TI TLC320AD75CDL

TLC320AD75C
Data Manual
20-Bit Sigma-Delta Stereo ADA Circuit
SLAS144
February 1997
Printed on Recycled Paper
IMPORTANT NOTICE
Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.
TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.
Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).
TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.
Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.
In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.
TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.
Copyright  1997, Texas Instruments Incorporated
Contents
Section
Title
Page
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.6 Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–1
1–1
1–2
1–3
1–4
1–4
1–5
2
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1
2.1 Power-Down and Reset Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1
2.1.1
ADC Power Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1
2.1.2
Reset Function for ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1
2.1.3
Reset/ Initialization for DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2
2.2 Differential Input to the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3
2.3 Sigma-Delta Modulator for the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3
2.4 Decimation Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3
2.5 High-Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3
2.6 Master Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4
2.6.1
Master-Clock Circuit for ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4
2.6.2
Master-Clock Circuit for DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4
2.7 Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–5
2.8 Master Mode for ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–5
2.9 Slave Mode for ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–5
2.10 Digital-Audio-Data Interface for DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–5
2.11 Serial-Control Interface for DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–7
2.11.1 Serial-Control-Data Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–7
2.12 DAC De-emphasis Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–7
2.13 Digital Filter Mute for DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–7
2.14 DAC Digital Attenuation/Soft Mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–8
2.15 Sigma-Delta DAC Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–9
2.16 DAC Interpolation Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–9
2.17 DAC PWM Output (L2 – L1 and R2 – R1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–9
2.18 DAC Control Register Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–10
2.19 Auto-Resynchronization Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–11
3
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range . . . . .
3.2 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 Electrical Characteristics, AVDD = LVDD = VDD1 = VDD2 = PVDDL =
PVDDR = XVDD = 5 V, V35A = V35D = 3.3 V, TA = 25°C . . . . . . . . . . . . . . . . . .
3.3.1
Digital Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.2
Analog Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.3
ADC Performance, fs = 44.1 kHz, Bandwidth = 22.05 kHz . . . . . . . . . .
3.3.4
DAC Performance, 20-Bit Mode, fs = 44.1 kHz,
Bandwidth = 22.05 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–1
3–1
3–1
3–2
3–2
3–2
3–3
3–3
iii
Contents (Continued)
Section
3.4
3.5
Title
Page
3.3.5
ADC Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.6
ADC High-Pass Filter, fs = 44.1 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.7
ADC Decimation Filter, fs = 44.1 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.8
DAC Filter Characteristics, fs = 44.1 kHz . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.9
Power Supply Current, fs = 44.1 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ADC Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DAC Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–3
3–3
3–3
3–4
3–4
3–4
3–5
4
Parameter Measurement Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1
5
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1
5.1 Circuit And Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–7
5.2 PCB Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–7
Appendix A Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–1
iv
List of Illustrations
Figure
Title
Page
Figure 2–1 ADC Start-Up Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 2–2 DAC-Reset Timing Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 2–3 Differential Analog-Input Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 2–4 ADC Audio-Data Serial Timing – Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 2–5 ADC Audio-Data Serial Timing – Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 2–6 Audio Data Serial Timing – ADC and All DAC Modes . . . . . . . . . . . . . . . . . . . . .
Figure 2–7 Control-Data Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 2–8 De-emphasis Filter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 2–9 Digital Attenuation Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 2–10 DAC Digital Attenuation Operation With Tapered Gain Response . . . . . . . . .
Figure 2–11 Oversampling Noise Power With and Without Noise Shaping . . . . . . . . . . . . .
Figure 4–1 ADC Audio-Data Serial Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 4–2 DAC Control-Data Serial Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 5–1 TLC320AD75C Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 5–2 A-Weighted Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 5–3 Land Pattern for PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–2
2–2
2–3
2–5
2–5
2–6
2–7
2–7
2–8
2–8
2–9
4–1
4–1
5–4
5–6
5–7
List of Tables
Table
Table 2–1
Table 2–2
Table 2–3
Table 2–4
Table 5–1
Table 5–2
Title
Page
ADC Master Clock to Sample-Rate Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4
DAC Master Clock to Sample-Rate Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4
Attenuation Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–10
System Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–11
TLC320AD75C Schematic Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1
A-Weighted Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–6
v
vi
1 Introduction
The TLC320AD75C is a high-performance stereo 20-bit analog-to-digital and digital-to-analog converter
(ADA) using sigma-delta technology to provide four concurrent 20-bit resolution conversions from both
analog-to-digital (A/D) and digital-to-analog (D/A) signal paths. Additional functions provided are digital
attenuation, digital de-emphasis filtering, soft mute, and on-chip timing and control. Control words from a
host controller or processor are used to implement these functions.
The TLC320AD75C is characterized for operation from 0°C to 70°C.
