NXP Semiconductors Data Sheet: Technical Data Document Number SAC57D54H Rev. 5, 05/2016 SAC57D54H SAC57D54H Features • ARM™ Cortex-A5, 32-bit CPU – Supports ARMv7- ISA – 32 KB Instruction cache, 32 KB Data cache – NEON SIMD Media Processing Engine – FPU supporting double precision floating point operations – Memory Management Unit – GIC Interrupt Controller – Up to 320 MHz • ARM™ Cortex-M4, 32-bit CPU – Supports ARMv7 - ISA – 16 KB Instruction cache, 16 KB Data cache – 64 KB Tightly-Coupled Memory (TCM) – Single Precision FPU – NVIC Interrupts Controller – 1.25 DMIPS per MHz integer performance – Up to 160 MHz • I/O Processor – ARM™ Cortex-M0+, 32-bit CPU – Intelligent Stepper Motor Drive • Debug functionality – Run-time debug control of cores and visibility of system resources using the Debug Access Port (DAP) – IEEE 1149.1/ IEEE 1149.7 System JTAG Controller (SJTAG) – Program and Data Trace support (16-bit data width) implemented by the ARM Trace Port Interface Unit (TPIU) Trace capture • Timer – Four 8-channel Flextimer modules (FTM) – Two 4 channel System Timer Module (STM) – Three Software WatchDog Timers (SWT) – One 8 channel Periodic Interrupt Timer (PIT) – Autonomous Real Time Counter (RTC) • Analog – 1 x 24 channel, 12-bit analog-to-digital converter (ADC) – 2 analog comparators (CMP) • Security – Cryptographic Services Engine (CSE) • Memory subsystem – System Memory Protection Unit – 4 MB on-chip flash supported with the flash controller – 1 MB on-chip SRAM with ECC – 1.3 MB on-chip Graphics SRAM with FlexECC • Safety – ISO26262 ASIL-B compliance – Password and Device Security (PASS) supporting advanced censorship and life-cycle management – One Fault Collection and Control Unit (FCCU) to collect faults and issue interrupts • Supports wake-up from low power modes via the WKPU controller • Multiple operating modes – Includes enhanced low power operation • On-chip voltage regulator – External 3.3 V input supply – Option for direct, external supply of core voltage – Low Voltage Detect (LVD) and High Voltage Detect (HVD) on various supplies and regulators • Memory interfaces – 2 x Dual QuadSPI Serial flash controllers – Supports SDR and DDR serial flash – Support for 3.3 V Hyperflash (Spansion) – DRAM controller supporting SDR and DDR2 • Clock interfaces – 8-40 MHz external crystal (FXOSC) – 16 MHz IRC (FIRC) – 128 kHz IRC (SIRC) – 32 kHz external crystal (SXOSC) – Clock Monitor Unit (CMU) – Frequency modulated phase-locked loop (FMPLL) – Real Time Counter (RTC) NXP reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products. © 2016 NXP B.V. • Graphics interfaces – Vivante GC355 GPU supporting OpenVG 1.1 – 2 x 2D-ACE Display Controllers (with inline Head-Up-Display warping) – Digital RGB, TCON_0 (RSDS), TCON_1 and OpenLDI/LVDS output options – Digital Video Input (VIU4) – RLE Decoder for memory-memory decompression – 40x4 segment LCD driver, reconfigurable as 38x6 or 36x8 • Cluster peripherals – Sound Generator Module (SGM) – 6 Stepper Motor Drivers with Stepper Stall Detect • Communication – Ethernet 10/100 + AVB (ENET) – MLB50 – FlexCAN x 3 – DSPI x 5 – LINFlexD x 3 (1 x Master/Slave, 2 x Master only) – I2C x 2 • eDMA controller with multiple transfer request sources using DMAMUX • Boot Assist Flash (BAF) supports internal flash programming SAC57D54H, Rev. 5, 05/2016 2 NXP Semiconductors Table of Contents 1 Block diagram.................................................................................... 5 6.2.2 Slow Oscillator (SXOSC) electrical specifications .. 33 2 Family comparison.............................................................................6 6.2.3 Fast internal RC Oscillator (FIRC) electrical 3 Ordering parts.....................................................................................8 4 3.1 Determining valid orderable parts ..........................................8 3.2 Ordering information ..............................................................8 6.2.4 4.1 Absolute maximum ratings..................................................... 9 4.2 Recommended operating conditions....................................... 10 4.3 Voltage regulator electrical specifications.............................. 11 Slow internal RC oscillator (SIRC) electrical specifications ............................................................ 33 General............................................................................................... 9 4.3.1 5 specifications............................................................. 33 6.2.5 6.3 PLL electrical specifications .................................... 34 Memory interfaces...................................................................35 6.3.1 Flash memory specifications..................................... 35 6.3.1.1 Recommended decoupling capacitor values............. 12 4.4 Voltage monitor electrical specifications................................13 4.5 Power consumption................................................................. 14 4.6 Electrostatic discharge (ESD) specifications.......................... 15 4.7 Electromagnetic Compatibility (EMC) specifications............ 16 specifications......................................... 35 6.3.1.2 Flash memory Array Integrity and Margin Read specifications................... 36 6.3.1.3 Flash memory module life specifications......................................... 37 I/O parameters....................................................................................16 6.3.1.4 Data retention vs program/erase cycles. 37 5.1 AC specifications @ 3.3 V range............................................16 6.3.1.5 Flash memory AC timing 5.2 DC electrical specifications @ 3.3 V range............................ 17 5.3 AC specifications @ 5 V range...............................................18 5.4 DC electrical specifications @ 5 V range............................... 18 5.5 DDR2 pads IO specifications..................................................19 5.5.1 5.5.2 5.6 specifications......................................... 38 6.3.1.6 5.6.2 6.3.2 QuadSPI AC specifications....................................... 39 DDR2 pads AC specifications @ 1.8V 6.3.2.1 SDR mode..............................................40 VDDE_DDR..............................................................19 6.3.2.2 DDR mode............................................. 41 SSTL_18 Class II 1.8 V DDR2 DC specifications....20 6.3.2.3 HyperFlash mode...................................43 6.3.3 SMC 5V pads IO specifications................................ 21 5.6.1.1 SMC 5V pads IO DC specifications...... 21 5.6.1.2 SMC 5V pads IO AC specifications...... 22 SDR AC specifications..............................................44 6.3.3.1 6.3.4 6.4 DDR2 SDRAM AC specifications............................ 46 Communication modules.........................................................49 6.4.1 SPI electrical specifications.......................................49 5.6.2.1 SMC 3.3 V pads IO DC specifications.. 22 6.4.2 Ethernet AC specifications........................................ 55 5.6.2.2 SMC 3.3 V pads IO AC specifications.. 23 6.4.3 MediaLB (MLB) electrical specifications.................56 RSDS pads electrical specifications........................................23 5.8 LVDS pads electrical specifications....................................... 25 5.9 Functional reset pad electrical specifications..........................26 6.4.3.1 Peripheral operating requirements and behaviors.............................. 27 MLB 3-wire interface DC specifications......................................... 56 6.4.3.2 5.10 PORST electrical specifications..............................................27 6.2 SDR DC specifications.......................... 46 SMC 3.3 V pads IO specifications............................ 22 5.7 6.1 Flash read wait state and address pipeline control settings ........................ 39 SMC pads IO specifications....................................................21 5.6.1 6 Flash memory program and erase MLB 3-wire interface electrical specifications......................................... 57 6.5 Display modules......................................................................59 Analog modules.......................................................................27 6.5.1 LCD driver electrical specifications.......................... 59 6.1.1 ADC electrical specifications.................................... 27 6.5.2 2D-ACE electrical specifications.............................. 59 6.1.2 Analog Comparator (CMP) electrical specifications 30 Clocks and PLL interfaces modules........................................31 6.2.1 6.5.2.1 Interface to TFT LCD Panels (2DACE)...................................................... 59 Fast Oscillator (FXOSC) electrical specifications.... 31 SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 3 6.5.2.2 6.5.2.3 6.6 6.7.1 JTAG interface timing .............................................. 66 level timings...........................................60 6.7.2 Debug trace timing specifications............................. 68 Interface to TFT LCD panels—access 6.7.3 Wakeup Unit (WKPU) AC specifications.................69 level........................................................62 6.7.4 External interrupt timing (IRQ pin)...........................69 6.5.3 Video input unit (VIU4) electrical specifications..... 63 6.5.4 TCON electrical specifications..................................64 6.5.4.1 TCON RSDS electrical specifications...64 6.5.4.2 TCON TTL electrical specifications......64 Motor control modules............................................................ 65 6.6.1 6.7 Interface to TFT LCD Panels—pixel Stepper Stall Detect (SSD) specifications................. 65 Debug specifications............................................................... 66 7 Thermal attributes.............................................................................. 70 7.1 8 Dimensions.........................................................................................72 8.1 9 Thermal attributes................................................................... 70 Obtaining package dimensions ...............................................72 Pinouts................................................................................................72 9.1 Package pinouts and signal descriptions................................. 72 10 Revision History.................................................................................72 SAC57D54H, Rev. 5, 05/2016 4 NXP Semiconductors Block diagram 1 Block diagram RGB RSDS / RGB 64 64 64 32 32 64 64 64 64 MLB50 32 AHB AHB AXI AXI AXI AHB 2D-ACE HUD Warping 2D-ACE Tiny UI ENET-AVB LDB OpenVG 1.1 64 64 TCON_1 TCON_0 AHB 16ch eDMA_1 SECURITY (CSE) FPU 32KB L1 32KB L1 D-Cache I-Cache AXI System AHB MBIST AHB Code Temp Sensor GC355 GPU NEON AHB FPU 16KB L1 16KB L1 D-Cache I-Cache 64KB TCM AHB INT Router DAP I/O Ctrl Reset Ctrl AHB 16ch eDMA_0 GIC DMAMUX (64:16) ARM Cortex M4 OpenLDI/LVDS RSDS ARM Cortex A5 NVIC VIU4 System Modules LVDS 32 Clocking 4-40MHz/32KHz XOSC System Bus Memory Protection Power 1.2V Regulator LVD / HVD 64 AHB Flash memory BIU 64 AHB 64 AHB AHB 64 AXI Pixel Converter AHB 64 64 AHB Port Splitter 512kB System SRAM (ECC) 512kB System SRAM (ECC) 2 - 4MB Flash memory (ECC) 64 Boot ROM 1.3MB GRAM (FlexECC) EE Emulation OTP CA5 GIC SGM (I2S) SMC & SSD (6) Autonomous RTC Timer/PWM (8ch) Timer/PWM (8ch) Timer/PWM (8ch) Timer/PWM (8ch) 12-bit ADC (24) CMP (2) LCD SWT (3) PIT (8CH) STM (4CH) CRC SEMA42 UART/LIN (3) I2C (2) DSPI (5) FlexCAN (3) 4k & 2k ETBs 64 AHB 64 AXI 64 AHB 64 DRAM Controller 16/32-bit SDR AIPS Debug TPIU AHB DDR2 Low Power Ctrl SJTAG 64 QuadSPI Clock Monitor AHB QuadSPI 64 IOP ARM CortexM0+ CM4 NVIC AHB PLLs RLE Decoder 16MHz/128KHz IRC Interrupt Router Peripheral Interrupts 32k SRAM (ECC) Figure 1. High level block diagram SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 5 Family comparison 320MHz Domain ARM Cortex A5 64 64 2D-ACE & HUD NEON FPU 64 GC355 OpenVG GPU AXI AXI DAP 32KB L1 32KB L1 D-Cache I-Cache AXI AXI AXI AXI 64 AXI 64 2D-ACE ENET-AVB 16CH eDMA VIU4 System AHB Code AHB 16KB L1 16KB L1 D-Cache I-Cache MLB50 64KB TCM 64:16 mux FPU SECURITY (CSE) ARM Cortex M4 16CH eDMA 160MHz Domain 64 64 64 64 AHB AHB AHB AHB M1 64 64 64 64 M0 AHB RDC - 8 domain, 1MDAC per master, 2x MDAC per CPU., 32 M3 M2 AHB 64 AHB 64 M4 M5 M7 M13 M8 M9 M14 M10 M11 QoS301 AMBA AXBS S0 S7 S3 S4 S6 S5 S8 S9 S10 S11 S12 Port Splitter AIPS 0 AIPS 1 PDAC PDAC AHB 64 AHB 64 AHB 64 512kB System SRAM (ECC) AHB 64 AHB 64 AHB 64 S14 S15 Flash Memory BIU 512kB System SRAM (ECC) 4MB Flash memory (ECC) S16 SDAC2 [0..3] (AXI) AHB 64 AHB 64 AHB 64 RLE Decoder Boot ROM S13 SDCAC1 [0..15] (AHB) SDAC0 [0..15] (AHB) QuadSPI S2 QuadSPI S1 M12 M16 M15 S17 SDAC5 [0..3] (AXI) AXI 64 Pixel Converter 1.3MB GRAM (FlexECC) SDAC4 [0..7] (AXI) Priority Manager DRAM Controller 16/32-bit SDR & DDR2 EE Emulation Secure Flash memory OTP ARM Cortex M0+ SDAC3 [0..7] (AHB) AXBS 32kB SRAM (ECC) I/O Processor Figure 2. Detailed block diagram 2 Family comparison The table below provides a summary of the different members