be Attenuated Independently in 255
Steps
• The Output From Two Channels (L/R/L + R/Mute) Can
Be Selected Independently
• Digital Emphasis
Pinout
AOUT2+
AVSS3
XVSS
XTLI
XTLO
XVDD
AVSS2
AOUT1+
HI2559, CXD2559
(MQFP)
TOP VIEW
3231 30 29 28 27 26 25
1
24
2
23
3
22
4
21
5
20
6
19
18
7
17
8
9 10 11 12 13 14 15 16
AVDD1
AOUT1AVSS1
DVSS1
XCLK
DASL0
DASL1
DVDD1
LRCK
BCK
SIN
MLSL
ATT
SHIFT
LATCH
WO
AVDD0
AOUT2AVSS0
DVDD0
TEST
CLR
MASL
DVSS0
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright © Intersil Americas Inc. 2002. All Rights Reserved
4-1
File Number
4120.1
HI2559, CXD2559
Block Diagram
XTLI
XTLO
XCLK
CLOCK GENERATOR
TIMING CIRCUIT
AOUT1 (+)
DAC1
LRCK
AOUT1 (-)
DIGITAL
FILTER
(OVER SAMPLING)
BCK
S
SIN
AOUT2 (+)
P
DAC2
MASL
AOUT2 (-)
MLSL
ATT
ROM
HOST
COMPUTER
I/F
SHIFT
LATCH
ATT1
ATT2
RAM
Pin Descriptions
PIN NO.
SYMBOL
I/O
DESCRIPTION
1
AVDD0
-
Analog power supply for Channel 2 output.
2
AOUT2(–)
O
Analog reversed phase output for Channel 2.
3
ADV SS0
-
Analog GND for Channel 2 output.
4
DVDD0
-
Digital power supply.
5
TEST
I
IC measurement. Fixed to Low.
6
CLR
I
System clear input. Cleared when low. Equipped with a pull-up resistor.
7
MASL
I
Selects whether 16-bit serial data is placed in the first 16-bit or the second 16-bit slot of the
serial IN 32-bit slots. Frontward truncation when High; rearward truncation when low.
Equipped with a pulldown resistor.
8
DV SS0
-
Digital GND.
9
LRCK
I
Serial IN sampling frequency clock. Transfers Channel-1 data when High; Channel-2 data
when low.
10
BCK
I
Serial bit transfer clock 48 FS or 64 FS in serial IN. The serial input data is retrieved at the
rising edge.
11
SIN
I
Two channels per sampling serial data input. Data format is represented by 2’s complements, and consists of 24-bit or 32-bit slots.
12
MLSL
I
Selects whether 16-bit serial data SIN (Pin 15) of serial IN at LSB first or MSB first. MSBfirst when High; LSB-first when Low. Equipped with a pull-up resistor.
4-2
HI2559, CXD2559
Pin Descriptions
(Continued)
PIN NO.
SYMBOL
I/O
DESCRIPTION
13
ATT
I
Data input of the microcomputer interface. Attenuation data, output selection setting value,
and de-emphasis on/off data re-input in serial mode.
14
SHIFT
I
Shift clock input of the microcomputer interface.
15
LATCH
I
Latch input of the microcomputer interface. Latched at the rising edge.
16
WO
I
Synchronization window control. Window open when Low (forced synchronization).
17
DVDD1
-
Digital power supply.
18
DASL1
I
IC measurement. Fixed to Low.
19
DASL0
I
IC measurement. Fixed High.
20
XCLK
O
Inversion output of the clock input from XTLI (Pin 1).
21
DV SS1
-
Digital GND.
22
AV SS1
-
Analog GND for Channel 1 output.
23
AOUT1 (-)
O
Analog reversed phase output for Channel 1.
24
AVDD1
I
Analog power supply for Channel 1 output.
25
AOUT1 (+)
O
Analog positive phase output for Channel 1.
26
AV SS2
-
Analog GND for Channel 1 output.
27
XVDD
-
Digital power supply for the master clock.
28
XTLO
O
Crystal oscillator output. Connects the master clock 256 FS or 384 FS crystal oscillator,
which is identified automatically.
29
XTLI
I
Crystal oscillator input. Connects the master clock 256 FS or 384 FS crystal oscillator,
which is identified automatically. External clock pulse is input at this pin.
30
XVSS
-
Digital GND for master clock
31
AV SS3
-
Analog GND for Channel 2 output.