1.1
Features
•
Single 5-V (Analog/Digital) Power Level and 3.3-V to 5-V Digital Interface Level
•
Sample Rates up to 48 kHz
•
20-Bit Resolution Conversions
•
Signal-to-Noise Ratio (EIAJ) of 100 dB for the ADC
•
Total Harmonic Distortion + Noise of 0.0017% for the ADC
•
Signal-to-Noise Ratio (EIAJ) of 104 dB for the DAC
•
Total Harmonic Distortion + Noise of 0.0013% for the DAC
•
Internal Voltage Reference (Vref)
•
Serial Port Interface
•
Differential Architecture
•
DAC Provides PWM Output
•
Digital De-emphasis Filtering for 32-, 44.1-, and 48-kHz Sample Rates for the DAC
•
Digital Attenuation/Soft Mute Function for the DAC
•
Small 56-Pin DL Plastic Small-Outline Package
1–1
1.2
Functional Block Diagram
3 V or 5 V
V35A
Stereo ADC
INLP
Sigma-Delta
Modulator
INLM
Decimation
Filter
High-Pass
Filter
ADOUT
SCLKA
VREF
REFO
REFI
INRP
Sigma-Delta
Modulator
INRM
Decimation
Filter
High-Pass
Filter
Serial
Interface
LRCKA
MCLKI
Stereo DAC
256CK
L1
L2
PWM
Digital
Modulator
Interpolation
Filter
512CK
Digital
Attenuator
XOUT
XIN
De-emphasis
Filter
Serial
Interface
De-emphasis
Filter
LRCKD
SCLKD
R1
R2
PWM
Digital
Modulator
Interpolation
Filter
Digital
Attenuator
DDATA
CPU
Interface
CDIN
SHIFT
LATCH
V35D
3 V or 5 V
1–2
1.3
System Block Diagram
TLC320AD75C
INRP
Right
Audio Input
Left
Audio Input
Single to
Differential
Single to
Differential
REFI
REFO
ADC
INRM Serial Port
LRCKA
SCLKA
ADOUT
INLP
M_S
MCLKI
AVSS
ADC Data Out
VSS1
INRM
256CK
XIN
XVSS
XOUT
XVSS
512CK
Right
Audio Output
Analog
Low-Pass Filter
R1
Left
Audio Output
Analog
Low-Pass Filter
L1
R2
L2
DAC
Serial Ports
LRCKD
SCLKD
DDATA
CDIN
SHIFT
LATCH
SCLK
LRCK
DAC Data In
DAC
Control Data
Microcontroller/
Microprocessor
1–3
1.4
Terminal Assignments
DL PACKAGE
(TOP VIEW)
INRP
INRM
REFI
AVDD
AVSS
APD
NU
NU
TEST1
LRCKA
SCLKA
ADOUT
V35A
VSS1B
MCLKI
DPD
VSS2B
INIT
CDIN
SHIFT
LATCH
256CK
V35D
VSS2
512CK
SCLKD
DDATA
LRCKD
1.5
1
56
2
55
3
54
4
53
5
52
6
51
7
50
8
49
9
48
10
47
11
46
12
45
13
44
14
43
15
42
16
41
17
40
18
39
19
38
20
37
21
36
22
35
23
34
24
33
25
32
26
31
27
30
28
29
INLP
INLM
REFO
LVSS
LVDD
AVSSB
NU
NU
VSS1B
M_S
TEST2
VSS1
VDD1
VDD1
VDD2
L1
PVDDL
L2
PVSSL
XVSS
XIN
XOUT
XVDD
PVSSR
R2
PVDDR
R1
VDD2
Ordering Information
PACKAGE
1–4
TA
SMALL OUTLINE
(DL)
0°C to 70°C
TLC320AD75CDL
1.6
Terminal Functions
TERMINAL
NAME
NO.
I/O
DESCRIPTION
ADOUT
12
O
20-bit ADC data output. ADOUT provides the MSB first in 2’s-complement data format
and is left justified within the 32-bit packet for each channel. The output level is 3.3 V
for V35A = 3.3 V (see Figure 2–6).
APD
6
I
Analog power-down mode. APD disables the ADC analog modulators. The ADC
single-bit modulator outputs become invalid, rendering the outputs of the digital filters
invalid. When APD is pulled high, normal operation of the device is resumed.
AVDD
4
Analog power supply voltage for ADC modulators
AVSS
5
Analog ground for ADC modulators
AVSSB
51
Analog substrate ground for ADC modulators
CDIN
19
I
Attenuation mode and system control mode input for DAC. CDIN is a 24-bit stream
with a 16-bit data word followed by an 8-bit device address. This stream is configured
with the MSB first (see Section 2.15, Sigma-Delta DAC Modulator).
DDATA
27
I
DAC input data in 2’s-complement data format. MSB/LSB first and 20-bit/16-bit input
formats are selectable by using the DAC control registers (see Section 2.15,
Sigma-Delta DAC Modulator).
DPD
16
I
Digital power-down mode. The DPD shuts down the ADC digital decimation filters and
clock generators, and provides a digital reset. All digital outputs of the ADC function,
are brought to unasserted states. When DPD is pulled high, normal operation of the
device is resumed. When in slave mode operation, after the rising edge of DPD, the
ADC system is synchronized.
INIT
18
I
Initial DAC reset signal. The DAC device is activated on the rising edge of INIT. When
INIT is brought low, the DAC is reset when LRCKD is present.
INLM
55
I
Inverting input for the left channel analog modulator
INLP
56
I
Noninverting input for the left channel analog modulator
INRM
2
I
Inverting input for the right channel analog modulator
INRP
1
I
Noninverting input for the right channel analog modulator
LATCH
21
I
Latch signal for the DAC control serial data. Attenuation/system-control data loads
into the internal registers when LATCH is brought low.
LRCKA
10
I/O
Left/right clock for ADC. LRCKA signifies whether the serial data is associated with
the left channel ADC (when LRCKA is high) or the right channel ADC (when LRCKA
is low). LRCKA is normally connected to LRCKD. LRCKA is output when configured
in master mode.
LRCKD
28
I
Left/right clock for DAC. LRCKD signifies whether the serial data is associated with
the left channel DAC (when LRCKD is high) or the right channel DAC (when LRCKD
is low). LRCKD is normally connected to LRCKA.
LVDD
52
Digital power supply for analog modulators. LVDD is normally connected to AVDD
through a 50-Ω resistor.
LVSS
53
Digital ground for analog modulators. LVSS is normally connected to AVSS through a
50-Ω resistor.
L1
41
O
Left channel DAC PWM output 1
L2
39
O
Left channel DAC PWM output 2
MCLKI
15
I
Master clock input for ADC. MCLKI operates at 256 times the sample rate (i.e. 256
times LRCKA). MCLKI is normally connected to 256CK through a 50-Ω resistor.
1–5
Terminal Functions (Continued)
TERMINAL
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
NAME
M_S
NU
I/O
DESCRIPTION
47
I
Master/slave selection. The ADC serial port is configured as master mode when M_S
is pulled high. M_S is connected to VSS1 for slave mode.
7, 8,
49, 50
–
Not used
NO.
PVDDL
PVDDR
40
PWM power supply for left channel DAC
31
PWM power supply for right channel DAC
PVSSL
PVSSR
38
PWM ground for left channel DAC
33
PWM ground for right channel DAC
REFI
3
I
Input reference voltage. REFI provides reference voltage for the ADC modulator
(normally connected to REFO).
REFO
54
O
Internal ADC reference voltage (normally connected to REFI).
R1
30
O
Right channel DAC PWM output 1
R2
32
O
Right channel DAC PWM output 2
SCLKA
11
I/O
Shift clock for the ADC. The shift clock clocks serial data out of the ADC, and operates
at 64 times the sample rate (i.e. 64 times LRCKA). SCLKA is normally connected to
SCLKD. SCLKA is output when configured in master mode.
SCLKD
26
I
Shift clock for the DAC. The shift clock clocks serial audio data into the DAC, and
operates at 64 times the sample rate (i.e. 64 times LRCKD). SCLKD is normally
connected to SCLKA.