of the SAC57D5xx Low/ Mid-Line Instrument Cluster family and their features. Note that not all features are available simultaneously on all packages. Table 1. Feature sets Product Features Cores SAC57D54H SAC57D53M SAC57D52L Cortex-A5 (320 MHz, 32 KB/32 KB L1 Caches, FPU, MMU, NEON) Yes Yes Yes Cortex-M4 (160 MHz, 16 KB/16 KB L1 Caches, FPU) Yes Yes Yes Table continues on the next page... SAC57D54H, Rev. 5, 05/2016 6 NXP Semiconductors Family comparison Table 1. Feature sets (continued) Product Features Internal Memory SAC57D54H SAC57D53M SAC57D52L Cortex - M0+ I/O Processor (IOP) (80 MHz) Yes Yes Yes ECC Flash Memory 4 MB 3 MB 2 MB 1.3 MB 1.3 MB 1.3 MB System SRAM (ECC) 2 x 512 KB 2 x 512 KB 2 x 512 KB IOP local SRAM (ECC) 32 KB 32 KB 32 KB Graphics External Memory Interfaces System and General Purpose Graphics/Video/Display/ Audio System Connectivity Analog Connectivity Timer/PWM Package Options SRAM1 Dual DDR QuadSPI 2 x Dual DDR QuadSPI 2 x Dual DDR QuadSPI 2 x Dual DDR QuadSPI 16 bit SDR DRAM (160MHz) Yes Yes Yes 32-Bit DDR2 DRAM (320MHz)2 Yes Yes - Memory / Peripheral Protection (xDRC Extended Resource Domain Controller) Yes Yes Yes Security (CSE) Yes Yes Yes eDMA 16ch x 2 16ch x 2 16ch x 2 2D-ACE x2 x2 x2 HUD Warping Engine Yes Yes Yes TCON_0/RSDS Yes Yes Yes TCON_1 Yes Yes Yes OpenLDI/LVDS Yes Yes - GPU GC355 : OpenVG 1.1 / TinyUI GC355 : OpenVG 1.1 / TinyUI GC355 : OpenVG 1.1 / TinyUI Video Input Unit Yes Yes Yes Sound Generator Yes Yes Yes Segment LCD Yes Yes Yes FlexCAN x3 x3 x3 I2C x2 x2 x2 LINFlexD x3 x3 x3 SPI x5 x5 x5 MLB50 Yes Yes Yes 10/100 Ethernet + AVB Yes Yes Yes SMC/SSD x6 x6 x6 12 Bit ADC Yes Yes Yes Analog Comparator 2 x 8ch 2 x 8ch 2 x 8ch PIT 8ch 8ch 8ch SWT 3 3 3 ARTC Yes Yes Yes FlexTimer 4 x 8ch 4 x 8ch 4 x 8ch LQFP 208 LQFP 208 LQFP 208 LQFP Table continues on the next page... SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 7 Ordering parts Table 1. Feature sets (continued) Product Features BGA SAC57D54H SAC57D53M SAC57D52L 516 MAPBGA 516 MAPBGA - 1. GRAM can be reconfigured as ECC RAM 2. DDR2 interface only available in BGA package option 3 Ordering parts 3.1 Determining valid orderable parts Valid orderable part numbers are provided on the web. 1. To determine the orderable part numbers for this device, go to www.nxp.com and perform a part number search for the following device number: SAC57D5xx. 3.2 Ordering information SAC57D54H, Rev. 5, 05/2016 8 NXP Semiconductors General 4 General 4.1 Absolute maximum ratings NOTE Functional operating conditions appear in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maximum values is not guaranteed. Stress beyond the listed maximum values may affect device reliability or cause permanent damage to the device. Table 2. Absolute maximum ratings Symbol 1 VDDE_A, VDDE_B, VDDE_SDR VDD_LP_DEC VDDA VDDEH_ADC VSSA Parameter Conditions Min Max Unit Input/output supply voltage2 — –0.3 3.6 V Decoupling pin for low power regulators3 — –0.32 1.32 V ADC supply voltage — –0.3 6.0 V ADC I/O supply voltage — –0.3 6.0 V ADC supply ground — –0.3 0.3 V VDDA_REF 4 ADC supply voltage — –0.3 6.0 V VDDM_SMD SMD supply voltage — –0.3 6.0 V VSSM_SMD SMD supply ground — –0.3 0.3 V VDDE_DDR DDR2 DRAM supply voltage — –0.3 2.3 V DDR_VREF DDR I/O Reference Voltage — –0.3 1.15 V Core logic supply voltage — –0.3 1.32 V Relative to VDDE_A, VDDE_B, VDDE_SDR –0.3 VDDE_ADC + 0.3 V –0.3 VDDE_A + 0.3 V Relative to VDDE_A, VDDE_B, VDDE_SDR –0.3 VDDE_x + 0.3 V Always –5 5 mA 5 VDD12 VINA Voltage on ADC analog pin with respect to VSSA Voltage on Analog comparator pin (CMP) with respect to VSS VIN Voltage on any digital pin with respect to ground (VSS) IINJPAD Injected input current on any pin during overload condition IINJSUM Absolute sum of all injected input currents during overload condition — –50 50 mA Tramp Supply ramp rate — 0.5 V / min 100 V/ms — Ta 6 Ambient temperature — –40 105 °C TSTG Storage temperature — –55 165 °C SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 9 General 1. All parameters are with reference to Vss unless otherwise specified. 2. A crossover current of up to 2 mA may be experienced if VDD12 is ramped up before VDDE_A supply. This current is only an electrical crossover but has no functional implications, and should be removed when VDDE_A ramps up to its functional operating range. 3. Not available for input voltage, only for decoupling internal regulators. 4. VDDA_REF is only available on the 516 BGA package. 5. DDR_VREF is expected to be equal to 0.5 × VDDE_DDR and to track VDDE_DDR DC variations as measured at the device pins. Ensure VDD_LV supply ramps up before VDDE_DDR. In Standby mode, it should be ensured that VDDE_DDR supply should be cut off. 6. Tj=125°C. Assumes Ta=105°C. Assumes maximum θJA of 2s2p board. See Thermal attributes section for details. 4.2 Recommended operating conditions The following table describes the operating conditions for the device, and for which all specifications in the data sheet are valid, except where explicitly noted. The device operating conditions must not be exceeded in order to guarantee proper operation and reliability. The ranges in this table are design targets and actual data may vary in the given range. For normal device operations, VDDE_A, VDDA, VDDA_REF, VDDEH_ADC and VDD12 supplies must be within operating range corresponding to the range mentioned in following tables. This is required even if some of the features are not used. If using the ADC to convert SSD channels then VDDA should always be >= VDDM_SMC. VDD12 should be supplied externally. VDDA_REF, the supply port to 516 BGA is shorted to VDDA inside lower pin packages. Stepper Stall Detect module (SSD) should only be operated in the 4.5 V to 5.5 V range and so cannot be used if VDDM_SMD is in 3.3 V range. Design may experience up to 30 mA additional crossover current (on VDDE_A) if the high voltage flash supply is powered before the low voltage core supply. This additional current will be removed once VDD12 supply rises to its operating range. There is no reliability concern to the device due to this additional current. Table 3. Recommended operating conditions Symbol 1 Parameter Conditions Min2 Max Unit VDDE_A Input/output supply voltage — 3.15 3.6 V VSSA ADC supply ground, relative to VSS — -0.1 0.1 V VDDA ADC supply voltage 3.15 5.5 V VDDEH_ADC ADC I/O supply voltage 3.15 5.5 V VDDA_REF ADC reference voltage VDDA,VDDA_REF and VDDEH_ADC should be within +/-25 mV of each other 3.15 5.5 V VDDM_SMD SMD supply voltage — 3.15 5.5 V VDDE_B3 VDDE_SDR3 Table continues on the next page... SAC57D54H, Rev. 5, 05/2016 10 NXP Semiconductors General Table 3. Recommended operating conditions (continued) Symbol 1 Parameter Conditions Min2 Max Unit VDDE_DDR DDR2 supply voltage — 1.7 1.9 V DDR_VREF DDR I/O Reference Voltage — VDDE_DDR (min)/2 VDDE_DDR (max)/2 V VDD124 Core logic supply voltage — 1.20 1.32 V VSSEH_ADC ADC supply ground, relative to VSS — -0.3 0.3 V IINJPAD Injected input current on any pin during overload condition — -3.0 3.0 mA Ta5 Ambient temperature under bias –40 105 °C 1. All parameters are with reference to Vss, unless otherwise specified. 2. Device will be functional (and electrical specifications as per various datasheet parameters will be guaranteed) until one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset. 3. VDDE_A, VDDE_B and VDDE_SDR are all independent supplies and can each be set to 3.3 V. However, care must be taken over LCD inputs that operate across the IO segments. 4. Only applicable when supplying from external source. VDD12 supply pins should never be grounded (through a small impedance). If not driven, these should only be left floating. 5. Tj=125°C. Assumes Ta=105°C. Assumes maximum θJA of 2s2p board. See Thermal attributes section for details. 4.3 Voltage regulator electrical specifications The voltage regulator is composed of the following blocks: • Connect an external 1.25 V nominal directly • Low voltage detector - low threshold (LVD_HV_A) for VDDE_A supply • Low voltage detector (LVD_FLASH) for 3.3 V flash supply • Various low voltage detectors (LVD_LV_x) for digital core supply (VDD12) • High voltage detector (HVD_LV) for digital core supply (VDD12) • Power on Reset (POR_LV) for 1.25 V digital core supply (VDD12) • Power on Reset (POR_HV) for VDDE_A SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 11 General LPPREG VDD_LP_DEC ULPPREG CLP/ULPREG Vss V DD12 Vss DEVICE Figure 3. Voltage regulator capacitance connection Table 4. Voltage regulator electrical specifications Symbol Clp/ulp_reg Parameter Conditions External decoupling / stability Min, max values shall be capacitor for internal low power granted with respect to regulators tolerance, voltage, temperature, and aging variations Combined ESR of external capacitor — Min Typ1 Max Unit 0.8 1 1.4 µF 0.001 — 0.1 Ohm 1. Typical values will vary over temperature, voltage, tolerance, drift, but total variation must not exceed minimum and maximum values. 4.3.1 Recommended decoupling capacitor values Following are the recommendations for supply decoupling on various power domains: • For VDDE_A, VDDE_B, VDDE_SDR, VDDM_SMD, VDDE_DDR, VDDA, VDDEH_ADC,VDDA_REF, DDR_VREF supplies: • 0.1 μF close to each VDD/VSS pin pair. • 1 μF on each side of the chip for each supply domain. • 10 μF near for each power supply source (except for VDDM_SMD pins where a higher capacitance value may be needed depending upon motor characteristics). SAC57D54H, Rev. 5, 05/2016 12 NXP Semiconductors General • For VDD12, 0.1 μF close to each VDD/VSS pin pair is required. 4.4 Voltage monitor electrical specifications Table 5. Voltage monitor electrical specifications Symbol Parameter State Conditions Configuration Power Up 1 VPOR_LV LV supply power on reset detector Fall Rise Typ Max 0.9300 0.9790 1.0280 V Trimmed - - - V Untrimmed 0.9800 1.0290 1.0780 V - - - V 1.3750 V Yes No Reset Type Destructive Trimmed VHVD_LV_cold VLVD_LV_PD2_hot VLVD_LV_PD1_hot VLVD_LV_PD0_hot VPOR_HV VLVD_IO_A_LO LV supply high Fall voltage monitoring, detecting at the Rise device pin Untrimmed LV supply low Fall voltage monitoring, detecting in the Rise PD2 core (hot) area Untrimmed LV supply low Fall voltage monitoring, detecting in the Rise PD1 core (hot) area Untrimmed LV supply low Fall voltage monitoring, detecting in the Rise PD0 core (hot) area Untrimmed HV supply power on reset detector Untrimmed Fall Rise HV IO_A supply Fall low voltage monitoring - low Rise range VLVD_LV_PD2_COL LV supply low Fall voltage D monitoring, detecting at the Rise device pin Unit Min Untrimmed Mask Opt Threshold No Yes Functional Disabled at Start Trimmed 1.3250 Untrimmed Disabled at Start Trimmed 1.3450 1.3650 1.3950 V 1.0800 1.1200 1.1600 V Trimmed 1.1250 1.1425 1.1600 V Untrimmed 1.1000 1.1400 1.1800 V Trimmed 1.1450 1.1625 1.1800 V Yes 1.0800 1.1200 1.1600 V 1.1140 1.1370 1.1600 V Untrimmed 1.1000 1.1400 1.1800 V Trimmed 1.1340 1.1570 1.1800 V 1.0800 1.1200 1.1600 V Trimmed 1.1140 1.1370 1.1600 V Untrimmed 1.1000 1.1400 1.1800 V Trimmed 1.1340 1.1570 1.1800 V 2.7000 2.8500 3.0000 V Trimmed - - - V Untrimmed 2.7500 2.9000 3.0500 V Trimmed - - - V 2.7500 2.9230 3.0950 V Trimmed 2.9780 3.0390 3.1000 V Untrimmed 2.7800 2.9530 3.1250 V Trimmed 3.0080 3.0690 3.1300 V 1.1750 V 1.1950 V Untrimmed Yes Yes Yes No No Destructive Trimmed Untrimmed Yes No No No No Yes Destructive 1.3450 Destructive Destructive Destructive Functional Disabled at Start Trimmed 1.1400 1.1550 Untrimmed Disabled at Start Trimmed 1.1600 1.1750 SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 13 General 1. All monitors that are active at power up will gate the power up recovery and prevent exit from POWERUP phase until the minimum level is crossed. These monitors can in some cases be masked during normal device operation, but when active will always generate a destructive reset. 4.5 Power consumption The following table shows the power consumption for the device in the various modes of operation. Table 6. Power consumption Mode Configuration Typ Max Unit Run Mode CA5 320 MHz, CM4 160 MHz, DDR2 320 MHz, Dual Display (516 BGA) 800 1500 mA Run Mode CA5 320 MHz, CM4 160 MHz, SDR 160 MHz, Single Display (208 QFP) 600 1200 mA IOP Run Mode CM0+ 16 MHz, PD1/0 domains powered, remainder of device power gated off. 31 35 mA IOP Stop Mode CM0+ halted, PD1/0 domains powered, all module enabled and LCD running in IOP domain, remainder of device power gated off. 0.252 20 mA Stop Mode Cores halted, Device fully powered. 240 700 3 mA Standby Mode4, 5 ARTC/32 KHz + 32 KB SRAM powered μA ARTC/32 KHz + 8 KB SRAM powered 50 (25 °C) 70 (25 °C) 500 (55 °C) 900 (55 °C) 1500 (85 °C) 2500 (85 °C) 2000 (105 °C) 4000 (105 °C) 45 (25 °C) 65 (25 °C) 500 (55 °C) 900 (55 °C) 1500 (85 °C) 2500 (85 °C) 2000 (105 °C) 4000 (105 °C) μA IOP_Run typical is measured at 25oC. IOP_Stop typical is measured at 25oC. There could be 10% variation based on the characterization. Weak pull functionality provided in I/O pads must be used to configure I/Os in a known state (that does not cause contention with external connection on the pin) to avoid floating input to cause crow-bar currents and hence increased leakage during low power modes. 