32
AOUT2 (+)
O
Analog positive phase output for Channel 2.
4-3
HI2559, CXD2559
Absolute Maximum Ratings TA = 25oC, VSS = 0V
Operating Conditions
Supply Voltage (V DD). . . . . . . . . . . . . . . . . . . . . . VSS -0.5V to 7.0V
Input Voltage (V 1). . . . . . . . . . . . . . . . . . . . VSS -0.5V to V DD +0.5V
Output Voltage (V 0) . . . . . . . . . . . . . . . . . . VSS- 0.5V to VDD +0.5V
Operating Temperature (TOPR). . . . . . . . . . . . . . . . . -20oC to 75oC
Storage Temperature (TSTG) . . . . . . . . . . . . . . . . . . -55oC to 150oC
Supply Voltage (V DD) . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5V to 5.5V
Operating Temperature (TA) . . . . . . . . . . . . . . . . . . . . 20oC to 75oC
Sampling Frequency (FS) . . . . . . . . . . . . . . . . . . . . . 7kHz to 50kHz
Input/Output Capacitance
Input Pin (CIN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9pF (Max.)
Output Pin (COUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11pF (Max.)
Measurement conditions: V DD = VI = 0V, f = 1MHz
Electrical Specifications
PARAMETER
MIN
TYP
MAX
UNITS
APPLICABLE
PIN
VIH
0.7 VDD
-
-
V
Note 1
VIL
-
-
0.3 VDD
VIH
2.2
-
-
V
Note 2
V
Note 3
V
Note 4
V
Note 5
SYMBOL
TEST
CONDITIONS
DC Electrical Specifications
Input Voltage
V IL
Output Voltage
V OH
IOH = -2mA
VDD -0.8
-
0.4
VOL
IOL = 4mA
-
-
0.4
VOH
IOH = -1mA
VDD /2
-
-
VOL
IOL = 1mA
-
-
VDD /2
V OH
IOH = -4mA
VDD -0.8
-
-
VOL
IOL = 4mA
0
-
-
Input Leakage Current 1
IIL1
VIN = VSS or VDD
-10
-
10
µA
Note 6
Input Leakage Current 2
IIL2
VIN = VSS or VDD
-40
-
40
µA
Note 7
Input Leakage Current 3
IIL
VIL = VSS
-40
-100
-240
µA
Note 8
Input Leakage Current 4
IIH
VIH = VDD
40
100
240
µA
Note 9
250k
1M
2.5M
Ω
Note 12
2
-
13
MHz
2
-
20
38
-
250
ns
25
-
250
ns
Feedback Resistance
RFB
VIN = VSS or VDD
NOTES:
1. Input pins except for *2t
2. ATT, SHIFT, LATCH
3. XCLK
4. XLO
5. AOUT1 (+), AOUT1 (-), AOUT2 (+), AOUT2 (-)
6. ATT, SHIFT, LATCH, LRCK, BCK, SINt
7. WO
8. CLR, MLSLt
9. MASL
10. XTLI
VDD = 5.0 ±10%, TOPR = -20oC to 75oC
AC Electrical Specifications
PARAMETER
Oscillation Frequency
SYMBOL
256 FS
fx
384 FS
External Clock Pulse Input
High Level Width
258 FS
tCWH
384 FS
4-4
HI2559, CXD2559
VDD = 5.0 ±10%, TOPR = -20oC to 75oC
AC Electrical Specifications
PARAMETER
SYMBOL
External Clock Pulse Input
Low Level Width
256 FS
External Clock Pulse Input
Pulse Cycle (Note 2)
256 FS
tCWL
384 FS
tCYC
384 FS
38
-
250
ns
25
-
250
ns
76
-
500
ns
50
-
500
ns
Input BCK Frequency
fBCK
-
-
3.1
MHz
Input BCK Pulse Width
tWIB
100
-
-
ns
Input Data Setup Time
tIDS
10
-
-
ns
Input Data Hold Time
tIDH
15
-
-
ns
Input LRCK Setup Time
tILRS
10
-
-
ns
Input LRCK Hold Time
tILRH
15
-
-
ns
Program Input Basic Time
tPR
100
-
-
ns
Latch Input Pulse Width
tWLT
200
-
-
ns
ATT Setup Time
tSET
5
-
-
ns
ATT Hold Time
tHOLD
100
-
-
ns
ATT Interval
tINT
300
-
-
ns
NOTE:
11. Always input an external clock after turning the power on.
ANALOG CHARACTERISTICS
MEASUREMENT CONDITIONS
TA = 25oC, VDD = 5.0V, FS = 44kHz, signal frequency = 1kHz, measurement band = 4Hz to 20kHz,
Master Clock 384FS.