SHIFT
20
I
Shift data. SHIFT clocks the control data (CDIN) into the internal control registers for
the DAC.
TEST1
9
I
Factory test terminal1. TEST1 should be connected to VSS1 for normal operation.
TEST2
46
I
Factory test terminal2. TEST2 should be connected to VSS1 for normal operation.
XIN
36
I
Oscillator input terminal for 512 times the DAC sample rate. XIN derives all of the key
logic signals of the DAC device. (XIN can also be driven by an external oscillator.)
XOUT
35
O
Oscillator output terminal for 512 times the DAC sample rate
VDD1
VDD2
43, 44
Digital power supply for ADC
29, 42
Digital power supply voltage for DAC
VSS1
VSS1B
45
Digital ground for ADC digital flters
14, 48
Digital substrate ground for ADC
VSS2
VSS2B
24
Digital ground for the DAC
17
Digital sustrate ground for DAC
V35A
V35D
13
Digital power supply for ADC interface logic. V35A is connected to 3 V or 5 V.
23
Digital power supply for DAC interface logic. V35D is connected to 3 V or 5 V.
XVDD
XVSS
34
Oscillator power-supply voltage for DAC
37
Oscillator circuit ground for DAC
256CK
22
O
256 times sample rate clock output. 256CK is normally connected to MCLKI through
a 50-Ω resistor. 256CK is the XIN frequency divided by two.
512CK
25
O
512 times sample rate clock output (output level is 3.3 V for V35D = 3.3 V). 512CK is
a buffered version of XIN (master clock input).
1–6
2 Detailed Description
The sigma-delta ADC converter consists of an oversampling analog modulator and digital decimation filter.
The sigma-delta DAC incorporates an interpolation finite impulse-response (FIR) filter and oversampled
modulator. The pulse-width-modulation (PWM) digital output feeds an external low-pass filter to recover the
analog audio signal.
Two control registers configure the DAC. The attenuation register controls the attenuation range,
de-emphasis enable, and mute selection. The system register controls the data format and de-emphasis
filter-sample rate.
2.1
2.1.1
Power-Down and Reset Functions
ADC Power Down
The power-down state is comprised of a separate digital and analog power down for the ADC. The power
consumption of each is detailed in the electrical characteristics section.
The digital power-down mode shuts down the digital filters and clock generators. When the digital
power-down terminal is pulled high, normal operation of the device is initiated. In slave mode, the conversion
process must synchronize to an input on LRCKA as well as SCLKA. Therefore, the conversion process is
not initiated until the first rising edges of both SCLKA and LRCKA are detected after DPD is pulled high. This
synchronizes the conversion cycle; all conversions are performed at a fixed LRCKA rate after the initial
synchronization. After DPD is brought high, the output of the digital filters remains invalid for 26 LRCKA
cycles which consists of group delays of the decimation and high-pass filter.
The analog power-down mode disables the analog modulators. The single-bit modulator outputs become
invalid, which renders the outputs of the digital filters invalid. When the APD terminal is brought high, the
modulators are brought back online; however, the settling time of the modulator stage is normally 100 ms.
2.1.2
Reset Function for ADC
The conversion process is not initiated until the first rising edges of both SCLKA and LRCKA are detected
after DPD is pulled high. This synchronizes the conversion cycle; all conversions are performed at a fixed
LRCKA rate after the initial synchronization.
2–1
During general operation of the ADC, APD is recommended to be pulled high (APD is not needed for a reset).
When using the analog power-down mode (APD low), the following timing procedure is required to start all
of the ADC since the analog modulator portion which includes the external portion needs to be settled after
APD is high.
APD
> 100 msec
DPD
LRCKA
> 26 fs
ADOUT
Figure 2–1. ADC Start-Up Timing
2.1.3
Reset/ Initialization for DAC
When INIT is brought low, an internal reset signal becomes active approximately 120 cycles of the sampling
frequency (fs) after the falling edge of INIT. Under this condition, all internal circuits are initialized and the
PWM output is held at zero data (50% duty cycle). When INIT is brought high, the internal reset signal goes
inactive for a maximum of five LRCKD periods after the rising edge of INIT. At this point, internal clocks are
synchronous with LRCKD and the PWM output is valid (see Figure 2–2). LRCKD must be applied for proper
initialization.
INIT
120 Cycles of fs
Internal
Reset
LRCKD
Figure 2–2. DAC-Reset Timing Relationships
2–2
5 periods max
2.2
Differential Input to the ADC
The input to the ADC is differential in order to provide common-mode noise rejection and increase the input
dynamic range. Figure 2–3 shows the analog input signals used in a differential configuration to achieve a
6.4 VI(PP) differential swing with a 3.2 VI(PP) swing per input line.
TLC320AD75C
4.1 V
INLP, INRP
2.5 V
0.9 V
4.1 V
INLM, INRM
2.5 V
0.9 V
Figure 2–3. Differential Analog-Input Configuration
2.3
Sigma-Delta Modulator for the ADC
The modulator is a fourth-order sigma-delta modulator with 64 times oversampling. The ADC provides
high-resolution, low-noise performance from a 1-bit converter using oversampling techniques.
2.4
Decimation Filter
The decimation filter after the sigma-delta ADC modulator reduces the digital data rate to the sampling rate
of LRCKA. This is accomplished by decimating with a ratio of 1:64.
2.5
High-Pass Filter
The high-pass filter removes dc from the input of the ADC. The output of this filter is a 2’s-complement data
word of 20 bits serially clocked out. If the input value exceeds the full range of the converter, the output of
the high-pass filter is held at the appropriate extreme until the input returns to the analog input range of the
TLC320AD75C.
2–3
2.6
2.6.1
Master Clock
Master-Clock Circuit for ADC
The master-clock circuit generates and distributes necessary clocks throughout the device. MCLKI is the
external master-clock input. The sample rate of the data paths is set as LRCKA = MCLKI/256. With a fixed
oversampling ratio of 64 × fs, the effect of changing MCLKI is shown in Table 2–1.
Table 2–1. ADC Master Clock to Sample-Rate Comparison
MCLKI
(MHz)
SCLKA
(MHz)
LRCKA
(kHz)
12.2880
3.0720
48
11.2896
2.8224
44.1
8.1920
2.0480
32
When the TLC320AD75C is in master mode (M_S is pulled high) SCLKA is derived from MCLKI in order
to provide clocking of the serial communications between the sigma-delta audio ADC and a digital signal
processor (DSP) or control logic. This is equivalent to a clock running at 64 × LRCKA.