5. During STANDBY/IOP modes, it is recommended to keep VDDE_A, VDDEH_ADC, VDDAand VDDA_REF powered to their respective functional levels to obtain best power performance of the device. All other supplies are recommended be kept unpowered in these low power modes. 1. 2. 3. 4. SAC57D54H, Rev. 5, 05/2016 14 NXP Semiconductors General The following diagrams show the supply configuration of the device. Figure 4. Supply configuration 4.6 Electrostatic discharge (ESD) specifications Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n + 1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard. NOTE A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. Table 7. ESD ratings Symbol VESD(HBM) Conditions1 Parameter Electrostatic discharge TA = 25 °C Class Max value2 Unit H1C 2000 V (Human Body Model) Table continues on the next page... SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 15 I/O parameters Table 7. ESD ratings (continued) Symbol Conditions1 Parameter Class Max value2 Unit C3A 500 V conforming to AECQ100-002 VESD(CDM) Electrostatic discharge TA = 25 °C (Charged Device Model) conforming to AECQ100-011 750 (corners) 1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. 2. Data based on characterization results, not tested in production. 4.7 Electromagnetic Compatibility (EMC) specifications EMC measurements to IC-level IEC standards are available from NXP on request. 5 I/O parameters 5.1 AC specifications @ 3.3 V range Table 8. Functional Pad AC Specifications @ 3.3 V range Symbol Rise/Fall Edge (ns) Min pad_sr_hv (output) Drive Load (pF) Max 1.75/1.5 MSB, LSB 25 0.8/0.8 3.25/3 50 3.5/2.5 12/12 200 0.6/0.8 3.75/3.5 25 1/1 7/6.5 50 7.7/5 25/21 200 4/3.5 25/25 50 6.3/6.2 30/30 200 6.8/6 40/40 50 11/11 Drive/Slew Rate Select 11 (Recommended setting) 10 01 001 51/51 200 0.5/0.5 0.5 NA 1.5/1.5 30 11 2.4/2.4 50 0.6/0.6 1.5/1.5 20 10 0.6/0.6 1.85/1.85 10 01 12/11 36/45 50 00 pad_i_hv/pad_sr_hv (input)2 pad_fc_hv (output) 0.6/0.6 SAC57D54H, Rev. 5, 05/2016 16 NXP Semiconductors I/O parameters 1. Slew rate control modes 2. Input slope = 2 ns 5.2 DC electrical specifications @ 3.3 V range Table 9. DC electrical specifications @ 3.3 V range Symbol Vdde Parameter I/O Supply Voltage Value Unit Min Max 3.15 3.63 V Vih CMOS Input Buffer High Voltage (with hysteresis disabled) 0.55 x Vdde Vdde + 0.3 V Vil CMOS Input Buffer Low Voltage (with hysteresis disabled) Vss − 0.3 0.40 x Vdde V Vih_hys CMOS Input Buffer High Voltage (with hysteresis enabled) 0.65 x Vdde Vdde + 0.3 V Vil_hys CMOS Input Buffer Low Voltage (with hysteresis enabled) Vss − 0.3 0.35 x Vdde V CMOS Input Buffer Hysteresis 0.1 x Vdde Vhys V Pull_Ioh_vil_hys Weak Pullup Current measured when pad = 0.35 x Vdde 25 80 µA Pull_Ioh_vih_hys Weak Pulldown Current measured when pad = 0.65 x Vdde 25 80 µA Iinact_d Digital Pad Input Leakage Current (weak pull inactive) −2.5 2.5 µA 0.8 x Vdde — V — 0.2 x Vdde V Voh Output High Voltage1 Vol Voltage2 Output Low Vih_ttl TTL High Level Input Voltage Vil_ttl TTL Low Level Input Voltage Vhyst_ttl TTL Input Hysteresis Voltage Vih_auto Automotive High Level Input Voltage Vil_auto3 Vhyst_auto 1.8 V 0.6 0.25 V V 0.75 x Vdde Vdde + 0.3 V Automotive Low Level Input Voltage −0.3 0.35 ✕ Vdde V Automotive Input Hysteresis Voltage 0.11 x Vdde V 1. Measured when pad is sourcing 2 mA. 2. Measured when pad is sinking 2 mA. 3. Auto levels are applicable to the ‘input only' channels (CH0-7) of the ADC pins SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 17 I/O parameters 5.3 AC specifications @ 5 V range Table 10. Functional pad AC specifications @ 5 V range Symbol Rise/Fall Edge (ns) Min pad_sr_hv Drive Load (pF) Max MSB, LSB 1.2/1.2 (output) pad_fc_hv (output) Drive/Slew Rate Select 25 11 (Recommended setting) 2.5/2 50 8/8 200 3/2 25 5/4 50 18/16 200 13/13 50 24/24 200 24/24 50 10 01 001 50/50 200 1.8/1.7 50 6.6/6.1 200 2.7/2.5 50 10.3/9.3 200 5.6/4.8 50 21/19 200 41/41 50 151/151 200 11 10 01 00 1. Slew rate control modes 5.4 DC electrical specifications @ 5 V range Table 11. DC electrical specifications @ 5 V range Symbol Vdde Parameter I/O Supply Voltage Value Unit Min Max 4.5 5.5 V Vih CMOS Input Buffer High Voltage (with hysteresis disabled) 0.55 × Vdde Vdde + 0.3 V Vil CMOS Input Buffer Low Voltage (with hysteresis disabled) Vss − 0.3 0.40 × Vdde V Vih_hys CMOS Input Buffer High Voltage (with hysteresis enabled) 0.65 × Vdde Vdde + 0.3 V Vil_hys CMOS Input Buffer Low Voltage (with hysteresis enabled) Vss − 0.3 0.35 × Vdde V Table continues on the next page... SAC57D54H, Rev. 5, 05/2016 18 NXP Semiconductors I/O parameters Table 11. DC electrical specifications @ 5 V range (continued) Symbol Parameter Value Min Vhys CMOS Input Buffer Hysteresis Unit Max 0.1 × Vdde V Pull_Ioh_vil_h ys Weak Pullup Current measured when pad = 0.35 x Vdde (Vil_hys) 40 120 µA Pull_Ioh_vih_hys Weak Pulldown Current measured when pad = 0.65 x Vdde (Vih_hys) 40 120 µA Iinact_d Digital Pad Input Leakage Current (weak pull inactive) −2.5 2.5 µA Voltage1 Voh Output High 0.8 x Vdde — V Vol Output Low Voltage2 — 0.2 x Vdde V Vih_ttl TTL High Level Input Voltage 2.0 Vil_ttl TTL Low Level Input Voltage Vhyst_ttl TTL Input Hysteresis Voltage 0.3 Vih_auto Automotive High Level Input Voltage 3.8 Vdde + 0.3 V Automotive Low Level Input Voltage −0.3 2.2 V Vhyst_auto Automotive Input Hysteresis Voltage 0.5 Vih_auto3 Automotive High Level Input Voltage 0.7 × Vdde Vdde + 0.3 V Vil_auto3 Automotive Low Level Input Voltage −0.3 0.47 × Vdde V Automotive Input Hysteresis Voltage 0.11 × Vdde 3 Vil_auto 3 V 0.8 V V V Automotive Levels with Expanded VDDE Range: 4 V - 5.5 V 3 Vhyst_auto V 1. Measured when pad is sourcing 2 mA. 2. Measured when pad is sinking 2 mA. 3. Auto levels are applicable to the ‘input only' channels (CH0-7) of the ADC pins 5.5 DDR2 pads IO specifications 5.5.1 DDR2 pads AC specifications @ 1.8V VDDE_DDR Table 12. DDR2 pads AC electrical specifications at 1.8 V VDDE_DDR Name pad_dq_18 Rise/Fall Edge (V/ns) Drive Load (pF) Drive Strength Select (Refer SIUL_MSCR[SRE] description in the device reference manual) Min Max Half/Full 1 — 5 Half 1 — 20 Half 1 — 5 Full Table continues on the next page... SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 19 I/O parameters Table 12. DDR2 pads AC electrical specifications at 1.8 V VDDE_DDR (continued) Name Rise/Fall Edge (V/ns) pad_acc_18 pad_clk_18 Drive Load (pF) Drive Strength Select (Refer SIUL_MSCR[SRE] description in the device reference manual) Min Max Half/Full 1 — 20 Full 1 — 5 Half 1 — 20 Half 1 — 5 Full 1 — 20 Full 1 — 5 Half 1 — 20 Half 1 — 5 Full 1 — 20 Full 5.5.2 SSTL_18 Class II 1.8 V DDR2 DC specifications Table 13. SSTL_18 Class II 1.8 V DDR2 DC specifications Symbol Parameter Conditio n Min Typ Max Uni t Notes VDDE_DDR DDR 1.8 V I/O Supply voltage — 1.7 1.8 1.9 V VDD12 Core Supply Voltage — 1.20 1.26 1.32 V A5.15 DDR_REF I/O Reference Voltage — 0.51 x VDDE_DDR V A5.16 Vih(dc) DC Input Logic High — Vil(dc) DC Input Logic Low — Vih(ac) AC Input Logic High — Vil(ac) AC Input Logic Low Iin 0.49 x VDDE_DDR 0.50 x VDDE_DDR DDR_VREF + 0.125 — JESD8-15 A SpecI D A5.14 V JESD8-15 A A5.18 — DDR_VREF − 0.125 V JESD8-15 A A5.19 DDR_VREF + 0.25 — — V JESD8-15 A A5.20 — — — DDR_VREF − 0.25 V JESD8-15 A A5.21 Pad input Leakage Current — -50 — 50 μA — A5.22 Voh Output High Voltage Level — VDDE_DDR − 0.28 — — V — A5.23 Vol Output Low Voltage Level — — — 0.28 V — A5.24 Table continues on the next page... SAC57D54H, Rev. 5, 05/2016 20 NXP Semiconductors SMC pads IO specifications Table 13. SSTL_18 Class II 1.8 V DDR2 DC specifications (continued) Symbol Parameter Conditio n Min Typ Max Uni t Notes SpecI D Ioh(dc) Output min Vout = Voh source dc current −12.86 — — mA JESD8-15 A VDDE_DDR = 1.7V Voh = 1.42V A5.25 Iol(dc) Output min sink dc current 12.86 — — mA JESD8-15 A VDDE_DDR = 1.7 V Vol = 0.28 V A5.26 Vout= Vol Table 14. Current-draw Characteristics for DDR_VREF Symbol DDR_VREF Parameter Current-draw characteristics for DDR_VREF Min Max Unit - 5 mA 5.6 SMC pads IO specifications 5.6.1 SMC 5V pads IO specifications NOTE In Table 15, Table 16, "VDDE" is the VDDM_SMD supply 5.6.1.1 SMC 5V pads IO DC specifications Table 15. SMC 5V IO DC specifications(4.5V<vdde<5.5V) Symbol Characteristic Min Typ Max Unit Vil Low level input voltage −0.3 0.35 × vdde V Vih High level input voltage 0.65 × vdde vdde + 0.3 V Schmitt trigger hysteresis 0.1 × vdde V −130 μA Vhyst Ipu Internal pull up device current (Vin=Vil) Ipu Internal pull up device current (Vin=Vih) Ipd Internal pull down device current (Vin=Vil) Ipd Internal pull down device current (Vin=Vih) Iin Input leakage current (ipp_pue=0) Vol Low level output voltage (Iol=+20 mA) −10 10 −2.5 μA μA 130 μA 2.5 μA 0.32 V Table continues on the next page... SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 21 SMC pads IO specifications Table 15. SMC 5V IO DC specifications(4.5V<vdde<5.5V) (continued) Symbol Characteristic Min Voh High level output voltage (Ioh=-20 mA) Vsum Vsum ( | Vol | + | Voh | ) (Iol=+40 mA and Ioh=-40 mA) Voh delta / Vol delta Delta Voh across one motor segment and Delta Vol across one motor segment Typ Max Unit vdde − 0.32 V 1.0 V −50 50 mV Rdsonh Pad drive active high impedance (test load Ioh = 30 mA) 4 13 Ω Rdsonl Pad drive active low impedance (test load Iol = 30 mA) 2.75 9 Ω 5.6.1.2 SMC 5V pads IO AC specifications Table 16. SMC 5V IO functional pad AC specifications (4.5V<vdde<5.5V) Name Symbol Symbol Rise/Fall Edge (ns) Min CMOS input Drive Load (pF) Max 0.5/0.5 Drive/Slew Rate Select ipp_sre_lv 0.5 NA 5.6.2 SMC 3.3 V pads IO specifications NOTE In Table 17, Table 18, the "VDDE" refers to the VDDM_SMD supply. 5.6.2.1 Symbol SMC 3.3 V pads IO DC specifications Table 17. SMC 3.3 V pads IO DC specifications (3.0V<vdde<3.6V) Characteristic Min Typ Max Unit Vil Low level input voltage -0.3 0.35 × vdde V Vih High level input voltage 0.65 × vdde vdde + 0.3 V Schmitt trigger hysteresis 0.1 × vdde V -130 μA Vhyst Ipu Internal pull up device current (Vin=Vil) Ipu Internal pull up device current (Vin=Vih) Ipd Internal pull down device current (Vin=Vil) -10 10 μA μA Table continues on the next page... SAC57D54H, Rev. 5, 05/2016 22 NXP Semiconductors SMC pads IO specifications Table 17. SMC 3.3 V pads IO DC specifications (3.0V<vdde<3.6V) (continued) Symbol Characteristic Min Ipd Internal pull down device current (Vin=Vih) Iin Input leakage current (ipp_pue=0) Vol Low level output voltage (Iol=+10 mA) Voh High level output voltage (Ioh=-10 mA) 5.6.2.2 Typ -2.5 Max Unit 130 μA +2.5 μA 0.32 V vdde − 0.32 V SMC 3.3 V pads IO AC specifications Table 18. SMC 3.3 V functional pads IO DC specifications (3.0V<vdde<3.6V) Name Symbol Symbol Rise/Fall Edge (ns) Min CMOS input Drive Load (pF) Max 0.5/0.5 Drive/Slew Rate Select ipp_sre_lv 0.5 NA 5.7 RSDS pads electrical specifications Table 19. RSDS pads electrical specifications Symbol Parameter Min Typ Max Unit 3.3 - V Supply Voltages Vdde 1 3 RSDS_Tx Normal mode (Vdde) - 3 - mA Power down mode - 1 - µA RSDS reference Normal mode - 400 - μA Power down mode - 0.1 - µA 50 50 MHz Data rate Data Frequency Driver specs Vod Differential o/p voltage 100 200 400 mV Vos Common mode voltage (VOS) - 1.2 - V Rise/Fall time - 500 - ps Startup Time (RSDS_ref) - 6 - µs Startup time (RSDSTx) - 6 - µs tR/tF Termination Table continues on the next page... SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 23 SMC pads IO specifications Table 19. RSDS pads electrical specifications (continued) Termination Resistance - 100 - ohm Trans. Line (differential Zo) 95 100 105 ohm 382 - ps Skew tskew 2 Skew between different RSDS lines - 1. vdde is the VDDE_B supply 2. This value is derived from simulation assuming default register setting of all 1’s for skew. There are 8 programmable bits to provide 256 different skew numbers with various combinations of these bits. See the TCON chapter of the device Reference Manual for details. All "0" combination of 8 bits is not valid. Pad_p pad_n 80% 80% Crossover point pad_p Differential Data Lines 20% pad_n 20% Fall Time Rise Time (tf) (tr) Figure 5. Rise/Fall transition SAC57D54H, Rev. 5, 05/2016 24 NXP Semiconductors SMC pads IO specifications Pad_p Crossover point Vos Valid outputs Differential outputs pad_n Enable time (tdz) ipp_obe Figure 6. Enable time Figure 7. Rise/Fall transition of differential output 5.8 LVDS pads electrical specifications Table 20. LVDS pads electrical specifications Symbol Parameter Min Typ Max Unit Supply Voltages Table continues on the next page... SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 25 SMC pads IO specifications Table 20. LVDS pads electrical specifications (continued) V DDE , 1 3 3.3 - V Current consumption LVDS Tx Normal mode (VDDE1 ) — 5 — mA Switching currents — ±1.5 (during output transition) — mA Power down mode — 1 — µA LVDS Reference Normal mode — 400 — µA Power down mode — 0.1 — µA — 560 Mbps Data Rate Data Frequency — Driver specs Vod Differential o/p voltage 2 247 — 454 mV Vos Common mode voltage (VOS) 1.125 — 1.375 V tr/tf Rise/Fall time 3 — — 800 ps Startup Time (lvds_ref) — 5 — µs Startup time (lvds_Tx) — 5 — µs Termination Termination Resistance — 100±1% — Ω Trans. Line (differential Zo) 95 100 105 Ω 1. VDDE is the VDDE_B supply. 