Freescale Semiconductor, Inc. Data Sheet: Technical Data Document Number: KL82P121M72SF0 Rev. 2, 11/2015 Kinetis KL82 Microcontroller 72 MHz ARM® Cortex®-M0+ with 128 KB Flash and 96 KB SRAM The KL82 MCU family's high performance, encryption features and ultra-low power capabilities extend its reach beyond traditional mPOS pin pads and terminals into more powerrestricted payment applications, such as smartphone and tablet attach readers, as well as those embedded in wearable technology. MKL82Z128Vxx7(R) 100 & 80 & 64 LQFP 121 & 64 MAPBGA (LL&LK&LH) 14x14 x1.7 mm Pitch (MC&MP) 8x8x1.43 mm Pitch 0.5mm 12x12x1.6 mm Pitch 0.5 mm 0.65 mm 5x5x1.23 mm 10x10x1.6 mm Pitch Pitch 0.5 mm 0.5 mm The product offers: • Hardware asymmetric cryptography – high-speed, codeand power-efficient data authentication with support for latest encryption protocols • EMV®-compatible with ISO7816-3 SIM interfaces – architected for EMV compliance and supported by an EMV Level 1 software stack • QSPI interface to expand program memory • Sleep mode power consumption from 2.5 µA with the SRAM content retained and RTC enabled • Crystal-less USB OTG controller, 16-bit ADC and multiple serial communication interfaces can all function autonomously in low-power modes with minimal CPU intervention • FlexIO to support any standard and customized serial peripheral emulation Core Processor • 72 MHz ARM® Cortex®-M0+ core ( up to 96 MHz for highspeed run) Memories • 128 KB program flash memory • 96 KB SRAM • 32 KB ROM with built-in boot loader • 32 B backup register • QSPI to expand program code in external high-speed serial NOR flash memory System • 8-channel asynchronous enhanced DMA controller • Watchdog • Low-leakage wakeup unit • Two-pin serial wire debug (SWD) programming and debugging interface • Micro trace buffer • Bit manipulation engine • Interrupt controller © 2015 Freescale Semiconductor, Inc. All rights reserved. Peripherals • USB full-speed 2.0 OTG controller supporting crystal-less operation and keeping connection alive under ultra-low power • Three low-power UART modules supporting asynchronous operation in low-power modes • Two I2C modules supporting up to 1 Mbps • Two 16-bit SPI modules supporting up to 24Mbps • One FlexIO module supporting emulation of additional UART, SPI, I2C, I2S, PWM and other serial modules, etc. up to 32 channels • One 16-bit ADC module with high accurate internal voltage reference and up to 16 channels • High-speed analog comparator containing a 6bit DAC for programmable reference input • One 12-bit DAC module • Two EMVSIM modules supporting EMV L1 compatible interface • Touch sensing interface up to 16 channels I/O • Memory protection unit • SRAM bit-banding Clocks • 48 MHz high accuracy (up to 0.5%) internal reference clock for high-speed run • 4 MHz high accuracy (up to 2%) internal reference clock for low-speed run • 32 kHz internal reference clock • 1 kHz internal reference clock • 32–40 kHz and 3–32 MHz crystal oscillator • PLL/FLL Timers • One 6-channel Timer/PWM module • Two 2-channel Timer/PWM modules • Two low-power timers • 4-channel periodic interrupt timer • Independent real time clock Security • 128-bit unique identification number per chip • Advanced flash security and access control • Hardware CRC module • Low-power trusted crypto engine supporting AES128/256, DES, 3DES, SHA256, RSA and ECC, with hardware DPA • True random number generator • Up to 85 General-purpose input/output pins (GPIO) Operating Characteristics • Voltage range: 1.71 to 3.6 V • Flash write voltage range: 1.71 to 3.6 V • Temperature range (ambient): -40 to 105°C Low Power • Down to 125 µA/MHz in Run mode • Down to 272 nA in Stop mode (RAM and RTC retained) • Six flexible static modes Packages • 121 MAPBGA 8mm x 8mm, 0.65mm pitch, 1.43mm max thickness • 80 LQFP 12mm x 12mm, 0.5mm pitch, 1.6mm max thickness • 100 LQFP 14mm x 14mm, 0.5mm pitch, 1.7mm max thickness (Package Your Way) • 64 MAPBGA 5mm x 5mm, 0.5mm pitch, 1.23mm max thickness (Package Your Way) • 64 LQFP 10mm x 10mm, 0.5mm pitch, 1.6mm max thickness (Package Your Way) NOTE The 100-, 64-pin LQFP and 64-pin MAPBGA packages supporting MKL82Z128VLL7, MKL82Z128VLH7 and MKL82Z128VMP7 part numbers for this product are not yet available. However, these packages are included in Package Your Way program for Kinetis MCUs. Visit nxp.com/KPYW for more details. Related resources Type Description Resource Selector Guide The NXP Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector. Solution Advisor Reference Manual The Reference Manual contains a comprehensive description of the structure and function (operation) of a device. KL82P121M72SF0RM1 Data Sheet The Data Sheet includes electrical characteristics and signal connections. KL82P121M72SF01 Chip Errata The chip mask set Errata provides additional or corrective information xN51R2 for a particular device mask set. Package drawing Package dimensions are provided in package drawings. MAPBGA 121-pin: 98ASA00423D MAPBGA 64-pin: 98ASA00420D LQFP 100-pin: 98ASS23308W LQFP 80-pin: 98ASS23174W LQFP 64-pin: 98ASS23234W 1. To find the associated resource, go to http://www.nxp.com and perform a search using this term. 2 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 2. To find the associated resource, go to http://www.nxp.com and perform a search using this term with the "x" replaced by the revision of the device you are using. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 3 Freescale Semiconductor, Inc. Table of Contents 1 Ordering information............................................................... 5 2 Overview................................................................................. 5 2.1 System features...............................................................7 2.1.1 ARM Cortex-M0+ core...................................... 7 2.1.2 NVIC..................................................................7 2.1.3 AWIC.................................................................7 2.1.4 Memory............................................................. 8 2.1.5 Reset and boot..................................................9 2.1.6 Clock options.....................................................11 2.1.7 Security............................................................. 14 2.1.8 Power management.......................................... 15 2.1.9 LLWU................................................................ 16 2.1.10 Debug controller................................................18 2.1.11 INTMUX............................................................ 18 2.1.12 Watch dog......................................................... 18 2.2 Peripheral features.......................................................... 19 2.2.1 BME.................................................................. 19 2.2.2 eDMA and DMAMUX........................................ 19 2.2.3 TPM...................................................................20 2.2.4 ADC...................................................................21 2.2.5 VREF.................................................................21 2.2.6 CMP.................................................................. 22 2.2.7 RTC...................................................................22 2.2.8 PIT.....................................................................23 2.2.9 LPTMR.............................................................. 23 2.2.10 CRC.................................................................. 24 2.2.11 LPUART............................................................ 24 2.2.12 SPI.................................................................... 25 2.2.13 I2C.....................................................................25 2.2.14 USB...................................................................26 2.2.15 FlexIO................................................................27 2.2.16 DAC...................................................................27 2.2.17 EMV-SIM...........................................................28 2.2.18 LTC................................................................... 29 2.2.19 TRNG................................................................ 29 2.2.20 TSI.....................................................................29 2.2.21 QuadSPI............................................................30 3 Memory map........................................................................... 30 4 Pinouts.................................................................................... 32 4.1 KL82 signal multiplexing and pin assignments................ 32 4.2 Pin properties.................................................................. 37 4.3 Module signal description tables..................................... 42 4.3.1 Core Modules....................................................42 4.3.2 System modules................................................42 4.3.3 Clock Modules...................................................44 4.3.4 Memories and memory interfaces.....................44 4.3.5 Analog............................................................... 45 4.3.6 Timer Modules.................................................. 46 4 Freescale Semiconductor, Inc. 4.3.7 Communication interfaces.................................48 4.3.8 Human-machine interfaces (HMI)..................... 51 4.4 KL82 Pinouts................................................................... 51 4.5 Package dimensions....................................................... 57 5 Electrical characteristics..........................................................64 5.1 Terminology and guidelines.............................................64 5.1.1 Definitions......................................................... 65 5.1.2 Examples.......................................................... 65 5.1.3 Typical-value conditions....................................66 5.1.4 Relationship between ratings and operating requirements..................................................... 66 5.1.5 Guidelines for ratings and operating requirements..................................................... 67 5.2 Ratings............................................................................ 67 5.2.1 Thermal handling ratings...................................67 5.2.2 Moisture handling ratings.................................. 68 5.2.3 ESD handling ratings........................................ 68 5.2.4 Voltage and current operating ratings............... 68 5.3 General............................................................................ 69 5.3.1 AC electrical characteristics.............................. 69 5.3.2 Nonswitching electrical specifications............... 69 5.3.3 Switching specifications.................................... 83 5.3.4 Thermal specifications...................................... 84 5.4 Peripheral operating requirements and behaviors...........86 5.4.1 Core modules....................................................86 5.4.2 Clock modules...................................................88 5.4.3 Memories and memory interfaces.....................95 5.4.4 Security and integrity modules.......................... 101 5.4.5 Analog............................................................... 101 5.4.6 Timers............................................................... 112 5.4.7 Communication interfaces.................................112 5.4.8 Human-machine interfaces (HMI)..................... 123 6 Design considerations.............................................................124 6.1 Hardware design considerations..................................... 124 6.1.1 Printed circuit board recommendations.............124 6.1.2 Power delivery system...................................... 124 6.1.3 Analog design................................................... 125 6.1.4 Digital design.....................................................126 6.1.5 Crystal oscillator................................................128 6.2 Software considerations.................................................. 130 6.3 Soldering temperature..................................................... 131 7 Part identification.....................................................................131 7.1 Description.......................................................................131 7.2 Format............................................................................. 131 7.3 Fields............................................................................... 131 7.4 Example...........................................................................132 8 Revision history.......................................................................132 Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Ordering information 1 Ordering information The following chips are available for ordering. Table 1. Ordering information Product Part number Memory Marking (Line1/Line2) MKL82Z128VMC7(R) MKL82 Package IO and ADC channel Flash (KB) SRAM (KB) Pin count Package GPIOs GPIOs (INT/ HD)1 ADC channels (SE/DP) 128 96 121 MAPBGA 85 85/0 16/2 Z128VMC7 MKL82Z128VLL7(R) MKL82Z128VL L7 128 96 100 LQFP 66 66/0 14/1 MKL82Z128VLK7(R) MKL82Z128 128 96 80 LQFP 56 56/0 12/1 VLK7 MKL82Z128VMP7(R) M82N7V 128 96 64 MAPBGA 41 41/0 11/1 MKL82Z128VLH7(R) MKL82Z128V 128 96 64 LQFP 41 41/0 11/1 LH7 1. INT: interrupt pin numbers; HD: high drive pin numbers NOTE The 100-, 64-pin LQFP and 64-pin MAPBGA packages supporting MKL82Z128VLL7, MKL82Z128VLH7 and MKL82Z128VMP7 part numbers for this product are not yet available. However, these packages are included in Package Your Way program for Kinetis MCUs. Visit nxp.com/KPYW for more details. 2 Overview The following figure shows the system diagram of this device Kinetis KL82 Microcontroller, Rev. 2, 11/2015 5 Freescale Semiconductor, Inc. Overview GPIOA GPIOB GPIOC Cortex M0+ GPIOE TSI0 S0 IOPORT ADC0(16-bit 16-ch) 32 KB ROM M2 DMA MUX DMA M3 USB FS/LS Crossbar switch NVIC S1 CMP0 96 KB RAM Bit Band S3 QSPI0 S2a 2 KB USB SRAM S2b BME Peripheral Bridge(Bus Clock - Max 24MHZ) CM0+ core System memory protection unit (MPU) M0 Debug (SWD) GPIOD 128 KB Flash FMC Slave Master 1.2V Voltage reference TPM0(6-channel) TPM1(2-channel) TPM2(2-channel) LPTMR0 LPTMR1 PIT0 RTC LPUART0 LPUART1 LPUART2 SPI0 SPI1 I2C0 I2C1 FlexIO0 EMVSIM0 MCG IRC 48M OSC IRC 4MHz EMVSIM1 VBAT Register File(128B) LP Trusted Cryptographic 0 IRC 32kHz TRNG0 Watchdog EWM Register File(32 Bytes) PLL CRC FLL LLWU RTC OSC RCM SMC PMC INTMUX0 Figure 1. System diagram The crossbar switch connects bus masters and slaves using a crossbar switch structure. This structure allows up to four bus masters to access different bus slaves simultaneously, while providing arbitration among the bus masters when they access the same slave. 6 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Overview 2.1 System features The following sections describe the high-level system features. 2.1.1 ARM Cortex-M0+ core The enhanced ARM Cortex M0+ is the member of the Cortex-M series of processors targeting microcontroller cores focused on very cost sensitive, low power applications. It has a single 32-bit AMBA AHB-Lite interface and includes an NVIC component. It also has hardware debug functionality including support for simple program trace capability. The processor supports the ARMv6-M instruction set (Thumb) architecture including all but three 16-bit Thumb opcodes (52 total) plus seven 32-bit instructions. It is upward compatible with other Cortex-M profile processors. 2.1.2 NVIC The Nested Vectored Interrupt Controller supports nested interrupts and 4 priority levels for interrupts. In the NVIC, each source in the IPR registers contains two bits. It also differs in number of interrupt sources and supports 32 interrupt vectors. The Cortex-M family uses a number of methods to improve interrupt latency to up to 15 clock cycles for Cortex-M0+. It also can be used to wake the MCU core from Wait and VLPW modes. 2.1.3 AWIC The asynchronous wake-up interrupt controller (AWIC) is used to detect asynchronous wake-up events in Stop mode and signal to clock control logic to resume system clocking. After clock restarts, the NVIC observes the pending interrupt and performs the normal interrupt or event processing. The AWIC can be used to wake MCU core from Stop and VLPS modes. Wake-up sources are listed as below: Kinetis KL82 Microcontroller, Rev. 2, 11/2015 7 Freescale Semiconductor, Inc. Overview Table 2. AWIC Partial Stop, Stop and VLPS wake-up sources Wake-up source Description Available system resets RESET_b pin and WDOG when LPO is its clock source, and Debug Low-voltage detect Power mode controller Low-voltage warning Power mode controller Pin interrupts Port control module - any enabled pin interrupt is capable of waking the system ADC0 The ADC is functional when using internal clock source CMPx Since no system clocks are available, functionality is limited, trigger mode provides wakeup functionality with periodic sampling I2Cx Address match wakeup LPUARTx Functional when using clock source which is active in Stop and VLPS modes USB FS/LS Controller Wakeup FlexIO0 Functional when using clock source which is active in Stop and VLPS modes LPTMR Functional when using clock source which is active in Stop, VLPS and LLS/VLLS modes RTC Functional in Stop/VLPS modes TPM Functional when using clock source which is active in Stop and VLPS modes TSI0 Wakeup NMI Non-maskable interrupt 2.1.4 Memory This device has the following features: • 96 KB of embedded RAM accessible (read/write) at CPU clock speed with 0 wait states. • The non-volatile memory is divided into two arrays • 128 KB of embedded program memory • 32 KB ROM (built-in bootloader to support UART, I2C, USB, and SPI interfaces) The program flash memory contains a 16-byte flash configuration field that stores default protection settings and security information. The page size of program flash is 1 KB. The protection setting can protect 32 regions of the program flash memory from unintended erase or program operations. The security circuitry prevents unauthorized access to RAM or flash contents from debug port. • System register file 8 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Overview This device contains a 32-byte register file that is powered in all power modes. Also, it retains contents during low power modes and is reset only during a power-on reset. 2.1.5 Reset and boot The following table lists all the reset sources supported by this device. NOTE In the following table, Y means the specific module, except for the registers, bits or conditions mentioned in the footnote, is reset by the corresponding Reset source. N means the specific module is not reset by the corresponding Reset source. Table 3. Reset source Reset sources Descriptions POR reset Power-on reset (POR) Reset pin is negated RTC1 LPTMR Other s Y Y N Y Y Y N Y3 N N Y Y4 Y Y Y N N Y Y Y2 Y4 Y5 Y Y N N Y Stop mode acknowledge error (SACKERR) Y Y2 Y4 Y5 Y Y N N Y Software reset (SW) Y Y2 Y4 Y5 Y Y N N Y Y Y2 Y4 Y5 Y Y N N Y MDM DAP system reset Y Y2 Y4 Y5 Y Y N N Y Debug reset Y Y2 Y4 Y5 Y Y N N Y PMC SIM SMC Y Y Y Y N Y2 N Y Y2 Computer operating properly (COP) watchdog reset System reset Low leakage wakeup (LLWU) reset External pin reset (RESET) Lockup reset (LOCKUP) Debug reset Modules RCM LLWU 1. The VBAT POR asserts on a VBAT POR reset source. It affects only the modules withinthe VBAT power domain: RTC and VBAT Register File. These modules are notaffected by the other reset types. 