When the TLC320AD75C is in slave mode (M_S is connected to VSS1), SCLKA is externally derived. For
SCLKA use of a clock running at 64 times LRCKA is recommended.
2.6.2
Master-Clock Circuit for DAC
The timing and control circuit generates and distributes necessary clocks throughout the TLC320AD75C.
XIN is the oscillator input terminal or can receive an external master-clock input. The sample rate of the data
paths is set as LRCKD = XIN/512. With a fixed oversampling ratio of 32× and each PWM output value
requiring 16 XIN cycles, the effect of changing XIN is shown in Table 2–2.
Table 2–2. DAC Master Clock to Sample-Rate Comparison
XIN
(MHz)
256CK
(MHz)
LRCKD
(kHz)
24.5760
12.2880
48.0
22.5792
11.2896
44.1
16.3840
8.1920
32.0
The DAC can be operated at any conversion rate between 48 kHz and 32 kHz by choosing the appropriate
master-clock frequency. Some of the functions of the converter, such as the deemphasis filter, operate only
at the frequencies shown in Table 2–2.
2–4
2.7
Test
TEST1 and TEST2 are reserved for factory test and are tied to digital ground (VSS1).
2.8
Master Mode for ADC
Configured as the master device (M_S is connected to VDD1), the TLC320AD75C generates LRCKA and
SCLKA from MCLKI. These signals are provided for synchronizing the serial port of a digital signal processor
(DSP) or other control devices.
LRCKA is generated internally from MCLKI. The frequency of LRCKA is fixed at the sampling frequency,
fs (MCLKI/256). During the high period of LRCKA, the left channel data is serially shifted to the output; during
the low period, the right channel data is shifted to the output (ADOUT). The conversion cycle is synchronized
with the rising edge of LRCKA.
Figure 2–4 (master mode) shows 20-bit data, MSB first, ADOUT data shifted out of the TLC320AD75 during
the first 20 SCLKA periods of the 32 SCLKA periods for both left and right channel data.
20-BIT MASTER MODE
Output
SCLKA
MSB
ADOUT Output
19 18
LRCKA Output
Left
MSB
LSB
...
1
0
19
MSB
LSB
18
...
1
0
19
18
64 SCLKs
Right
Figure 2–4. ADC Audio-Data Serial Timing – Master Mode
2.9
Slave Mode for ADC
Configured as a slave device (M_S is connected to VSS1), the TLC320AD75C receives LRCKA and SCLKA
as inputs. The conversion cycle is synchronized to the rising edge of LRCKA, and the data is synchronized
to the falling edge of SCLKA. SCLKA must meet the setup requirements specified in the recommended
operating conditions section. Synchronization of the slave mode is accomplished with the rising edge of
DPD.
The slave mode is shown in Figure 2–5. SCLKA and LRCKA are externally generated and sourced. The
first rising edges of SCLKA and LRCKA after the rising edge of DPD initiate the conversion cycle (see
Section 2.8, Master Mode for ADC for signal functions).
Figure 2–5 (slave mode) shows 20-bit data, MSB first, and ADOUT data shifted out of the TLC320AD75
during the first 20 SCLKA periods of the 32 SCLKA periods for both left and right channel data.
20-BIT SLAVE MODE
input
SCLKA
MSB
ADOUT
output
LRCKA
input
19
LSB
18
...
1
0
Left
MSB
19
18
64 SCLKs
Right
LSB
...
1
0
Figure 2–5. ADC Audio-Data Serial Timing – Slave Mode
2.10 Digital-Audio Data Interface for DAC
The conversion cycle is synchronized to the rising edge of LRCKD, and the data must meet the setup
requirements specified in the timing requirements table. The input data is 16 or 20 bits with the MSB or LSB
first as selected in the system register. The recommended SCLKD frequency is 64 × fs. Figure 2–6
illustrates the input timing.
2–5
2–6
LEFT
LRCKA and LRCKD
RIGHT
1
32
64
SCLKA and SCLKD
MSB
LSB
MSB
LSB
ADOUT
MSB
LSB
MSB
LSB
DDOUT
(20-Bit, MSB First)
MSB
LSB
MSB
LSB
DDOUT
(16-Bit, MSB First)
LSB
MSB
LSB
MSB
DDOUT
(20-Bit, LSB First)
LSB
MSB
DDOUT
(16-Bit, LSB First)
Figure 2–6. Audio-Data Serial Timing – ADC and All DAC Modes
LSB
MSB
2.11 Serial-Control Interface for DAC
The TLC320AD75C uses the most-significant-bit-first format. Therefore, for a 16-bit data word, D16 is the
most significant bit (MSB) and D1 is the least significant bit (LSB).
2.11.1
Serial-Control-Data Input
The 16-bit control-data input implements the device-control functions. The TLC320AD75C has two registers
for this data: the system register and the attenuation register. The system register contains most of the
system configuration information, and the attenuation register controls the audio output level and
deemphasis. Figure 2–7 illustrates the input timing for CDIN, SHIFT, and LATCH. The data loads internally
during the low level of LATCH. The shift clock must be high or low for the LATCH setup time before LATCH
goes low.
As shown in Figure 2–7, CDIN is a 24-bit data stream consisting of 16 bits of control data D16 through D1
followed by 8 bits of device, address A8 through A1. When the TLC320AD75C receives address >E7h, the
control data is latched into the device by LATCH. For all other addresses, the data is ignored.
Control Data
CDIN
D16 D15 D14
D13 D12
D11 D10
D9
D8
Control-Device Address
D7
D6
D5
D4
D3
D2
D1
A8
A7
A6
A5
A4
A3
A2
A1
SHIFT
LATCH
Figure 2–7. Control-Data Input Timing
2.12 DAC De-emphasis Filter
Three sets of de-emphasis-filter coefficients support the three sampling rates (fs): 32 kHz, 44.1 kHz, and
48 kHz. Internal system-register values select the filter coefficients. The internal register values enable or
disable the filter. Figure 2–8 illustrates the de-emphasis filtering characteristics.
Many audio sources have been recorded with pre-emphasis characteristics that are the inverse of the
characteristics shown in Figure 2–8. This device provides reconstruction of the original frequency response.