2. The limit applies to the default drive current. 3. Rise/fall time is assumed to be measured with 20%-80% levels. 5.9 Functional reset pad electrical specifications The device implements a dedicated bidirectional RESET pin. Table 21. Functional reset pad electrical specifications Symbol Parameter Conditions Value Min Typ Max Unit VIH Input high level TTL (Schmitt Trigger) — 2.0 — VDDE_A+0.4 V VIL Input low level TTL (Schmitt Trigger) — –0.4 — 0.65 V VHYS Input hysteresis TTL (Schmitt Trigger) — 300 — — mV Table continues on the next page... SAC57D54H, Rev. 5, 05/2016 26 NXP Semiconductors Peripheral operating requirements and behaviors Table 21. Functional reset pad electrical specifications (continued) Symbol Parameter Conditions Value Min Unit Typ Max VDD_POR Minimum supply for strong pull-down activation — — — 1.2 V IOL_R Strong pull-down current Device under power-on reset 0.2 — — mA VDDE_A=VDD_POR VOL = 0.35 x VDDE_A WFRST RESET input filtered pulse — — — 500 ns WNFRST RESET input not filtered pulse — 2000 — — ns |IWPU| Weak pull-up current absolute value RESET pin VIN = VDD 23 — 82 µA 5.10 PORST electrical specifications Table 22. PORST electrical specifications Symbol Parameter Value Min WFPORST PORST input filtered pulse WNFPORST PORST input not filtered pulse VIH VIL Typ Unit Max — — 200 ns 1000 — — ns Input high level — 0.65 x VDDE_A — V Input low level — 0.35 x VDDE_A — V 6 Peripheral operating requirements and behaviors 6.1 Analog modules 6.1.1 ADC electrical specifications The device provides a 12-bit Successive Approximation Register (SAR) Analog-toDigital Converter. SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 27 Analog modules Offset Error OSE Gain Error GE 4095 4094 4093 4092 4091 4090 ( 2) 1 LSB ideal =(VrefH-VrefL)/ 4096 = 3.3V/ 4096 = 0.806 mV Total Unadjusted Error TUE = +/- 6 LSB = +/- 4.84mV code out 7 ( 1) 6 5 (5) 4 (4) 3 (3) 2 1 (1) Example of an actual transfer curve (2) The ideal transfer curve (3) Differential non-linearity error (DNL) (4) Integral non-linearity error (INL) (5) Center of a step of the actual transfer curve 1 LSB (ideal) 0 1 2 3 Offset Error OSE 4 5 6 7 4089 4090 4091 4092 4093 4094 4095 Vin(A) (LSBideal) Figure 8. ADC characteristics and error definitions SAC57D54H, Rev. 5, 05/2016 28 NXP Semiconductors Analog modules 6.1.1.1 Input impedance and ADC accuracy EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD_IO Source Filter RS Current Limiter RF Sampling RSW1 RAD RL CF VA Channel Selection CP1 CP2 CS RS Source Impedance RF Filter Resistance CF Filter Capacitance RL Current Limiter Resistance RSW1 Channel Selection Switch Impedance RAD Sampling Switch Impedance CP Pin Capacitance (two contributions, CP1 and CP2) CS Sampling Capacitance Figure 9. Input equivalent circuit Table 23. ADC conversion characteristics Symbol fCK Parameter Conditions Min Typ Max Unit 15.2 80 80 MHz — — 1 MHz 80 MHz@ 100 ohm source impedance 250 800 — ns 80 MHz 700 — — ns 80 MHz 1.54 — — µs 1 — — ADC Clock frequency (depends on — ADC configuration) (The duty cycle depends on AD_CK1 frequency) fs Sampling frequency tsample tconv ttotal_conv Sample 80 MHz time2 Conversion time3 Total Conversion time tsample + tconv (for standard and extended channels) Total Conversion time tsample + tconv (for precision channels) CS ADC input sampling capacitance — — 3 5 pF 5 ADC input pin capacitance 1 — — — 5 pF CP2 5 ADC input pin capacitance 2 — — — 0.8 pF RSW15 Internal resistance of analog source VREF range = 4.5 to 5.5 V — — 0.3 kΩ VREF range = 3.15 to 3.6 V — — 875 Ω Internal resistance of analog source — — — 825 Ω Max leakage 125°C — — 250 nA — 5 mA CP1 5 RAD ADC Analog Pad (pad going to one ADC) Max positive/negative injection –5 Table continues on the next page... SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 29 Analog modules Table 23. ADC conversion characteristics (continued) Symbol Parameter Conditions Min Typ Max Unit ADC (12-bit mode) INL Integral non-linearity — –2 — 2 LSB DNL Differential non-linearity — –1 — 1 LSB OFS Offset error — –6 — 6 LSB GNE Gain error — –4 — 4 LSB –6 +/- 4 6 LSB — +/- 5 — LSB — — <1 μs TUEprecision channels Total unadjusted error for precision Without current injection channels With current injection Trecovery Differential non-linearity — ADC (10-bit mode)6 INL Integral non-linearity — –1 — 1 LSB DNL Differential non-linearity — –0.7 — 0.7 LSB OFS Offset error — –4 — 4 LSB GNE Gain error — –4 — 4 LSB –5 +/- 3 5 LSB — +/- 4 — LSB — — <1 μs TUEprecision channels Total unadjusted error for precision Without current injection channels With current injection Trecovery Differential non-linearity — 1. The internally generated clock (known as AD_clk or ADCK) could be same as the peripheral clock or half of the peripheral clock based on register configuration in the ADC. 2. During the sample time the input capacitance CS can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within tsample. After the end of the sample time tsample, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock tsample depend on programming. 3. This parameter does not include the sample time tsample, but only the time for determining the digital result and the time to load the result register with the conversion result. 4. Apart from tsample and tconv, few cycles are used up in ADC digital interface and hence the overall throughput from the ADC is lower. 5. See Figure 2. 6. Measurements taken with same ADC accuracy settings as for 12bit. ADC data is read from CDR with last 2-LSBs ignored. 6.1.2 Analog Comparator (CMP) electrical specifications Table 24. Comparator and 6-bit DAC electrical specifications Symbol Description Min. Typ. Max. Unit IDDHS Supply current, High-speed mode (EN=1, PMODE=1) — — 250 μA IDDLS Supply current, low-speed mode (EN=1, PMODE=0) — 5 11 μA VAIN Analog input voltage VSS — VDDE_A V -42 — 42 mV — 1 25 mV — 20 50 mV — 40 70 mV VAIO VH Analog input offset voltage 1 Analog comparator hysteresis • CR0[HYSTCTR] = 00 • CR0[HYSTCTR] = 01 2 Table continues on the next page... SAC57D54H, Rev. 5, 05/2016 30 NXP Semiconductors Clocks and PLL interfaces modules Table 24. Comparator and 6-bit DAC electrical specifications (continued) Symbol Description Min. Typ. Max. Unit — 60 105 mV — — 250 ns — 5 14 μs Analog comparator initialization delay, High speed mode4 — 4 μs Analog comparator initialization delay, Low speed mode 4 — 100 μs 3.3V Reference Voltage — 6 9 μA INL 6-bit DAC integral non-linearity –1 — 1 LSB5 DNL 6-bit DAC differential non-linearity –0.8 — 0.8 LSB • CR0[HYSTCTR] = 10 • CR0[HYSTCTR] = 11 tDHS tDLS IDAC6b Propagation Delay, High Speed Mode (Full Swing) 1, 3 Propagation Delay, Low power Mode (Full Swing) 1, 3 6-bit DAC current adder (when enabled) 1. 2. 3. 4. Measured with hysteresis mode of 00 Typical hysteresis is measured with input voltage range limited to 0.6 to VDD_HV_A-0.6V Full swing = VIH, VIL Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level. 5. 1 LSB = Vreference/64 6.2 Clocks and PLL interfaces modules 6.2.1 Fast Oscillator (FXOSC) electrical specifications This device provides a driver for oscillator in pierce configuration with amplitude control. Controlling the amplitude allows a more sinusoidal oscillation, reducing in this way the EMI. Other benefits arises by reducing the power consumption. This Loop Controlled Pierce (LCP mode) requires good practices to reduce the stray capacitance of traces between crystal and MCU. An operation in Full Swing Pierce (FSP mode), implemented by an inverter is also available in case of parasitic capacitances and cannot be reduced by using crystal with high equivalent series resistance. For this mode, a special care needs to be taken regarding the serial resistance used to avoid the crystal overdrive. Other two modes called External (EXT Wave) and disable (OFF mode) are provided. For EXT Wave, the drive is disabled and an external source of clock within CMOS level based in analog oscillator supply can be used. When OFF, EXTAL is pulled down by 240 Kohms resistor and the feedback resistor remains active connecting XTAL through EXTAL by 1M resistor. SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 31 Clocks and PLL interfaces modules Figure 10. Oscillator connections scheme Table 25. Fast Oscillator electrical characteristics Symbol Parameter Mode fXOSCHS Oscillator frequency FSP/LCP TXOSCHSSU Startup time FSP/LCP Supply current FSP LCP Conditions Min Typ 8 Max 40 Unit MHz 8-40 MHz 1 ms 8 MHz 2.2 mA 16 MHz 2.2 40 MHz 3.2 8 MHz 141 16 MHz 252 µA 40 MHz 518 VIH Input High EXT Wave level CMOS Schmitt trigger Oscillator supply=3.3 1.84 V VIL Input low level EXT Wave CMOS Schmitt trigger Oscillator supply=3.3 1.48 V SAC57D54H, Rev. 5, 05/2016 32 NXP Semiconductors Clocks and PLL interfaces modules 6.2.2 Slow Oscillator (SXOSC) electrical specifications Table 26. Slow Oscillator (SXOSC) electrical specifications Symbol Parameter fosc_lo Oscillator crystal or resonator frequency tcst Crystal Start-up Time1, 2 Vpp Peak-to-Peak XTAL Amplitude Condition Min Typ 32 Max Unit 40 kHz 2 s 0.53 V 1. This parameter is characterized before qualification rather than 100% tested. 2. Proper PC board layout procedures must be followed to achieve specifications. 3. RF is integrated and may not be attached externally. 6.2.3 Fast internal RC Oscillator (FIRC) electrical specifications Table 27. Fast internal RC Oscillator electrical specifications Symbol Parameter Conditions Value Unit Min Typ Max — 16 — MHz — 1.51 µs FTarget IRC target frequency — Tstartup Startup time — TSTJIT Cycle to cycle jitter — — 1.5 % TLTJIT Long term jitter — — 0.2 % IVDDHV Current consumption on 3.3 V power supply After Tstartup — — 75 µA IVDDLV Current consumption on 1.2 V power supply After Tstartup — — 25 µA 1. The start-up time is generally 16 clock cycles of FIRC untrimmed clock. 6.2.4 Slow internal RC oscillator (SIRC) electrical specifications Table 28. Slow internal RC oscillator electrical specifications Symbol Fosc Parameter Oscillator frequency Condition Calibrated Min 119 Typ 128 Temperature dependence Max Unit 136.5 kHz 600 ppm/C Table continues on the next page... SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 33 Clocks and PLL interfaces modules Table 28. Slow internal RC oscillator electrical specifications (continued) Symbol Parameter Condition Min Typ Max Supply dependence Supply current Unit 18 %/V Clock running 2.75 µA Clock stopped 200 nA 6.2.5 PLL electrical specifications Table 29. PLL electrical specifications Parameter Min Typ Max Unit Input Frequency 8 40 MHz VCO Frequency Range 600 1280 MHz Duty Cycle at pllclkout 48% 52% Period Jitter See Table 30 TIE See Table 30 Modulation Depth (Center Spread) +/- 0.25% Comments This specification is guaranteed at PLL IP boundary ps NON SSCG mode at 960 M Integrated over 1MHz offset not valid in SSCG mode +/- 3.0% Modulation Frequency 32 KHz Lock Time 60 µs Calibration mode Table 30. Jitter calculation Type of jitter Jitter due to Supply Noise (ps) JSN1 Jitter due to Fractional Mode (ps) JSDM2 Jitter due to Fractional Mode JSSCG (ps) 3 1 Sigma Random Jitter JRJ (ps) 4 Total Period Jitter (ps) 0.1% of pllclkout1,2 +/-(JSN+JSDM+JSSCG+N[4] ×JRJ) Long Term Jitter (Integer Mode) 40 +/-(N x JRJ) Long Term jitter (Fractional Mode) 100 +/-(N x JRJ) Period Jitter 60 ps 3% of pllclkout1,2 Modulation depth 1. This jitter component is due to self noise generated due to bond wire inductances on different PLL supplies. The jitter value is valid for inductor value of 5nH or less each on avdd, avss, dvdd, dvss. 2. This jitter component is added when the PLL is working in the fractional mode. 3. This jitter component is added when the PLL is working in the Spread Spectrum Mode. Else it is 0. 4. The value of N is dependent on the accuracy requirement of the application. See Percentage of sample exceeding specified value of jitter table SAC57D54H, Rev. 5, 05/2016 34 NXP Semiconductors Memory interfaces Table 31. Percentage of sample exceeding specified value of jitter N Percentage of samples exceeding specified value of jitter (%) 1 31.73 2 4.55 3 0.27 4 6.30 × 1e-03 5 5.63 × 1e-05 6 2.00 × 1e-07 7 2.82 × 1e-10 6.3 Memory interfaces 6.3.1 Flash memory specifications NOTE Flash specs defined in this section at 150°C are also valid for the maximum temperature specifications of the device. 