2. Except SIM_SOPT1 3. Only if RESET is used to wake from VLLS mode. 4. Except SMC_PMCTRL, SMC_STOPCTRL, SMC_PMSTAT 5. Except RCM_RPFC, RCM_RPFW, RCM_FM Kinetis KL82 Microcontroller, Rev. 2, 11/2015 9 Freescale Semiconductor, Inc. Overview The CM0+ core adds support for a programmable Vector Table Offset Register (VTOR) to relocate the exception vector table after reset. This device supports booting from: • internal flash • ROM The Flash Option (FOPT) register in the Flash Memory module (FTFA_FOPT) allows the user to customize the operation of the MCU at boot time. The register contains readonly bits that are loaded from the NVM's option byte in the flash configuration field. Below is boot flow chart for this device. POWER ON Power On Reset(POR) Reset to Processor FOPT [BOOTSRC_SEL]: BOOTPIN_OPT=0? 00 = Internal Flash 01 = Reserved 10 = ROM -> QSPI Yes 11 = ROM -> QSPI No No Yes BOOTCFG Pin assert? No Boot from OnChip Flash? Yes [BOOTSRC_SEL] = 0x Configure and boot from internal flash. [BOOTSRC_SEL] =1x RESET module BOOT ROM module Load BCA (Boot Configuration Area) No Configure QSPI ? [BOOTSRC_SEL] =11 Yes [BOOTSRC_SEL] =10 QSPI present? No Peripheral detect mode or boot pin asserted? Yes Yes Config Failure Configure QSPI No Image Download with timeout Jump to PC in vector table Figure 2. Boot Flow For Devices with QSPI The blank chip is default to boot from ROM and remaps the vector table to ROM base address, otherwise, it remaps to flash address. 10 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Overview If booting from ROM, the device executes in boot loader mode or proceeds with a secondary boot to a QSPI device connected to QSPI0. 2.1.6 Clock options This chip provides a wide range of sources to generate the internal clocks. These sources include internal resistor capacitor (IRC) oscillators, external oscillators, external clock sources, ceramic resonators, phase-locked loop (PLL) and frequencylocked loop (FLL). These sources can be configured to provide the required performance and optimize the power consumption. The IRC oscillators include the 48 MHz internal resister capacitor (IRC48M) oscillator, the 4 MHz internal resister capacitor (4 MHz IRC) oscillator, the 32 kHz internal resister capacitor (32 kHz IRC) oscillator, and the low power oscillator (LPO). The 48 MHz internal resister capacitor (IRC48M) oscillator generates a 48 MHz clock and synchronizes with the USB clock in full speed mode to achieve the required accuracy. The 4 MHz internal resister capacitor (4 MHz IRC) oscillator generates a 4 MHz clock. It can serve as the low power, low speed system clock under very low power run (VLPR) mode or very low power wait (VLPW) mode. It can also be provided as clock source for other on-chip modules. The 4 MHz IRC cannot be used in any VLLS modes. The 32 kHz internal resister capacitor (32 kHz IRC) oscillator generates a 32 kHz clock. It can be used as FLL internal reference clock or can be provided as low power clock source to other on-chip modules. The 32 kHz IRC cannot be used in any VLLS modes. The LPO generates a 1 kHz clock and cannot be used in VLLS0 mode. The system oscillator supports low frequency crystals (32 kHz to 40 kHz), high frequency crystals (1 MHz to 32 MHz), and ceramic resonators (1 MHz to 32 MHz). An external clock source, DC to 48 MHz, can be used as the system clock through the EXTAL0 pin. The external oscillator also supports a low speed external clock (32.768 kHz) on the RTC_CLKIN pin for use with the RTC. The frequency-locked loop (FLL) can generate clock up to four programmable different frequency ranges (20–25 MHz, 40–50 MHz, 60–75 MHz or 80–100 MHz) with low speed (31.25–39.0625 kHz) internal or external reference clock. The FLL can be used as the system clock or clock source for other on-chip modules. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 11 Freescale Semiconductor, Inc. Overview The phase-locked loop (PLL) can generate up to 144 MHz high speed, low jitter clock with 8–16 MHz internal or external reference clock. The PLL can be used as the system clock or clock source for other on-chip modules. For more details on the clock operations and configurations, see Reference Manual. SIM MCG FCRDIV MCGFFCLK FLL OUTDIV1 CG Core / system clocks OUTDIV2 CG Bus clock OUTDIV4 CG Flash clock OUTDIV5 CG QSPI bus interface clock MCGOUTCLK PLL MCGFLLCLK MCGPLLCLK FRDIV Clock options for some peripherals (see note) MCGIRCLK CG 32 kHz IRC MCGPLLCLK/ MCGFLLCLK/ IRC48MCLK/ PRDIV System oscillator EXTAL0 OSCCLK XTAL0 OSC32KCLK 32.768 kHz OSC logic IRC48M ERCLK32K PMC RTC oscillator EXTAL32 XTAL32 OSCERCLK CG OSC logic DIV_OSCERCLK DIV XTAL_CLK 1Hz PMC logic Clock options for some peripherals (see note) 4 MHz IRC LPO RTC_CLKOUT IRC48MCLK IRC48M logic IRC48MCLK CG — Clock gate Note: See subsequent sections for details on where these clocks are used. Figure 3. Clocking diagram In order to provide flexibility, many peripherals can select from multiple clock sources for operation. This enables the peripheral to select a clock that will always be available during operation in various operational modes. 12 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Overview The following table summarizes the clocks associated with each module. Table 4. Module clocks Module Bus interface clock Internal clocks I/O interface clocks Core modules ARM Cortex-M0+ core System clock Core clock — NVIC System clock — — DAP System clock — SWD_CLK System modules DMA System clock — — DMAMUX Bus clock — — Port control Bus clock LPO — Crossbar Switch System clock — — Peripheral bridges System clock Bus clock — LLWU, PMC, SIM, RCM Bus clock LPO — Mode controller Bus clock — — INTMUX Bus clock — — MCM System clock — — EWM Bus clock LPO — Watchdog timer Bus clock LPO — Clocks MCG Flash clock MCGOUTCLK, MCGPLLCLK, MCGFLLCLK, MCGIRCLK, OSCERCLK — OSC Bus clock OSCERCLK — IRC48M — IRC48MCLK — Memory and memory interfaces Flash controller System clock Flash clock — Flash memory Flash clock — — QSPI controller QSPI bus interface clock QSPI clock QSPIx_SCK Security CRC Bus clock — — TRNG Bus clock — — LTC Encryption Engine System clock — — Analog ADC Bus clock OSCERCLK, IRC48MCLK — CMP Bus clock — — DAC Bus clock — — VREF Flash clock — — Timers Table continues on the next page... Kinetis KL82 Microcontroller, Rev. 2, 11/2015 13 Freescale Semiconductor, Inc. Overview Table 4. Module clocks (continued) Module Bus interface clock Internal clocks I/O interface clocks TPM Bus clock TPM clock TPM_CLKIN0, TPM_CLKIN1 PDB Bus clock — — PIT Bus clock — — LPTMR Bus clock LPO, OSCERCLK, MCGIRCLK, ERCLK32K — RTC Bus clock EXTAL32 — Communication interfaces USB FS OTG System clock USB FS clock — USB DCD Bus clock — — SPI System clock — DSPI_SCK I2C Bus clock — I2C_SCL LPUART Bus clock LPUART clock — EMVSIM Bus clock EMVSIM clock — FlexIO Bus clock FlexIO clock — Human-machine interfaces GPIO Platform clock — — TSI Bus clock LPO, ERCLK32K, MCGIRCLK — 2.1.7 Security Security state can be enabled via programming flash configuration field (0x40e). After enabling device security, the SWD port cannot access the memory resources of the MCU, and ROM boot loader is also limited to access flash and not allowed to read out flash information via ROM boot loader commands. Access interface Secure state Unsecure operation SWD port Cannot access memory source by SWD The debugger can write to the Flash interface Mass Erase in Progress field of the MDM-AP Control register to trigger a mass erase (Erase All Blocks) command ROM boot loader Interface (UART/I2C/SPI/USB) Limit access to the flash, cannot read out flash content Send “FlashEraseAllUnsecureh" command or attempt to unlock flash security using the backdoor key This device features 128-bit unique identification number, which is programmed in factory and loaded to SIM register after power-on reset. 14 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Overview 2.1.8 Power management The Power Management Controller (PMC) expands upon ARM’s operational modes of Run, Sleep, and Deep Sleep, to provide multiple configurable modes. These modes can be used to optimize current consumption for a wide range of applications. The WFI or WFE instruction invokes a Wait or a Stop mode, depending on the current configuration. For more information on ARM’s operational modes, See the ARM® Cortex User Guide. The PMC provides High Speed Run (HSRUN), Run (Run), and Very Low Power Run (VLPR) configurations in ARM’s Run operation mode. In these modes, the MCU core is active and can access all peripherals. The difference between the modes is the maximum clock frequency of the system and therefore the power consumption. The configuration that matches the power versus performance requirements of the application can be selected. The PMC provides Wait (Wait) and Very Low Power Wait (VLPW) configurations in ARM’s Sleep operation mode. In these modes, even though the MCU core is inactive, all of the peripherals can be enabled and operate as programmed. The difference between the modes is the maximum clock frequency of the system and therefore the power consumption. The PMC provides Stop (Stop), Very Low Power Stop (VLPS), Low Leakage Stop (LLS), and Very Low Leakage Stop (VLLS) configurations in ARM’s Deep Sleep operational mode. In these modes, the MCU core and most of the peripherals are disabled. Depending on the requirements of the application, different portions of the analog, logic, and memory can be retained or disabled to conserve power. The Nested Vectored Interrupt Controller (NVIC), the Asynchronous Wake-up Interrupt Controller (AWIC), and the Low Leakage Wake-Up Controller (LLWU) are used to wake up the MCU from low power states. The NVIC is used to wake up the MCU core from WAIT and VLPW modes. The AWIC is used to wake up the MCU core from STOP and VLPS modes. The LLWU is used to wake up the MCU core from LLS and VLLSx modes. For additional information regarding operational modes, power management, the NVIC, AWIC, or the LLWU, please refer to the Reference Manual. The following table provides information about the state of the peripherals in the various operational modes and the modules that can wake MCU from low power modes. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 15 Freescale Semiconductor, Inc. Overview Table 6. Peripherals states in different operational modes Core mode Run mode Sleep mode Deep sleep Device mode Descriptions High Speed Run In HSRun mode, MCU is able to operate at a faster frequency, all device modules are operational. Run In Run mode, all device modules are operational. Very Low Power Run In VLPR mode, all device modules are operational at a reduced frequency except the Low Voltage Detect (LVD) monitor, which is disabled. Wait In Wait mode, all peripheral modules are operational. The MCU core is placed into Sleep mode. Very Low Power Wait In VLPW mode, all peripheral modules are operational at a reduced frequency except the Low Voltage Detect (LVD) monitor, which is disabled. The MCU core is placed into Sleep mode. Stop In Stop mode, most peripheral clocks are disabled and placed in a static state. Stop mode retains all registers and SRAMs while maintaining Low Voltage Detection protection. In Stop mode, the ADC, DAC, CMP, LPTimer, RTC, TPM, LPUART, TSI and pin interrupts are operational. The NVIC is disabled, but the AWIC can be used to wake up from an interrupt. Very Low Power Stop In VLPS mode, the contents of the SRAM are retained. The CMP (low speed), ADC, OSC, RTC, LPTMR, TPM, FlexIO, LPUART, USB, TSI and DMA are operational, LVD and NVIC are disabled, AWIC is used to wake up from interrupt. Low Leakage Stop In LLS mode, the contents of the SRAM and the 32-byte system register file are retained. The CMP (low speed), LLWU, LPTMR, and RTC are operational. The ADC, CRC, DMA, FlexIO, I2C, LPUART, MCG-Lite, NVIC, PIT, SPI, TPM, UART, USB, and WDOGCOP are static, but retain their programming. The DAC, GPIO, and VREF are static, retain their programming, and continue to drive their previous values. Very Low Leakage Stop In VLLS modes, most peripherals are powered off and will resume operation from their reset state when the device wakes up. The LLWU, LPTMR, and RTC are operational in all VLLS modes. In VLLS3, the contents of the SRAM and the 32-byte system register file are retained. The CMP (low speed), and PMC are operational. The DAC, GPIO, and VREF are not operational but continue driving. In VLLS1, the contents of the 32-byte system register file are retained. The CMP (low speed), and PMC are operational. The DAC, GPIO, and VREF are not operational but continue driving. In VLLS0, the contents of the 32-byte system register file are retained. The PMC is operational. The GPIO is not operational but continues driving. The POR detection circuit can be enabled or disabled. 2.1.9 LLWU The LLWU module is used to wake MCU from low leakage power mode (LLS and VLLSx) and functional only on entry into a low-leakage power mode. After recovery from LLS, the LLWU is immediately disabled. After recovery from VLLSx, the LLWU continues to detect wake-up events until the user has acknowledged the wake-up event. 16 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Overview This device uses 25 external wakeup pin inputs and five internal modules as wakeup sources to the LLWU module. The following is internal peripheral and external pin inputs as wakeup sources to the LLWU module. Table 7. Wakeup sources for LLWU inputs LLWU pins Module sources or pin names LLWU_P0 PTE1 LLWU_P1 PTE2 LLWU_P2 PTE4 LLWU_P3 PTA4 LLWU_P4 PTA13 LLWU_P5 PTB0 LLWU_P6 PTC1 LLWU_P7 PTC3 LLWU_P8 PTC4 LLWU_P9 PTC5 LLWU_P10 PTC6 LLWU_P11 PTC11 LLWU_P12 PTD0 LLWU_P13 PTD2 LLWU_P14 PTD4 LLWU_P15 PTD6 LLWU_P16 PTE6 LLWU_P17 PTE9 LLWU_P18 PTE10 LLWU_P19 Reserved LLWU_P20 Reserved LLWU_P21 Reserved LLWU_P22 PTA10 LLWU_P23 PTA11 LLWU_P24 PTD8 LLWU_P25 PTD11 LLWU_P26 Reserved LLWU_P27 USB0_DP LLWU_P28 USB0_DM1 LLWU_P29 Reserved LLWU_P30 Reserved LLWU_P31 Reserved LLWU_M0IF LPTMR0 or LPTMR12 Table continues on the next page... Kinetis KL82 Microcontroller, Rev. 2, 11/2015 17 Freescale Semiconductor, Inc. Overview Table 7. Wakeup sources for LLWU inputs (continued) LLWU pins Module sources or pin names LLWU_M1IF CMP0 LLWU_M2IF Reserved LLWU_M3IF Reserved LLWU_M4IF TSI02 LLWU_M5IF RTC alarm LLWU_M6IF Reserved LLWU_M7IF RTC second 1. A wakeup source of LLWU, USB0_DP or USB0_DM is available only when the chip is in USB host mode. 2. Requires the peripheral and the peripheral interrupt to be enabled. The LLWU_ME[WUMEn] (n=0-7) bit enables the internal module flag a wakeup inputs. After wakeup, the flags are cleared based on the peripheral clearing mechanism. 2.1.10 Debug controller This device supports standard ARM 2-pin SWD debug port. It provides register and memory accessibility from the external debugger interface, basic run/halt control plus 2 breakpoints and 2 watchpoints. It also supports trace function with the Micro Trace Buffer (MTB), which provides a simple execution trace capability for the Cortex-M0+ processor. 2.1.11 INTMUX The Interrupt Multiplexer (INTMUX) routes the interrupt sources to the interrupt outputs. It provides interrupt status registers to monitor interrupt pending status and vector numbers and implements the ability to logical AND or OR enabled interrupts on a given channel. The INTMUX has the following features: • Supports 4 multiplex channels • Each channel receives 32 interrupt sources and has one interrupt output • Each interrupt source can be enabled or disabled • Each channel supports logic AND or logic OR of all enabled interrupt sources 18 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Overview 2.1.12 Watch dog The Watchdog Timer (WDOG) keeps a watch on the system functioning and resets it in case of its failure. The WDOG has the following features: • Clock source input independent from CPU/bus clock. Choice between low-power oscillator (LPO) and external system clock. • Unlock sequence for allowing updates to write-once WDOG control/configuration bits. • All WDOG control/configuration bits are writable once only within 256 bus clock cycles of being unlocked. • Programmable time-out period specified in terms of number of WDOG clock cycles. • Ability to test WDOG timer and reset with a flag indicating watchdog test. • Windowed refresh option. • Robust refresh mechanism. • Count of WDOG resets as they occur. • Configurable interrupt on time-out to provide debug breadcrumbs. This is followed by a reset after 256 bus clock cycles. 2.2 Peripheral features The following sections describe the features of each peripherals of the chip. 2.2.1 BME The Bit Manipulation Engine (BME) provides hardware support for atomic readmodify-write memory operations to the peripheral address space in Cortex-M0+ based microcontrollers. It reduces up to 30% of the code size and up to 9% of the cycles for bit-oriented operations to peripheral registers. The BME supports unsigned bit field extract, load-and-set 1-bit, load-and-clear 1-bit, bit field insert, logical AND/OR/XOR operations with byte, halfword or word-sized data type. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 19 Freescale Semiconductor, Inc. Overview 2.2.2 eDMA and DMAMUX The eDMA controller module enables fast transfers of data, which provides an efficient way to move blocks of data with minimal processor interaction. The eDMA controller in this device implements eight channels which can be routed from up to 63 DMA request sources through DMA MUX module. Some of the peripheral request sources have asynchronous eDMA capability which can be used to wake MCU from Stop mode. The peripherals which have such capability include FlexIO, LPUART0, LPUART1, LPUART2, TPM0, TPM1, TPM2, PORTA-PORTE, ADC0, and CMP0. The DMA channel 0 t0 3 can be periodically triggered by PIT via DMA MUX. Main features are listed below: • Dual-address transfers via 32-bit master connection to the system bus and data transfers in 8-, 16-, or 32-bit blocks • 8-channel implementation that performs complex data transfers with minimal intervention from a host processor • Transfer control descriptor (TCD) organized to support two-deep, nested transfer operations • Provide the selectable channel activation methods. • Fixed-priority and round-robin channel arbitration • Channel completion reported via programmable interrupt requests • Programmable support for scatter/gather DMA processing • Support for complex data structures 2.2.3 TPM This device contains three low power TPM modules (TPM). All TPM modules are functional in Stop/VLPS mode if the clock source is enabled. The TPM features include: • TPM clock mode is selectable from external clock input or internal clock source, HIRC48M clock, external crystal input clock, MCGIRCLK, MCGPLLCLK, or MCGFLLCLK. • Prescaler divide-by 1, 2, 4, 8, 16, 32, 64, or 128 • TPM includes a 16-bit counter • Includes 6 channels that can be configured for input capture, output compare, edgealigned PWM mode, or center-aligned PWM mode • Support the generation of an interrupt and/or DMA request per channel or counter overflow 20 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Overview • Support selectable trigger input to optionally reset or cause the counter to start or stop incrementing • Support the generation of hardware triggers when the counter overflows and per channel 2.2.4 ADC this device contains one ADC module. This ADC module supports hardware triggers from TPM, LPTMR, PIT, RTC, external trigger pin and CMP output. It supports wakeup of MCU in low power mode when using internal clock source or external crystal clock. ADC module has the following features: • Linear successive approximation algorithm with up to 16-bit resolution • Up to four pairs of differential and 17 single-ended external analog inputs • Support selectable 16-bit, 13-bit, 11-bit, and 9-bit differential output mode, or 16bit, 12-bit, 10-bit, and 8-bit single-ended output modes • Single or continuous conversion • Configurable sample time and conversion speed/power • Selectable clock source up to four • Operation in low-power modes for lower noise • Asynchronous clock source for lower noise operation with option to output the clock • Selectable hardware conversion trigger • Automatic compare with interrupt for less-than, greater-than or equal-to, within range, or out-of-range, programmable value • Temperature sensor • Hardware average function up to 32x • Selectable voltage reference: external or alternate • Self-Calibration mode 2.2.5 VREF The Voltage Reference (VREF) can supply an accurate voltage output (1.2V typically) trimmed in 0.5 mV steps. It can be used in applications to provide a reference voltage to external devices or used internally as a reference to analog peripherals such as the ADC, DAC or CMP. The VREF supports the following programmable buffer modes: Kinetis KL82 Microcontroller, Rev. 2, 11/2015 21 Freescale Semiconductor, Inc. Overview • • • • Bandgap on only, used for stabilization and startup High power buffer mode Low-power buffer mode Buffer disabled A 100 nF capacitor must always be connected between VERF output (VREFO) pin and VSSA if the VREF is used. This capacitor must be as close to VREFO pin as possible. 2.2.6 CMP The device contains one high-speed comparator and two 8-input multiplexers for both the inverting and non-inverting inputs of the comparator. Each CMP input channel connects to both muxes. The CMP includes one 6-bit DAC, which provides a selectable voltage reference for various user application cases. Besides, the CMP also has several module-to-module interconnects in order to facilitate ADC triggering, TPM triggering, and interfaces. The CMP has the following features: • Inputs may range from rail to rail • Programmable hysteresis control • Selectable interrupt on rising-edge, falling-edge, or both rising or falling edges of the comparator output • Selectable inversion on comparator output • Capability to produce a wide range of outputs such as sampled, digitally filtered • External hysteresis can be used at the same time that the output filter is used for internal functions • Two software selectable performance levels: shorter propagation delay at the expense of higher power and Low power with longer propagation delay • DMA transfer support • Functional in all modes of operation except in VLLS0 mode • The window and filter functions are not available in Stop, VLPS, LLS, or VLLSx modes • Integrated 6-bit DAC with selectable supply reference source and can be power down to conserve power • Two 8-to-1 channel mux 22 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Overview 2.2.7 RTC The RTC is an always powered-on block that remains active in all low power modes. The time counter within the RTC is clocked by a 32.768 kHz clock sourced from an external crystal using the oscillator or clock directly from RTC_CLKIN pin. RTC is reset on power-on reset, and a software reset bit in RTC can also initialize all RTC registers. During chip power-down, RTC is powered from the backup power supply (VBAT), electrically isolated from the rest of the chip, continues to increment the time counter (if enabled) and retain the state of the RTC registers. The RTC registers are not accessible. The RTC module has the following features • 32-bit seconds counter with roll-over protection and 32-bit alarm • 16-bit prescaler with compensation that can correct errors between 0.12 ppm and 3906 ppm • Register write protection with register lock mechanism • 1 Hz square wave or second pulse output with optional interrupt • 64-bit monotonic counter with roll-over protection 2.2.8 PIT The Periodic Interrupt Timer (PIT) is used to generate periodic interrupt to the CPU. It has four independent channels and each channel has a 32-bit counter. Two channels can be chained together to form a 64-bit counter. The PIT module can trigger a DMA transfer on the first four DMA channels. and also can be selected as ADC, TPM, and DAC trigger source. The PIT module has the following features: • Each 32-bit timers is able to generate DMA trigger • Each 32-bit timers is able to generate timeout interrupts • Two timers can be cascaded to form a 64-bit timer • Each timer can be programmed as ADC/TPM trigger source • Timer 0 is able to trigger DAC Kinetis KL82 Microcontroller, Rev. 2, 11/2015 23 Freescale Semiconductor, Inc. Overview 2.2.9 LPTMR The low-power timer (LPTMR) can be configured to operate as a time counter with optional prescaler, or as a pulse counter with optional glitch filter, across all power modes, including the low-leakage modes. It can also continue operating through most system reset events, allowing it to be used as a time of day counter. The LPTMR module has the following features: • 16-bit time counter or pulse counter with compare • Optional interrupt can generate asynchronous wakeup from any low-power mode • Hardware trigger output • Counter supports free-running mode or reset on compare • Configurable clock source for prescaler/glitch filter • Configurable input source for pulse counter 2.2.10 CRC This device contains one cyclic redundancy check (CRC) module which can generate 16/32-bit CRC code for error detection. The CRC module provides a programmable polynomial, WAS, and other parameters required to implement a 16-bit or 32-bit CRC standard. The CRC module has the following features: • Hardware CRC generator circuit using a 16-bit or 32-bit programmable shift register • Programmable initial seed value and polynomial • Option to transpose input data or output data (the CRC result) bitwise or bytewise. • Option for inversion of final CRC result • 32-bit CPU register programming interface 2.2.11 LPUART This product contains three Low-Power UART modules, both of their clock sources are selectable fromIRC48M, MCGFLLCLK, MCGPLLCLK, MCGIRCCLK or external crystal clock, and can work in Stop and VLPS modes. They also support 4x to 32x data oversampling rate to meet different applications. The LPUART module has the following features: • Full-duplex, standard non-return-to-zero (NRZ) format 24 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Overview • Programmable baud rates (13-bit modulo divider) with configurable oversampling ratio from 4x to 32x • Transmit and receive baud rate can operate asynchronous to the bus clock • Interrupt, DMA or polled operation • Hardware parity generation and checking • Programmable 8-bit, 9-bit or 10-bit character length • Programmable 1-bit or 2-bit stop bits • Three receiver wakeup methods: idle line wakeup, address mark wakeup, receive data match • Automatic address matching to reduce ISR overhead • Optional 13-bit break character generation / 11-bit break character detection • Configurable idle length detection supporting 1, 2, 4, 8, 16, 32, 64 or 128 idle characters • Selectable transmitter output and receiver input polarity • Hardware flow control support for request to send (RTS) and clear to send (CTS) signals • Selectable IrDA 1.4 return-to-zero-inverted (RZI) format with programmable pulse width 2.2.12 SPI This device contains two SPI modules. SPI modules support 8-bit and 16-bit modes. FIFO function is available only on SPI1 module. The SPI modules have the following features: • Full-duplex or single-wire bidirectional mode • Programmable transmit bit rate • Double-buffered transmit and receive data register • Serial clock phase and polarity options • Slave select output • Mode fault error flag with CPU interrupt capability • Control of SPI operation during wait mode • Selectable MSB-first or LSB-first shifting • Programmable 8- or 16-bit data transmission length • Receive data buffer hardware match feature • 64-bit FIFO mode for high speed/large amounts of data transfers • Support DMA Kinetis KL82 Microcontroller, Rev. 2, 11/2015 25 Freescale Semiconductor, Inc. Overview 2.2.13 I2C This device contains two I2C modules, which support up to 1 Mbits/s by dual buffer features, and address match to wake MCU from the low power mode. I2C modules support DMA transfer, and the interrupt condition can trigger DMA request when DMA function is enabled. The I2C modules have the following features: • Support for system management bus (SMBus) Specification, version 2 • Software programmable for one of 64 different serial clock frequencies • Software-selectable acknowledge bit • Arbitration-lost interrupt with automatic mode switching from master to slave • Calling address identification interrupt • START and STOP signal generation and detection • Repeated START signal generation and detection • Acknowledge bit generation and detection • Bus busy detection • General call recognition • 10-bit address extension • Programmable input glitch filter • Low power mode wakeup on slave address match • Range slave address support • DMA support • Double buffering support to achieve higher baud rate 2.2.14 USB This device contains one USB module which implements a USB2.0 full-speed compliant peripheral and interfaces to the on-chip USBFS transceiver. It implements keep-alive feature to avoid re-enumerating when exiting from low power modes and enables HIRC48M to allow crystal-less USB operation. The USBFS has the following features: • USB 1.1 and 2.0 compatible FS device controller • USB 1.1 and 2.0 compatible FS device and FS/LS host controller with On-The-Go protocol logic • 16 bidirectional endpoints • DMA or FIFO data stream interfaces • Low-power consumption 26 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Overview • IRC48M with clock-recovery is supported to eliminate the 48 MHz crystal. It is used for USB device-only implementation. • Keep-alive feature is supported to power down system bus and CPU. USB can respond to IN with NAK and wake up for SETUP/OUT. 2.2.15 FlexIO The FlexIO is a highly configurable module providing a wide range of protocols including, but not limited to LPUART, I2C, SPI, I2S, Camera IF, LCD RGB, PWM/ Waveform generation. The module supports programmable baud rates independent of bus clock frequency, with automatic start/stop bit generation. It also supports to work in VLPR, VLPW, Stop, and VLPS modes when clock source remains enabled. The FlexIO module has the following features: • Array of 32-bit shift registers with transmit, receive and data match modes • Double buffered shifter operation for continuous data transfer • Shifter concatenation to support large transfer sizes • Automatic start/stop bit generation • 1, 2, 4, 8, 16 or 32 multi-bit shift widths for parallel interface support • Interrupt, DMA or polled transmit/receive operation • Programmable baud rates independent of bus clock frequency, with support for asynchronous operation during stop modes • Highly flexible 16-bit timers with support for a variety of internal or external trigger, reset, enable and disable conditions • Programmable logic mode for integrating external digital logic functions on-chip or combining pin/shifter/timer functions to generate complex outputs • Programmable state machine for offloading basic system control functions from CPU with support for up to 8 states, 8 outputs and 3 selectable inputs per state 2.2.16 DAC The 12-bit digital-to-analog converter (DAC) is a low-power, general-purpose DAC. The output of the DAC can be placed on an external pin or set as one of the inputs to the analog comparator, OPAMPS or ADC. DAC module has the following features: • On-chip programmable reference generator output. The voltage output range is from 1⁄4096 Vin to Vin, and the step is 1⁄4096 Vin, where Vin is the input voltage. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 27 Freescale Semiconductor, Inc. Overview • Vin can be selected from two reference sources • Static operation in Normal Stop mode • 16-word data buffer supported with configurable watermark and multiple operation modes • DMA support 2.2.17 EMV-SIM The EMV_SIM (Euro/Mastercard/Visa/SIM Serial Interface Module) is designed to facilitate communication to Smart Cards compatible to the EMV ver4.3 standard (Book 1) and Smart Cards compatible with ISO/IEC 7816-3 Standard. EMV-SIM module has the following features: • Supports Smart Cards based on the EMV Standard v4.3 and ISO 7816-3 standard • Independent clock for SIM logic (transmitter + receiver) and independent clock for register read-write interface • 16 byte deep FIFO for transmitter and receiver • Automatic NACK generation on parity error and receiver FIFO overflow error • Support for both Inverse and Direct conventions • Re-transmission of byte upon Smart Card NACK request with programmable threshold of re-transmissions • Auto detection of Initial Character in receiver and setting of data format (inverse or direct) • NACK detection in receiver • Independent timers to measure character wait time, block wait time and block guard time • Two general purpose counters available for use by software application with programmable clock selection for the counters • DMA support available to transfer data to/from FIFOs. Programmable option available to select interrupt or DMA feature • Programmable Prescaler to generate the desired frequency for Card Clock and Baud Rate Divisor to generate the internal ETU clocks for transmitter and receiver for any F/D ratio • Deep sleep wake-up via Smart Card presence detect interrupt • Manual control of all Smart Card interface signals 28 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Overview • Automatic power down of port logic on Smart Card presence detect • Support for 8-bit LRC and 16-bit CRC generation for bytes sent out from transmitter and checking incoming message checksum for receiver 2.2.18 LTC LP Trusted Cryptography (LTC) is a hardware accelerate module dedicate for the popular encryption algorithm. LTC module has the following features: • Cryptographic authentication • Authenticated encryption algorithms • AES-CCM (counter with CBC-MAC) • AES-GCM (Galois counter mode) • Symmetric key block ciphers • Public key cryptography • Secure Scan 2.2.19 TRNG The Standalone True Random Number Generator (SA-TRNG) is hardware accelerator module that generates a 512-bit entropy as needed by an entropy consuming module or by other post processing functions. 2.2.20 TSI The touch sensing input (TSI) module provides capacitive touch sensing detection with high sensitivity and enhanced robustness. TSI module has the following features: • Support up to 16 external electrodes • Automatic detection of electrode capacitance across all operational power modes • Internal reference oscillator for high-accuracy measurement • Configurable software or hardware scan trigger • Fully support Freescale touch sensing software (TSS) library, see www.freescale.com/touchsensing. • Capability to wake MCU from low power modes • Compensate for temperature and supply voltage variations Kinetis KL82 Microcontroller, Rev. 2, 11/2015 29 Freescale Semiconductor, Inc. Memory map • High sensitivity change with 16-bit resolution register • Configurable up to 4096 scan times. • Support DMA data transfer 2.2.21 QuadSPI The Quad Serial Peripheral Interface (QuadSPI) block acts as an interface to one single or two external serial flash devices, each with up to eight bidirectional data lines. This device contains one QSPI module, which supports singles, dual, quad or octal data lines in single (SDR) or double (DDR) data rate configurations. The QuadSPI clock frequencies support up to 96 MHz in SDR mode and up to 72 MHz in DDR mode. The QuadSPI has the following features: • Flexible sequence engine to support various flash vendor devices. • Single, dual, quad and octal modes of operation. • DDR/DTR mode wherein the data is generated on every edge of the serial flash clock. • Support for flash data strobe signal for data sampling in DDR and SDR mode. • Support for parallel writes via register mapped interface in single I/O mode. • Two identical serial flash devices can be connected and accessed in parallel for data read operations, forming one (virtual) flash memory with doubled readout bandwidth. • DMA support to read RX Buffer data via AMBA AHB bus (64-bit width interface) or IP registers space (32-bit access) and DMA support to fill TX Buffer via IPS register space (32-bit access). • Multimaster accesses with priority • Multiple interrupt conditions • Memory mapped read access to connected flash devices. • Programmable sequence engine to cater to future command/protocol changes and able to support all existing vendor commands and operations. 