Response – dB
10
0
De-emphasis
– 10
3.18
(50 µs)
10.6
(15 µs)
f – Frequency – kHz
Figure 2–8. De-emphasis Filter Characteristics
2.13 Digital Filter Mute for DAC
When the mute bit in the attenuation register is set to 1, the DAC digital filter mute is active. The output of
the digital filter is 0 + dc offset. Operation of the digital filter is normal during mute.
2–7
2.14 DAC Digital Attenuation/Soft Mute
A value selected in the internal attenuation register determines the attenuation of the digital-audio data input.
The attenuation value is 12 bits long with a valid range of hex values from 400h to 000h. A data value of 001h
corresponds to an attenuation value of – 60 dB and a data value of 400h corresponds to 0 dB. The
attenuation function is nonlinear. Figure 2–9 illustrates the attenuation function in dB. The default
attenuation value is 400h (refer to the attenuator mode register for more detailed description).
Attenuation
+ 20 log
ǒ
Ǔ
attenuation data
1024
0
Attenuation – dB
– 10
– 20
– 30
– 40
– 50
– 60
1024 896
768
640
512
384
256
128
0
Attenuation Data (decimal values)
Figure 2–9. Digital Attenuation Characteristics
The attenuation operation of the DAC has a tapered gain response. It takes time T = 1024/fs(sec) to reach
the actual 000H data output after an ATT = 000H data transfer from 400H data as shown in Figure 2–10.
400H
200H
Output Level (ATT)
000H
T
(Soft Mute)
ATT = 000H
Transfer
T
ATT = 400H
Transfer
T = 1024/fs (sec)
Figure 2–10. DAC Digital Attenuation Operation with Tapered Gain Response
2–8
2.15 Sigma-Delta DAC Modulator
The DAC uses a third-order modulator with 32 times oversampling. The DAC provides high-resolution,
low-noise performance using a 15-value PWM output as shown in Figure 2–11.
APB(max)†
Noise Power – dB
Quantization Noise Power With Noise Shaping
Audio
Signal
Noise Excluded by
Low-Pass Filter
Quantization Noise Power Without Noise Shaping
0
0
fB‡
0.1
0.2
0.3
0.4
0.5
Normalized Analog-Output Frequency (fO/fs§)
† APB(max) is the passband maximum amplitude.
‡ fB is the highest frequency of interest within the baseband.
§ fO is the output frequency at the external low-pass filter output.
Figure 2–11. Oversampling Noise Power With and Without Noise Shaping
2.16 DAC Interpolation Filter
The interpolation filter used prior to the DAC increases the digital-data rate from the LRCKD speed to the
oversampled rate by interpolating with a ratio of 1:32. The oversampling modulator receives the output of
this filter with de-emphasis as an option.
2.17 DAC PWM Output (L2–L1 and R2–R1)
The L2 – L1 and the R2 – R1 output pairs are PWM signals with the L2 – L1 differential pulse duration
determining the left-channel analog voltage and the R2 – R1 differential pulse duration determining the
right-channel analog voltage.
Each DAC left and right output consists of 15 levels of PWM and provides a differential signal as the input
to two external differential amplifiers configured as a low-pass filter to produce the left and right audio
outputs.
2–9
2.18 DAC Control Register Set
Tables 2–3 and 2–4 list the bit functions.
Table 2–3. Attenuation Mode Register†
D16–D5
D4
D3
D2
D1
0h
-
-
-
-
Muted
1h
-
-
-
-
Digital attenuation, –60.2 dB
2h
-
-
-
-
Digital attenuation, –54.2 dB
3h
-
-
-
-
Digital attenuation, –50.7 dB
1FFh
-
-
-
-
200h
-
-
-
-
Digital attenuation, –6.02 dB
201h
-
-
-
-
Digital attenuation, –6.02 dB
3FFh
-
-
-
-
Digital attenuation, –0.01 dB
400h
-
-
-
-
Digital attenuation, 0 dB
-
0
-
-
-
-
1
-
-
-
-
-
0
-
-
-
-
1
-
-
-
-
-
0
-
-
-
-
1
-
-
-
-
-
0
-
-
-
-
1
† The initialization value is 0400h.
2–10
DESCRIPTION
C attenuation
DAC
(D5 = MSB, D16 = LSB)
D/F mute
De emphasis enable
De-emphasis
DAC register select
DAC mode
Digital attenuation, –6.04 dB
Unmuted
Muted
No de-emphasis
De-emphasis selected
Attenuator-mode register
System-mode register
Normal
Factory test only
Table 2–4. System Mode Register†
D16
D15
D14
D13
D12–D5
D4
D3
D2
D1
0
-
-
-
-
-
-
-
-
-
0
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
0
0
-
-
-
-
-
-
-
0
1
-
-
-
-
-
-
-
1
0
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
0
-
-
-
-
-
-
-
-
-
0
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
0
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
0
-
-
-
-
-
-
-
-
-
-
-
-
-
† The initialization value is 0000h.
-
-
1
-
-
0
-
1
DESCRIPTION
Reserved
Resynchronize
Off
On
44.1 kHz
Sample rate/
de emphasis
de-emphasis
selection
Reserved
48 kHz
32 kHz
Reserved
Input data word width
Input-data
Input D-data
D data protocol
DAC register select
20 bits audio data
16 bits audio data
MSB first
LSB first
Attenuator-mode
register
System-mode register
Normal
DAC mode
Factory test only
2.19 Auto-Resynchronization Functionality
The TLC320AD75C has an auto-resynchronization function to keep the entire coversion cycle for the ADC
portion and DAC portion respectively checking the LRCK cycle of the fs rate. When the ADC is in slave mode,
the ADC portion has a window of 4 clocks of the internal 64 fs clock to check the LRCK cycle with the fs
rate detecting the rising edge of LRCK within this window. When an error is detected on the LRCK cycle,
the ADC conversion cycle is resynchronized with an external LRCK cycle at the next rising edge of LRCK.
This resynchronization occurrs automatically and the ADC portion continues processing based on the new
conversion cycle timing.
"
"
The DAC portion has a window of 2 clocks of the internal 128 fs clock to check the LRCK cycle detecting
the rising edge of the LRCK clock. When an error is detected, the conversion cycle of the DAC is
resynchronized with an external LRCK cycle automatically and the DAC portion continues processing based
on the new conversion cycle timing. (The external LRCK rate should be the same as the fs rate. This
functionality is to ensure the TLC320AD75C conversion operation even if LRCK has a timing problem due
to noise injection for example.)