6.3.1.1 Flash memory program and erase specifications NOTE All timing, voltage, and current numbers specified in this section are defined for a single embedded flash memory within an SoC, and represent average currents for given supplies and operations. Table 32 shows the estimated Program/Erase times. Table 32. Flash memory program and erase specifications Characteristic1 Symbol Typ2 Factory Programming3, 4 Field Update Initial Max Initial Max, Full Temp Typical End of Life5 20°C ≤TA ≤30°C -40°C ≤TJ ≤150°C -40°C ≤TJ ≤150°C Unit Lifetime Max6 ≤ 1,000 cycles ≤ 250,000 cycles tdwpgm Doubleword (64 bits) program time 43 100 150 55 500 μs tppgm Page (256 bits) program time 200 300 108 500 μs 73 Table continues on the next page... SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 35 Memory interfaces Table 32. Flash memory program and erase specifications (continued) Characteristic1 Symbol Typ2 Factory Programming3, 4 Field Update Initial Max Initial Max, Full Temp Typical End of Life5 20°C ≤TA ≤30°C -40°C ≤TJ ≤150°C -40°C ≤TJ ≤150°C Unit Lifetime Max6 ≤ 1,000 cycles ≤ 250,000 cycles tqppgn Quad-page (1024 bits) program time 268 800 1,200 396 2,000 μs t16kers 16 KB Block erase time 168 290 320 250 1,000 ms t16kpgn 16 KB Block program time 34 45 50 40 1,000 ms t32kers 32 KB Block erase time 217 360 390 310 1,200 ms t32kpgm 32 KB Block program time 69 100 110 90 1,200 ms t64kers 64 KB Block erase time 315 490 590 420 1,600 ms t64kpgm 64 KB Block program time 138 180 210 170 1,600 t256kers 256 KB Block erase time 884 1,520 2,030 1,080 4,000 — ms t256kpgm 256 KB Block program time 552 720 880 650 4,000 — ms ms 1. Program times are actual hardware programming times and do not include software overhead. Block program times assume quad-page programming. 2. Typical program and erase times represent the median performance and assume nominal supply values and operation at 25 °C. Typical program and erase times may be used for throughput calculations. 3. Conditions: ≤ 150 cycles, nominal voltage. 4. Plant Programing times provide guidance for timeout limits used in the factory. 5. Typical End of Life program and erase times represent the median performance and assume nominal supply values. Typical End of Life program and erase values may be used for throughput calculations. 6. Conditions: -40°C ≤ TJ ≤ 150°C, full spec voltage. 6.3.1.2 Flash memory Array Integrity and Margin Read specifications Table 33. Flash memory Array Integrity and Margin Read specifications Symbol Characteristic Min Typical Max1 Units tai16kseq Array Integrity time for sequential sequence on 16KB block. — — 512 x Tperiod x Nread — tai32kseq Array Integrity time for sequential sequence on 32KB block. — — 1024 x Tperiod x Nread — tai64kseq Array Integrity time for sequential sequence on 64KB block. — — 2048 x Tperiod x Nread — tai256kseq Array Integrity time for sequential sequence on 256KB block. — — 8192 x Tperiod x Nread — tmr16kseq Margin Read time for sequential sequence on 16KB block. 73.81 — 110.7 μs tmr32kseq Margin Read time for sequential sequence on 32KB block. 128.43 — 192.6 μs 2 Table continues on the next page... SAC57D54H, Rev. 5, 05/2016 36 NXP Semiconductors Memory interfaces Table 33. Flash memory Array Integrity and Margin Read specifications (continued) Min Typical Max1 Units Margin Read time for sequential sequence on 64KB block. 237.65 — 356.5 μs Margin Read time for sequential sequence on 256KB block. 893.01 — 1,339.5 μs Symbol Characteristic tmr64kseq tmr256kseq 2 1. Array Integrity times need to be calculated and is dependant on system frequency and number of clocks per read. The equation presented require Tperiod (which is the unit accurate period, thus for 200 MHz, Tperiod would equal 5e-9) and Nread (which is the number of clocks required for read, including pipeline contribution. Thus for a read setup that requires 6 clocks to read with no pipeline, Nread would equal 6. For a read setup that requires 6 clocks to read, and has the address pipeline set to 2, Nread would equal 4 (or 6 - 2).) 2. The units for Array Integrity are determined by the period of the system clock. If unit accurate period is used in the equation, the results of the equation are also unit accurate. 6.3.1.3 Flash memory module life specifications Table 34. Flash memory module life specifications Symbol Array P/E cycles Data retention Characteristic Conditions Min Typical Units Number of program/erase cycles per block for 16 KB, 32 KB and 64 KB blocks.1 — 250,000 — P/E cycles Number of program/erase cycles per block for 256 KB blocks.2 — 1,000 250,000 P/E cycles Minimum data retention. Blocks with 0 - 1,000 P/E cycles. 50 — Years Blocks with 100,000 P/E cycles. 20 — Years Blocks with 250,000 P/E cycles. 10 — Years 1. Program and erase supported across standard temperature specs. 2. Program and erase supported across standard temperature specs. 6.3.1.4 Data retention vs program/erase cycles Graphically, Data Retention versus Program/Erase Cycles can be represented by the following figure. The spec window represents qualified limits. The extrapolated dotted line demonstrates technology capability, however is beyond the qualification limits. SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 37 Memory interfaces 6.3.1.5 Symbol Flash memory AC timing specifications Table 35. Flash memory AC timing specifications Characteristic Min Typical Max Units Time from setting the MCR-PSUS bit until MCR-DONE bit is set to a 1. — 7 9.1 μs plus four system clock periods plus four system clock periods Time from setting the MCR-ESUS bit until MCR-DONE bit is set to a 1. — 16 20.8 plus four system clock periods plus four system clock periods Time from clearing the MCR-ESUS or PSUS bit with EHV = 1 until DONE goes low. — — 100 ns tdone Time from 0 to 1 transition on the MCR-EHV bit initiating a program/erase until the MCR-DONE bit is cleared. — — 5 ns tdones Time from 1 to 0 transition on the MCR-EHV bit aborting a program/erase until the MCR-DONE bit is set to a 1. — 16 20.8 μs plus four system clock periods plus four system clock periods Time to recover once exiting low power mode. 16 — 45 tpsus tesus tres tdrcv μs μs Table continues on the next page... SAC57D54H, Rev. 5, 05/2016 38 NXP Semiconductors Memory interfaces Table 35. Flash memory AC timing specifications (continued) Symbol Characteristic Min Typical plus seven system clock periods. Max Units plus seven system clock periods taistart Time from 0 to 1 transition of UT0-AIE initiating a Margin Read or Array Integrity until the UT0-AID bit is cleared. This time also applies to the resuming from a suspend or breakpoint by clearing AISUS or clearing NAIBP — — 5 ns taistop Time from 1 to 0 transition of UT0-AIE initiating an Array Integrity abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Array Integrity suspend request. — — 80 ns Time from 1 to 0 transition of UT0-AIE initiating a Margin Read abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Margin Read suspend request. 10.36 tmrstop 6.3.1.6 plus fifteen system clock periods — plus four system clock periods 20.42 μs plus four system clock periods Flash read wait state and address pipeline control settings The following table describes the recommended RWSC and APC settings at various operating frequencies based on specified intrinsic flash access times of the flash module controller array at 150 °C. Table 36. Flash read wait state and address pipeline control guidelines Flash Frequency RWSC setting APC setting 0 MHz < fFLASH ≤ 33 MHz 0 0 33 MHz < fFLASH ≤ 100 MHz 2 1 100 MHz < fFLASH ≤ 133 MHz 3 1 133 MHz < fFLASH ≤ 167 MHz 4 1 167 MHz < fFLASH ≤ 200 MHz 5 2 6.3.2 QuadSPI AC specifications • Measurements are with a load of 35 pF on output pins. Input slew: 1ns, DSE[1:0]=11 • QuadSPI input timing is with 15pF load on flash output The following table lists various QuadSPI modes and their corresponding configurations. These DDR configurations are applicable when used without learning. Please see the device reference manual for register and bit descriptions. SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 39 Memory interfaces Table 37. QuadSPI read/write settings QuadSPI Modes QuadSPI_MCR[D QuadSPI_MCR[D QuadSPI_MCR QS_EN] [SCLKCFG] DR_EN] QuadSPI_SOCCR QuadSPI_FLSH [SOCCFG] CR[TDH] SDR mode Internal DQS 0 mode 1 07h 002F_002Fh 00 DDR mode (without learning ) 4x Sampling mode 1 0 Don't care Don't care 10 Internal DQS 1 mode 1 03h 002F_002Fh 10 HyperFlash mode 1 02h 0000_0000h 10 6.3.2.1 1 SDR mode 1 2 3 Clock Tck SCK Tcsh Tcss CS Tih Tis Data in Figure 11. QuadSPI input timing (SDR mode) diagram NOTE • A negative time indicates the actual capture edge inside the device is earlier than clock appearing at pad. • All board delays need to be added appropriately • Input hold time being negative does not have any implication or max achievable frequency Table 38. QuadSPI input timing (SDR mode) specifications Symbol Parameter Value Min Unit Max Tis Setup time for incoming data 5.5 - ns Tih Hold time for incoming data 1.5 - ns FSCK SCK clock frequency - 80 MHz SAC57D54H, Rev. 5, 05/2016 40 NXP Semiconductors Memory interfaces NOTE For SDR mode, QuadSPI_MCR[DQS_EN] must be set as '1'. The delay chain settings for this mode is mentioned Table 37. 1 2 3 Clock Tck SCK Tcsh Tcss CS Toh Tov Data out Figure 12. QuadSPI output timing (SDR mode) diagram Table 39. QuadSPI output timing (SDR mode) specifications Symbol Parameter Value Min Unit Max Tov Output Data Valid - 2.8 ns Toh Output Data Hold -1.5 - ns Tck SCK clock period - 80 MHz Tcss Chip select output setup time 1 - ns Tcsh Chip select output hold time -1 - ns 6.3.2.2 DDR mode 1 2 3 Clock Tck SCK CS Tis Tih Data in Figure 13. QuadSPI input timing (DDR mode) diagram SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 41 Memory interfaces Table 40. QuadSPI input timing (DDR mode) specifications without learning (valid across PVT) Symbol Parameter Value Min Unit Configuration Max Tis Setup time for incoming 5.5 data — ns Tih Hold time for incoming data — ns FSCK SCK Clock Frequency 1.5 — 45 (Internal DQS) — 35 (4x sampling) MHz Refer Table 37 QSPI_SMPR[DDRS MP]=1 Table 41. QuadSPI input timing (DDR mode) specifications with learning Symbol Parameter Value Min FSCK SCK Clock Frequency Unit Note Max — 80 (Internal DQS) 1 — 66 (4x sampling) MHz Flash data valid window must be > 3.5 ns Flash data valid window must be > 3.5 ns, Flash max access time must be < = 6.5 ns 1. Multiple (dynamic) calibration across voltage/temperature on board required. 1 2 3 Clock Tck SCK Tcss Tcsh CS Tov Toh Data out Figure 14. QuadSPI output timing (DDR mode) diagram Table 42. QuadSPI output timing (DDR mode) specifications Symbol Parameter Value Min Unit Max Tov Output Data Valid - 4.5 ns Toh Output Data Hold 1.5 - ns Tcss Chip select output setup time 1 - ns Table continues on the next page... SAC57D54H, Rev. 5, 05/2016 42 NXP Semiconductors Memory interfaces Table 42. QuadSPI output timing (DDR mode) specifications (continued) Symbol Parameter Value Min Tcsh Chip select output hold time 6.3.2.3 -1 Unit Max - ns HyperFlash mode NOTE In HyperFlash mode, the read/write maximum frequency is 90 MHz. RDS TsMIN ThMIN DI[7:0] Figure 15. QuadSPI input timing (Hyperflash mode) diagram Table 43. QuadSPI input timing (Hyperflash mode) specifications Symbol Parameter Value Min Unit Configurations Max Tis Setup time for incoming data 2 - ns Tih Hold time for incoming data 2 - ns Refer Table 37 SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 43 Memory interfaces CK CK 2 Tclk SKMAX Tclk SKMIN THO TDVO Output Invalid Data Figure 16. QuadSPI output timing (Hyperflash mode) diagram Table 44. QuadSPI output timing (Hyperflash mode) specifications Symbol Parameter Value Min Unit Max TDVO Output Data Valid - 3 ns THO Output Data Hold 1.3 - ns TclkSKMAX CK to CK2 skew max - T/4 + 0.5 ns TclkSKMIN CK to CK2 skew min T/4 - 0.5 - ns 6.3.3 SDR AC specifications For details on read timings with and without the external capacitor and capacitance value, refer the "Chip-specific MDDRC information" section of the device Reference Manual. For SDRAM operating frequencies above 80 MHz the SDR_A12 pin cannot be used for the SDRAM address. At higher operating frequencies this pin requires an external capacitor connected with VSS to adjust the read timing. Round trip delay (consisting of board trace delay of SDCK and DQ(READ)) should not be more than 450 ps. NOTE 1. All transitions measured at mid-supply (VDDE_SDR/2). 2. Data signal which are driven from ATE are given a swing of 20%/80% of full signal swing. SAC57D54H, Rev. 5, 05/2016 44 NXP Semiconductors Memory interfaces 3. The DQS Config Offset Count register (MDDRC_DQS_CFG) would need to be programmed with value 0x0000_16h in the initialization code when operating SDR at 160 MHz. 4. The SRE settings for SDR_CLK pad going to the external memory should be 2'b11 (as noted in the "Section 15.3.2.1 Recommended settings for SRE pads" in the Reference Manual). SRE settings for loopback clock A12 has been reduced to 2'b01 in CZ to help with EMC improvement. Table 45. SDR @ 160 MHz AC timing specification ID Symbol — tSDCK DD1 DD21 Parameter Min Typ Max Unit Clock Period — 6.25 — ns tQVS Data output Valid (Write transaction) — — (0.5 × tSDCK) + 1.125 ns tQH Data output Hold (Write transaction) 1.5 — — ns DD3 tIS Data Input Setup (Read transaction) -0.4 — DD4 tIH Data input Hold (Read transaction) 3.7 — — ns — tCH CK HIGH pulse width 0.43 — 0.57 tCK — tCL CK LOW pulse width 0.43 — 0.57 tCK — — Series termination (Data/CLK/ Address/Command) — 50 — ohms — — Trans. line impedance (Zo) — 50 — ohms ns 1. Applies to command and address buses also. Table 46. SDR @ 80 MHz AC timing specification ID Symbol — tSDCK DD1 Parameter Min Typ Max Unit Clock Period — 12.5 — ns tQVS Data output Valid (Write transaction) — — (0.5 × tSDCK) + 1.25 ns DD21 tQH Data output Hold (Write transaction) 3.0 — — ns DD3 tIS Data Input Setup (Read transaction) 2.2 — DD4 tIH Data input Hold (Read transaction) 2.0 — — ns — tCH CK HIGH pulse width 0.43 — 0.57 tCK — tCL CK LOW pulse width 0.43 — 0.57 tCK — — Series termination (Data/CLK/ Address/Command) — 50 — ohms — — Trans. line impedance (Zo) — 50 — ohms ns 1. Applies to command and address buses also. SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 45 Memory interfaces Figure 17. SDR (@ 160 MHz and @ 80 MHz) AC read and write timings 6.3.3.1 SDR DC specifications The SDR DC specifications are same as pad_fc_hv specs described in this document. 