3 Memory map This device contains various memories and memory-mapped peripherals which are located in a 4 GB memory space. The following figure shows the system memory and peripheral locations 30 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Memory map 0x4000_0000 0x4000_8000 0x4000_9000 0x4000_A000 0x4000_D000 0x4000_E000 0x4000_F000 0x4001_0000 0x4002_0000 0x4002_1000 0x4002_2000 0x4002_4000 0x4002_5000 0x4002_6000 0x4002_C000 0x4002_D000 0x4002_E000 0x4003_2000 0x0000_0000 Flash 0x0000_0000 0x03FF_FFFF Code space 0x0400_0000 0x1C00_0000 Reserved 0x1C00_0000 ROM Boot ROM 0x1C00_7FFF 0x1C00_8000 Reserved 0x1FFF_A000 0x1FFF_A000 SRAM _L Data Space 0x2002_0000 Reserved 0x4000_0000 0x400F_F000 0x6000_0000 0x6700_0000 0x7000_0000 SRAM _U 0x2001_FFFF Public peripheral 0x4400_0000 0x2000_0000 Reserved 0x4000_0000 AIPS peripherals BM E 0x4007_FFFF 0x400F_F000 Reserved 0x4010_0000 0x4010_07FF USB RAM 0xE000_0000 Reserved GPIO QSPI Reserved 0xE000_E000 0xE000_0000 Private peripheral System control space 0xE000_F000 Reserved 0xE00F_F000 0xE010_0000 Reserved Core ROM table 0xE00F_FFFF 0xF000_0000 M TB 0xF000_1000 0xF000_0000 M TBDWT 0xF000_2000 Private peripheral bus ROM Table 0xF000_3000 0xF000_4000 0xFFFF_FFFF 0x4003_B000 0x4003_C000 0x4003_D000 0x4003_E000 0x4003_F000 0x4004_0000 0x4004_1000 0x4004_2000 0x4004_4000 0x4004_5000 0x4004_6000 0x4004_7000 0x4004_8000 0x4004_9000 0x4004_A000 0x4004_B000 0x4004_C000 0x4004_D000 0x4004_E000 0x4004_F000 0x4005_0000 0x4005_1000 0x4005_2000 0x4005_3000 0x4005_4000 0x4005_5000 0x4005_6000 0x4005_7000 0x4005_A000 0x4005_B000 0x4005_F000 0x4006_0000 Reserved SPI0 SPI1 Reserved CRC Reserved PIT TPM0 TPM1 TPM2 ADC0 Reserved RTC VBAT Register File DAC0 LPTMR0 System register file Reserved LPTMR1 TSI0 Reserved SIM low power logic SIM PORT A PORT B PORT C PORT D PORT E EMVSIM0 EMVSIM1 Reserved LTC WDOG Reserved LPUART0 LPUART1 LPUART2 Reserved QSPI0 Reserved FlexIO0 Reserved EWM Reserved MCG 0x4006_4000 0x4006_5000 0x4006_6000 Reserved 0x4006_8000 0x4007_2000 0x4007_3000 0x4007_4000 0x4007_5000 0x4007_C000 OSC I2C0 I2C1 Reserved USB FS CMP0 VREF Reserved LLWU 0x4007_D000 0x4007_E000 0x4007_F000 PMC 0x400F_F000 eGPIO Figure 4. Memory map Kinetis KL82 Microcontroller, Rev. 2, 11/2015 DMAMUX Reserved INTMUX0 TRNG 0x4006_2000 0x4006_7000 IOPORT Reserved GPIO controller(alias to 0x400F_F00) Reserved Flash memory unit 0x4006_1000 M CM 0xF800_0000 0xFFFF_FFFF 0x4003_3000 0x4003_7000 0x4003_8000 0x4003_9000 0x4003_A000 Reserved DMA controller DMA TCD Reserved System MPU SMC RCM 31 Freescale Semiconductor, Inc. Pinouts 4 Pinouts 4.1 KL82 signal multiplexing and pin assignments The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin. 121 100 80 64 64 MAP LQFP LQFP MAP LQFP BGA BGA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 B1 1 1 A1 1 PTE0 DISABLED PTE0 SPI1_PCS1 LPUART1_ TX QSPI0A_ DATA3 I2C1_SDA RTC_ CLKOUT C2 2 2 B1 2 PTE1/ LLWU_P0 DISABLED PTE1/ LLWU_P0 SPI1_SCK LPUART1_ RX QSPI0A_ SCLK I2C1_SCL SPI1_SIN C1 3 3 C5 3 PTE2/ LLWU_P1 DISABLED PTE2/ LLWU_P1 SPI1_SOUT LPUART1_ CTS_b QSPI0A_ DATA0 SPI1_SCK D2 4 4 D2 4 PTE3 DISABLED PTE3 SPI1_PCS2 LPUART1_ RTS_b QSPI0A_ DATA2 SPI1_SOUT F7 5 5 C4 5 VSS VSS VSS E5 6 6 D3 6 VDDIO_E VDDIO_E VDDIO_E D1 7 7 E2 7 PTE4/ LLWU_P2 DISABLED PTE4/ LLWU_P2 SPI1_SIN QSPI0A_ DATA1 E2 8 8 D1 8 PTE5 DISABLED PTE5 SPI1_PCS0 QSPI0A_ SS0_B E1 9 — — — PTE6/ LLWU_P16 DISABLED PTE6/ LLWU_P16 SPI1_PCS3 QSPI0B_ DATA3 F3 10 9 — — PTE7 DISABLED PTE7 QSPI0B_ SCLK F2 11 10 — — PTE8 DISABLED PTE8 QSPI0B_ DATA0 F1 12 — — — PTE9/ LLWU_P17 DISABLED PTE9/ LLWU_P17 QSPI0B_ DATA2 G2 13 — — — PTE10/ LLWU_P18 DISABLED PTE10/ LLWU_P18 QSPI0B_ DATA1 G1 14 11 — — PTE11 DISABLED PTE11 QSPI0B_ SS0_B — 15 12 — — VDDIO_E VDDIO_E VDDIO_E — 16 13 — 9 VSS VSS VSS H3 — — F3 — VSS VSS VSS H2 17 14 E1 10 USB0_DP USB0_DP USB0_DP H1 18 15 F1 11 USB0_DM USB0_DM USB0_DM 32 Freescale Semiconductor, Inc. USB0_ SOF_OUT QSPI0A_ SS1_B QSPI0A_ DQS Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Pinouts 121 100 80 64 64 MAP LQFP LQFP MAP LQFP BGA BGA Pin Name Default ALT0 ALT1 ALT2 ALT3 TPM0_CH5 ALT4 ALT5 ALT6 ALT7 FXIO0_D10 EMVSIM0_ CLK SWD_CLK J1 19 16 F2 12 USB_VDD USB_VDD USB_VDD J2 20 — — — NC NC NC — 21 — — — NC K2 — — — — ADC0_DP0 ADC0_DP0 ADC0_DP0 K1 — — — — ADC0_DM0 ADC0_DM0 ADC0_DM0 F5 22 17 G2 13 VDDA VDDA VDDA G5 23 18 H3 14 VREFH VREFH VREFH G6 24 19 H2 15 VREFL VREFL VREFL F6 25 20 G1 16 VSSA VSSA VSSA L2 26 21 H1 17 ADC0_DP1 ADC0_DP1 ADC0_DP1 L1 27 22 G3 18 ADC0_DM1 ADC0_DM1 ADC0_DM1 L3 28 23 F4 19 VREF_OUT/ VREF_OUT/ VREF_OUT/ CMP0_IN5/ CMP0_IN5/ CMP0_IN5/ ADC0_SE22 ADC0_SE22 ADC0_SE22 K4 29 24 G4 20 DAC0_OUT/ DAC0_OUT/ DAC0_OUT/ ADC0_SE23 ADC0_SE23 ADC0_SE23 H6 — — — — NC K5 30 25 F5 21 RTC_ RTC_ RTC_ WAKEUP_B WAKEUP_B WAKEUP_B L4 31 26 H4 22 XTAL32 XTAL32 XTAL32 L5 32 27 H5 23 EXTAL32 EXTAL32 EXTAL32 K6 33 28 G5 24 VBAT VBAT VBAT — 34 — — — VDD VDD VDD — 35 — — — VSS VSS VSS L7 36 29 D4 25 PTA0 SWD_CLK TSI0_CH1 PTA0 LPUART0_ CTS_b H8 37 30 D5 26 PTA1 TSI0_CH2 TSI0_CH2 PTA1 LPUART0_ RX FXIO0_D11 EMVSIM0_ IO J7 38 31 E5 27 PTA2 TSI0_CH3 TSI0_CH3 PTA2 LPUART0_ TX FXIO0_D12 EMVSIM0_ PD H9 39 32 H6 28 PTA3 SWD_DIO TSI0_CH4 PTA3 LPUART0_ RTS_b TPM0_CH0 FXIO0_D13 EMVSIM0_ RST SWD_DIO J8 40 33 G6 29 PTA4/ LLWU_P3 NMI_b TSI0_CH5 PTA4/ LLWU_P3 TPM0_CH1 FXIO0_D14 EMVSIM0_ VCCEN NMI_b K7 41 — — — PTA5 DISABLED TPM0_CH2 FXIO0_D15 L10 — — — — VDD VDD VDD K10 — — — — VSS VSS VSS J9 — — — — PTA10/ LLWU_P22 DISABLED PTA10/ LLWU_P22 TPM2_CH0 H7 — — — — PTA11/ LLWU_P23 DISABLED PTA11/ LLWU_P23 TPM2_CH1 NC Kinetis KL82 Microcontroller, Rev. 2, 11/2015 NC PTA5 USB0_ CLKIN EMVSIM1_ VCCEN FXIO0_D16 FXIO0_D17 33 Freescale Semiconductor, Inc. Pinouts 121 100 80 64 64 MAP LQFP LQFP MAP LQFP BGA BGA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 K8 42 — — — PTA12 DISABLED PTA12 TPM1_CH0 FXIO0_D18 L8 43 — — — PTA13/ LLWU_P4 DISABLED PTA13/ LLWU_P4 TPM1_CH1 FXIO0_D19 K9 44 34 — — PTA14 DISABLED PTA14 SPI0_PCS0 LPUART0_ TX FXIO0_D20 L9 45 35 — — PTA15 DISABLED PTA15 SPI0_SCK LPUART0_ RX FXIO0_D21 J10 46 36 — — PTA16 DISABLED PTA16 SPI0_SOUT LPUART0_ CTS_b FXIO0_D22 H10 47 37 — — PTA17 DISABLED PTA17 SPI0_SIN FXIO0_D23 E6 48 38 H7 30 VDD VDD VDD G7 49 39 G7 31 VSS VSS VSS L11 50 40 H8 32 PTA18 EXTAL0 EXTAL0 PTA18 TPM_ CLKIN0 K11 51 41 G8 33 PTA19 XTAL0 XTAL0 PTA19 TPM_ CLKIN1 J11 52 42 F8 34 RESET_b RESET_b RESET_b H11 — — — — PTA29 DISABLED G11 53 43 E6 35 PTB0/ LLWU_P5 ADC0_SE8/ ADC0_SE8/ PTB0/ TSI0_CH0 TSI0_CH0 LLWU_P5 I2C0_SCL TPM1_CH0 FXIO0_D0 G10 54 44 — — PTB1 ADC0_SE9/ ADC0_SE9/ PTB1 TSI0_CH6 TSI0_CH6 I2C0_SDA TPM1_CH1 FXIO0_D1 G9 55 — — — PTB2 ADC0_ SE12/ TSI0_CH7 ADC0_ SE12/ TSI0_CH7 PTB2 I2C0_SCL LPUART0_ RTS_b FXIO0_D2 G8 56 — — — PTB3 ADC0_ SE13/ TSI0_CH8 ADC0_ SE13/ TSI0_CH8 PTB3 I2C0_SDA LPUART0_ CTS_b FXIO0_D3 B11 — 45 F7 36 PTB4 DISABLED PTB4 EMVSIM1_ IO C11 — 46 F6 37 PTB5 DISABLED PTB5 EMVSIM1_ CLK F11 — 47 E7 38 PTB6 DISABLED PTB6 EMVSIM1_ VCCEN E11 — 48 E8 39 PTB7 DISABLED PTB7 EMVSIM1_ PD D11 — 49 D7 40 PTB8 DISABLED PTB8 EMVSIM1_ RST E10 57 — — — PTB9 DISABLED PTB9 SPI1_PCS1 D10 58 — — — PTB10 DISABLED PTB10 SPI1_PCS0 FXIO0_D4 C10 59 50 — — PTB11 DISABLED PTB11 SPI1_SCK FXIO0_D5 L6 60 — — — VSS VSS 34 Freescale Semiconductor, Inc. LPUART0_ RTS_b LPTMR0_ ALT1/ LPTMR1_ ALT1 PTA29 VSS Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Pinouts 121 100 80 64 64 MAP LQFP LQFP MAP LQFP BGA BGA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 E7 61 — — — VDD VDD VDD B10 62 51 — — PTB16 TSI0_CH9 TSI0_CH9 PTB16 SPI1_SOUT LPUART0_ RX TPM_ CLKIN0 EWM_IN E9 63 52 — — PTB17 TSI0_CH10 TSI0_CH10 PTB17 SPI1_SIN TPM_ CLKIN1 EWM_OUT_ b D9 64 53 D6 41 PTB18 TSI0_CH11 TSI0_CH11 PTB18 TPM2_CH0 FXIO0_D6 C9 65 54 C7 42 PTB19 TSI0_CH12 TSI0_CH12 PTB19 TPM2_CH1 FXIO0_D7 F10 66 — — — PTB20 DISABLED PTB20 CMP0_OUT FXIO0_D8 F9 67 — — — PTB21 DISABLED PTB21 FXIO0_D9 F8 68 — — — PTB22 DISABLED PTB22 FXIO0_D10 E8 69 — — — PTB23 DISABLED PTB23 B9 70 55 D8 43 PTC0 ADC0_ SE14/ TSI0_CH13 ADC0_ SE14/ TSI0_CH13 PTC0 SPI0_PCS4 EXTRG_IN USB0_ SOF_OUT FXIO0_D12 D8 71 56 C6 44 PTC1/ LLWU_P6 ADC0_ SE15/ TSI0_CH14 ADC0_ SE15/ TSI0_CH14 PTC1/ LLWU_P6 SPI0_PCS3 LPUART1_ RTS_b TPM0_CH0 FXIO0_D13 C8 72 57 B7 45 PTC2 ADC0_ SE4b/ TSI0_CH15 ADC0_ SE4b/ TSI0_CH15 PTC2 SPI0_PCS2 LPUART1_ CTS_b TPM0_CH1 B8 73 58 C8 46 PTC3/ LLWU_P7 DISABLED PTC3/ LLWU_P7 SPI0_PCS1 LPUART1_ RX TPM0_CH2 — 74 59 E3 47 VSS VSS VSS — 75 60 E4 48 VDD VDD VDD A8 76 61 B8 49 PTC4/ LLWU_P8 DISABLED PTC4/ LLWU_P8 SPI0_PCS0 LPUART1_ TX TPM0_CH3 D7 77 62 A8 50 PTC5/ LLWU_P9 DISABLED PTC5/ LLWU_P9 SPI0_SCK C7 78 63 A7 51 PTC6/ LLWU_P10 CMP0_IN0 CMP0_IN0 PTC6/ LLWU_P10 SPI0_SOUT EXTRG_IN FXIO0_D14 B7 79 64 B6 52 PTC7 CMP0_IN1 CMP0_IN1 PTC7 SPI0_SIN FXIO0_D15 A7 80 65 A6 53 PTC8 CMP0_IN2 CMP0_IN2 PTC8 FXIO0_D16 D6 81 66 B5 54 PTC9 CMP0_IN3 CMP0_IN3 PTC9 FXIO0_D17 C6 82 67 B4 55 PTC10 DISABLED PTC10 I2C1_SCL FXIO0_D18 C5 83 68 A5 56 PTC11/ LLWU_P11 DISABLED PTC11/ LLWU_P11 I2C1_SDA FXIO0_D19 B6 84 69 — — PTC12 DISABLED PTC12 TPM_ CLKIN0 A6 85 70 — — PTC13 DISABLED PTC13 TPM_ CLKIN1 A5 86 — — — PTC14 DISABLED PTC14 Kinetis KL82 Microcontroller, Rev. 2, 11/2015 LPUART0_ TX SPI0_PCS5 FXIO0_D11 LPTMR0_ ALT2/ LPTMR1_ ALT2 CLKOUT CMP0_OUT TPM0_CH2 USB0_ SOF_OUT FXIO0_D20 35 Freescale Semiconductor, Inc. Pinouts 121 100 80 64 64 MAP LQFP LQFP MAP LQFP BGA BGA Pin Name Default ALT0 ALT1 B5 87 — — — PTC15 DISABLED — 88 — — — VSS VSS VSS — 89 — — — VDD VDD VDD D5 — 71 — — PTC16 DISABLED PTC16 C4 90 72 — — PTC17 DISABLED PTC17 B4 — — — — PTC18 DISABLED PTC18 A4 — — — — PTC19 DISABLED PTC19 D4 91 73 C3 57 PTD0/ LLWU_P12 DISABLED PTD0/ LLWU_P12 D3 92 74 A4 58 PTD1 C3 93 75 C2 59 B3 94 76 B3 A3 95 77 A2 96 B2 ALT2 ALT3 ALT4 ALT5 ALT6 PTC15 ALT7 FXIO0_D21 SPI0_PCS0 LPUART2_ RTS_b FXIO0_D22 ADC0_SE5b ADC0_SE5b PTD1 SPI0_SCK FXIO0_D23 PTD2/ LLWU_P13 DISABLED PTD2/ LLWU_P13 SPI0_SOUT LPUART2_ RX I2C0_SCL 60 PTD3 DISABLED PTD3 SPI0_SIN I2C0_SDA A3 61 PTD4/ LLWU_P14 DISABLED PTD4/ LLWU_P14 SPI0_PCS1 LPUART0_ RTS_b TPM0_CH4 EWM_IN 78 C1 62 PTD5 ADC0_SE6b ADC0_SE6b PTD5 SPI0_PCS2 LPUART0_ CTS_b TPM0_CH5 EWM_OUT_ SPI1_SCK b 97 79 B2 63 PTD6/ LLWU_P15 ADC0_SE7b ADC0_SE7b PTD6/ LLWU_P15 SPI0_PCS3 LPUART0_ RX — 98 — — — VSS VSS VSS — 99 — — — VDD VDD VDD A1 100 80 A2 64 PTD7 DISABLED PTD7 A10 — — — — PTD8/ LLWU_P24 DISABLED PTD8/ LLWU_P24 I2C0_SCL FXIO0_D24 A9 — — — — PTD9 DISABLED PTD9 I2C0_SDA FXIO0_D25 E4 — — — — PTD10 DISABLED PTD10 FXIO0_D26 E3 — — — — PTD11/ LLWU_P25 DISABLED PTD11/ LLWU_P25 FXIO0_D27 F4 — — — — PTD12 DISABLED PTD12 FXIO0_D28 G3 — — — — PTD13 DISABLED PTD13 FXIO0_D29 G4 — — — — PTD14 DISABLED PTD14 FXIO0_D30 H4 — — — — PTD15 DISABLED PTD15 FXIO0_D31 A11 — — — — NC NC NC J6 — — — — NC NC NC J4 — — — — NC NC NC H5 — — — — NC NC NC J3 — — — — NC NC NC J5 — — — — NC NC NC K3 — — — — NC NC NC 36 Freescale Semiconductor, Inc. LPUART2_ CTS_b LPUART2_ TX LPUART0_ TX SPI1_PCS0 SPI1_SOUT SPI1_SIN Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Pinouts 121 100 80 64 64 MAP LQFP LQFP MAP LQFP BGA BGA 121 100 80 64 Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 64 4.2 Pin properties 121 MAPBGA 100 LQFP 80 LQFP 64 LQFP 64 MAPBGA Pin Name Driver strength Default status after POR Pullup/ pulldown setting after POR Slew rate after POR Passive pin filter after POR Open drain Pin interrupt The following table lists the pin properties. B1 1 1 1 A1 PTE0 ND Hi-Z — SS N N Y C2 2 2 2 B1 PTE1/LLWU_P0 ND Hi-Z — SS N N Y C1 3 3 3 C5 PTE2/LLWU_P1 ND Hi-Z — SS N N Y D2 4 4 4 D2 PTE3 ND Hi-Z — SS N N Y F7 5 5 5 C4 VSS — — — — — — — E5 6 6 6 D3 VDDIO_E — — — — — — — D1 7 7 7 E2 PTE4/LLWU_P2 ND Hi-Z — SS N N Y E2 8 8 8 D1 PTE5 ND Hi-Z — SS N N Y E1 9 PTE6/LLWU_P16 ND Hi-Z — SS N N Y F3 10 9 PTE7 ND Hi-Z — SS N N Y F2 11 10 PTE8 ND Hi-Z — SS N N Y F1 12 PTE9/LLWU_P17 ND Hi-Z — SS N N Y G2 13 PTE10/LLWU_P18 ND Hi-Z — SS N N Y G1 14 11 PTE11 ND Hi-Z — SS N N Y 15 12 VDDIO_E — — — — — — — 16 13 9 VSS — — — — — — — F3 VSS — — — — — — — H2 17 14 10 E1 USB0_DP ND Hi-Z — SS N N — H1 18 15 11 F1 USB0_DM ND Hi-Z — SS N N — J1 19 16 12 F2 USB_VDD ND Hi-Z — SS N N — H3 Table continues on the next page... Kinetis KL82 Microcontroller, Rev. 2, 11/2015 37 Freescale Semiconductor, Inc. Pin Name Driver strength Default status after POR Pullup/ pulldown setting after POR Slew rate after POR Passive pin filter after POR Open drain Pin interrupt NC — — — — — — — 21 NC — — — — — — — K2 ADC0_DP0 ND Hi-Z — SS N N — K1 ADC0_DM0 ND Hi-Z — SS N N — 64 MAPBGA 20 64 LQFP 100 LQFP J2 80 LQFP 121 MAPBGA Pinouts F5 22 17 13 G2 VDDA — — — — — — — G5 23 18 14 H3 VREFH — — — — — — — G6 24 19 15 H2 VREFL — — — — — — — F6 25 20 16 G1 VSSA — — — — — — — L2 26 21 17 H1 ADC0_DP1 ND Hi-Z — SS N N — L1 27 22 18 G3 ADC0_DM1 ND Hi-Z — SS N N — L3 28 23 19 F4 VREF_OUT/ CMP0_IN5/ ADC0_SE22 ND Hi-Z — SS N N — K4 29 24 20 G4 DAC0_OUT/ ADC0_SE23 ND Hi-Z — SS N N — NC — — — — — — — H6 K5 30 25 21 F5 RTC_WAKEUP_B ND Hi-Z — SS N Y — L4 31 26 22 H4 XTAL32 ND Hi-Z — SS N N Y L5 32 27 23 H5 EXTAL32 ND Hi-Z — SS N N Y K6 33 28 24 G5 VBAT ND Hi-Z — SS N N — VDD — — — — — — — 34 VSS — — — — — — — L7 35 36 29 25 D4 PTA0 ND L PD SS N N Y H8 37 30 26 D5 PTA1 ND H PU SS N N Y J7 38 31 27 E5 PTA2 ND H PU SS N N Y H9 39 32 28 H6 PTA3 ND H PU SS N N Y J8 40 33 29 G6 PTA4/LLWU_P3 ND H PU SS Y N Y K7 41 PTA5 ND H PU SS N N Y L10 VDD — — — — — — — K10 VSS — — — — — — — Table continues on the next page... 38 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Pullup/ pulldown setting after POR Slew rate after POR Passive pin filter after POR Open drain Pin interrupt N Y N N Y Driver strength N SS Pin Name SS — 64 MAPBGA — Hi-Z 64 LQFP Hi-Z PTA11/LLWU_P23 ND 80 LQFP PTA10/LLWU_P22 ND H7 100 LQFP J9 121 MAPBGA Default status after POR Pinouts K8 42 PTA12 ND Hi-Z — SS N N Y L8 43 PTA13/LLWU_P4 ND Hi-Z — SS N N Y K9 44 34 PTA14 ND Hi-Z — SS N N Y L9 45 35 PTA15 ND Hi-Z — SS N N Y J10 46 36 PTA16 ND Hi-Z — SS N N Y H10 47 37 PTA17 ND Hi-Z — SS N N Y E6 48 38 30 H7 VDD — — — — — — — G7 49 39 31 G7 VSS — — — — — — — L11 50 40 32 H8 PTA18 ND Hi-Z — SS N N Y K11 51 41 33 G8 PTA19 ND Hi-Z — SS N N Y J11 52 42 34 F8 RESET_b ND H PU SS N Y N PTA29 ND Hi-Z — SS N N Y PTB0/LLWU_P5 ND Hi-Z — SS N N Y PTB1 ND Hi-Z — SS N N Y H11 G11 53 43 35 E6 G10 54 44 G9 55 PTB2 ND Hi-Z — SS N N Y G8 56 PTB3 ND Hi-Z — SS N N Y B11 45 36 F7 PTB4 ND Hi-Z — SS N N Y C11 46 37 F6 PTB5 ND Hi-Z — SS N N Y F11 47 38 E7 PTB6 ND Hi-Z — SS N N Y E11 48 39 E8 PTB7 ND Hi-Z — SS N N Y D11 49 40 D7 PTB8 ND Hi-Z — SS N N Y PTB9 ND Hi-Z — SS N N Y PTB10 ND Hi-Z — SS N N Y PTB11 ND Hi-Z — SS N N Y E10 57 D10 58 C10 59 L6 60 VSS — — — — — — — E7 61 VDD — — — — — — — B10 62 PTB16 ND Hi-Z — SS N N Y 50 51 Table continues on the next page... Kinetis KL82 Microcontroller, Rev. 2, 11/2015 39 Freescale Semiconductor, Inc. 121 MAPBGA 100 LQFP 80 LQFP 64 LQFP 64 MAPBGA Pin Name Driver strength Default status after POR Pullup/ pulldown setting after POR Slew rate after POR Passive pin filter after POR Open drain Pin interrupt Pinouts E9 63 52 PTB17 ND Hi-Z — SS N N Y D9 64 53 41 D6 PTB18 ND Hi-Z — SS N N Y C9 65 54 42 C7 PTB19 ND Hi-Z — SS N N Y F10 66 PTB20 ND Hi-Z — SS N N Y F9 67 PTB21 ND Hi-Z — SS N N Y F8 68 PTB22 ND Hi-Z — SS N N Y E8 69 PTB23 ND Hi-Z — SS N N Y B9 70 55 43 D8 PTC0 ND Hi-Z — SS N N Y D8 71 56 44 C6 PTC1/LLWU_P6 ND Hi-Z — SS N N Y C8 72 57 45 B7 PTC2 ND Hi-Z — SS N N Y B8 73 58 46 C8 PTC3/LLWU_P7 ND Hi-Z — SS N N Y 74 59 47 E3 VSS — — — — — — — 75 60 48 E4 VDD — — — — — — — A8 76 61 49 B8 PTC4/LLWU_P8 ND Hi-Z — SS N N Y D7 77 62 50 A8 PTC5/LLWU_P9 ND Hi-Z — SS N N Y C7 78 63 51 A7 PTC6/LLWU_P10 ND Hi-Z — SS N N Y B7 79 64 52 B6 PTC7 ND Hi-Z — SS N N Y A7 80 65 53 A6 PTC8 ND Hi-Z — SS N N Y D6 81 66 54 B5 PTC9 ND Hi-Z — SS N N Y C6 82 67 55 B4 PTC10 ND Hi-Z — SS N N Y C5 83 68 56 A5 PTC11/LLWU_P11 ND Hi-Z — SS N N Y B6 84 69 PTC12 ND Hi-Z — SS N N Y A6 85 70 PTC13 ND Hi-Z — SS N N Y A5 86 PTC14 ND Hi-Z — SS N N Y B5 87 PTC15 ND Hi-Z — SS N N Y 88 VSS — — — — — — — 89 VDD — — — — — — — 71 PTC16 ND Hi-Z — SS N N Y 72 PTC17 ND Hi-Z — SS N N Y D5 C4 90 Table continues on the next page... 40 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Driver strength Default status after POR Pullup/ pulldown setting after POR Slew rate after POR Passive pin filter after POR Open drain Pin interrupt — SS N N Y Hi-Z — SS N N Y 64 MAPBGA Hi-Z ND 64 LQFP ND PTC19 80 LQFP PTC18 A4 100 LQFP B4 121 MAPBGA Pin Name Pinouts D4 91 73 57 C3 PTD0/LLWU_P12 ND Hi-Z — SS N N Y D3 92 74 58 A4 PTD1 ND Hi-Z — SS N N Y C3 93 75 59 C2 PTD2/LLWU_P13 ND Hi-Z — SS N N Y B3 94 76 60 B3 PTD3 ND Hi-Z — SS N N Y A3 95 77 61 A3 PTD4/LLWU_P14 ND Hi-Z — SS N N Y A2 96 78 62 C1 PTD5 ND Hi-Z — SS N N Y B2 97 79 63 B2 PTD6/LLWU_P15 ND Hi-Z — SS N N Y 98 VSS — — — — — — — 99 VDD — — — — — — — PTD7 ND Hi-Z — SS N N Y A10 PTD8/LLWU_P24 ND Hi-Z — SS N N Y A9 PTD9 ND Hi-Z — SS N N Y E4 PTD10 ND Hi-Z — SS N N Y E3 PTD11/LLWU_P25 ND Hi-Z — SS N N Y F4 PTD12 ND Hi-Z — SS N N Y G3 PTD13 ND Hi-Z — SS N N Y G4 PTD14 ND Hi-Z — SS N N Y H4 PTD15 ND Hi-Z — SS N N Y A11 NC — — — — — — — J6 NC — — — — — — — J4 NC — — — — — — — H5 NC — — — — — — — J3 NC — — — — — — — J5 NC — — — — — — — K3 NC — — — — — — — A1 100 80 64 A2 Kinetis KL82 Microcontroller, Rev. 2, 11/2015 41 Freescale Semiconductor, Inc. Pinouts Properties Abbreviation Driver strength Default status after POR Descriptions ND Normal drive HD High drive Hi-Z High impendence H High level L Low level Pullup/ pulldown setting after POR PD Pullup PU Pulldown Slew rate after POR FS Fast slew rate SS Slow slew rate Passive Pin Filter after POR N Disabled Y Enabled Open drain N Disabled1 Y Enabled2 Y Yes Pin interrupt 1. When I2C module is enabled and a pin is functional for I2C, this pin is (pseudo-) open drain enabled. When UART or LPUART module is enabled and a pin is functional for UART or LPUART, this pin is (pseudo-) open drain configurable. 2. PTA20 is a true open drain pin that must never be pulled above VDD. 4.3 Module signal description tables The following sections correlate the chip-level signal name with the signal name used in the module's chapter. They also briefly describe the signal function and direction. 4.3.1 Core Modules Table 9. SWD Signal Descriptions Chip signal name Module signal name Description I/O SWD_DIO SWD_DIO Serial Wire Data I/O SWD_CLK SWD_CLK Serial Wire Clock I 42 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Pinouts 4.3.2 System modules Table 10. System signal descriptions Chip signal name Module signal name NMI_b — Description I/O Non-maskable interrupt I NOTE: Driving the NMI signal low forces a non-maskable interrupt, if the NMI function is selected on the corresponding pin. RESET_b — Reset bi-directional signal I/O VDD — MCU power I VDDIO_E PTE MCU power for IOs on PTE I VDDA — MCU analog power I VSS — MCU ground I VREFH — MCU analog voltage reference-high I VREFL — MCU analog voltage reference--low I Table 11. EWM signal descriptions Chip signal name Module signal name EWM_IN EWM_in EWM_OUT_ b EWM_out Description I/O EWM input for safety status of external safety circuits. The polarity of EWM_in is programmable using the EWM_CTRL[ASSIN] bit. The default polarity is active-low. I EWM reset out signal O Table 12. LLWU signal descriptions Chip signal name Module signal name LLWU_Pn LLWU_Pn Description I/O Wakeup inputs I Table 13. EMVSIM0 signal descriptions Chip signal name Module signal name Description I/O EMVSIM0_CLK EMVSIM_SCLK Card Clock. Clock to Smart Card. O EMVSIM0_IO EMVSIM_IO Card Data Line. Bi-directional data line. I/O EMVSIM0_PD EMVSIM_PD Card Presence Detect. Signal indicating presence or removal of card I EMVSIM0_RST EMVSIM_SRST Card Reset. Reset signal to Smart Card O EMVSIM_VCC_EN Card Power Enable. This signal controls the power to Smart Card O EMVSIM0_VCCEN Kinetis KL82 Microcontroller, Rev. 2, 11/2015 43 Freescale Semiconductor, Inc. Pinouts Table 14. EMVSIM1 signal descriptions Chip signal name Module signal name EMVSIM1_CLK EMVSIM_SCLK Description I/O Card Clock. Clock to Smart Card. O I/O EMVSIM1_IO EMVSIM_IO Card Data Line. Bi-directional data line. EMVSIM1_PD EMVSIM_PD Card Presence Detect. Signal indicating presence or removal of card I EMVSIM1_RST EMVSIM_SRST Card Reset. Reset signal to Smart Card O EMVSIM1_VCCEN EMVSIM_VCC_EN Card Power Enable. This signal controls the power to Smart Card O 4.3.3 Clock Modules Table 15. OSC signal descriptions Chip signal name Module signal name EXTAL0 EXTAL XTAL0 XTAL Description I/O External clock/Oscillator input I Oscillator output O Table 16. RTC OSC signal descriptions Chip signal name Module signal name EXTAL32 EXTAL32 XTAL32 XTAL32 Description I/O Analog input of the RTC oscillator I Analog output of the RTC oscillator module O 4.3.4 Memories and memory interfaces Table 17. QSPI signal description Chip signal name Module signal Name Description I/O QSPI0A_SS0_B PCSFA1 Peripheral Chip Select Flash A1. This signal is the chip select for the serial flash device A1. A1 represents the first device in a dual-die package flash A or the first of the two flash devices that share IOFA. O QSPI0A_SS1_B PCSFA2 Peripheral Chip Select Flash A2. This signal is the chip select for the serial flash device A2. A2 represents the O Table continues on the next page... 44 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Pinouts Table 17. QSPI signal description (continued) Chip signal name Module signal Name Description I/O second device in a dual-die package flash A or the second of the two