2–11
2–12
3 Specifications
3.1
Absolute Maximum Ratings Over Operating Free-Air Temperature Range
(unless otherwise noted)†
Supply voltage range, AVDD, LVDD (see Note 1) . . . . . . . . . . . . . . . . . . . – 0.3 V to 6.5 V
Supply voltage range, VDD1, V35A (see Note 2) . . . . . . . . . . . . . . . . . . . . – 0.3 V to 6.5 V
Supply voltage range, PVDD(L/R), VDD2, V35D, XVDD(see Note 3) . . . . – 0.3 V to 6.5 V
Analog input voltage range, INLP, INLM, INRP, INRM . . . . . . . – 0.3 V to AVDD + 0.3 V
Digital input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to VDD1/2 + 0.3 V
Output voltage range, VO: L1, L2, R1, R2 . . . . . . . . . . . . . . . . . – 0.3 V to AVDD + 0.3 V
Operating free-air temperature range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0°C to 70°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C
Case temperature for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . 260°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These
are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated
under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for
extended periods may affect device reliability.
NOTES: 1. Voltage values for maximum ratings are with respect to AVSS.
2. Voltage values for maximum ratings are with respect to VSS1.
3. Voltage values for maximum ratings are with respect to VSS2.
3.2
Recommended Operating Conditions
MIN
NOM
MAX
UNIT
Analog supply voltage, AVDD (see Note 4)
4.75
5
5.25
V
Digital supply voltage, VDD1
4.75
5
5.25
V
Analog logic supply voltage, LVDD
4.75
5
5.25
V
Reference voltage at REFI
Digital supply voltage, V35A, V35D
3.2
V
3
3.3
5.25
V
Digital supply voltage, VDD2
4.75
5
5.25
V
Digital supply voltage, PVDDL, PVDDR
4.75
5
5.25
V
Clock supply voltage, XVDD
4.75
5
5.25
Setup time, SCLKA/SCLKD↑ before LRCKA/LRCKD valid, tsu1 (see Figure 4–2)
50
Setup time, LRCKA/LRCKD valid before SCLKA/SCLKD↑, tsu2 (see Figure 4–2)
V
ns
50
ns
Load resistance at ADOUT, RL
8
kΩ
Operating free-air temperature, TA
0
70
°C
NOTE 4: Voltages at analog inputs and outputs and AVDD are with respect to AVSS.
3–1
3.3
Electrical Characteristics, AVDD = LVDD = VDD1 = VDD2 = PVDDL = PVDDR
= XVDD = 5 V, V35A = V35D = 3.3 V, TA = 25°C
3.3.1
Digital Interface
VIH
VIH
High-level input voltage
VIL
VIL
Low-level input voltage
PARAMETER
High-level input voltage
Low-level input voltage
TEST CONDITIONS
XIN
512CK
High-level output voltage
256CK
L1, L2, R1, R2
XOUT
ADOUT
512CK
VOL
Low-level output voltage
TYP
2
3.3
4.5
XIN
ADOUT
VOH
MIN
256CK
L1, L2, R1, R2
XOUT
MAX
UNIT
V
5
V
0.2
0.8
V
0.2
0.8
V
IOH = 0.4 mA
IOH = 0.4 mA
2.6
3.2
2.6
3.2
IOH = 0.4 mA
IOH = 0.4 mA
4.5
4.9
4.5
4.9
IOH = 1.2 mA
IOL = 2 mA
4.5
4.9
V
0.2
0.4
IOL = 2 mA
IOL = 2 mA
0.2
0.4
0.2
0.4
IOL = 2 mA
IOL = 1.2 mA
0.2
0.5
0.2
0.5
V
IIH
IIL
High-level input current, any digital input
0.1
µA
Low-level input current, any digital input
0.1
µA
Ci
Input capacitance
5
pF
Co
Output capacitance
5
pF
3.3.2
Analog Interface
PARAMETER
VI(
l )
I(analog)
Analog input voltage,
voltage ADC
Zi
Input impedance, ADC
3–2
TEST CONDITIONS
MIN
TYP
MAX
UNIT
Differential
6.4
V
0 to peak
3.2
V
200
kΩ
3.3.3
ADC Performance, fs = 44.1 kHz, Bandwidth = 22.05 kHz
PARAMETER
TEST CONDITIONS
MIN
Resolution
TYP
MAX
UNIT
20
Bits
100
dB
100
dB
DYNAMIC PERFORMANCE
Signal to noise (EIAJ)
INLP = INRP = 2.5 V dc
INLM = INRM = 2.5 V dc
Dynamic range
– 60 dB input
Signal to noise + distortion (THD + N)
Total harmonic distortion (THD)
96
0.0017%
– 0.5
0 5 dB input
0.003%
0.001%
Interchannel isolation
120
dB
± 0.2
dB
DC ACCURACY
Absolute gain error
± 0.2
– 0.5 dB IN
Offset drift
3.3.4
± 0.5
± 0.2
Interchannel gain mismatch
dB
dB
0
LSB/°C
DAC Performance, 20-Bit Mode, fs = 44.1 kHz, Bandwidth = 22.05 kHz
PARAMETER
TEST CONDITIONS
Resolution
See Note 5
Signal-to-noise ratio
See Note 5
Signal-to-noise + distortion
(THD + N)
See Note 5
De emphasis
De-emphasis
not selected
MIN
100
TYP
MAX
UNIT
20
bits
104
dB
0.0013%
0.0025%
NOTE 5: These specifications are measured at the output (VO) of the external low-pass filter.