S/N
(EIAJ) *1
96
100
-
dB
THD + N
(EIAJ)
-
0.010
0.012
%
Dynamic Range
(EIAJ) *1, *2
91
93
-
dB
Channel Separation
(EIAJ)
-
90
-
dB
Output Level
-
2.58
-
V (ms)
Gain Difference Between Channels
-
-
0.1
dB
NOTES:
12. A-weighting filter used.
13. -60dB, 1kHz input.
4-5
HI2559, CXD2559
The analog characteristics are measured with the following circuit:
Test Circuits
820P
CXD2559Q
3.9K
130K
+
AOUT1 (-)
3.9K
47P
4.7K
+
4.7K
0.015
4.7K
1800P
4.7K
+
22
100
+
82P
12K
OUTPUT
820P
4.7K
3.9K
130K
+
AOUT1 (+)
3.9K
4.7K
4.7K
47P
FIGURE 1. ANALOG CHARACTERISTICS
384FS
LRCK
TEST DISC
DATA
CXD2500Q
BCK
DATA
AOUT1
CXD2559Q
AOUT2
ANALOG
AUDIO
ANALYZER
(SHIBASOKU AM51A)
ANALOG
CIRCUIT
FIGURE 2.
Timing Diagrams
tCYC
EXTERNAL CLOCK INPUT
tCWH
tCWL
XTLI
tWIB
tWIB
AUDIO INPUT
50%
BCK
tIDS
tIDH
SIN
tILRH
tILAS
LRCK
PROGRAM INPUT
ATT
MSB
tSET
SHIFT
LATCH
tHOLD
tPR
tPR
tPR
FIGURE 3. TIMING CHART
4-6
tWLT
tINT
15
4-7
FIGURE 4. SERIAL DATA INTERFACE
7
8
9 10 11 12 13 14 15
0
INVALID
CH-2
1
2
3
4
5
6
15 14 13 12 11 10 9
MSB
0
INVALID
3
LSB
2
SIN
0
1
MLSL = “L”
SIN
MLSL = “H”
LRCK
BCK
(24-BIT SLOT)
0
8
7
INVALID
4
3
2
1
LSB
7
8
5
MSB
0
9 10 11 12 13 14 15
6
1
0
6
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
MSB
INVALID
2
4
6
7
INVALID
INVALID
3
8
MSB
1
2
3
4
5
6
15 14 13 12 11 10 9
0
INVALID
0
7
8
8
7
5
4
3
2
1
0
9 10 11 12 13 14 15
6
INVALID
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
CH-1
9 10 11 12 13 14 15
INVALID
0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
CH-1
LSB
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
SIN
4
INVALID
LSB
INVALID
MSB
LSB
15
0
0
LSB
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
MSB
MLSL = “L”, MASL = “H”
SIN
INVALID
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
MLSL = “L”, MASL = “L”
SIN
MLSL = “H”, MASL = “H”
SIN
CH-2
15
Timing Diagrams
MLSL = “H”, MASL = “L”
LRCK
BCK
(32-BIT SLOT)
HI2559, CXD2559
(Continued)
HI2559, CXD2559
Timing Diagrams
(Continued)
BYTE 0
BYTE 1
LSB
ATT
BYTE 2
MSB LSB
MSB
L0 L1 L2 L3 L4 L5 L6 L7 R0 R1 R2 R3 R4 R5 R6 R7 P0 P1 P2 P3
E
A
X
X
19 20 21 22
23
24
SHIFT
1
2
3
4
5
6
7
8
9
10 11
12 13 14 15
16 17
18
LATCH
FIGURE 5.
Description of Functions
A. Crystal Oscillator Frequency Selection
B. Serial Data Interface
[Related pins] XTLI, XTLO, XCLK, BCK, SIN
[Related pins] LRCK, BCK, SIN, MASL, MLSL
Although the 384 FS or 256 VS crystal oscillator can be connected to XTLI and XTLO, the selection is determined
depending on whether the input serial data is 24-bit or 32-bit
slot. The frequency of the crystal oscillator is output from
XCLK as it is.