6.3.4 DDR2 SDRAM AC specifications NOTE DDR2-800 (-25E speed grade) is the lowest speed grade supported. If self-refresh mechanism needs to be supported, an external pull-down resistance needs to be connected to the DDR CKE pin. NOTE Specified values in the table are at recommended operating conditions with VDDE_DDR of 1.8±5.5% Table 47. DDR2 SDRAM timing specifications1, 2, 3, 4, 5 ID Symbol — F — VIX-AC Parameter Min Typ Max Unit Frequency of operation (Clock Period) — — 320 MHz MCK AC differential crosspoint voltage 0.5 × VDDE_DDR — 0.175 — 0.5 × VDDE_DDR + 0.175 V DD1 tDDR_CLK Clock period 3.125 — — ns DD2 tDDR_CLKH High pulse width6 0.47 — 0.53 tCK DD3 tDDR_CLKL Low pulse width 0.47 — 0.53 tCK DD4 tCMS Address/Command Output Setup 0.5 × tDDR_CLK–0.75 — — ns DD5 tCMH Address/Command Output Hold 0.5 × tDDR_CLK–0.75 — — ns DD6 tDQSS First DQS latching transition to associated clock edge -0.18 × tDDR_CLK — 0.18 × tDDR_CLK ns Table continues on the next page... SAC57D54H, Rev. 5, 05/2016 46 NXP Semiconductors Memory interfaces Table 47. DDR2 SDRAM timing specifications1, 2, 3, 4, 5 (continued) ID DD7 Symbol tOS Parameter Min Typ Max Unit Data and Data Mask Output Setup relative to DQS (DDR Write Mode) tDDR_CLK/4 − 0.4 — — ns Data and Data Mask Output Hold relative to DQS (DDR Write Mode) tDDR_CLK/4 − 0.4 — — ns — 0.24 ns 8, 9 DD8 tOH 7, 10 DD9 tIS Input Data Skew relative to DQS11 — — Parallel termination address lines — 50 — Ohms — — Differential clock lines — 100 — Ohms — — Trans. Line (differential Zo) — 50 — Ohms 1. 2. 3. 4. 5. 6. 7. 8. VDDE_DDR value is 1.8 V for DDR2 mode CZ at -40 to 125 °C. Measured with clock pin loaded with differential 100 ohm termination resistor. All transitions measured at mid-supply (VDDE_DDR/2). Measured with all outputs except the clock loaded with 50 ohm termination resistor to VDDE_DDR/2. Pulse width high + pulse width low cannot exceed minimum and maximum clock period. The losses for IO and package are 190 ps and are already included in the 400 ps budget taken by the device. This specification relates to the required input setup time of DDR memories. The chip output setup should be larger than the input setup of the DDR memories. If it is not larger, then the input setup on the memory is in violation. DDR_DQ[31:24] is relative to DDR_DQS[3]; DDR_DQ[23:16] is relative to DDR_DQS[2], DDR_DQ[15:8] is relative to DDR_DQS[1] and DDR_DQ[7:0] is relative to DDR_DQS[0]. 9. The first data beat is valid before the first rising edge of DQS and after the DQS write preamble. The remaining data beats are valid for each subsequent DQS edge. 10. This specification relates to the required hold time of DDR memories. DDR_DQ[31:24] is relative to DDR_DQS[3]; DDR_DQ[23:16] is relative to DDR_DQS[2], DDR_DQ[15:8] is relative to DDR_DQS[1] and DDR_DQ[7:0] is relative to DDR_DQS[0]. 11. Data input skew is derived from each DDR_DQS clock edge. It begins with a DDR_DQS transition and ends when the last data line becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other factors). Figure 18 shows the DDR2 SDRAM write timing. SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 47 Memory interfaces DD1 DD2 DDR_CLK DD4 DD3 DDR_CLK DD5 DDR_CSn , DDR_WE DDR_RAS ,DDR_CAS CMD DDR_A[15:0] ROW COL DDR_DQS DD7 DDR_D[31:0] WD1 WD2 WD3 WD4 DD7 DQS DD6 DQ, DM(out) tDS tDH Figure 18. DDR2 write timing Figure 19 shows the DDR2 SDRAM read timing. SAC57D54H, Rev. 5, 05/2016 48 NXP Semiconductors Communication modules DD1 DD2 DDR_CLK DD3 DDR_CLK CL= 4 DD5 n DDR_WE DDR_CS::, DDR_RAS, DDR_CAS CMD CL= 5 DD4 DDR_A[15:0] ROW COL DQS Read Preamble DD9 CL= 4 DDR_DQS DQS Read Postamble DDR_D[7:0] CL = 5 RD1 RD2 RD3 RD4 DQS Read Postamble DQS Read Preamble DDR_DQS DDR_D[7:0] RD1 RD2 RD3 RD4 Figure 19. DDR2 read timing 6.4 Communication modules 6.4.1 SPI electrical specifications Table 48. SPI electrical specifications No Symbol Parameter Conditions Master (MTFE = 0) High Speed Mode low Speed mode Min Max Min Max 25 — 50 — Unit 1 tSCK SPI cycle time Slave (MTFE = 0) 40 — 60 — 2 tCSC PCS to SCK delay — 16 — — — ns 3 tASC After SCK delay — 16 — — — ns 4 tSDC SCK duty cycle — tSCK/2 - 1 tSCK/2 + 1 — — ns 5 tA Slave access time SS active to SOUT valid — 40 — — ns 6 tDIS Slave SOUT disable time SS inactive to SOUT High-Z or invalid — 25 — — ns 7 tPCSC PCSx to PCSS time 13 — — — ns — ns Table continues on the next page... SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 49 Communication modules Table 48. SPI electrical specifications (continued) No Symbol 8 tPASC 9 tSUI 10 11 12 tHI tSUO tHO Parameter High Speed Mode low Speed mode Min Max Min Max 13 — — — ns Data setup time Master (MTFE = 0) for inputs Slave NA — 20 — ns 4 — 4 — Master (MTFE = 1, CPHA = 0) 15 — 8 — Master (MTFE = 1, CPHA = 1) 15 — 20 — Master (MTFE = 0) NA — –2 — Slave 4 — 4 — — PCSS to PCSx time Data hold time for inputs Conditions — Master (MTFE = 1, CPHA = 0) 0 — 111 Master (MTFE = 1, CPHA = 1) 0 — -2 — Data valid (after Master (MTFE = 0) SCK edge) Slave — NA — 7 — 15 — 23 Master (MTFE = 1, CPHA = 0) — 7 — 19.51 Master (MTFE = 1, CPHA = 1) — 7 — 7 Master (MTFE = 0) NA — –2 — Slave 2 — 2 — — — Data hold time for outputs Master (MTFE = 1, CPHA = 0) -2 — 101 Master (MTFE = 1, CPHA = 1) –2 — –2 Unit ns ns ns 1. SMPL_PTR should be set to 1 NOTE Restriction for high speed modes: • Maximum of one SPI will support 40 MHz Master mode SCK • 4 SPIs will support 20 MHz master SCK frequency. • Maximum of one SPI will support 25 MHz Slave SCK frequency. • SIN(GPIO_20, PB[4]), DATAOUT(GPIO_19, PB[3]), SCK(GPIO_27, PB[11]) groups support high frequency mode. SAC57D54H, Rev. 5, 05/2016 50 NXP Semiconductors Communication modules NOTE For numbers shown in the following figures, see Table 48 2 3 PCSx 1 4 SCK Output (CPOL=0) 4 SCK Output (CPOL=1) 9 SIN 10 First Data Last Data Data 12 SOUT First Data 11 Data Last Data Figure 20. SPI classic SPI timing — master, CPHA = 0 PCSx SCK Output (CPOL=0) 10 SCK Output (CPOL=1) 9 SIN Data First Data 12 SOUT First Data Last Data 11 Data Last Data Figure 21. SPI classic SPI timing — master, CPHA = 1 SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 51 Communication modules 3 2 SS 1 4 SCK Input (CPOL=0) 4 SCK Input (CPOL=1) 5 First Data SOUT 9 6 Data Last Data Data Last Data 10 First Data SIN 11 12 Figure 22. SPI classic SPI timing — slave, CPHA = 0 SS SCK Input (CPOL=0) SCK Input (CPOL=1) 11 5 12 SOUT First Data 9 SIN Data Last Data Data Last Data 6 10 First Data Figure 23. SPI classic SPI timing — slave, CPHA = 1 SAC57D54H, Rev. 5, 05/2016 52 NXP Semiconductors Communication modules 3 PCSx 4 1 2 SCK Output (CPOL=0) 4 SCK Output (CPOL=1) 9 SIN 10 First Data Last Data Data 12 SOUT 11 First Data Last Data Data Figure 24. SPI modified transfer format timing — master, CPHA = 0 PCSx SCK Output (CPOL=0) SCK Output (CPOL=1) 10 9 SIN First Data Data 12 SOUT First Data Data Last Data 11 Last Data Figure 25. SPI modified transfer format timing — master, CPHA = 1 SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 53 Communication modules 3 2 SS 1 SCK Input (CPOL=0) 4 4 SCK Input (CPOL=1) 12 11 5 First Data SOUT Data Last Data 10 9 Data First Data SIN 6 Last Data Figure 26. SPI modified transfer format timing – slave, CPHA = 0 SS SCK Input (CPOL=0) SCK Input (CPOL=1) 11 5 6 12 First Data SOUT 9 Last Data Data Last Data 10 First Data SIN Data Figure 27. SPI modified transfer format timing — slave, CPHA = 1 8 7 PCSS PCSx Figure 28. SPI PCS strobe (PCSS) timing SAC57D54H, Rev. 5, 05/2016 54 NXP Semiconductors Communication modules 6.4.2 Ethernet AC specifications The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. 6.4.2.1 MII signal switching specifications The following timing specs meet the requirements for MII style interfaces for a range of transceiver devices. Table 49. MII signal switching specifications Symbol — MII1 Description RXCLK frequency RXCLK pulse width high Min. Max. Unit — 25 MHz 35% 65% RXCLK period MII2 RXCLK pulse width low 35% 65% RXCLK period MII3 RXD[3:0], RXDV, RXER to RXCLK setup 5 — ns MII4 RXCLK to RXD[3:0], RXDV, RXER hold 5 — ns TXCLK frequency — 25 MHz 35% 65% TXCLK — MII5 TXCLK pulse width high period MII6 TXCLK pulse width low 35% 65% TXCLK period MII7 TXCLK to TXD[3:0], TXEN, TXER invalid 2 — ns MII8 TXCLK to TXD[3:0], TXEN, TXER valid — 25 ns MII6 MII5 TXCLK (input) MII8 MII7 TXD[n:0] Valid data TXEN Valid data TXER Valid data Figure 29. RMII/MII transmit signal timing diagram SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 55 MediaLB (MLB) electrical specifications MII2 MII1 MII3 MII4 RXCLK (input) RXD[n:0] Valid data RXDV Valid data RXER Valid data Figure 30. RMII/MII receive signal timing diagram 6.4.2.2 RMII signal switching specifications The following timing specs meet the requirements for RMII style interfaces for a range of transceiver devices. Table 50. RMII signal switching specifications Symbol — Description EXTAL frequency (RMII input clock RMII_CLK) Min. Max. Unit — 50 MHz RMII1 RMII_CLK pulse width high 35% 65% RMII_CLK period RMII2 RMII_CLK pulse width low 35% 65% RMII_CLK period RMII3 RXD[1:0], CRS_DV, RXER to RMII_CLK setup 4 — ns RMII4 RMII_CLK to RXD[1:0], CRS_DV, RXER hold 2 — ns RMII7 RMII_CLK to TXD[1:0], TXEN invalid 4 — ns RMII8 RMII_CLK to TXD[1:0], TXEN valid — 15 ns 6.4.3 MediaLB (MLB) electrical specifications 6.4.3.1 MLB 3-wire interface DC specifications The section lists the MLB 3-wire interface electrical specifications. Table 51. MediaLB 3-wire interface DC specifications Parameter Symbol Test Conditions Min Max Unit Maximum input voltage — — — 3.6 V Low level input threshold VIL — — 0.7 V Table continues on the next page... SAC57D54H, Rev. 5, 05/2016 56 NXP Semiconductors MediaLB (MLB) electrical specifications Table 51. MediaLB 3-wire interface DC specifications (continued) Parameter Symbol Test Conditions Min Max Unit High level input threshold VIH See Note1 1.8 — V Low level output threshold VOL IOL = –6 mA — 0.4 V High level output threshold VOH IOH = –6 mA 2.0 — V Input leakage current IL 0 < Vin < VDD — ±10 μA 1. Higher VIH thresholds can be used; however, the risks associated with less noise margin in the system must be evaluated and assumed by the customer. 6.4.3.2 MLB 3-wire interface electrical specifications This section describes the timing electrical information of the MLB module. Figure 31. MediaLB 3-wire Timing Ground = 0.0 V; Load Capacitance = 60 pF, input transition= 1 ns ; MediaLB speed = 256/512 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold as listed below; unless otherwise noted. Table 52. MLB 3-wire 256/512 Fs Timing Parameters Symbol Parameter Min Max Unit Comment fmck MLBCLK operating frequency 11.264 25.6 MHz 256xFs at 44.0 kHz, 512xFs at 50.0 kHz tmckr MLBCLK rise time − 1 ns VIL to VIH tmckf MLBCLK fall time − 1 ns VIH to VIL Table continues on the next page... SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 57 MediaLB (MLB) electrical specifications Table 52. MLB 3-wire 256/512 Fs Timing Parameters (continued) Symbol Parameter Min MLBCLK low time1 tmckl tmckh MLBCLK high time Max 30 − 14 − 30 − 14 − Unit ns Comment 256xFs 512xFs ns 256xFs 512xFs tdsmcf MLBSIG/MLBDAT receiver input setup to MLBCLK falling 3 − ns − tdhmcf MLBSIG/MLBDAT receiver input hold from MLBCLK low 2 − ns − tmcfdz MLBSIG/MLBDAT output valid from MLBCLK low2 0 16 ns 256xFs 0 12.5 Bus output hold from MLBCLK low 2 − tmdzh 512xFs3 ns − 1. MLBCLK low/high time includes the pluse width variation. 2. The MediaLB driver can release the MLBDAT/MLBSIG line as soon as MLBCLK is low; however, the logic state of the final driven bit on the line must remain on the bus for tmdzh. Therefore, coupling must be minimized while meeting the maximum load capacitance listed. 3. Only 1 pair of MLB pads support 512 Fs: PK[11] - MLB Signal Output PK[12] - MLB Data Output PK[13] - MLB clock input Ground = 0.0 V; Load Capacitance = 40 pF, input transition= 1 ns; MediaLB speed = 1024 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold as listed below; unless otherwise noted. Table 53. MLB 3-wire 1024 Fs Timing Parameters Symbol fmck Parameter MLBCLK Operating Frequency1 Min Max 45.056 − − 51.2 Unit MHz Comment 1024 x fs at 44.0 kHz 1024 x fs at 50.0 kHz fmckr MLBCLK rise time − 1 ns VIL to VIH fmckf MLBCLK fall time − 1 ns VIH to VIL tmckl MLBCLK low time 6.1 − ns tmckh MLBCLK high time 9.3 − ns tdsmcf MLBSIG/MLBDAT receiver input setup to MLBCLK falling 3 − ns tdhmcf MLBSIG/MLBDAT receiver input hold from MLBCLK low 2 − ns tmcfdz MLBSIG/MLBDAT output valid from MLBCLK low − 16 ns tmdzh Bus Hold from MLBCLK low 2 − ns 1. The controller can shut off MLBCLK to place MediaLB in a low-power state. Depending on the time the clock is shut off, a runt pulse can occur on MLBCLK. SAC57D54H, Rev. 5, 05/2016 58 NXP Semiconductors Display modules 6.5 Display modules 6.5.1 LCD driver electrical specifications NOTE When using the LCD segment display module in the 208LQFP package options the VDDE_B and VDDE_SDR supply pins should be shorted together if LCD signal pins are used in both I/O supply domains. Table 54. LCD driver specifications Symbol 1. 