flash devices that share IOFA. QSPI0B_SS0_B PCSFB1 Peripheral Chip Select Flash B1. This signal is the chip select for the serial flash device B1. B1 represents the first device in a dual-die package flash B or the first of the two flash devices that share IOFB. O QSPI0A_SCLK SCKFA Serial Clock Flash A. This signal is the serial clock output to the serial flash device A. O QSPI0B_SCLK SCKFB Serial Clock Flash B. This signal is the serial clock output to the serial flash device B. O QSPI0B_DATA3 IOFA[7:0] Serial I/O Flash A. These signals are the data I/O lines to/from the serial flash device A. Note that the signal pins of the serial flash device may change their function according to the SFM Command executed, leaving them as control inputs when Single and Dual Instructions are executed. The module supports driving these inputs to dedicated values. I/O IOFB[3:0] Serial I/O Flash B. These signals are the data I/O lines to/from the serial flash device B. Note that the signal pins of the serial flash device may change their function according to the SFM Command executed, leaving them as control inputs when Single and Dual Instructions are executed. The module supports driving these inputs to dedicated values. I/O DQSFA Data Strobe signal Flash A. Data strobe signal for port A. Some flash vendors provide the DQS signal to which the read data is aligned in DDR mode. I QSPI0B_DATA2 QSPI0B_DATA1 QSPI0B_DATA0 QSPI0A_DATA3 QSPI0A_DATA2 QSPI0A_DATA1 QSPI0A_DATA0 QSPI0B_DATA3 QSPI0B_DATA2 QSPI0B_DATA1 QSPI0B_DATA0 QSPI0A_DQS Kinetis KL82 Microcontroller, Rev. 2, 11/2015 45 Freescale Semiconductor, Inc. Pinouts 4.3.5 Analog Table 18. ADC0 Signal Descriptions Chip signal name Module signal name Description I/O ADC0_DP[1:0] DADP1–DADP0 Differential analog channel inputs I ADC0_DM[1:0] DADM1–DADM0 Differential Analog Channel Inputs I Inputs1 ADC0_SEn ADn Single-Ended Analog Channel I VREFH VREFSH Voltage Reference Select High I VREFL VREFSL Voltage Reference Select Low I VDDA VDDA Analog power supply I VSSA VSSA Analog ground I 1. See ADC channel assignment for the n. Table 19. CMP0 Signal Descriptions Chip signal name Module signal name Description I/O CMP0_INn, n=[5,3:0] INn, n=[5,3:0] Analog voltage inputs, see CMP input connection for more details about the n. I CMP0_OUT CMPO Comparator output O NOTE There is no CMP0_IN[4] coming from pad. Table 20. DAC0 Signal Descriptions Chip signal name Module signal name DAC0_OUT — Description I/O DAC output O Table 21. VREF Signal Descriptions Chip signal name Module signal name VREF_OUT VREF_OUT 46 Freescale Semiconductor, Inc. Description I/O Internally-generated Voltage Reference output O Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Pinouts 4.3.6 Timer Modules Table 22. LPTMR0 Signal Descriptions Chip signal name Module signal name Description LPTMR0_ALT[2:1] LPTMR_ALTn Pulse Counter Input I/O I Table 23. LPTMR1 Signal Descriptions Chip signal name Module signal name Description LPTMR1_ALT[2:1] LPTMR_ALTn Pulse Counter Input I/O I Table 24. RTC Signal Descriptions Chip signal name Module signal name VBAT — EXTAL32 EXTAL32 XTAL32 XTAL32 Description I/O Backup battery supply for RTC and VBAT register file I 32.768 kHz oscillator input I 32.768 kHz oscillator output O RTC_CLKOUT RTC_CLKOUT 1 Hz square-wave output or OSCERCLK O RTC_WAKEUP_B RTC_WAKEUP Wakeup for external device I/O Table 25. TPM0 Signal Descriptions Chip signal name Module signal name Description I/O TPM_CLKIN[1:0] TPM_EXTCLK External clock. TPM external clock can be selected to increment the TPM counter on every rising edge synchronized to the counter clock. I TPM0_CH[5:0] TPM_CHn A TPM channel pin is configured as output when configured in an output compare or PWM mode and the TPM counter is enabled, otherwise the TPM channel pin is an input. I/O Table 26. TPM1 Signal Descriptions Chip signal name Module signal name Description TPM_CLKIN[1:0] TPM_EXTCLK External clock. TPM external clock can be selected to increment the TPM counter on every rising edge synchronized to the counter clock. I TPM1_CH[1:0] TPM_CHn A TPM channel pin is configured as output when configured in an output compare or PWM mode and the TPM counter is enabled, otherwise the TPM channel pin is an input. I/O Kinetis KL82 Microcontroller, Rev. 2, 11/2015 I/O 47 Freescale Semiconductor, Inc. Pinouts Table 27. TPM2 Signal Descriptions Chip signal name Module signal name Description I/O TPM_CLKIN[1:0] TPM_EXTCLK External clock. TPM external clock can be selected to increment the TPM counter on every rising edge synchronized to the counter clock. I TPM1_CH[1:0] TPM_CHn A TPM channel pin is configured as output when configured in an output compare or PWM mode and the TPM counter is enabled, otherwise the TPM channel pin is an input. I/O 4.3.7 Communication interfaces Table 28. USB FS OTG signal descriptions Chip signal name Module signal name Description I/O USB0_DM usb_dm USB D- analog data signal on the USB bus. I/O USB0_DP usb_dp USB D+ analog data signal on the USB bus. I/O USB0_CLKIN — Alternate USB clock input I USB_VDD — USB domain power supply, 3.3 V. I USB0_SOF_OUT — USB start of frame signal. Can be used to make the USB start of frame available for external synchronization. O Table 29. SPI0 signal descriptions Chip signal name Module signal name Description I/O SPI0_PCS0 PCS0/SS Peripheral Chip Select 0 (O) in the master mode and Slave Select (I) in the slave mode I/O SPI0_PCS[1:3] PCS[1:3] Peripheral Chip Selects 1–3 in the master mode O SPI0_PCS4 PCS4 Peripheral Chip Select 4 in the master mode O SPI0_PCS5 PCS5 Peripheral Chip Select 5 /Peripheral Chip Select Strobe in the master mode O SPI0_SIN SIN Serial Data In I SPI0_SOUT SOUT Serial Data Out O SPI0_SCK SCK Serial Clock (O) in the master mode and Serial Clock (I) in the slave mode I/O 48 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Pinouts Table 30. SPI1 signal descriptions Chip signal name Module signal name Description I/O SPI1_PCS0 PCS0/SS Peripheral Chip Select 0 (O) in the master mode and Slave Select (I) in the slave mode I/O SPI1_PCS[1:3] PCS[1:3] Peripheral Chip Selects 1–3 in the master mode O SPI1_SIN SIN Serial Data In I SPI1_SOUT SOUT Serial Data Out O SPI1_SCK SCK Serial Clock (O) in the master mode and Serial Clock (I) in the slave mode I/O Table 31. I2C0 signal descriptions Chip signal name Module signal name Description I/O I2C0_SCL SCL Bidirectional serial clock line of the I2C system. I/O I2C0_SDA SDA Bidirectional serial data line of the I2C system. I/O Table 32. I2C1 signal descriptions Chip signal name Module signal name Description I/O I2C1_SCL SCL Bidirectional serial clock line of the I2C system. I/O I2C1_SDA SDA Bidirectional serial data line of the I2C system. I/O Table 33. LPUART0 signal descriptions Chip signal name Module signal name Description I/O LPUART0_CTS_b LPUART_CTS Clear to Send I LPUART0_RTS_b LPUART_RTS Request to send O LPUART0_TX LPUART_TX Transmit data. This pin is normally an output, but is an input (tristated) in single wire mode whenever the transmitter is disabled or transmit direction is configured for receive data. I/O LPUART0_RX LPUART_RX Receive Data I Table 34. LPUART1 signal descriptions Chip signal name Module signal name Description I/O LPUART1_CTS_b LPUART_CTS Clear to Send I LPUART1_RTS_b LPUART_RTS Request to send O Table continues on the next page... Kinetis KL82 Microcontroller, Rev. 2, 11/2015 49 Freescale Semiconductor, Inc. Pinouts Table 34. LPUART1 signal descriptions (continued) Chip signal name Module signal name Description I/O LPUART1_TX LPUART_TX Transmit data. This pin is normally an output, but is an input (tristated) in single wire mode whenever the transmitter is disabled or transmit direction is configured for receive data. I/O LPUART1_RX LPUART_RX Receive Data I Table 35. LPUART2 signal descriptions Chip signal name Module signal name Description I/O LPUART2_CTS_b LPUART_CTS Clear to Send I LPUART2_RTS_b LPUART_RTS Request to send O LPUART2_TX LPUART_TX Transmit data. This pin is normally an output, but is an input (tristated) in single wire mode whenever the transmitter is disabled or transmit direction is configured for receive data. I/O LPUART2_RX LPUART_RX Receive Data I Table 36. FlexIO signal descriptions Chip signal name FXIO0_Dn(n=0-31) Module signal name Description I/O FXIO_Dn (n=0...31) Bidirectional FlexIO Shifter and Timer pin inputs/outputs I/O Table 37. EMVSIM0 signal descriptions Chip signal name Module signal name Description I/O EMVSIM0_ CLK EMVSIM_SCLK Card Clock. Clock to Smart Card. O EMVSIM0_ IO EMVSIM_IO Card Data Line. Bi-directional data line. I/O EMVSIM0_ PD EMVSIM_PD Card Presence Detect. Signal indicating presence or removal of card I EMVSIM0_ RST EMVSIM_SRST Card Reset. Reset signal to Smart Card O EMVSIM0_ VCCEN EMVSIM_VCC_EN Card Power Enable. This signal controls the power to Smart Card O Table 38. EMVSIM1 signal descriptions Chip signal name Module signal name EMVSIM1_ CLK EMVSIM_SCLK EMVSIM1_ IO EMVSIM_IO Description I/O Card Clock. Clock to Smart Card. O Card Data Line. Bi-directional data line. I/O Table continues on the next page... 50 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Pinouts Table 38. EMVSIM1 signal descriptions (continued) Chip signal name Module signal name Description EMVSIM1_ PD EMVSIM_PD Card Presence Detect. Signal indicating presence or removal of card I EMVSIM1_ RST EMVSIM_SRST Card Reset. Reset signal to Smart Card O EMVSIM1_ VCCEN I/O EMVSIM_VCC_EN Card Power Enable. This signal controls the power to Smart Card O 4.3.8 Human-machine interfaces (HMI) Table 39. GPIO signal descriptions Chip signal name Module signal name Description I/O PTA[31:0]1 PORTA31–PORTA0 General-purpose input/output I/O PTB[31:0]1 PORTB31–PORTB0 General-purpose input/output I/O PTC[31:0]1 PORTC31–PORTC0 General-purpose input/output I/O PTD[31:0]1 PORTD31–PORTD0 General-purpose input/output I/O PTE[31:0]1 PORTE31–PORTE0 General-purpose input/output I/O 1. The available GPIO pins depends on the specific package. See the signal multiplexing section for which exact GPIO signals are available. Table 40. TSI0 signal descriptions Chip signal name Module signal name TSI0_CH[15:0] TSI[15:0] Description I/O TSI capacitive pins. Switches driver that connects directly to the electrode pins TSI[15:0] can operate as GPIO pins. I/O 4.4 KL82 Pinouts The below figures show the pinout diagrams for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 51 Freescale Semiconductor, Inc. Pinouts 1 2 3 4 5 6 7 8 9 10 11 A PTD7 PTD5 PTD4/ LLWU_P14 PTC19 PTC14 PTC13 PTC8 PTC4/ LLWU_P8 PTD9 PTD8/ LLWU_P24 NC A B PTE0 PTD6/ LLWU_P15 PTD3 PTC18 PTC15 PTC12 PTC7 PTC3/ LLWU_P7 PTC0 PTB16 PTB4 B C PTE2/ LLWU_P1 PTC17 PTC11/ LLWU_P11 PTC10 PTC6/ LLWU_P10 PTC2 PTB19 PTB11 PTB5 C D PTE4/ LLWU_P2 PTE3 PTD1 PTD0/ LLWU_P12 PTC16 PTC9 PTC5/ LLWU_P9 PTC1/ LLWU_P6 PTB18 PTB10 PTB8 D E PTE6/ LLWU_P16 PTE5 PTD11/ LLWU_P25 PTD10 VDDIO_E VDD VDD PTB23 PTB17 PTB9 PTB7 E F PTE9/ LLWU_P17 PTE8 PTE7 PTD12 VDDA VSSA VSS PTB22 PTB21 PTB20 PTB6 F G PTE11 PTE10/ LLWU_P18 PTD13 PTD14 VREFH VREFL VSS PTB3 PTB2 PTB1 PTB0/ LLWU_P5 G H USB0_DM USB0_DP VSS PTD15 NC NC PTA11/ LLWU_P23 PTA1 PTA3 PTA17 PTA29 H J USB_VDD NC NC NC NC NC PTA2 PTA16 RESET_b J VBAT PTA5 PTA12 PTA14 VSS PTA19 K L PTE1/ PTD2/ LLWU_P0 LLWU_P13 K ADC0_DM0 ADC0_DP0 L VREF_OUT/ ADC0_DM1 ADC0_DP1 CMP0_IN5/ ADC0_SE22 1 2 NC 3 DAC0_OUT/ RTC_WAK ADC0_SE23 EUP_B PTA4/ PTA10/ LLWU_P3 LLWU_P22 XTAL32 EXTAL32 VSS PTA0 PTA13/ LLWU_P4 PTA15 VDD PTA18 4 5 6 7 8 9 10 11 Figure 5. KL82 121-pin MAPBGA pinout diagram 52 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 PTD1 PTD0/LLWU_P12 PTC17 VDD VSS PTC15 PTC14 PTC13 PTC12 PTC11/LLWU_P11 PTC10 PTC9 PTC8 92 91 90 89 88 87 86 85 84 83 82 81 80 PTC4/LLWU_P8 PTD2/LLWU_P13 PTC5/LLWU_P9 PTD3 94 93 76 PTD4/LLWU_P14 95 77 PTD5 96 PTC7 PTD6/LLWU_P15 97 PTC6/LLWU_P10 VSS 98 79 VDD 99 78 PTD7 100 Pinouts 75 VDD 2 74 VSS PTE2/LLWU_P1 3 73 PTC3/LLWU_P7 PTE3 4 72 PTC2 VSS 5 71 PTC1/LLWU_P6 PTC0 PTE0 1 PTE1/LLWU_P0 VDDIO_E 6 70 PTE4/LLWU_P2 7 69 PTB23 PTE5 8 68 PTB22 9 67 PTB21 10 66 PTB20 PTE6/LLWU_P16 PTE7 PTE8 11 65 PTB19 PTE9/LLWU_P17 12 64 PTB18 PTE10/LLWU_P18 13 63 PTB17 PTE11 14 62 PTB16 VDDIO_E 15 61 VDD VSS VSS 16 60 USB0_DP 17 59 PTB11 USB0_DM 18 58 PTB10 USB_VDD 19 57 PTB9 NC 20 56 PTB3 42 43 44 45 46 47 48 49 50 PTA12 PTA14 PTA15 PTA16 PTA17 VDD VSS PTA18 PTA2 PTA13/LLWU_P4 38 PTA1 41 37 PTA0 PTA5 36 40 35 VSS 39 34 VDD PTA3 33 VBAT PTA4/LLWU_P3 32 EXTAL32 PTA19 XTAL32 RESET_b 51 31 52 25 29 24 VSSA 30 VREFL RTC_WAKEUP_B PTB0/LLWU_P5 DAC0_OUT/ADC0_SE23 53 28 23 27 VREFH ADC0_DM1 PTB2 PTB1 VREF_OUT/CMP0_IN5/ADC0_SE22 55 54 26 21 22 ADC0_DP1 NC VDDA Figure 6. KL82 100-pin LQFP pinout diagram Kinetis KL82 Microcontroller, Rev. 2, 11/2015 53 Freescale Semiconductor, Inc. PTD7 PTD6/LLWU_P15 PTD5 PTD4/LLWU_P14 PTD3 PTD2/LLWU_P13 PTD1 PTD0/LLWU_P12 PTC17 PTC16 PTC13 PTC12 PTC11/LLWU_P11 PTC10 PTC9 PTC8 PTC7 PTC6/LLWU_P10 PTC5/LLWU_P9 PTC4/LLWU_P8 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 Pinouts PTE11 11 50 PTB11 VDDIO_E 12 49 PTB8 VSS 13 48 PTB7 USB0_DP 14 47 PTB6 USB0_DM 15 46 PTB5 USB_VDD 16 45 PTB4 VDDA 17 44 PTB1 VREFH 18 43 PTB0/LLWU_P5 VREFL 19 42 RESET_b VSSA 20 41 PTA19 40 PTB16 PTA18 51 39 10 VSS PTE8 38 PTB17 VDD 52 37 9 PTA17 PTE7 36 PTB18 PTA16 53 35 8 PTA15 PTE5 34 PTB19 PTA14 54 33 7 PTA4/LLWU_P3 PTE4/LLWU_P2 32 PTC0 PTA3 55 31 6 PTA2 VDDIO_E 30 PTC1/LLWU_P6 PTA1 56 29 5 PTA0 VSS 28 PTC2 VBAT 57 27 4 EXTAL32 PTE3 26 PTC3/LLWU_P7 XTAL32 58 25 3 RTC_WAKEUP_B PTE2/LLWU_P1 24 VSS DAC0_OUT/ADC0_SE23 59 23 2 VREF_OUT/CMP0_IN5/ADC0_SE22 PTE1/LLWU_P0 22 VDD ADC0_DM1 60 21 1 ADC0_DP1 PTE0 Figure 7. KL82 80-pin LQFP pinout diagram 54 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Pinouts A B 1 2 3 4 5 6 PTE0 PTD7 PTD4/ LLWU_P14 PTD1 PTC11/ LLWU_P11 PTC8 PTD3 PTC10 PTC9 PTC7 VSS PTE2/ LLWU_P1 PTE1/ PTD6/ LLWU_P0 LLWU_P15 PTD2/ PTD0/ LLWU_P13 LLWU_P12 7 8 PTC6/ PTC5/ LLWU_P10 LLWU_P9 A PTC2 PTC4/ LLWU_P8 B PTC1/ LLWU_P6 PTB19 PTC3/ LLWU_P7 C C PTD5 D PTE5 PTE3 VDDIO_E PTA0 PTA1 PTB18 PTB8 PTC0 D E USB0_DP PTE4/ LLWU_P2 VSS VDD PTA2 PTB0/ LLWU_P5 PTB6 PTB7 E F USB0_DM USB_VDD VSS PTB5 PTB4 RESET_b F VREF_OUT/ RTC_WAK CMP0_IN5/ EUP_B ADC0_SE22 G VSSA VDDA ADC0_DM1 DAC0_OUT/ ADC0_SE23 VBAT PTA4/ LLWU_P3 VSS PTA19 G H ADC0_DP1 VREFL VREFH XTAL32 EXTAL32 PTA3 VDD PTA18 H 1 2 3 4 5 6 7 8 Figure 8. KL82 64-pin MAPBGA pinout diagram Kinetis KL82 Microcontroller, Rev. 2, 11/2015 55 Freescale Semiconductor, Inc. PTD7 PTD6/LLWU_P15 PTD5 PTD4/LLWU_P14 PTD3 PTD2/LLWU_P13 PTD1 PTD0/LLWU_P12 PTC11/LLWU_P11 PTC10 PTC9 PTC8 PTC7 PTC6/LLWU_P10 PTC5/LLWU_P9 PTC4/LLWU_P8 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 Pinouts PTB18 VSS 9 40 PTB8 USB0_DP 10 39 PTB7 USB0_DM 11 38 PTB6 USB_VDD 12 37 PTB5 VDDA 13 36 PTB4 VREFH 14 35 PTB0/LLWU_P5 VREFL 15 34 RESET_b VSSA 16 33 PTA19 ADC0_DP1 32 41 PTA18 8 31 PTE5 VSS PTB19 30 42 VDD 7 29 PTE4/LLWU_P2 PTA4/LLWU_P3 PTC0 28 43 PTA3 6 27 VDDIO_E PTA2 PTC1/LLWU_P6 26 44 PTA1 5 25 VSS PTA0 PTC2 24 45 VBAT 4 23 PTE3 EXTAL32 PTC3/LLWU_P7 22 46 XTAL32 3 21 PTE2/LLWU_P1 RTC_WAKEUP_B VSS 20 47 DAC0_OUT/ADC0_SE23 2 19 PTE1/LLWU_P0 VREF_OUT/CMP0_IN5/ADC0_SE22 VDD 18 48 ADC0_DM1 1 17 PTE0 Figure 9. KL82 64-pin LQFP pinout diagram NOTE The 100-, 64-pin LQFP and 64-pin MAPBGA packages for this product are not yet available, however they are included in a Package Your Way program for KL MCUs. Please visit Freescale.com/KPYW for more details. 56 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Pinouts 4.5 Package dimensions The following figures show the dimensions of the package options for the devices supported by this document. Figure 10. 64-pin LQFP package dimensions 1 Kinetis KL82 Microcontroller, Rev. 2, 11/2015 57 Freescale Semiconductor, Inc. Pinouts Figure 11. 64-pin LQFP package dimensions 2 58 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Pinouts Figure 12. 64-pin MAPBGA package dimension Kinetis KL82 Microcontroller, Rev. 2, 11/2015 59 Freescale Semiconductor, Inc. Pinouts Figure 13. 80-pin LQFP package dimension 1 60 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Pinouts Figure 14. 80-pin LQFP package dimension 2 Kinetis KL82 Microcontroller, Rev. 2, 11/2015 61 Freescale Semiconductor, Inc. Pinouts Figure 15. 100-pin LQFP package dimension 1 62 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Pinouts Figure 16. 100-pin LQFP package dimension 2 Kinetis KL82 Microcontroller, Rev. 2, 11/2015 63 Freescale Semiconductor, Inc. Electrical characteristics Figure 17. 121-pin MAPBGA package dimension 5 Electrical characteristics 64 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics 5.1 Terminology and guidelines 5.1.1 Definitions Key terms are defined in the following table: Term Rating Definition A minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure: • Operating ratings apply during operation of the chip. • Handling ratings apply when the chip is not powered. NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings. Operating requirement A specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip Operating behavior A specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions Typical value A specified value for a technical characteristic that: • Lies within the range of values specified by the operating behavior • Is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions NOTE: Typical values are provided as design guidelines and are neither tested nor guaranteed. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 65 Freescale Semiconductor, Inc. Electrical characteristics 5.1.2 Examples EX AM PL E Operating rating: EX AM PL E Operating requirement: EX AM PL E Operating behavior that includes a typical value: 5.1.3 Typical-value conditions Typical values assume you meet the following conditions (or other conditions as specified): Symbol Description Value Unit TA Ambient temperature 25 °C VDD 3.3 V supply voltage 3.3 V 66 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics 5.1.4 Relationship between ratings and operating requirements .) ) ) ing rat e Op in. (m g tin ra in. t (m ax t (m n me rat e Op ing ire qu re ing rat e Op .) en rem re i qu rat e Op ing g tin ra ax (m Fatal range Degraded operating range Normal operating range Degraded operating range Fatal range Expected permanent failure - No permanent failure - Possible decreased life - Possible incorrect operation - No permanent failure - Correct operation - No permanent failure - Possible decreased life - Possible incorrect operation Expected permanent failure –∞ ∞ Operating (power on) g lin nd Ha n.) mi g( in rat g( ng li nd Ha in rat .) x ma Fatal range Handling range Fatal range Expected permanent failure No permanent failure Expected permanent failure –∞ ∞ Handling (power off) 5.1.5 Guidelines for ratings and operating requirements Follow these guidelines for ratings and operating requirements: • Never exceed any of the chip’s ratings. • During normal operation, don’t exceed any of the chip’s operating requirements. • If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible. 5.2 Ratings 5.2.1 Thermal handling ratings Symbol Description Min. Max. Unit Notes TSTG Storage temperature –55 150 °C 1 TSDR Solder temperature, lead-free — 260 °C 2 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 67 Freescale Semiconductor, Inc. Electrical characteristics 5.2.2 Moisture handling ratings Symbol MSL Description Min. Max. Unit Notes — 3 — 1 Moisture sensitivity level 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 5.2.3 ESD handling ratings Symbol Description Min. Max. Unit Notes VHBM Electrostatic discharge voltage, human body model -2000 +2000 V 1 VCDM Electrostatic discharge voltage, charged-device model -500 +500 V 2 Latch-up current at ambient temperature of 105°C -100 +100 mA 3 ILAT 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test. 5.2.4 Voltage and current operating ratings Symbol VDD VDDIO IDD Description Min. Max. Unit Digital supply voltage 1 –0.3 3.8 V VDDIO is an independent voltage supply for PORTE 2 –0.3 3.8 V — 300 mA Digital supply current VDIO Digital input voltage (except RESET, EXTAL, and XTAL) –0.3 VDD + 0.3 V VAIO Analog3, RESET, EXTAL, and XTAL input voltage –0.3 VDD + 0.3 V Maximum current single pin limit (applies to all digital pins) –25 25 mA VDD – 0.3 VDD + 0.3 V ID VDDA Analog supply voltage VUSB0_DP USB0_DP input voltage –0.3 3.63 V VUSB0_DM USB0_DM input voltage –0.3 3.63 V RTC battery supply voltage –0.3 3.8 V VBAT 1. It applies for all port pins. 2. VDDIO is independent of VDD domain and can operate at a voltage independent of VDD. However, it is required that VDD domain be powered up first prior to VDDIO. VDDIO must never be higher than VDD during power ramp up, or power down. VDD and VDDIO may ramp together if tied to the same power supply. 