The serial data format consists of two channels per sampling
serial data represented by 2’s complement. In each channel,
the data is processed as a 24-bit slot when the crystal oscillator frequency is 384 FS, and as a 32-bit slot when the crystal oscillator frequency is 256 FS . 16 of these bits are used
as data.
SERIAL DATA INPUT
BIT RATE
CRYSTAL OSCILLATOR
FREQUENCY
XCLK
OUTPUT
24-Bit Slot (48FS)
384FS
384FS
32-Bit Slot (64FS)
256FS
256FS
MSL is used to select whether the serial data is arranged at
LSB first or MSB first. Also, MASL is used to select whether
the 16-bits of valid data is placed in the first or the second
half of the 32-bit slot.
MSL
CXD2500BQ
DA16
DA15
LRCK
XTAI
CXD2559Q
24-SLOT
48FS
IFS
384FS
SIN
XTLI
BCK
384FS
LRCK
XCLK
XTLO
H
MSB First
L
LSB First
MASL
24-BIT SLOT
32-BIT SLOT
H
Rearward Truncation
Frontward Truncation
L
Rearward Truncation
C. Control Mode
CXD2507Q
PCMD
BCK
LRCK
XTAI
CXD2559Q
24-SLOT
SIN
48FS
BCK
IFS
LRCK
384FS
XCLK
[Related pins] ATT, SHIFT, LATCH
XTLI
384FS
XTLO
FIGURE 6. CONNECTION EXAMPLE FOR THE CD DSP
The serial ports of ATT, SHIFT and LATCH are used to control functions such as the digital attenuator, output selection
and digital de-emphasis.
Data consists of 24-bits (3 bytes), which have the following
meanings:
4-8
HI2559, CXD2559
CONTROL
BIT
CONTROL
WHEN SYSTEM IS CLEARED
L7 TO L0
The L channel attenuation data.
FF (H)
R7 to R0
The R channel attenuation data.
FF (H)
P3 to P0
Output selection.
9 (H) Stereo
E
De-emphasis (High = on, Low = off)
OFF
However, the time constant of the emphasis is γ 1 = 50µs and γ 2 = 15µs
when FS = 44.1kHz. The de-emphasis function cannot be used when FS
is not 44.1kHz.
A
Attenuate (Low = independent, High = common). However, the L channel Independent
attenuation value is used when the L and R channels are commonly attenuated.
X
Don’t care.
NOTE: When the data is more than three bytes are transferred to the ATT pin, only the three bytes transferred finally are effective.
D. Digital Attenuator
(FS = 44kHz for CD).
[Related pins] ATT, SHIFT, LATCH
0dB
The output data can be attenuated independently in the L
and R channels, using the transfer data from the external
microcomputer.
A
ATT1
The ATT data of the L and R channels consist of eight bits
each, and the L and R channels can be attenuated commonly using the ATT control bit. (The L channel attenuation
value is used when the L and R channels are commonly
attenuated).
(1)
B
ATT3
C
ATT2
Command and Audio Output
The attenuation data of the L and R channels consist of eight
bits, it can be set 255 ways. The following table shows the
relationship between the commands and the outputs.
ATTENUATION DATA
L7 TO L0/R7 TO R0
AUDIO OUTPUT
FF (H)
0dB
FE (H)
↓
01 (H)
-0.034dB
↓
-48.131dB
00 (H)
-∞
FIGURE 7. METHOD OF OBTAINING AN ATTENUATION VALUE
F. Output Selection
[Related pins] ATT, SHIFT, LATCH
The L and R channel outputs can be set in four combinations
[L/RL + R/Mute] (16 ways in total) using the transfer data
from the external microcomputer. The following table shows
the relationship between the commands and the outputs.