3.3.5
ADC Inputs
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
ANALOG INPUT
Input voltage range
Differential
6.4
0 to peak
3.2
Input impedance
3.3.6
200
kΩ
ADC High-Pass Filter, fs = 44.1 kHz
PARAMETER
TEST CONDITIONS
MIN
Passband (–3 dB)
Passband
5 Hz
Group delay
3.3.7
V
TYP
MAX
UNIT
0.86
Hz
–0.12
dB
1/fs
s
ADC Decimation Filter, fs = 44.1 kHz
PARAMETER
TEST CONDITIONS
Passband ripple
20.03 kHz
Stopband attenuation
24.07 kHz
Group delay
MIN
TYP
± 0.01
80
MAX
UNIT
dB
dB
25/fs
s
3–3
3.3.8
DAC Filter Characteristics, fs = 44.1 kHz
PARAMETER
TEST CONDITIONS
Pass-band ripple
MIN
Stop-band attenuation
TYP
UNIT
dB
75
dB
Group delay
3.3.9
MAX
± 0.002
fs = 20 kHz
fs = 24.1 kHz
29 / fs
s
Power Supply Current, fs = 44.1 kHz
PARAMETER
TYP
MAX
AVDD and LVDD
29
40
mA
Power-supply current,
digital (ADC)
VDD1 and V35A
22
30
mA
IDD(DA1)
Power-supply current,
digital (DAC)
VDD2 and V35D
20
25
mA
IDD(DA2)
Power-supply current,
PWM/OSC (DAC)
PVDDL, PVDDR,
and XVDD
17
25
mA
IDD(AST)
Power-down current,
analog (ADC)
AVDD and LVDD
250
µA
IDD(DST)
Power-down current,
digital (ADC)
VDD1 and V35A
150
µA
PD
Power dissipation
IDD(A)
Power-supply current,
analog (ADC)
IDD(AD)
PSRR
3.4
TEST CONDITIONS
Power supply rejection ratio
Power-supply
MIN
UNIT
400
mW
0 to 24 kHz
75
dB
24 kHz to 2.798 MHz
85
dB
ADC Switching Characteristics (see Figures 2–1 and 4–1)
PARAMETER
MIN
TYP
MAX
UNIT
11.3
12.8
MHz
fMCKI
td(MDD)
Input clock frequency, MCKI
Delay time, SCLKA↓ to ADOUT, master mode
0
50
ns
td(MIRD)
td(SDD1)
Delay time, SCLKA↓ to LRCKA, master mode
– 20
20
ns
Delay time, LRCKA to ADOUT, slave mode
50
ns
td(SDD2)
Delay time, SCLKA↓ to ADOUT, slave mode
50
ns
3–4
3.5
DAC Timing Requirements (see Figures 4–1 and 4–2, and Note 6)
MIN
TYP
MAX
UNIT
22.6
25.6
MHz
fXIN
tw1
Input frequency, XIN clock
Pulse duration, SCLKD
155
tw2
tw3
Pulse duration, SHIFT
100
ns
Pulse duration, LATCH
100
ns
tsu3
th1
Setup time, DDATA valid before SCLKD↑
20
ns
Hold time, DDATA valid after SCLKD↑
20
ns
tsu4
th2
Setup time, CDIN valid before SHIFT↑
20
ns
Hold time, CDIN valid after SHIFT↑
20
ns
tsu5
th3
Setup time, LATCH↑ before SHIFT↑
100
ns
80
ns
Hold time, LATCH↓ after SHIFT↑
177
ns
NOTE 6: All timing measurements were taken at the VDD/2 voltage level.
3–5
3–6
4 Parameter Measurement Information
tsu2
tsu1
tw1
tw1
SRCKA/
SRCKD
td(MIRD)
LRCKA/
LRCKD
td(sdd1)
td(sdd2), td(MDD)
ADOUT
tsu3
th1
DDATA
Figure 4–1. ADC Audio-Data Serial Timing
tw2
tw2
SHIFT
tsu4
th2
CDIN
th3
tsu5
LATCH
tw3
Figure 4–2. DAC Control-Data Serial Timing
4–1
4–2
5 Application Information
Table 5–1. TLC320AD75C Schematic Components
SYMBOL
DESCRIPTION
C1
220-µF capacitor
C2
4700-pF capacitor
C3
4700-pF capacitor
C4
220-µF capacitor
C5
47-µF capacitor
C6
22-µF capacitor
C7
0.1-µF capacitor
C8
100-µF capacitor
C9
0.1-µF capacitor
C10
220-µF capacitor
C12
220-µF capacitor
C13
18-pF capacitor
C14
12-pF capacitor
C15
220-µF capacitor
C16
47-µF capacitor
C17
0.1-µF capacitor
C18
4700-µF capacitor
C19
4700-µF capacitor
C20
200-pF capacitor
C21
100-µF capacitor
C22
0.1-µF capacitor
C23
200-pF capacitor
C24
100-pF capacitor
C25
47-µF capacitor
C26
22-µF capacitor
C27
220-µF capacitor
C28
220-µF capacitor
C29
47-µF capacitor
C30
100-pF capacitor
C31
47-µF capacitor
C32
30-pF capacitor
C33
120-pF capacitor
C34
30-pF capacitor
C35
30-pF capacitor
C36
120-pF capacitor
5–1
Table 5–1. TLC320AD75C Schematic Components (Continued)
SYMBOL
5–2
DESCRIPTION
C37
30-pF capacitor
C38
100-µF capacitor
C39
100-µF capacitor
C40
4700-pF capacitor
C41
1200-pF capacitor
C42
1200-pF capacitor
C43
4700-pF capacitor
C44
47-µF capacitor
C45
47-µF capacitor
C46
100-µF capacitor
C47
100-µF capacitor
C48
47-µF capacitor
C49
47-µF capacitor
C50
0.1-µF capacitor
C51
0.1-µF capacitor
C52
0.1-µF capacitor
C53
47-µF capacitor
C54
220-µF capacitor
C55
0.1-µF capacitor
R1
50-Ω resistor
R2
50-Ω resistor
R3
50-Ω resistor
R4
50-Ω resistor
R5
50-Ω resistor
R6
50-Ω resistor
R7
50-Ω resistor
R8
50-Ω resistor
R9
50-Ω resistor
R10
50-Ω resistor
R11
50-Ω resistor
R12
50-Ω resistor
R13
50-Ω resistor
R14
1-MΩ resistor
R15
50-Ω resistor
R16
50-Ω resistor
R17
50-Ω resistor
R18
5-kΩ resistor
R19
620-Ω resistor
R20
10-kΩ resistor
R21
5-kΩ resistor
Table 5–1. TLC320AD75C Schematic Components (Continued)
SYMBOL
DESCRIPTION
R22
4.7-kΩ resistor
R23
5-kΩ resistor
R24
620-Ω resistor
R25
68-kΩ resistor
R26