68 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics 3. Analog pins are defined as pins that do not have an associated general purpose I/O port function. 5.3 General 5.3.1 AC electrical characteristics Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure. Input Signal High Low VIH 80% 50% 20% Midpoint1 VIL Fall Time Rise Time The midpoint is VIL + (VIH - VIL) / 2 Figure 18. Input signal measurement reference 5.3.2 Nonswitching electrical specifications 5.3.2.1 Voltage and current operating requirements Table 41. Voltage and current operating requirements Symbol Description Min. Max. Unit VDD Supply voltage 1.71 3.6 V USB_VDD Supply voltage 3.0 3.6 V VDDIO_E Supply voltage VDD 3.6 V Analog supply voltage 1.71 3.6 V VDD – VDDA VDD-to-VDDA differential voltage –0.1 0.1 V VSS – VSSA VSS-to-VSSA differential voltage –0.1 0.1 V 1.71 3.6 V 0.7 × VDD — V 0.75 × VDD — V — 0.35 × VDD V VDDA VBAT VIH RTC battery supply voltage Input high voltage • 2.7 V ≤ VDD ≤ 3.6 V Notes 1 • 1.7 V ≤ VDD ≤ 2.7 V VIL Input low voltage Table continues on the next page... Kinetis KL82 Microcontroller, Rev. 2, 11/2015 69 Freescale Semiconductor, Inc. Electrical characteristics Table 41. Voltage and current operating requirements (continued) Symbol Description Min. Max. Unit — 0.3 × VDD V 0.06 × VDD — V -25 — mA — +25 1.2 — V VPOR_VBAT — V • 2.7 V ≤ VDD ≤ 3.6 V Notes • 1.7 V ≤ VDD ≤ 2.7 V VHYS Input hysteresis IICcont Contiguous pin DC injection current —regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins • Negative current injection • Positive current injection VRAM VRFVBAT VDD voltage required to retain RAM VBAT voltage required to retain the VBAT register file 1. The ripple limit for USB_VDD is 100 mV. 5.3.2.2 Symbol LVD and POR operating requirements Table 42. VDD supply LVD and POR operating requirements Description Min. Typ. Max. Unit VPOR Falling VDD POR detect voltage 0.8 1.1 1.5 V VLVDH Falling low-voltage detect threshold — high range (LVDV=01) 2.48 2.56 2.64 V Low-voltage warning thresholds — high range 1 VLVW1H • Level 1 falling (LVWV=00) 2.62 2.70 2.78 V VLVW2H • Level 2 falling (LVWV=01) 2.72 2.80 2.88 V VLVW3H • Level 3 falling (LVWV=10) 2.82 2.90 2.98 V VLVW4H • Level 4 falling (LVWV=11) 2.92 3.00 3.08 V — 60 — mV 1.54 1.60 1.66 V VHYSH Low-voltage inhibit reset/recover hysteresis — high range VLVDL Falling low-voltage detect threshold — low range (LVDV=00) Low-voltage warning thresholds — low range 1 VLVW1L • Level 1 falling (LVWV=00) 1.74 1.80 1.86 V VLVW2L • Level 2 falling (LVWV=01) 1.84 1.90 1.96 V VLVW3L • Level 3 falling (LVWV=10) 1.94 2.00 2.06 V VLVW4L • Level 4 falling (LVWV=11) 2.04 2.10 2.16 V — 40 — mV VHYSL Low-voltage inhibit reset/recover hysteresis — low range VBG Bandgap voltage reference 0.97 1.00 1.03 V tLPO Internal low power oscillator period — factory trimmed 900 1000 1100 μs 70 Freescale Semiconductor, Inc. Notes Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics 1. Rising threshold is the sum of falling threshold and hysteresis voltage Table 43. VBAT power operating requirements Symbol Description VPOR_VBAT Falling VBAT supply POR detect voltage 5.3.2.3 Symbol VOH IOHT Min. Typ. Max. Unit 0.8 1.1 1.5 V Voltage and current operating behaviors Table 44. Voltage and current operating behaviors Description Output high voltage — Standard IO Min. Max. Unit Not es 3.3 V, Iload = -5 mA VDD – 0.5 — V 1 1.71 V, Iload = -2.5 mA VDD – 0.5 — V — 100 mA 2.7 V ≤ VBAT ≤ 3.6 V, IOH = -5 mA VBAT – 0.5 — V 1.71 V ≤ VBAT ≤ 2.7 V, IOH = -2.5 mA VBAT – 0.5 — V — 100 mA V 1 V 1 Output high current total for all ports VOH_RTC_WAKEUP Output high voltage — normal drive pad IOH_RTC_WAKEUP Output high current total for RTC_WAKEUP pins VOL VOL IOLT Notes Output low voltage — Standard IO 3.3 V, Iload = 5 mA — 0.5 1.71 V, Iload = 2.5 mA — 0.5 Output low voltage — RESET_b 3.3 V, Iload = 5 mA — 0.5 1.71 V, Iload = 2.5 mA — 0.5 — 100 mA — 0.5 V — 0.5 — Output low current total for all ports VOL_RTC_WAKEUP Output low voltage— 2.7 V ≤ VBAT ≤ 3.6 V, IOL = 5 mA normal drive pad 1.71 V ≤ VBAT ≤ 2.7 V, IOL = 2.5 mA VOH Output high voltage — Standard fast IO 3.3 V, Iload = 15 mA VDD – 0.5 1.71V, Iload = 7.5 mA VDD – 0.5 — VOL Output high voltage — Standard fast IO 3.3 V, Iload = 15 mA — 0.5 1.71 V, Iload =7.5 mA — 0.5 — 100 mA IOL_RTC_WAKEUP Output low current total for RTC_WAKEUP pins V 2 V 2 IIN Input leakage current (per pin) for full temperature range — 0.5 µA 3 IIN Input leakage current (per pin) at 25 °C — 0.002 µA 3 IOZ Hi-Z (off-state) leakage current (per pin) — 0.25 µA IOZ_RTC_WAKEUP Hi-Z (off-state) leakage current (per RTC_WAKEUP pin) — 0.25 µA 1. 2. 3. 4. 5. RPU Internal pullup resistors(except RTC_WAKEUP pins) 20 50 kΩ 4 RPD Internal pulldown resistors (except RTC_WAKEUP pins) 20 50 kΩ 5 This is applicanble for all GPIO pins except PTE This is applicable for PTE pins only. Measured at VDD=3.6 V Measured at VDD supply voltage = VDD min and Vinput = VSS Measured at VDD supply voltage = VDD min and Vinput = VDD Kinetis KL82 Microcontroller, Rev. 2, 11/2015 71 Freescale Semiconductor, Inc. Electrical characteristics 5.3.2.4 Power mode transition operating behaviors All specifications except tPOR, and VLLSx –> RUN recovery times in the following table assume this clock configuration: • • • • CPU and system clocks = 72 MHz Bus clock = 24 MHz Flash clock = 24 MHz MCG mode=FEI Table 45. Power mode transition operating behaviors Symbol tPOR Description After a POR event, amount of time from the point VDD reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip. Min. Max. Unit Notes VDD slew rate ≥ 5.7 kV/s — 300 µs 1 VDD slew rate < 5.7 kV/s — 1.7 V/ (VDD slew rate) — 138 µs — 138 µs — 76 µs — 76 µs — 6.1 µs — 6.1 µs — 5.6 µs — 5.6 µs • VLLS0 –> RUN • VLLS1 –> RUN • VLLS2 –> RUN • VLLS3 –> RUN • LLS2 –> RUN • LLS3 –> RUN • VLPS –> RUN • STOP –> RUN 1. Normal boot (FTFA_FOPT[LPBOOT]=1) Table 46. Low power mode peripheral adders — typical value Symbol Description Temperature (°C) Unit -40 25 50 70 85 1051 IIREFSTEN4MHz 4 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 4 MHz IRC enabled. 56 56 56 56 56 56 µA IIREFSTEN32KHz 32 kHz internal reference clock (IRC) adder. Measured by entering STOP mode with the 32 kHz IRC enabled. 52 52 52 52 52 52 µA Table continues on the next page... 72 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics Table 46. Low power mode peripheral adders — typical value (continued) Symbol Description Temperature (°C) Unit -40 25 50 70 85 1051 IEREFSTEN4MHz External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled. 206 228 237 245 251 258 µA IEREFSTEN32KHz External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by entering all modes with the crystal enabled. VLLS1 440 490 540 560 570 580 nA VLLS3 440 490 540 560 570 580 LLS2 490 490 540 560 570 680 LLS3 490 490 540 560 570 680 VLPS 510 560 560 560 610 680 STOP 510 560 560 560 610 680 ICMP CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption. 22 22 22 22 22 22 µA IRTC RTC peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the RTC_CR[OSCE] bit and the RTC ALARM set for 1 minute. Includes ERCLK32K (32 kHz external crystal) power consumption. 432 357 388 475 532 810 nA IUART UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption. MCGIRCLK (4 MHz internal reference clock) 66 66 66 66 66 66 µA OSCERCLK (4 MHz external crystal) 214 237 246 254 260 268 MCGIRCLK (4 MHz internal reference clock) 86 86 86 86 86 86 OSCERCLK (4 MHz external crystal) 235 256 265 274 280 287 ITPM TPM peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source configured for output compare generating 100 Hz clock signal. No load is placed on the I/O generating the clock signal. Includes selected clock source and I/O switching currents. µA IBG Bandgap adder when BGEN bit is set and device is placed in VLPx, LLS, or VLLSx mode. 45 45 45 45 45 45 µA IADC ADC peripheral adder combining the measured values at VDD and VDDA by placing the device in STOP or VLPS mode. ADC is 366 366 366 366 366 366 µA Kinetis KL82 Microcontroller, Rev. 2, 11/2015 73 Freescale Semiconductor, Inc. Electrical characteristics Table 46. Low power mode peripheral adders — typical value Symbol Description Temperature (°C) -40 25 50 70 Unit 85 1051 configured for low power mode using the internal clock and continuous conversions. 1. Only LQFP and MAPBGA packages support the data in this column. 5.3.2.5 Power consumption operating behaviors The maximum values stated in the following table represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma). NOTE The data at 105 °C is for MAPBGA and LQFP packages only. Table 47. Power consumption operating behaviors Symbol IDDA Description Analog supply current Typ. Max. Unit Notes — See note mA 1 IDD_HSRUN Running CoreMark in Flash in Compute Operation mode, Core at 96 MHz, bus at 24 MHz, flash at 24 MHz, VDD = 3 V 25 °C 14.21 17.32 mA 2, 3 IDD_HSRUN Running CoreMark in Flash, all peripheral clock disabled, Core at 96 MHz, bus at 24 MHz, flash at 24 MHz, VDD = 3 V 25 °C 15.43 18.54 mA 2, 3 IDD_HSRUN Running CoreMark in Flash, all peripheral clock enabled, Core at 96 MHz, bus at 24 MHz, flash at 24 MHz, VDD = 3 V 25 °C 20.01 23.12 mA 2, 3 IDD_RUN Running CoreMark in Flash in Compute Operation mode, Core at 72 MHz, bus at 24 MHz, flash at 24 MHz, VDD = 3 V mA 2, 4 mA 2, 4 mA 2, 5 mA 2, 5 IDD_RUN IDD_RUN IDD_RUN Running CoreMark in Flash all peripheral clock disabled, Core at 72 MHz, bus at 24 MHz,flash at 24 MHz , VDD = 3 V Running CoreMark in Flash all peripheral clock disabled, Core at 48 MHz, bus at 24 MHz, flash at 24 MHz , VDD = 3 V Running CoreMark in Flash all peripheral clock disabled, Core at 24 MHz, bus at 12 MHz, flash at 12 MHz , VDD = 3 V 25 °C 8.99 10.59 105 °C 9.43 10.88 25 °C 10.1 11.70 105 °C 10.55 12.00 25 °C 9.1 10.70 105 °C 9.54 10.99 25 °C 5.57 7.17 105 °C 6.02 7.47 Table continues on the next page... 74 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics Table 47. Power consumption operating behaviors (continued) Symbol Description IDD_RUN Running CoreMark in Flash all peripheral clock disabled, Core at 12 MHz, bus at 6 MHz, flash at 6 MHz , VDD = 3 V IDD_RUN IDD_RUN IDD_RUN IDD_RUN IDD_RUN IDD_RUN IDD_RUN IDD_RUN Running CoreMark in Flash all peripheral clock enabled, Core at 72 MHz, bus at 24 MHz, flash at 24 MHz , VDD = 3 V Running While(1) loop in Flash, all peripheral clock disabled Core at 72 MHz, bus at 24 MHz, flash at 24 MHz , VDD = 3 V Running While(1) loop in Flash, all peripheral clock disabled Core at 48 MHz, bus at 24 MHz, flash at 24 MHz , VDD = 3 V Running While(1) loop in Flash, all peripheral clock disabled Core at 24 MHz, bus at 12 MHz, flash at 12 MHz , VDD = 3 V Typ. Max. Unit Notes 25 °C 2.8 4.40 mA 2, 5 105 °C 3.22 4.67 25 °C 12.94 14.54 mA 2, 4 105 °C 13.35 14.80 25 °C 7.6 9.20 mA 4 105 °C 8.08 9.53 25 °C 6.3 7.90 mA 5 105 °C 6.79 8.24 25 °C 4.08 5.68 mA 5 105 °C 4.53 5.98 mA 5 mA 4 mA 2, 4 mA 2, 4 Running While(1) loop in Flash, all peripheral clock disabled Core at 12 MHz, bus at 6 MHz, flash at 6 MHz , VDD = 3 V 25 °C 3.03 4.63 105 °C 3.46 4.91 Running While(1) loop in Flash, all peripheral clock enabled Core at 72 MHz, bus at 24 MHz, flash at 24 MHz , VDD = 3 V 25 °C 10.93 12.53 105 °C 11.45 12.90 25 °C 11.64 13.24 105 °C 12.17 13.62 25 °C 10.52 12.12 105 °C 11.03 12.48 Running CoreMark loop in SRAM all peripheral clock disabled, Core at 72 MHz, bus at 24 MHz, flash at 24 MHz , VDD = 3 V Running CoreMark loop in SRAM in Compute Operation mode, Core at 72 MHz, bus at 24 MHz, flash at 24 MHz , VDD = 3 V IDD_WAIT Core disabled, system at 72 MHz, bus at 24 MHz, flash disabled (flash doze enabled), VDD = 3 V, all peripheral clocks disabled 25 °C 5.11 6.47 mA 4 IDD_WAIT Core disabled, system at 48 MHz, bus at 24 MHz, flash disabled (flash doze enabled), VDD = 3 V, all peripheral clocks disabled 25 °C 4.33 5.69 mA 5 IDD_WAIT Core disabled, system at 24 MHz, bus at 12 MHz, flash disabled (flash doze enabled), VDD = 3 V, all peripheral clocks disabled 25 °C 2.76 4.12 mA 5 Table continues on the next page... Kinetis KL82 Microcontroller, Rev. 2, 11/2015 75 Freescale Semiconductor, Inc. Electrical characteristics Table 47. Power consumption operating behaviors (continued) Symbol Description Typ. Max. Unit Notes IDD_WAIT Core disabled, system at 12 MHz, bus at 6 MHz, flash disabled (flash doze enabled), VDD = 3 V, all peripheral clocks disabled 25 °C 1.98 3.34 mA 5 IDD_VLPR Very Low Power Run Core Mark in Flash in Compute Operation mode: Core at 4 MHz, bus at 1 MHz, flash at 1 MHz, VDD = 3 V 25 °C 845 936.88 μA 2, 6 IDD_VLPR Very Low Power Run Core Mark in Flash all peripheral clock enabled: Core at 4 MHz, bus at 1 MHz, flash at 1 MHz, VDD = 3 V 25 °C 1033 1145.32 μA 2, 6 IDD_VLPR Very Low Power Run Core Mark in Flash all peripheral clock disabled: Core at 4 MHz, bus at 1 MHz, flash at 1 MHz, VDD = 3 V 25 °C 898 995.64 μA 2, 6 IDD_VLPR Very Low Power Run While(1) loop in Flash all peripheral clock disabled mode: Core at 4 MHz, bus at 1 MHz, flash at 1 MHz, VDD = 3 V 25 °C 328 380.03 μA 6 IDD_VLPR Very Low Power Run While(1) loop in Flash all peripheral clock enabled: Core at 4 MHz, bus at 1 MHz, flash at 1 MHz, VDD = 3 V 25 °C 460 512.03 μA 6 IDD_VLPR Very Low Power Run While(1) loop in Flash all peripheral clock disabled mode: Core at 2 MHz, bus at 0.5 MHz, flash at 0.5 MHz, VDD = 3 V 25 °C 256 308.03 μA 6 IDD_VLPR Very Low Power Run While(1) loop in Flash all peripheral clock disabled mode: Core at 125 kHz, bus at 31.25 kHz, flash at 31.25 kHz, VDD = 3 V 25 °C 34 64.00 μA 6 IDD_VLPR Very Low Power Run Core Mark in SRAM in Compute Operation mode: Core at 4 MHz, bus at 1 MHz, flash at 1 MHz, VDD = 3 V 25 °C 591 655.26 μA 2, 6 IDD_VLPR Very Low Power Run Core Mark in SRAM all peripheral clock enable: Core at 4 MHz, bus at 1 MHz, flash at 1 MHz, VDD = 3 V 25 °C 777 861.48 μA 2, 6 IDD_VLPR Very Low Power Run Core Mark in SRAM all peripheral clock disable: Core at 4 MHz, bus at 1 MHz, flash at 1 MHz, VDD = 3 V 25 °C 643 712.91 μA 2, 6 IDD_VLPW Very Low Power Run Wait current, core disabled, system at 4 MHz, bus and flash at 1 MHz, all peripheral clocks disabled, VDD = 3 V 25 °C 297 349.03 μA 6 Table continues on the next page... 76 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics Table 47. Power consumption operating behaviors (continued) Symbol Description IDD_VLPW Very Low Power Run Wait current, core disabled, system at 2 MHz, bus and flash at 0.5 MHz, all peripheral clocks disabled, VDD = 3 V IDD_VLPW IIDD_PSTOP2 IDD_STOP IDD_VLPS IDD_VLPS IDD_LLS3 IDD_LLS3 IDD_LLS3 Typ. Max. Unit Notes 25 °C 225 277.03 μA 6 Very Low Power Run Wait current, core disabled, system at 125 kHz, bus and flash at 31.25 kHz, all peripheral clocks disabled, VDD = 3 V 25 °C 31 61.00 μA 6 Partial stop 2, core and system clock disabled, bus and flash at 12 MHz, VDD = 3 V 25 °C 2.9 4.26 mA 7 25 °C and below 273 304.31 μA 50°C 306 384.47 85 °C 440 589.29 Stop mode current at 3.0 V VLPS current, VDD= 3 V VLPS current, VDD= 1.8 V 105 °C 625 925.33 25 °C and below 5.82 15.42 50 °C 14.41 29.41 85 °C 56.47 99.67 105°C 121.54 223.54 25 °C and below 5.61 15.21 50 °C 14.01 29.01 85 °C 55.8 99.00 105 °C 120.14 222.14 3.68 7.88 50 °C 8.28 15.48 70 °C 13.52 22.52 85 °C 20.91 39.55 105 °C 40.27 67.79 25 °C and below 5.08 9.28 50 °C 10.31 17.51 70 °C 15.76 24.76 85 °C 22.8 41.44 105 °C 43.5 71.02 25 °C and below 5.02 9.22 50 °C 10.06 17.26 LLS3 current, all peripheral disabled, 25 °C and VDD = 3 V below LLS3 with RTC current, VDD = 3 V LLS3 with RTC current, VDD = 1.8 V μA μA μA μA μA Table continues on the next page... Kinetis KL82 Microcontroller, Rev. 2, 11/2015 77 Freescale Semiconductor, Inc. Electrical characteristics Table 47. Power consumption operating behaviors (continued) Symbol IDD_LLS2 IDD_LLS2 IDD_LLS2 IDD_VLLS3 IDD_VLLS3 IDD_VLLS3 Description Typ. Max. 70 °C 15.15 24.15 85 °C 21.88 40.52 105 °C 41.82 69.34 3.37 6.67 50 °C 6.82 13.42 70 °C 11.13 20.73 85 °C 16.84 31.46 105 °C 32.93 48.89 25 °C and below 4.49 7.79 50 °C 9.07 16.27 70 °C 12.98 22.58 85 °C 17.88 32.50 105 °C 35.98 51.94 25 °C and below 4.47 7.77 50 °C 8.79 15.99 70 °C 12.27 21.87 85 °C 17.77 32.39 105 °C 34.31 50.27 2 3.80 50 °C 3.76 7.36 70 °C 7.19 12.82 85 °C 12.62 21.10 105 °C 27.61 42.33 25 °C and below 2.83 4.63 50 °C 4.62 8.22 70 °C 8.38 14.01 85 °C 14.06 21.54 105 °C 29.81 44.53 25 °C and below 2.59 4.39 50 °C 4.28 7.88 70 °C 7.89 13.52 85 °C 13.33 20.81 105 °C 28.34 43.06 LLS2 current, all peripheral disabled, 25 °C and VDD = 3 V below LLS2 with RTC current, VDD = 3 V LLS2 with RTC current, VDD = 1.8 V VLLS3 current, all peripheral disable, 25 °C and VDD = 3 V below VLLS3 with RTC current, VDD = 3 V VLLS3 with RTC current, VDD = 1.8 V Unit Notes μA μA μA μA μA μA Table continues on the next page... 78 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics Table 47. Power consumption operating behaviors (continued) Symbol IDD_VLLS2 IDD_VLLS2 IDD_VLLS2 IDD_VLLS1 IDD_VLLS1 IDD_VLLS1 IDD_VLLS0 Description Typ. Max. Unit VLLS2 current, all peripheral disable, 25 °C and VDD = 3 V below 1.98 3.78 μA 50 °C 2.95 5.71 70 °C 4.83 9.33 85 °C 7.95 13.80 105 °C 16.92 24.26 25 °C and below 2.8 4.60 50 °C 3.74 6.50 70 °C 5.96 10.46 85 °C 9.35 15.20 105 °C 19.37 26.71 25 °C and below 2.56 4.36 50 °C 3.43 6.19 70 °C 5.51 10.01 85 °C 8.61 14.46 105 °C 18.87 26.21 0.718 1.11 50 °C 1.28 2.48 70 °C 2.4 4.56 VLLS2 with RTC current, VDD = 3 V VLLS2 with RTC current, VDD = 1.8 V VLLS1 current, all peripheral disable, 25 °C and VDD = 3 V below VLLS1 with RTC current, VDD = 3 V VLLS1 with RTC current, VDD = 1.8 V VLLS0 current, all peripheral disabled, (SMC_STOPCTRL[PORPO] = 0), VDD = 3 V 85 °C 4.38 7.62 105 °C 10.28 15.68 25 °C and below 1.51 1.90 50 °C 2.13 3.63 70 °C 3.65 6.29 85 °C 5.76 9.00 105 °C 12.89 18.29 25 °C and below 1.26 1.65 50 °C 1.73 3.23 70 °C 2.93 5.57 85 °C 4.98 8.22 105 °C 11.21 16.61 25 °C and below 432 835 50 °C 986 1723 70 °C 2030 3270 Notes μA μA μA μA μA nA Table continues on the next page... Kinetis KL82 Microcontroller, Rev. 2, 11/2015 79 Freescale Semiconductor, Inc. Electrical characteristics Table 47. Power consumption operating behaviors (continued) Symbol IDD_VLLS0 IDD_VBAT IDD_VBAT IDD_VBAT IDD_VBAT Description VLLS0 current, all peripheral disabled, (SMC_STOPCTRL[PORPO] = 1), VDD = 3 V Average current with RTC and 32 kHz disabled at 3 V Average current with RTC and 32 kHz disabled at 1.8 V Average current when CPU is not accessing RTC register at 3.0 V including 32 kHz Average current when CPU is not accessing RTC register at 1.8 V including 32 kHz Typ. Max. 85 °C 4000 5546 105 °C 9760 12709 25 °C and below 272 520 50 °C 743 1398 70 °C 1700 2927 85 °C 3650 5177 105 °C 9300 12191 25 °C and below 160 218.10 50 °C 269 366.96 70 °C 483 714.32 85 °C 851 1211.88 105 °C 1870 2715.16 25 °C and below 137 195.10 50 °C 230 327.96 70 °C 422 653.32 85 °C 746 1106.88 105 °C 1660 2505.16 25 °C and below 676 784.00 50 °C 809 1013.00 70 °C 1040 1538.08 85 °C 1420 2022.17 105 °C 2460 3571.81 25 °C and below 556 664.00 50 °C 674 878.00 70 °C 880 1378.08 85 °C 1220 1822.17 105 °C 2160 3271.81 Unit Notes nA nA nA nA nA 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current. 