The attenuation values for 01 (H) to FE (H) can be obtained
with the following equation:
ATT = 20log [Input data/255] dB
Ex. for attenuating data FA (H)
ATT = 20log [250/255] db = 0.172dB
E. Digital Attenuator
Suppose that there are attenuation data ATT1, ATT2 and
ATT3, and their relationship is ATT1>ATT3>ATT2. When
ATT2 is transferred before the level reaches the value of
ATT1 (point A in the figure), the level keeps approaching to
the value of ATT2. Next, when ATT3 is transferred before
the level reaches the value of ATT2 (point B or C in the figure), the level starts approaching to the value of ATT3 from
its level at that time (point B or C in the figure). The transition
(0 dB to → –∞) between the attenuation data is 1024/FS
4-9
HI2559, CXD2559
P0
P1
P2
P3
L CHANNEL OUTPUT
R CHANNEL OUTPUT
REMARKS
0
0
0
0
Mute
Mute
Mute
0
0
0
1
Mute
R
0
0
1
0
Mute
L
0
0
1
1
Mute
L+R
0
1
0
0
R
Mute
0
1
0
1
R
R
0
1
1
0
R
L
0
1
1
1
R
L+R
1
0
0
0
L
Mute
1
0
0
1
L
R
1
0
1
0
L
L
1
-
1
1
L
L+R
1
1
0
0
L+R
Mute
1
1
0
1
L+R
R
1
1
1
0
L+R
L
1
1
1
1
L+R
L+R
Reverse
Stereo
Mono
NOTE: For L + R, the output data is (L + R)/2 to avoid overflow.
When the power is turned on, it is necessary to set the
rising edge of LRCK in the center of the window by
performing the forced synchronization.
G. I/O Sync Circuit
[Related pins] LRCK and WO
(1)
Operation (When the WO Pin is “H”)
After the system is cleared, the forced synchronization
is performed by setting WO pin to Low at 2/F S or
more. The forced synchronization is performed at the
second rising edge of LRCK after the WO pin is turned
to “Low.”
The synchronization circuit has the window of eight
clocks of the master clock and it monitors whether the
rising edge of LRCK is in the window.
If the rising edge of LRCK is out of the window, resynchronization is automatically performed.
(2)
Forced Synchronization by WO Pin
Even if the rising edge of LRCK is within the window, it
may not synchronize owing to the mixing of the external noises, etc. when the rising edge of LRCK is positioned near at both edges of the window.
NOTE: WO pin must be “H” except the forced synchronization.
H. System Clear When the Power is Turned ON.
[Related Pins] CLR
When the power is turned ON and the master clock more
than 4 clocks is input to the XTLI pin, set the CLR pin from
“L” to “H.”
4-10
+5V DIGITAL POWER SUPPLY
D
MICROCOMPUTER
ATT
SHIFT
LATCH
CLR
WO
MASL
0.01
WO
LATCH
CLR
SHIFT
ATT
LRCK
BCK
SIN
MLSL
ATT
SHIFT
LATCH
WO
MLSL
12
13
14
15
16
10
11
9
B
17 18 19 20 21 22 23 24
A
3.9K
3.9K
3.9K
0.01
25
26
27
29
28
31
30
32
3.9K
3.9K
AOUT2 (+)
VSS
VSS
XTLI
CXD2559Q
XTLO
VDD
VSS
AOUT 1 (+)
DASL1
DASL0
CXD2500Q
LRCK LRCK
DA15 8CK
XTAI
DA16 SIN
1
0.01
3 2
C
4
8 7 6 5
4558 IS USED FOR OPERATIONAL AMPLIFIER
DIGITAL GND
VSS
XCLK
VSS
VSS
VSS
0.01
+5V POWER SUPPLY FOR AOUT2
TEST
VDD
D
+5V POWER SUPPLY FOR AOUT1
C
MASL
CLR
VDD
VDD
AOUT 2 (-)
AOUT 1 (-)
4-11
VDD
ANALOG GND
+5V POWER SUPPLY FOR THE XTAL OSCILLATOR CIRCUIT
A
B
3
130K
+
47P
2
5
47P
+
+
4
81
7
4
81
47K
4.7K
4.7K
47P
4.7K
0.01
0.01
4.7K
0.01
20p
7
47K
47P
+
3
2
384FS
OR
256FS
5
6
3.9K
6
130K
20p
3.9K
130K
3.9K
130K
0.01
+
7
4.7K
1800P
4.7K
4.7K
820P
6
5
820P
4.7K
+
7
4.7K
1800P
4.7K
+
82P
3
0.015
4.7K 2
+
82P
3
2
NOTE: Application circuits shown are
typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems
arising out of the use of these circuits
or for any infringement of third party
patent and other right due to same.
820P
5
6
4.7K
820P
22µ
0.01
22µ
0.01
0.01
-12V
1
1
4
8
4
8
0.01
+12V
12K
100
12K
100
CH1
OUT
CH2
OUT
Application Circuit