2. 3. 4. Value1 Parameter Unit Min Typ Max ZBP/FP LCD output impedance (BP[n-1:0], FP[m-1:0]) for output levels VLCD, VSS - - 10 kΩ IBP/FP LCD output current (BP[n-1:0], FP[m-1:0]) for outputs charge/discharge voltage levels VLCD2/3, VLCD1/2, VLCD1/3) 2,3 - 2-180 - µA Offset Offset of outputs with capacitive load - - 50 4 mV VDD = 5.0 V ± 10%, TA = –40 to 105 °C, unless otherwise specified. Outputs measured one at a time, low impedance voltage source connected to the VLCD pin. With PWR = 0-3, BSTEN = 0-1, BSTAO = 0-1. 50 mV offset is only guaranteed across temperature with BSTEN=1 / BSTAO=1 up to 85oC. 6.5.2 2D-ACE electrical specifications 6.5.2.1 Interface to TFT LCD Panels (2D-ACE) The following figure depicts the LCD interface timing for a generic active matrix color TFT panel. In this figure signals are shown with positive polarity. The sequence of events for active matrix interface timing is: • PCLK latches data into the panel on its positive edge (when positive polarity is selected). In active mode, PCLK runs continuously. This signal frequency could be from 5 to 80 MHz depending on the panel type. • HSYNC causes the panel to start a new line. It always encompasses at least one PCLK pulse. • VSYNC causes the panel to start a new frame. It always encompasses at least one HSYNC pulse. • DE acts like an output enable signal to the LCD panel. This output enables the data to be shifted onto the display. When disabled, the data is invalid and the trace is off. SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 59 2D-ACE electrical specifications VSYNC LINE 1 HSYNC LINE 2 LINE 3 LINE 4 LINE n-1 LINE n HSYNC DE 1 2 3 m-1 m PCLK LD[23:0] Figure 32. TFT LCD interface timing 6.5.2.2 Interface to TFT LCD Panels—pixel level timings The following figure depicts depicts the horizontal timing (timing of one line), including both the horizontal sync pulse and data. All parameters shown in the diagram are programmable. This timing diagram corresponds to positive polarity of the PCLK signal (meaning the data and sync signals change on the rising edge) and active-high polarity of the HSYNC, VSYNC and DE signals. The user can select the polarity of the HSYNC and VSYNC signals via the SYN_POL register, whether active-high or active-low. The default is active-high. The DE signal is always active-high. Pixel clock inversion and a flexible programmable pixel clock delay are also supported. They are programmed via the DCU Clock Confide Register (DCCR) in the system clock module. The DELTA_X and DELTA_Y parameters are programmed via the DISP_SIZE register. The PW_H, BP_H and FP_H parameters are programmed via the HSYN PARA register. The PW_V, BP_V and FP_V parameters are programmed via the VSYN_PARA register. SAC57D54H, Rev. 5, 05/2016 60 NXP Semiconductors 2D-ACE electrical specifications tHSP tPWH Start of line tFPH tSW tBPH tPCP PCLK Invalid Data LD[23:0] 2 1 3 DELTA_X Invalid Data HSYNC DE Figure 33. Vertical sync pulse tVSP Start of Frame tSH tBPV tPWV tFPV tHCP HSYNC LD[23:0] (Line Data) 1 Invalid Data 2 3 DELTA_Y Invalid Data HSYNC DE Figure 34. Horizontal sync timing Table 55. TFT LCD interface timing parameters—horizontal and vertical Symbol Parameter Value Unit tPCP Display pixel clock period 12.5 ns tPWH HSYNC pulse width PW_H × tPCP ns tBPH HSYNC back porch width BP_H × tPCP ns tFPH HSYNC front porch width FP_H × tPCP ns tSW Screen width DELTA_X × tPCP ns tHSP HSYNC (line) period (PW_H + BP_H + FP_H + DELTA_X ) × tPCP ns tPWV VSYNC pulse width PWV × tHSP ns Table continues on the next page... SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 61 2D-ACE electrical specifications Table 55. TFT LCD interface timing parameters—horizontal and vertical (continued) Symbol Parameter Value Unit tBPV VSYNC back porch width BP_V × tHSP ns tFPV VSYNC front porch width FP_V × tHSP ns tSH Screen height DELTA_Y × tHSP ns tVSP VSYNC (frame) period (PW_V + BP_V + FP_V + DELTA_Y ) × tHSP ns 6.5.2.3 Interface to TFT LCD panels—access level 1 2 3 4 5 6 7 8 9 10 Pixel Clock Data Bus t HO t DV Valid Data Figure 35. Display timing diagram Table 56. Interface to TFT LCD panels—access level Symbol Parameter Min Max Unit Tpix Pixel clock frequency - 80 MHz TDV Data valid after pixel clock for Data/Hysnc/ Vsync/DE - 4.5 ns THO Output hold time for data and control bits 0 - ns Tskew Relative skew between data bits 3 ns NOTE The timing diagram is on the assumption that timing path between this device and external display is full cycle. SAC57D54H, Rev. 5, 05/2016 62 NXP Semiconductors 2D-ACE electrical specifications 6.5.3 Video input unit (VIU4) electrical specifications Clock fPIX_CLK tDHD tDSU Data Figure 36. VIU4 timing diagram Table 57. VIU4 timing parameters Symbol Parameter Min Typ Max Unit fPIX_CK VIU4 pixel clock frequency — — 53 MHz tDSU VIU4 data setup time 4 — — ns tDHD VIU4 data hold time 1 — — ns SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 63 TCON electrical specifications 6.5.4 TCON electrical specifications 6.5.4.1 TCON RSDS electrical specifications 1 2 3 4 5 6 7 8 9 10 PixelClock Pixel Data TCON Clock In TCON Divided Clock Out (50 MHz) Pixel Data Out TOV TOV TOH TOH Figure 37. TCON RSDS timing diagram Table 58. TCON RSDS timing parameters Symbol Parameter Value Unit Min Max TOV Output data valid time 2 - ns TOH Output data hold time 2 - ns 6.5.4.2 TCON TTL electrical specifications 1 2 3 4 5 6 7 8 9 10 Pixel Clock Data Bus and Timing Signals t HO t DV Valid Data Figure 38. TCON TTL timing diagram SAC57D54H, Rev. 5, 05/2016 64 NXP Semiconductors Motor control modules Table 59. TCON TTL timing parameters Symbol Parameter Min Max Unit Tpix Pixel clock frequency - 80 MHz TDV Data valid after pixel clock for data and timing signals - 5.5 ns THO Output hold time for data and control bits 0 - ns Tskew Relative skew between data bits - 3 ns 6.6 Motor control modules 6.6.1 Stepper Stall Detect (SSD) specifications Table 60. SSD electrical specifications Symbol Value1 Parameter Min Typ Max VDDM/22 + 0.03 V — — mA 0.8 1.0 1.2 MΩ Input common mode range VSSM — VDDM V SSDCONST SSD constant 3 0.539 0.574 0.610 — SSDOFFSET SSD offset (unipolar, Nsample = 1024) –53 — 45 counts SSD offset (bipolar, Nsample = 1024) -40 — 40 SSD offset (bipolar with offset cellation, Nsample = 1024) -5 — 5 SSD cmpout sample rate 0.5 — 2.0 VVREF Reference voltage (IVREF = 0) VDDM/2 – 0.03 IVREF Reference voltage output current 1.85 RIN Input resistance (against VDDM/2) VIN fSSDSMP VDDM /22 Unit MHz 1. VDDM_SMD = 5.0 V ±10%, Tj = –40 to +125 °C. 2. VDDM is the voltage level of VDDM_SMD supply 3. If offset cancellation is enable, OFFCNC must equal 0b01 and the integration window must be greater than or equal to 2 ms. The integration window = fSSDSMP x Nsample. SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 65 Debug specifications 6.7 Debug specifications 6.7.1 JTAG interface timing Table 61. JTAG pin AC electrical characteristics 1 # Symbol Characteristic Min Max Unit 1 tJCYC TCK Cycle Time 62.5 — ns 2 tJDC TCK Clock Pulse Width 40 60 % 3 tTCKRISE TCK Rise and Fall Times (40% - 70%) — 3 ns 4 tTMSS, tTDIS TMS, TDI Data Setup Time 5 — ns 5 tTMSH, tTDIH TMS, TDI Data Hold Time 5 — ns 6 tTDOV TCK Low to TDO Data Valid — 20 ns 7 tTDOI TCK Low to TDO Data Invalid 0 — ns 8 tTDOHZ TCK Low to TDO High Impedance — 15 ns 9 tJCMPPW JCOMP Assertion Time 100 — ns 10 tJCMPS JCOMP Setup Time to TCK Low 40 — ns 11 tBSDV TCK Falling Edge to Output Valid — 600 ns 12 tBSDVZ TCK Falling Edge to Output Valid out of High Impedance — 600 ns 13 tBSDHZ TCK Falling Edge to Output High Impedance — 600 ns 14 tBSDST Boundary Scan Input Valid to TCK Rising Edge 15 — ns 15 tBSDHT TCK Rising Edge to Boundary Scan Input Invalid 15 — ns 1. These specifications apply to JTAG boundary scan only. TCK 2 3 2 1 3 Figure 39. JTAG test clock input timing SAC57D54H, Rev. 5, 05/2016 66 NXP Semiconductors Debug specifications TCK 4 5 TMS, TDI 6 8 7 TDO Figure 40. JTAG test access port timing TCK 10 JCOMP 9 Figure 41. JTAG JCOMP timing SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 67 Debug specifications TCK 11 13 Output Signals 12 Output Signals 14 15 Input Signals Figure 42. JTAG boundary scan timing 6.7.2 Debug trace timing specifications Table 62. Debug trace operating behaviors Symbol Description Tcyc Clock period Twl Low pulse width Twh tDV tHO Min. Max. 40 Unit MHz 2 — ns High pulse width 2 — ns Data output valid 7.5 — ns Data output hold 0.5 — ns SAC57D54H, Rev. 5, 05/2016 68 NXP Semiconductors Debug specifications TRACECLK Tr Tf Twh Twl Tcyc Figure 43. TRACE_CLKOUT specifications trace output clock trace output data tHO tDV Figure 44. Trace data specifications 6.7.3 Wakeup Unit (WKPU) AC specifications Table 63. WKPU glitch filter specifications No. Symbol Parameter Min Typ Max Unit 1 WF 2 WNF Pulse width that is rejected — — 20 ns Pulse width that is passed 400 — — ns 6.7.4 External interrupt timing (IRQ pin) Table 64. External interrupt timing specifications No. Symbol Parameter Conditions Min Max Unit 1 tIPWL IRQ pulse width low — 3 — tCYC 2 tIPWH IRQ pulse width high — 3 — tCYC 3 tICYC IRQ edge to edge time — 6 — tCYC SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 69 Thermal attributes These values applies when IRQ pins are configured for rising edge or falling edge events, but not both. IRQ 1 2 3 Figure 45. External interrupt timing 7 Thermal attributes 7.1 Thermal attributes Board type Symbol Description 208LQFP Unit Notes Single-layer (1s) RθJA Thermal 19.1 resistance, junction to ambient (natural convection) °C/W 1,2 Four-layer (2s2p) RθJA Thermal 16.4 resistance, junction to ambient (natural convection) °C/W 1,2,3 Single-layer (1s) RθJMA Thermal 12.4 resistance, junction to ambient (200 ft./ min. air speed) °C/W 1,3 Four-layer (2s2p) RθJMA Thermal 12.4 resistance, junction to ambient (200 ft./ min. air speed) °C/W 1,3 — RθJB Thermal 7.4 resistance, junction to board °C/W 4 — RθJC Thermal 5.3 resistance, junction to case °C/W 5 — ΨJT Thermal 0.2 characterization parameter, junction to package top °C/W 6 Table continues on the next page... SAC57D54H, Rev. 5, 05/2016 70 NXP Semiconductors Thermal attributes Board type Symbol ΨJB — Description 208LQFP Thermal 0.3 characterization parameter, junction to package bottom Unit °C/W Notes 7 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal. 3. Per JEDEC JESD51-6 with the board horizontal. 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. With provided Theta-JB, Max junction temperature must be 125 degreeC. 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. 7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. Board type Symbol Description 516MAPBGA Unit Notes Single-layer (1s) RθJA Thermal 23.2 resistance, junction to ambient (natural convection) °C/W 1,2 Four-layer (2s2p) RθJA Thermal 16.2 resistance, junction to ambient (natural convection) °C/W 1,2,3 Single-layer (1s) RθJMA Thermal 15.9 resistance, junction to ambient (200 ft./ min. air speed) °C/W 1,3 Four-layer (2s2p) RθJMA Thermal 12.2 resistance, junction to ambient (200 ft./ min. air speed) °C/W 1,3 — RθJB Thermal 7.0 resistance, junction to board °C/W 4 — RθJC Thermal 3.7 resistance, junction to case °C/W 5 — ΨJT Thermal 0.1 characterization parameter, junction to package top °C/W 6 — ΨJB Thermal 2.7 characterization parameter, junction to package bottom °C/W 7 SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 71 Dimensions 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal. 3. Per JEDEC JESD51-6 with the board horizontal 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. With provided Theta-JB, Max junction temperature must be 125 degreeC. 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. 7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. 8 Dimensions 8.1 Obtaining package dimensions Package dimensions are provided in package drawing. To find a package drawing, go to http://www.nxp.com and perform a keyword search for the drawing’s document number: Package Body Size Pitch NXP Document Number 208 LQFP 28 mm x 28 mm 0.5 mm 98ASA00649D 516 MAPBGA 27 mm x 27 mm 1.0 mm 98ASA00623D 9 Pinouts 9.1 Package pinouts and signal descriptions For package pinouts and signal descriptions, refer to the Reference Manual. 