2. CoreMark benchmark compiled using IAR 7.40 with optimization level high, optimized for balanced. 3. MCG configured for PEE mode. 4. MCG configured for FEE mode. 5. MCG configured for PBE mode. 6. MCG configured for BLPE mode. 7. MCG configured for FEI mode. 80 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics 5.3.2.5.1 Diagram: Typical IDD_RUN operating behavior The following data was measured under these conditions: • No GPIOs toggled • Code execution from flash with cache enabled • For the ALLOFF curve, all peripheral clocks are disabled except FTFA Run Current Vs Core Frequency Temperature = 25, VDD = 3V 16.00E-03 14.00E-03 Current Consumption (A) 12.00E-03 Cache -- CG 10.00E-03 8.00E-03 ENABLE- ALLOFF ENABLE- ALLON 6.00E-03 4.00E-03 2.00E-03 000.00E+00 1 2 4 6 1-1-1-1 12 24 48 72 96 1-2-2-2 1-3-3-3 1-4-4-4 -- Core Freq --Core:Bus:Flash:QSPI Figure 19. Run mode supply current vs. core frequency Kinetis KL82 Microcontroller, Rev. 2, 11/2015 81 Freescale Semiconductor, Inc. Electrical characteristics VLPR Current Vs Core Freq Temperature = 25, VDD= 3V 500.00E-06 450.00E-06 Current Consumption (A) 400.00E-06 350.00E-06 Cache -- CG 300.00E-06 250.00E-06 ALLOFF - ENABLE 200.00E-06 ALLON - ENABLE 150.00E-06 100.00E-06 50.00E-06 000.00E+00 1 2 4 1-1-1-1 1-2-2-2 1-4-4-4 -- Core Freq --Core:Bus:Flash:QSPI Figure 20. VLPR mode supply current vs. core frequency 5.3.2.6 EMC performance Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components, and MCU software operation play a significant role in the EMC performance. The system designer can consult the following Freescale applications notes, available on freescale.com for advice and guidance specifically targeted at optimizing EMC performance. • AN2321: Designing for Board Level Electromagnetic Compatibility • AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers • AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers • AN2764: Improving the Transient Immunity Performance of MicrocontrollerBased Applications • AN1259: System Design and Layout Techniques for Noise Reduction in MCUBased Systems • KL-QRUG (Kinetis L-series Quick Reference). 82 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics 5.3.2.7 Designing with radiated emissions in mind To find application notes that provide guidance on designing your system to minimize interference from radiated emissions: 1. Go to www.freescale.com. 2. Perform a keyword search for “EMC design.” 5.3.2.8 Symbol Capacitance attributes Table 48. Capacitance attributes Description Min. Max. Unit CIN_A Input capacitance: analog pins — 7 pF CIN_D Input capacitance: digital pins — 7 pF 5.3.3 Switching specifications 5.3.3.1 Symbol Device clock specifications Table 49. Device clock specifications Description Min. Max. Unit — 96 MHz Notes High Speed run mode fSYS System and core clock Normal run mode (and High Speed run mode unless otherwise specified above) fSYS System and core clock — 72 MHz fBUS Bus clock — 24 MHz fFBUS Bus interface clock for QSPI 36 — MHz fFLASH Flash clock — 24 MHz fLPTMR LPTMR clock — 25 MHz VLPR mode1 fSYS System and core clock — 4 MHz fBUS Bus clock — 1 MHz fFBUS Bus interface clock for QSPI 2 — MHz fFLASH Flash clock — 1 MHz fERCLK External reference clock — 16 MHz fLPTMR LPTMR clock — 16 MHz 1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 83 Freescale Semiconductor, Inc. Electrical characteristics 5.3.3.2 General switching specifications These general purpose specifications apply to all signals configured for GPIO, LPUART, timers, and I2C signals. Table 50. General switching specifications Description Min. Max. Unit Notes GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path 1.5 — Bus clock cycles 1 GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path 16 2 — ns 3 GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path 50 — ns 3 External reset pulse width (digital glitch filter disabled) 100 — ns 3 ns 4, 5 ns 4, 5 ns 6, 5 ns 6, 5 ns 6, 7 ns 6, 7 Port rise and fall time (high drive) — slew enabled 1.71 V < VDDIO_E < 2.7 V — 34 2.7 V < VDDIO_E ≤ 3.6 V — 16 Port rise and fall time (high drive) — slew disabled 1.71 V < VDDIO_E < 2.7 V — 4.5 2.7 V < VDDIO_E ≤ 3.6V — 3 Port rise and fall time (low 1.71 V < VDDIO_E < 2.7 V drive) — slew enabled 2.7 V < VDDIO_E ≤ 3.6 V — 25 — 16 Port rise and fall time (high drive) — slew disabled 1.71 V < VDDIO_E < 2.7 V — 4.2 2.7 V < VDDIO_E ≤ 3.6V — 2.5 Port rise and fall time (low 1.71 < VDDIO_E < 2.7V drive) — slew enabled 2.7 < VDDIO_E ≤ 3.6V — 25 — 13 Port rise and fall time (low 1.71 < VDDIO_E < 2.7V drive) — slew disabled 2.7 < VDDIO_E ≤ 3.6V — 5.5 — 3.5 1. The greater synchronous and asynchronous timing must be met. 2. This is the shortest pulse that is guaranteed to be recognized. 3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes. 4. 75 pF load 5. This is applicable for Port E pins 6. 25 pF load 7. This is applicable for Ports A, B, C, and D. 5.3.4 Thermal specifications 84 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics 5.3.4.1 Thermal operating requirements Table 51. Thermal operating requirements Symbol Description Min. Max. Unit TJ Die junction temperature –40 125 °C TA Ambient temperature –40 105 °C 64 MAPBGA Unit Notes 5.3.4.2 Thermal attributes Board type Symbol Descriptio n 121 MAPBGA 80 LQFP Single-layer (1s) RθJA Thermal resistance, junction to ambient (natural convection) 75.5 55 92.2 °C/W 1 Four-layer (2s2p) RθJA Thermal resistance, junction to ambient (natural convection) 43.5 40 45.4 °C/W 1 Single-layer (1s) RθJMA Thermal 60.0 resistance, junction to ambient (200 ft./min. air speed) 44 72.9 °C/W 1 Four-layer (2s2p) RθJMA Thermal 38.3 resistance, junction to ambient (200 ft./min. air speed) 34 40.1 °C/W 1 — RθJB Thermal resistance, junction to board 23.1 24 20.4 °C/W 2 — RθJC Thermal resistance, junction to case 8.2 12 19.4 °C/W 3 — ΨJT Thermal 0.5 characterizati on parameter, junction to package top 2 0.7 °C/W 4 Table continues on the next page... Kinetis KL82 Microcontroller, Rev. 2, 11/2015 85 Freescale Semiconductor, Inc. Electrical characteristics Board type Symbol Descriptio n 121 MAPBGA 80 LQFP 64 MAPBGA Unit Notes outside center (natural convection) — RθJB_CSB Thermal 14.6 characterizati on parameter, junction to package top outside center (natural convection) — 19.5 °C/W 5 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air). 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board. 3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate. 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air). 5. Thermal resistance between the die and the central solder balls on the bottom of the package based on simulation. 5.4 Peripheral operating requirements and behaviors 5.4.1 Core modules 5.4.1.1 Debug trace timing specifications Table 52. Debug trace operating behaviors Symbol Description Tcyc Clock period Twl Low pulse width 2 — ns Twh High pulse width 2 — ns Tr Clock and data rise time — 3 ns Tf Clock and data fall time — 3 ns Ts Data setup 1.5 — ns Th Data hold 1.0 — ns 86 Freescale Semiconductor, Inc. Min. Max. Unit Frequency dependent MHz Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics 5.4.1.2 Symbol J1 SWD electricals Table 53. SWD full voltage range electricals Description Min. Max. Unit Operating voltage 1.71 3.6 V 0 25 MHz 1/J1 — ns 20 — ns SWD_CLK frequency of operation • Serial wire debug J2 SWD_CLK cycle period J3 SWD_CLK clock pulse width • Serial wire debug J4 SWD_CLK rise and fall times — 3 ns J9 SWD_DIO input data setup time to SWD_CLK rise 10 — ns J10 SWD_DIO input data hold time after SWD_CLK rise 0 — ns J11 SWD_CLK high to SWD_DIO data valid — 32 ns J12 SWD_CLK high to SWD_DIO high-Z 5 — ns J2 J3 J3 SWD_CLK (input) J4 J4 Figure 21. Serial wire clock input timing Kinetis KL82 Microcontroller, Rev. 2, 11/2015 87 Freescale Semiconductor, Inc. Electrical characteristics SWD_CLK J9 SWD_DIO J10 Input data valid J11 SWD_DIO Output data valid J12 SWD_DIO J11 SWD_DIO Output data valid Figure 22. Serial wire data timing 5.4.2 Clock modules 5.4.2.1 Symbol MCG specifications Table 54. MCG specifications Description Min. Typ. Max. Unit Notes fints_ft Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C — 32.768 — kHz fints_t Internal reference frequency (slow clock) — user trimmed 31.25 — 39.0625 kHz Internal reference (slow clock) current — 20 — µA [O: ] Internal reference (slow clock) startup time — 32 — µs Δfdco_res_t Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM — ± 0.3 ± 0.6 %fdco 1 Δfdco_res_t Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM only — ± 0.2 ± 0.5 %fdco 1 — ±1 ±2 %fdco 1 Iints tirefsts Δfdco_t Total deviation of trimmed average DCO output frequency over voltage and temperature Table continues on the next page... 88 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics Table 54. MCG specifications (continued) Symbol Description Min. Typ. Max. Unit Notes Δfdco_t Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C — ± 0.5 ±1 %fdco 1 fintf_ft Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C — 4 — MHz fintf_t Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C 3 — 5 MHz Internal reference (fast clock) current — 25 — µA tirefsts [L: ] Internal reference startup time (fast clock) — 10 15 µs floc_low Loss of external clock minimum frequency — RANGE = 00 (3/5) x fints_t — — kHz (16/5) x fints_t — — kHz Iintf ext clk freq: above (3/5)fint never reset ext clk freq: between (2/5)fint and (3/5)fint maybe reset (phase dependency) ext clk freq: below (2/5)fint always reset floc_high Loss of external clock minimum frequency — RANGE = 01, 10, or 11 ext clk freq: above (16/5)fint never reset ext clk freq: between (15/5)fint and (16/5)fint maybe reset (phase dependency) ext clk freq: below (15/5)fint always reset FLL ffll_ref FLL reference frequency range 31.25 — 39.0625 kHz fdco_ut DCO output frequency range — untrimmed 16.0 23.04 26.66 MHz 32.0 46.08 53.32 48.0 69.12 79.99 64.0 92.16 106.65 18.3 26.35 30.50 36.6 52.70 60.99 Low range 2 (DRS=00, DMX32=0) 640 × fints_ut Mid range (DRS=01, DMX32=0) 1280 × fints_ut Mid-high range (DRS=10, DMX32=0) 1920 × fints_ut High range (DRS=11, DMX32=0) 2560 × fints_ut Low range (DRS=00, DMX32=1) 732 × fints_ut Mid range Table continues on the next page... Kinetis KL82 Microcontroller, Rev. 2, 11/2015 89 Freescale Semiconductor, Inc. Electrical characteristics Table 54. MCG specifications (continued) Symbol Description Min. Typ. Max. Unit Notes 54.93 79.09 91.53 73.23 105.44 122.02 20 20.97 25 MHz 3, 4 40 41.94 50 MHz 60 62.91 75 MHz 80 83.89 100 MHz — 23.99 — MHz — 47.97 — MHz — 71.99 — MHz — 95.98 — MHz — 180 — — 150 — — — 1 ms 8 — 16 MHz (DRS=01, DMX32=1) 1464 × fints_ut Mid-high range (DRS=10, DMX32=1) 2197 × fints_ut High range (DRS=11, DMX32=1) 2929 × fints_ut fdco DCO output frequency range Low range (DRS=00) 640 × ffll_ref Mid range (DRS=01) 1280 × ffll_ref Mid-high range (DRS=10) 1920 × ffll_ref High range (DRS=11) 2560 × ffll_ref fdco_t_DMX3 DCO output frequency 2 Low range (DRS=00) 5, 6 732 × ffll_ref Mid range (DRS=01) 1464 × ffll_ref Mid-high range (DRS=10) 2197 × ffll_ref High range (DRS=11) 2929 × ffll_ref Jcyc_fll FLL period jitter • fDCO = 48 MHz • fDCO = 98 MHz tfll_acquire FLL target frequency acquisition time ps 7 PLL fpll_ref PLL reference frequency range fvcoclk_2x VCO output frequency 180 — 360 MHz fvcoclk PLL output frequency 90 — 180 MHz PLL quadrature output frequency 90 — 180 MHz — 2.8 — mA — 3.6 — mA fvcoclk_90 Ipll PLL operating current • VCO at 184 MHz (fosc_hi_1 = 32 MHz, fpll_ref = 8 MHz, VDIV multiplier = 23) Ipll PLL operating current • VCO at 360 MHz (fosc_hi_1 = 32 MHz, fpll_ref = 8 MHz, VDIV multiplier = 45) 8 8 Table continues on the next page... 90 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics Table 54. MCG specifications (continued) Symbol Description Jcyc_pll PLL period jitter (RMS) Jacc_pll Dunl tpll_lock Min. Typ. Max. Unit Notes 9 • fvco = 180 MHz — 120 — ps • fvco = 360 MHz — 75 — ps PLL accumulated jitter over 1µs (RMS) 9 • fvco = 180 MHz — 1350 — ps • fvco = 360 MHz — 600 — ps ±4.47 — ±5.97 Lock exit frequency tolerance Lock detector detection time — 10-6 — 150 × + 1075(1/ fpll_ref) % s 10 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode). 2. This applies when SCTRIM at value (0x80) and SCFTRIM control bit at value (0x0). 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0. 4. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δfdco_t) over voltage and temperature should be considered. 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1. 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device. 7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 8. Excludes any oscillator currents that are also consuming power while PLL is in operation. 9. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary. 10. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 5.4.2.2 IRC48M specifications Table 55. IRC48M specifications Symbol Description Min. Typ. Max. Unit VDD Supply voltage 1.71 — 3.6 V IDD48M Supply current — 520 — μA firc48m Internal reference frequency — 48 — MHz — ± 0.5 ± 1.5 %firc48m — ± 0.5 ± 1.5 — ± 0.5 ± 1.5 Δfirc48m_ol_lv Open loop total deviation of IRC48M frequency at low voltage (VDD=1.71V-1.89V) over temperature • Regulator disable (USB_CLK_RECOVER_IRC_EN[REG_EN]=0) • Regulator enable (USB_CLK_RECOVER_IRC_EN[REG_EN]=1) Δfirc48m_ol_hv Open loop total deviation of IRC48M frequency at high voltage (VDD=1.89V-3.6V) over temperature Notes %firc48m Table continues on the next page... Kinetis KL82 Microcontroller, Rev. 2, 11/2015 91 Freescale Semiconductor, Inc. Electrical characteristics Table 55. IRC48M specifications (continued) Symbol Description Min. Typ. Max. Unit Notes 1 • Regulator enable (USB_CLK_RECOVER_IRC_EN[REG_EN]=1) Δfirc48m_cl Closed loop total deviation of IRC48M frequency over voltage and temperature — — ± 0.1 %fhost Jcyc_irc48m Period Jitter (RMS) — 35 150 ps Startup time — 2 3 μs tirc48mst 2 1. Closed loop operation of the IRC48M is only feasible for USB device operation; it is not usable for USB host operation. It is enabled by configuring for USB Device, selecting IRC48M as USB clock source, and enabling the clock recover function (USB_CLK_RECOVER_CTRL[CLOCK_RECOVER_EN]=1, USB_CLK_RECOVER_IRC_EN[IRC_EN]=1). 2. IRC48M startup time is defined as the time between clock enablement and clock availability for system use. Enable the clock by one of the following settings: • USB_CLK_RECOVER_IRC_EN[IRC_EN]=1, or • MCG_C7[OSCSEL]=10, or • SIM_SOPT2[PLLFLLSEL]=11 5.4.2.3 5.4.2.3.1 Oscillator electrical specifications Oscillator DC electrical specifications Table 56. Oscillator DC electrical specifications Symbol Description Min. Typ. Max. Unit VDD Supply voltage 1.71 — 3.6 V IDDOSC IDDOSC Supply current — low-power mode (HGO=0) Notes 1 • 32 kHz — 600 — nA • 4 MHz — 200 — μA • 8 MHz (RANGE=01) — 300 — μA • 16 MHz — 950 — μA • 24 MHz — 1.2 — mA • 32 MHz — 1.5 — mA Supply current — high gain mode (HGO=1) 1 • 32 kHz — 7.5 — μA • 4 MHz — 500 — μA • 8 MHz (RANGE=01) — 650 — μA • 16 MHz — 2.5 — mA • 24 MHz — 3.25 — mA • 32 MHz — 4 — mA Cx EXTAL load capacitance — — — 2, 3 Cy XTAL load capacitance — — — 2, 3 Table continues on the next page... 92 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics Table 56. Oscillator DC electrical specifications (continued) Symbol RF RS Description Min. Typ. Max. Unit Notes Feedback resistor — low-frequency, low-power mode (HGO=0) — — — MΩ 2, 4 Feedback resistor — low-frequency, high-gain mode (HGO=1) — 10 — MΩ Feedback resistor — high-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — high-frequency, high-gain mode (HGO=1) — 1 — MΩ Series resistor — low-frequency, low-power mode (HGO=0) — — — kΩ Series resistor — low-frequency, high-gain mode (HGO=1) — 200 — kΩ Series resistor — high-frequency, low-power mode (HGO=0) — — — kΩ Series resistor — high-frequency, high-gain mode (HGO=1) Vpp5 1. 2. 3. 4. 5. — 0 — kΩ Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1) — VDD — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1) — VDD — V VDD=3.3 V, Temperature =25 °C, Internal capacitance = 20 pf See crystal or resonator manufacturer's recommendation Cx,Cy can be provided by using either the integrated capacitors or by using external components. When low power mode is selected, RF is integrated and must not be attached externally. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices. 5.4.2.3.2 Symbol fosc_lo Oscillator frequency specifications Table 57. Oscillator frequency specifications Description Oscillator crystal or resonator frequency — lowfrequency mode (MCG_C2[RANGE]=00) Min. Typ. Max. Unit 32 — 40 kHz Notes Table continues on the next page... Kinetis KL82 Microcontroller, Rev. 2, 11/2015 93 Freescale Semiconductor, Inc. Electrical characteristics Table 57. Oscillator frequency specifications (continued) Symbol Description Min. Typ. Max. Unit fosc_hi_1 Oscillator crystal or resonator frequency — high-frequency mode (low range) (MCG_C2[RANGE]=01) 3 — 8 MHz fosc_hi_2 Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x) 8 — 32 MHz tdc_extal Input clock duty cycle (external clock mode) 40 50 60 % Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0) — 750 — ms Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1) — 250 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0) — 0.6 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1) — 1 — ms tcst Notes 1, 2 1. Proper PC board layout procedures must be followed to achieve specifications. 2. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set. NOTE The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode. 32 kHz oscillator electrical characteristics 5.4.2.4 5.4.2.4.1 32 kHz oscillator DC electrical specifications Table 58. 32kHz oscillator DC electrical specifications Symbol Description Min. Typ. Max. Unit VBAT Supply voltage 1.71 — 3.6 V Internal feedback resistor — 100 — MΩ Cpara Parasitical capacitance of EXTAL32 and XTAL32 — 5 7 pF Vpp1 Peak-to-peak amplitude of oscillation — 0.6 — V RF 1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices. 94 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics 5.4.2.4.2 Symbol 32 kHz oscillator frequency specifications Table 59. 