33-kΩ resistor
R27
18-kΩ resistor
R28
33-kΩ resistor
R29
18-kΩ resistor
R30
68-kΩ resistor
R31
68-kΩ resistor
R32
33-kΩ resistor
R33
18-kΩ resistor
R34
33-kΩ resistor
R35
18-kΩ resistor
R36
68-kΩ resistor
R37
1.5-kΩ resistor
R38
1.5-kΩ resistor
R39
1.5-kΩ resistor
R40
1.5-kΩ resistor
R41
100-Ω resistor
R42
100-Ω resistor
R43
100-Ω resistor
R44
100-Ω resistor
R45
330-kΩ resistor
R46
330-kΩ resistor
R47
10-kΩ resistor
R48
10-kΩ resistor
R49
10-kΩ resistor
R50
10-kΩ resistor
5–3
INRM
INRP
C2
C3
C1
2
C53
3
4
AVDD
C4
C5
AVSS
R48
5
6
AVDD
7
8
R49
AVSS
R1
LRCK
R2
SCLK
9
10
11
12
ADOUT
13
V35A
C6
C7
VSS1B
14
15
R3
DPD
R4
AVSS
R5
R6
CDIN
R7
SHIFT
R8
LATCH
16
17
18
19
20
21
22
23
V35D
C8
C9
VSS2
24
25
512CK
R9
R10
INLM
REFI
REFO
AVDD
LVSS
LVDD
AVSS
APD
AVSSB
NU
NU
NU
NU
VSS1B
LRCKA
M_S
SCLKA
TEST2
ADOUT
VSS1
V35A
VDD1
VSS1B
MCLKI
DPD
VSS2B
INIT
56
INLP
C19
55
54
INLM
C18
53
R17
52
R16
AVSS
AVDD
51
AVSS
50
49
48
TEST1
R50
VSS1B
47
46
VDD1
VDD2
L1
45
VSS1
C17
C16
44
VDD1
43
42
41
L1
R15
40
DVDD
PVDDL
L2
CDIN
PVSSL
SHIFT
XVSS
C15
39
L2
38
DVSS
37
XIN
256CK
XOUT
V35D
XVDD
VSS2
PVSSR
C12 C11
34
R2
SCLKD
PVDDR
DDATA
R1
VDD2
C14
XTL
R14
35
512CK
LRCKD
C13
36
LATCH
27
28
INLP
INRM
26
DDAT
R11
INRP
TLC320AD75C
1
R13
33
32
R2
C10
31
R12
30
R1
29
C54
C55
AVSS
Figure 5–1. TLC320AD75C Application Schematic
5–4
PVSSR
C26
R18
INRM
INRP
AINR
C24
R19
C25
INLP
R20
C20
C27
INLM
10
9
8
7
6
5
4
3
2
1
16
17
18
19
20
TL32088
11
12
13
14
15
R21
+
C21
AVDD
C23
R 47
AVDD
C29
C28
R22
C30
AINL
R23
C31
R24
C32
R25
C40
L1
R26
R27
R39
R40
C33
C48 C49
+ +
R41
–
–
R42
AOUTL
+
+
L2
R28
–15 V
R29
C34
R46
+
C39
+
R30
15 V
+
C41
C22
C47
+
C51
PVSSR
+
C35
R32
C50
+
R31
C38
+
C52
GND
C46
R45
R33
R37
+
R38
C36
+
–
R2
R34
+
C42
R43
C44
+
C45
+
R44
AOUTR
–
R35
C43
R36
R1
C37
Figure 5–1. TLC320AD75C Application Schematic (Continued)
5–5
Table 5–2. A-Weighted Data
FREQUENCY
A WEIGHTING (dB)
FREQUENCY
A WEIGHTING (dB)
25
– 44.6 ± 2
800
– 0.1 ± 1
31.5
– 39.2 ± 2
1000
0 ±0
40
– 34.5 ± 2
1250
0.6 ± 1
50
– 30.2 ± 2
1600
1.0 ± 1
63
– 26.1 ± 2
2000
1.2 ± 1
80
– 22.3 ± 2
2500
1.2 ± 1
100
– 19.1 ± 1
3150
1.2 ± 1
125
– 16.1 ± 1
4000
1.0 ± 1
160
– 13.2 ± 1
5000
0.5 ± 1
200
– 10.8 ± 1
6300
– 0.1 ± 1
250
– 8.6 ± 1
8000
– 1.1 ± 1
315
– 6.5 ± 1
10000
– 2.4 ± 1
400
– 4.8 ± 1
12500
– 4.2 ± 2
500
– 3.2 ± 1
16000
– 6.5 ± 2
630
– 1.9 ± 1
10
Attenuation – dB
0
– 10
– 20
– 30
– 40
– 50
20
100
1k
10 k 20 k
f – Signal Frequency – Hz
Figure 5–2. A-Weighted Function
5–6
5.1
Circuit And Layout Considerations
The designer should follow these guidelines for the best device performance.
5.2
•
Separate digital and analog ground planes should be used. All digital device functions should be
over the digital ground plane, and all analog device functions should be over the analog ground
plane. The ground planes should be connected at only one point to the direct power supply, and
this is usually at the connector edge of the board.
•
A single crystal-controlled clock should synchronously generate all digital signals.
•
All power supply lines should include a 0.1-µF and a 1-µF capacitor. When clock noise is
excessive, a toroidal inductance of 10 µH should be placed in series with XVDD before connecting
to DVDD.
•
The digital input control signals should be buffered when they are generated off of the card.
•
Clock jitter should be minimized, and precautions taken to prevent clock overshoot. This
minimizes any high-frequency coupling to the analog output.
PCB Footprint
Figure 5–3 shows the printed-circuit-board (PCB) land pattern for the TLC320AD75C small-outline
package.
W
P
L1
L
L2
S
L2
L
L1
P
S
W
L
L1
L2
1.27
9.53
0.76
1.55
0.64
0.91
NOTE A: All linear dimensions are in millimeters.
Figure 5–3. Land Pattern for PCB Layout
5–7
5–8
Appendix A
Mechanical Data
DL (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
48 PIN SHOWN
PINS **
28
48
56
A MAX
0.380
(9,65)
0.630
(16,00)
0.730
(18,54)
A MIN
0.370
(9,40)
0.620
(15,75)
0.720
(18,29)
DIM
0.025 (0,635)
0.012 (0,305)
0.008 (0,203)
48
0.005 (0,13) M
25
0.006 (0,15) NOM
0.299 (7,59)
0.291 (7,39)
0.420 (10,67)
0.395 (10,03)
Gage Plane
0.010 (0,25)
1
0°– 8°
24
A
0.040 (1,02)
0.020 (0,51)
Seating Plane
0.110 (2,79) MAX
0.008 (0,20) MIN
0.004 (0,10)
4040048 / B 02/95
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
A–1
A–2
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1998, Texas Instruments Incorporated