10 Revision History The following table provides a revision history for this document. SAC57D54H, Rev. 5, 05/2016 72 NXP Semiconductors Revision History Table 65. Revision History Rev. No. Date Substantial Changes 1 30 Jan 2014 • • • • • • • 2 20 May 2014 • • • • • • • • • 20 May 2 (continue 2014 d) 3 13 March 2015 Updated family comparison table Updated Ordering information Updated Absolute Maximum Ratings and Recommended Operating Conditions tables Updated Power consumption table Revised parameter classifications in several tables Updated Main oscillator electrical characteristics table Added DDR2 Read timing figure in the DDR2 SDRAM AC specifications section and revised the parameter values • Updated QuadSPI Input timing (RPC mode) table Updated device part number to MAC57D54H "Feature list", updated Program and Data Trace support from "32-bit" to "16-bit" Updated block diagram, added detailed block diagram. Revised "Feature Sets" table. Removed parameter classifications throughout the document. Revised "Ordering information" section. Removed "Key electrical parameter" section. Revised "Absolute maximum ratings" table. In the "Recommended operating conditions (VDDE_x = 3.3 V)", revised note, added VDDA_REF, updated footnote with VDD_HV_FLA. • In the "Recommended operating conditions (VDDE_x = 3.3 V)", revised note, added VDDA_REF, updated footnote with VDD_HV_FLA. • Added Voltage monitor electrical specifications • In the "Voltage regulator electrical specifications", renamed VDD_PMC to VDDE_A, removed CHV_VDD_A, CHV_ADC, CHV_ADR, added a new section, "Recommended decoupling capacitor value". • In the "Voltage monitor electrical specifications", updated VLVD_FLASH configuration and threshold. • In the "Power consumption" table, updated Target Typ and Target Max for IOP Run Mode, IOP Stop Mode, Standby Mode. Added footnote for Standby Mode parameter. • Added note below Figure 6. • Revised "Electromagnetic Compatibility (EMC) specifications". • In the "Functional Pad AC Specifications @ 3.3 V Range table", added recommended settings, removed asymmetry drive load, added footnote: "Auto levels are applicable only to the ADC pins" • In the "DC electrical specifications @ 3.3 V Range table", removed footnote showing ramp rate. • In the "Functional Pad AC Specifications @ 5 V Range table", added recommended settings, removed asymmetry drive load. • In the "DDR2 pads AC electrical specifications at 1.8 V VDDE_DDR table",updated Prop. Delay (ns) L>H/ H>L. • In the "SSTL_18 Class II 1.8 V DDR2 DC specifications table", updated VDD12, removed JESD8-15 A notes from VDD0P9_DDR. • In the "SMC 5 V IO DC specifications", added Rdsonh, Rdsonl. • In the "SMC 5V pads IO AC specifications", updated pad_smc_io _hv values. • In the "SMC 3.3 V pads IO DC specifications", added Rdsonh, Rdsonl • In the "SMC 3.3 V functional pads IO DC specifications", updated pad_smc_io _hv values. • Updated High Level Block Diagram • Updated Family Comparison table • In Absolute maximum ratings table • Removed Vss and Tj spec. Added footnote, "Tj=125°C. Assumes Ta=105°C. Assumes maximum θJA of 2s2p board. See Thermal attributes section for details." Updated description of VINA spec. • Removed VDD_HV_FLA parameter. • In Recommended operating conditions section, added the following paragraph: The following table describes .... in the given range. • In Recommended operating conditions (VDDE_x = 3.3 V) Table continues on the next page... SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 73 Revision History Table 65. Revision History (continued) Rev. No. Date Substantial Changes • removed the footnote "This supply should be shorted on board with VSSA.VDDA_REF Min voltage changed to 3.15V from -3.15V • Recommended operating conditions (VDDE_x = 5 V) table: • Clarified parameter description for several paramters • Removed Vss • VSSEH_ADC: Updated min to -0.1 and max to 0.1V. • Added footnote: All parameters are with reference to Vss, unless otherwise specified. • Added Tj condition in the footnote. • Added a footnote in VDD12 pin description in Recommended operating conditions (VDDE_x = 3.3 V) table: VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be left floating. • In Voltage regulator electrical specifications section, • Changed the text "Supports up to 800 mA load internal generation of the 3.3 V flash supply when device connected in 5 V applications" into following bullet: • Supports up to 800mA current (on VDD12 supply) when using external NPN ballast transistor for generating core supply • Updated Voltage regulator capacitance connection figure to remove Flash voltage regulator, VDD_HV_FLA and CFLASH_REG • In block description, changed low range to low threshold and high range to high threshold. In Voltage regulator electrical specifications table, added Combined ESR of external capacitor parameter for Clp/ulp_reg. Added a foonote in the Cflash_reg • Added VDD_HV_BALLAST options section In Voltage monitor electrical specifications table, • Updated parameter description to remove the term internal/external from LV supply. • Removed VLVD_IO_A_HI parameter, added parameter description for "VLVD_FLASH during low power mode using LPBG as reference", in footnote 3, renamed VDD_HV_FLA to flash HV supply. In Power consumption table, • removed reference to "5 V Vreg Supply, External Ballast, 5 V only IO" figure, updated 3.3 V Vreg Supply, External Ballast. DDR2, Mixed 3.3 V / 5 V IO figure and 1.2 V External Supply, DDR2, Mixed 3.3 V / 5 V IO figure. 13 March 3 (continue 2015 d) • In DC electrical specifications @ 3.3 V Range, • Updated Pull_Ioh with Pull_Ioh_vil_hys data and its values, updated Pull_Iol with Pull_Iol_vil_hys data and its values • In DC electrical specifications @ 5 V Range, • Updated Pull_Ioh with Pull_Ioh_vil_hys data and its values, updated Pull_Iol with Pull_Iol_vil_hys data and its values • In DDR2 pads AC electrical specifications at 1.8V VDDE_DDR,added reference to SIUL_MSCR[SRE] in the Drive Strength Select cell. • In RSDS pads electrical specifications, updated Data rate TYP and MAX to 50 MHz, added Tskew value • In LVDS pads electrical specifications, updated Rise/Fall time specification for open LDI LVDS pads from 1.5 ns to 800 ps. • In ADC conversion characteristics (for 12-bit) table, • renamed TUEIS1WINJ to TUE for precision channels • added parameter name as Trecovery for STOP mode to Run mode recovery time • added parameter - ADC Analog Pad Table continues on the next page... SAC57D54H, Rev. 5, 05/2016 74 NXP Semiconductors Revision History Table 65. Revision History (continued) Rev. No. Date Substantial Changes • aded Total unadjusted error with current injection • removed footnote in "Conditions" column • Revised the whole section "Comparator and 6-bit DAC electrical specifications table" • In Fast Oscillator electrical characteristics table, removed FOSC VIH/VIL Min and Max spec and replaced with TYP specs: VIH as 1.84V, VIL as 1.48V . • In Fast internal RC Oscillator electrical specifications table, removed FUntrimmed spec • In Slow internal RC oscillator electrical specifications table, removed Foscu spec. • Revised PLL electrical specifications table • Revised the whole section "Flash Read Wait State and Address Pipeline Control Guidelines" • In LCD driver electrical specifications, added offset, IBP/FP, ZBP/FP • In 208LQFP and 516BGA thermal attribute tables, for RθJB updated footnote to add, "With provided Theta-JB, Max junction temperature must be 125 degreeC". 13 March 3 (continue 2015 d) • • • • • • • • 4 • In "Recommended operating conditions", removed phrase, "VDDE_A (4.5 V to 5.5 V) configuration is only supported in 176 LQFP". • In "LVDS pads electrical specifications", • Vdde parameter, updated foonote, from "VDDE is the VDDE_OLDI supply" to "VDDE is the VDDE_B supply" • "Differential o/p voltage" parameter, added foonote, "The limit applies to the default drive current". • "Rise/Fall time" parameter, added footnote, "Rise/fall time is assumed to be measured with 20%-80% levels". • In "Analog Comparator (CMP) electrical specifications", updated min VAIO from -35 mV to -42 mV and max VAIO from 35 mV to 42 mV. • Editorial changes in "Memory Interfaces" section. • In "QuadSPI electrical specifications", • updated table title from "QuadSPI delay chain read/write settings" to "QuadSPI read/write settings" and revised the content. • revised notes in the "SDR mode" section. • "QuadSPI input timing (SDR mode)" diagram, renamed SFCK to SCK • "QuadSPI output timing (SDR mode)" diagram, renamed SFCK to SCK • "QuadSPI input timing (SDR mode) specifications" table, added "FSCK" parameter • removed notes in the "DDR mode" section. • added new table, "QuadSPI input timing (DDR mode) specifications with learning". • "QuadSPI output timing (DDR mode) specifications" table, removed "Tck ". • "QuadSPI output timing (Hyperflash mode) specifications" table, renamed "TdvMAX" to "TDVO ". • In "SDR AC specifications", • SDR @ 160 MHz AC timing specification table, moved value of tSDCK from Min to Typ • SDR @ 80 MHz AC timing specification table, moved value of tSDCK from Min to Typ • In "DDR2 SDRAM AC specifications", added a note, "If self-refresh mechanism needs to be supported, an external pull-down resistance needs to be connected to the DDR CKE pin". • Revised "TCON RSDS timing diagram" • In "TCON RSDS timing parameters" table, updated TDS to TOV and updated TH to TOH. 17 Jun 2015 Revised Voltage monitor electrical specifications Revised Voltage regulator electrical specifications Revised Power consumption specifications Revised SSD electrical specifications Updated SAR-ADC electrical specifications by providing values for both 12-bit and 10-bit modes Revised QuadSPI, VIU and TCON specifications Updated Debug trace operating behaviors Renamed VDD_0P9_DDR to DDR_VREF throughout the document Table continues on the next page... SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 75 Revision History Table 65. Revision History (continued) Rev. No. 5 Date 05 May 2016 Substantial Changes • Updated part number from MAC57D5xx to SAC57D5xx throughout the document. • Changed Freescale to NXP: • In Determining valid orderable parts : web link address changed to NXP • In Electromagnetic Compatibility (EMC) specifications : changed Freescale to NXP. • Removed CAN-FD references from: • system connectivity row of Table 1, • communication bullet in "Features". • In the feature list, removed the phrase 'using external ballast transistor' from 'External 3.3 V input supply'. • Removed reference to 176 LQFP package from the following sections: • Table 1 • Ordering information • LCD driver electrical specifications • Thermal attributes • Obtaining package dimensions • In Recommended operating conditions, • removed phrase, "....and internal regulator cannot be used if peak application demand is more than 800 mA". • added a phrase, 'Design may experience up to 30 mA.........additional current'. • In Voltage regulator electrical specifications, • removed VRC_CTL and all connection to FPREG, RC_BALLAST and HDD_HV_BALLAST related content in the Voltage regulator capacitance connection figure and Voltage regulator electrical specifications table, • removed VDD_HV_BALLAST options section, • updated Recommended decoupling capacitor values. • In Table 5, • removed 'VLVD_FLASH' and 'VLVD_FLASH during low power mode using LPBG as reference' parameters. • updated VHVD_LV_cold fall trimmed typical value. • In Power consumption section, • updated Table 6 for standby current specs for 25oC, • removed VDDE_B supply name from footnote 5, • removed figure, "3.3 V Vreg Supply, External Ballast. DDR2, Mixed 3.3 V / 5 V IO", • renamed Figure 4 title from '1.2 V External Supply, DDR2, Mixed 3.3 V / 5 V IO' to 'Supply configuration', removed VRC_CTL block from the figure. • In Table 11, added Vol and Voh specs. • In Table 13 updated Ioh(dc) and Iol(dc) minimum values. • In Table 17, removed 'Vsum', 'Voh delta / Vol delta', 'Rdsonh' and 'Rdsonl' parameters. • Removed the column for 'Prop. Delay' parameter from the following tables: • Table 8 • Table 10 • Table 12 • Table 16 • Table 18 • Removed reference to 5V Typ and 5.5V max in Table 19 and Table 20. • In Table 24, • updated min and max values for 'INL' parameter. • removed '5V Reference Voltage' row in IDAC6b parameter. • In Table 28, • updated 'Temp Dependence' value as 600 ppm/C, • updated 'Supply Dependence' as 18%V, • updated 'Oscillator Frequency' as 119 KHz (min) and 136.5 KHz (max), • added 'Supply Current (Run)' as 2.75 uA and 'Supply Current (Stop)' as 200 nA. • In Table 27, updated TSTJIT value to '1.5%' and TLTJIT value to '0.2%' • In Table 29 updated Modulation Depth (Center Spread), max value updated to +/- 3.0%. • In SDR AC specifications, SAC57D54H, Rev. 5, 05/2016 76 NXP Semiconductors Revision History Table 65. Revision History Rev. No. Date Substantial Changes • • • • • added note, 'All transitions measured at mid-supply ..........with EMC improvement'. • added footnotes for DD1 and DD2 specs of Table 45 and Table 46 that these parameters also apply to command and address buses. In Table 47, updated DD2 and DD3 values and unit. In Table 54, in footnote 4, added phrase '..up to 85oC'. In Table 55 updated 'Display pixel clock period' (tPCP) value to 12.5 ns. In Table 60, updated the values for all parameters of SSDOFFSET and added footnote 3. SAC57D54H, Rev. 5, 05/2016 NXP Semiconductors 77 How to Reach Us: Home Page: nxp.com Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customerʼs technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions. NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © 2016 NXP B.V. Document Number SAC57D54H Revision 5, 05/2016