32 kHz oscillator frequency specifications Min. Typ. Max. Unit Oscillator crystal — 32.768 — kHz Crystal start-up time — 1000 — ms 1 fec_extal32 Externally provided input clock frequency — 32.768 — kHz 2 vec_extal32 Externally provided input clock amplitude 700 — VBAT mV 2, 3 fosc_lo tstart Description Notes 1. Proper PC board layout procedures must be followed to achieve specifications. 2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected. 3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the applied clock must be within the range of VSS to VBAT. 5.4.3 Memories and memory interfaces 5.4.3.1 QuadSPI AC specifications • All data is based on a negative edge data launch from the device and a positive edge data capture, as shown in the timing diagrams in this section. • Measurements are with a load of 15pf (1.8V) and 35pf (3V) on output pins. Input slew: 1ns • Timings assume a setting of 0x0000_000x for QuadSPI _SMPR register (see the reference manual for details). The following table lists the QuadSPI delay chain read/write settings. Please see the device reference manual for register and bit descriptions. Table 60. QuadSPI delay chain read/write settings Mode QuadSPI registers Notes QuadSPI_MCR[DQ S_EN] QuadSPI_SOCCR[ SOCCFG] QuadSPI_MCR[SC LKCFG] QuadSPI_FLSHC R[TDH] SDR Yes 3Fh 5 No Delay of 63 buffer and 64 mux DDR Yes 3Fh 1 2 Delay of 63 buffer and 64 mux Hyperflash RDS driven from Flash 0h No 2 Delay of 1 mux SDR mode Kinetis KL82 Microcontroller, Rev. 2, 11/2015 95 Freescale Semiconductor, Inc. Electrical characteristics 1 2 3 Clock Tck SFCK Tcss Tcsh CS Tis Tih Data in Figure 23. QuadSPI input timing (SDR mode) diagram • • • • • NOTE The below timing values are with default settings for sampling registers like QuadSPI_SMPR. A negative time indicates the actual capture edge inside the device is earlier than clock appearing at pad. The below timing are for a load of 15pf (1.8V) and 35pf (3V) or output pads All board delays need to be added appropriately Input hold time being negative does not have any implication or max achievable frequency Table 61. QuadSPI input timing (SDR mode) specifications Symbol Parameter Value Min Unit Max Tis Setup time for incoming data 4 — ns Tih Hold time requirement for incoming data 1.5 — ns 96 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics 1 2 3 Clock Tck SFCK Tcss Tcsh CS Toh Tov Data out Figure 24. QuadSPI output timing (SDR mode) diagram Table 62. QuadSPI output timing (SDR mode) specifications Symbol Parameter Value Min Unit Max Tov Output Data Valid — 2.8 ns Toh Output Data Hold -1.4 — ns Tck SCK clock period — 96 MHz Tcss Chip select output setup time 2 — ns Tcsh Chip select output hold time -1 — ns NOTE For any frequency setup and hold specifications of the memory should be met. DDR Mode 1 2 3 Clock Tck SFCK Tcss Tcsh CS Tis Tih Data in Figure 25. QuadSPI input timing (DDR mode) diagram Kinetis KL82 Microcontroller, Rev. 2, 11/2015 97 Freescale Semiconductor, Inc. Electrical characteristics NOTE • Numbers are for a load of 15pf (1.8V) and 35pf (3V) • The numbers are for setting of hold condition in register QuadSPI_SMPR[DDRSNP] Table 63. QuadSPI input timing (DDR mode) specifications Symbol Parameter Value Min Tis Setup time for incoming data Tih Unit Max 4 (Without — learning) Hold time requirement for incoming data 1 1 (With learning) — 1.5 — ns ns 2 3 Clock Tck SFCK Tcss Tcsh CS Tov Toh Data out Figure 26. QuadSPI output timing (DDR mode) diagram Table 64. QuadSPI output timing (DDR mode) specifications Symbol Parameter Value Min Unit Max Tov Output Data Valid — 4.5 ns Toh Output Data Hold 1.5 — ns Tck SCK clock period — 72 (with learning) MHz — 45 (without learning) Tcss Chip select output setup time 2 — Clk(sck) Tcsh Chip select output hold time -1 — Clk(sck) Hyperflash mode 98 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics RDS TsMIN ThMIN DI[7:0] Figure 27. QuadSPI input timing (Hyperflash mode) diagram Table 65. QuadSPI input timing (Hyperflash mode) specifications Symbol Parameter Value Min Unit Max TsMIN Setup time for incoming data 2 — ns ThMIN Hold time requirement for incoming data 2 — ns CK CK 2 Tclk SKMAX Tclk SKMIN THO TDVO Output Invalid Data Figure 28. QuadSPI output timing (Hyperflash mode) diagram Table 66. QuadSPI output timing (Hyperflash mode) specifications Symbol Parameter Value Min TdvMAX Output Data Valid — Unit Max 4.3 ns Table continues on the next page... Kinetis KL82 Microcontroller, Rev. 2, 11/2015 99 Freescale Semiconductor, Inc. Electrical characteristics Table 66. QuadSPI output timing (Hyperflash mode) specifications (continued) Symbol Parameter Value Min Unit Max Tho Output Data Hold 1.3 — ns TclkSKMAX Ck to Ck2 skew max — T/4 + 0.5 ns TclkSKMIN Ck to Ck2 skew min T/4 - 0.5 — ns NOTE Maximum clock frequency = 72 MHz. 5.4.3.2 Flash electrical specifications This section describes the electrical characteristics of the flash memory module. 5.4.3.2.1 Flash timing specifications — program and erase The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead. Table 67. NVM program/erase timing specifications Symbol Description Min. Typ. Max. Unit Notes thvpgm4 Longword Program high-voltage time — 7.5 18 μs — thversscr Sector Erase high-voltage time — 13 113 ms 1 thversall Erase All high-voltage time — 104 904 ms 1 1. Maximum time based on expectations at cycling end-of-life. 5.4.3.2.2 Flash timing specifications — commands Table 68. Flash command timing specifications Symbol Description Min. Typ. Max. Unit Notes trd1sec2k Read 1s Section execution time (flash sector) — — 60 μs 1 tpgmchk Program Check execution time — — 45 μs 1 trdrsrc Read Resource execution time — — 30 μs 1 tpgm4 Program Longword execution time — 65 145 μs — tersscr Erase Flash Sector execution time — 14 114 ms 2 trd1all Read 1s All Blocks execution time — — 0.9 ms 1 trdonce Read Once execution time — — 30 μs 1 Program Once execution time — 100 — μs — Erase All Blocks execution time — 140 1150 ms 2 tpgmonce tersall Table continues on the next page... 100 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics Table 68. Flash command timing specifications (continued) Symbol tvfykey Description Min. Typ. Max. Unit Notes — — 30 μs 1 Verify Backdoor Access Key execution time 1. Assumes 25 MHz flash clock frequency. 2. Maximum times for erase parameters based on expectations at cycling end-of-life. 5.4.3.2.3 Flash high voltage current behaviors Table 69. Flash high voltage current behaviors Symbol Description IDD_PGM IDD_ERS 5.4.3.2.4 Symbol Min. Typ. Max. Unit Average current adder during high voltage flash programming operation — 2.5 6.0 mA Average current adder during high voltage flash erase operation — 1.5 4.0 mA Reliability specifications Table 70. NVM reliability specifications Description Min. Typ.1 Max. Unit Notes Program Flash tnvmretp10k Data retention after up to 10 K cycles 5 50 — years — tnvmretp1k Data retention after up to 1 K cycles 20 100 — years — nnvmcycp Cycling endurance 10 K 50 K — cycles 2 1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619. 2. Cycling endurance represents number of program/erase cycles at –40 °C ≤ Tj ≤ °C. 5.4.4 Security and integrity modules There are no specifications necessary for the device's security and integrity modules. 5.4.5 Analog 5.4.5.1 ADC electrical specifications The 16-bit accuracy specifications listed in Table 1 and Table 72 are achievable on the differential pins ADCx_DP0, ADCx_DM0. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 101 Freescale Semiconductor, Inc. Electrical characteristics All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications. 5.4.5.1.1 16-bit ADC operating conditions Table 71. 16-bit ADC operating conditions Symbol Description Conditions Min. Typ.1 Max. Unit Notes VDDA Supply voltage Absolute 1.71 — 3.6 V — ΔVDDA Supply voltage Delta to VDD (VDD – VDDA) -100 0 +100 mV 2 ΔVSSA Ground voltage Delta to VSS (VSS – VSSA) -100 0 +100 mV 2 VREFH ADC reference voltage high 1.13 VDDA VDDA V VREFL ADC reference voltage low VSSA VSSA VSSA V VADIN Input voltage • 16-bit differential mode VREFL — 31/32 × VREFH V — • All other modes VREFL — • 16-bit mode — 8 10 pF — • 8-bit / 10-bit / 12-bit modes — 4 5 — 2 5 kΩ — CADIN RADIN RAS Input capacitance Input series resistance VREFH Analog source resistance (external) 13-bit / 12-bit modes fADCK < 4 MHz — — 5 kΩ fADCK ADC conversion clock frequency ≤ 13-bit mode 1.0 — 18.0 MHz 4 fADCK ADC conversion clock frequency 16-bit mode 2.0 — 12.0 MHz 4 Crate ADC conversion rate ≤ 13-bit modes No ADC hardware averaging 3 5 20.000 — 818.330 ksps Continuous conversions enabled, subsequent conversion time Crate ADC conversion rate 16-bit mode No ADC hardware averaging 5 37.037 — 461.467 ksps Continuous conversions enabled, subsequent conversion time 1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production. 2. DC potential difference. 3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The RAS/CAS time constant should be kept to < 1 ns. 102 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics 4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear. 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool. SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT ZADIN SIMPLIFIED CHANNEL SELECT CIRCUIT Pad leakage due to input protection ZAS RAS ADC SAR ENGINE RADIN VADIN CAS VAS RADIN INPUT PIN RADIN INPUT PIN RADIN INPUT PIN CADIN Figure 29. ADC input impedance equivalency diagram 5.4.5.1.2 16-bit ADC electrical characteristics Table 72. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) Symbol Description Conditions1 Min. Typ.2 Max. Unit Notes 0.215 — 1.7 mA 3 • ADLPC = 1, ADHSC = 0 1.2 2.4 3.9 MHz • ADLPC = 1, ADHSC = 1 2.4 4.0 6.1 MHz tADACK = 1/ fADACK • ADLPC = 0, ADHSC = 0 3.0 5.2 7.3 MHz • ADLPC = 0, ADHSC = 1 4.4 6.2 9.5 MHz LSB4 5 LSB4 5 IDDA_ADC Supply current ADC asynchronous clock source fADACK Sample Time TUE DNL See Reference Manual chapter for sample times Total unadjusted error • 12-bit modes — ±4 ±6.8 • <12-bit modes — ±1.4 ±2.1 Differential nonlinearity • 12-bit modes — ±0.7 –1.1 to +1.9 • <12-bit modes — ±0.2 –0.3 to 0.5 Table continues on the next page... Kinetis KL82 Microcontroller, Rev. 2, 11/2015 103 Freescale Semiconductor, Inc. Electrical characteristics Table 72. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued) Symbol Description INL Integral non-linearity EFS Full-scale error EQ Quantization error ENOB Effective number of bits Conditions1 Min. Typ.2 Max. Unit Notes –2.7 to +1.9 LSB4 5 LSB4 VADIN = VDDA5 • 12-bit modes — ±1.0 • <12-bit modes — ±0.5 • 12-bit modes — –4 –5.4 • <12-bit modes — –1.4 –1.8 • 16-bit modes — –1 to 0 — • ≤13-bit modes — — ±0.5 –0.7 to +0.5 LSB4 16-bit differential mode 6 • Avg = 32 12.8 14.5 • Avg = 4 11.9 13.8 — — bits bits 16-bit single-ended mode • Avg = 32 • Avg = 4 SINAD THD Signal-to-noise plus See ENOB distortion Total harmonic distortion 12.2 13.9 11.4 13.1 — — 6.02 × ENOB + 1.76 16-bit differential mode • Avg = 32 bits bits dB dB — -94 7 — dB 16-bit single-ended mode • Avg = 32 SFDR Spurious free dynamic range — -85 82 95 16-bit differential mode • Avg = 32 16-bit single-ended mode 78 — — dB — dB 7 90 • Avg = 32 EIL Input leakage error IIn × RAS mV IIn = leakage current (refer to the MCU's voltage and current operating ratings) Temp sensor slope VTEMP25 Temp sensor voltage Across the full temperature range of the device 1.55 1.62 1.69 mV/°C 8 25 °C 706 716 726 mV 8 1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA 104 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics 2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed. 4. 1 LSB = (VREFH - VREFL)/2N 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11) 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz. 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz. 8. ADC conversion clock < 3 MHz Typical ADC 16-bit Differential ENOB vs ADC Clock 100Hz, 90% FS Sine Input 15.00 14.70 14.40 14.10 ENOB 13.80 13.50 13.20 12.90 12.60 Hardware Averaging Disabled Averaging of 4 samples Averaging of 8 samples Averaging of 32 samples 12.30 12.00 1 2 3 4 5 6 7 8 9 10 11 12 ADC Clock Frequency (MHz) Figure 30. Typical ENOB vs. ADC_CLK for 16-bit differential mode Typical ADC 16-bit Single-Ended ENOB vs ADC Clock 100Hz, 90% FS Sine Input 14.00 13.75 13.50 13.25 13.00 ENOB 12.75 12.50 12.25 12.00 11.75 11.50 11.25 11.00 Averaging of 4 samples Averaging of 32 samples 1 2 3 4 5 6 7 8 9 10 11 12 ADC Clock Frequency (MHz) Figure 31. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode Kinetis KL82 Microcontroller, Rev. 2, 11/2015 105 Freescale Semiconductor, Inc. Electrical characteristics 5.4.5.2 CMP and 6-bit DAC electrical specifications Table 73. Comparator and 6-bit DAC electrical specifications Symbol Description Min. Typ. Max. Unit VDD Supply voltage 1.71 — 3.6 V IDDHS Supply current, High-speed mode (EN=1, PMODE=1) — — 200 μA IDDLS Supply current, low-speed mode (EN=1, PMODE=0) — — 20 μA VAIN Analog input voltage VSS – 0.3 — VDD V VAIO Analog input offset voltage — — 20 mV • CR0[HYSTCTR] = 00 — 5 — mV • CR0[HYSTCTR] = 01 — 10 — mV • CR0[HYSTCTR] = 10 — 20 — mV • CR0[HYSTCTR] = 11 — 30 — mV VH Analog comparator hysteresis1 VCMPOh Output high VDD – 0.5 — — V VCMPOl Output low — — 0.5 V tDHS Propagation delay, high-speed mode (EN=1, PMODE=1) 20 50 200 ns tDLS Propagation delay, low-speed mode (EN=1, PMODE=0) 80 250 600 ns — — 40 μs — 7 — μA Analog comparator initialization IDAC6b delay2 6-bit DAC current adder (enabled) INL 6-bit DAC integral non-linearity –0.5 — 0.5 LSB3 DNL 6-bit DAC differential non-linearity –0.3 — 0.3 LSB 1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V. 2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level. 3. 1 LSB = Vreference/64 106 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics 0.08 0.07 CMP Hystereris (V) 0.06 HYSTCTR Setting 0.05 00 0.04 01 10 11 0.03 0.02 0.01 0 0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 Vin level (V) Figure 32. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0) Kinetis KL82 Microcontroller, Rev. 2, 11/2015 107 Freescale Semiconductor, Inc. Electrical characteristics 0.18 0.16 0.14 CMP Hysteresis (V) 0.12 HYSTCTR Setting 0.1 00 01 10 11 0.08 0.06 0.04 0.02 0 0.1 0.4 0.7 1 1.3 1.6 1.9 Vin level (V) 2.2 2.5 2.8 3.1 Figure 33. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1) 5.4.5.3 5.4.5.3.1 Symbol 12-bit DAC electrical characteristics 12-bit DAC operating requirements Table 74. 12-bit DAC operating requirements Desciption Min. Max. Unit VDDA Supply voltage 1.71 3.6 V VDACR Reference voltage 1.13 3.6 V 1 2 CL Output load capacitance — 100 pF IL Output load current — 1 mA Notes 1. The DAC reference can be selected to be VDDA or VREFH. 2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC. 108 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics 5.4.5.3.2 Symbol 12-bit DAC operating behaviors Table 75. 12-bit DAC operating behaviors Description IDDA_DACL Supply current — low-power mode Min. Typ. Max. Unit — — 150 μA — — 700 μA Notes P IDDA_DACH Supply current — high-speed mode P tDACLP Full-scale settling time (0x080 to 0xF7F) — low-power mode — 100 200 μs 1 tDACHP Full-scale settling time (0x080 to 0xF7F) — high-power mode — 15 30 μs 1 — 0.7 1 μs 1 tCCDACLP Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and highspeed mode Vdacoutl DAC output voltage range low — highspeed mode, no load, DAC set to 0x000 — — 100 mV Vdacouth DAC output voltage range high — highspeed mode, no load, DAC set to 0xFFF VDACR −100 — VDACR mV INL Integral non-linearity error — high speed mode — — ±8 LSB 2 DNL Differential non-linearity error — VDACR > 2 V — — ±1 LSB 3 DNL Differential non-linearity error — VDACR = VREF_OUT — — ±1 LSB 4 — ±0.4 ±0.8 %FSR 5 Gain error — ±0.1 ±0.6 %FSR 5 Power supply rejection ratio, VDDA ≥ 2.4 V 60 — 90 dB TCO Temperature coefficient offset voltage — 3.7 — μV/C TGE Temperature coefficient gain error — 0.000421 — %FSR/C AC Offset aging coefficient — — 100 μV/yr Rop Output resistance (load = 3 kΩ) — — 250 Ω SR Slew rate -80h→ F7Fh→ 80h VOFFSET Offset error EG PSRR 1. 2. 3. 4. 5. V/μs • High power (SPHP) 1.2 1.7 — • Low power (SPLP) 0.05 0.12 — — — -80 CT Channel to channel cross talk BW 3dB bandwidth 6 dB kHz • High power (SPHP) 550 — — • Low power (SPLP) 40 — — Settling within ±1 LSB The INL is measured for 0 + 100 mV to VDACR −100 mV The DNL is measured for 0 + 100 mV to VDACR −100 mV The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV Kinetis KL82 Microcontroller, Rev. 2, 11/2015 109 Freescale Semiconductor, Inc. Electrical characteristics 6. VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device 8 6 4 DAC12 INL (LSB) 2 0 -2 -4 -6 -8 0 500 1000 1500 2000 2500 3000 3500 4000 Digital Code Figure 34. Typical INL error vs. digital code 110 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics 1.499 DAC12 Mid Level Code Voltage 1.4985 1.498 1.4975 1.497 1.4965 1.496 25 -40 55 85 105 125 Temperature °C Figure 35. Offset at half scale vs. temperature 5.4.5.4 Voltage reference electrical specifications Table 76. VREF full-range operating requirements Symbol Description Min. Max. Unit VDDA Supply voltage 1.71 3.6 V TA Temperature CL Output load capacitance Operating temperature range of the device °C 100 nF Notes 1, 2 1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference. 2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature range of the device. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 111 Freescale Semiconductor, Inc. Electrical characteristics Table 77. VREF full-range operating behaviors Symbol Description Min. Typ. Max. Unit Notes Vout Voltage reference output with factory trim at nominal VDDA and temperature=25C 1.1915 1.195 1.1977 V 1 Vout Voltage reference output — factory trim 1.1584 — 1.2376 V 1 Vout Voltage reference output — user trim 1.193 — 1.197 V 1 Vstep Voltage reference trim step — 0.5 — mV 1 Vtdrift Temperature drift (Vmax -Vmin across the full temperature range) — — 80 mV 1 Ibg Bandgap only current — — 80 µA 1 Ilp Low-power buffer current — — 360 uA 1 Ihp High-power buffer current — — 1 mA 1 µV 1, 2 ΔVLOAD Load regulation • current = ± 1.0 mA — 200 — Tstup Buffer startup time — — 100 µs Vvdrift Voltage drift (Vmax -Vmin across the full voltage range) — 2 — mV 1 1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register. 2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load Table 78. VREF limited-range operating requirements Symbol Description Min. Max. Unit TA Temperature 0 50 °C Notes Table 79. VREF limited-range operating behaviors Symbol Vout Description Voltage reference output with factory trim Min. Max. Unit 1.173 1.225 V Notes 5.4.6 Timers See General switching specifications. 5.4.7 Communication interfaces 112 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics 5.4.7.1 EMV SIM specifications Each EMV SIM module interface consists of a total of five pins. The interface is designed to be used with synchronous Smart cards, meaning the EMV SIM module provides the clock used by the Smart card. The clock frequency is typically 372 times the Tx/Rx data rate; however, the EMV SIM module can also work with CLK frequencies of 16 times the Tx/Rx data rate. There is no timing relationship between the clock and the data. The clock that the EMV SIM module provides to the Smart card is used by the Smart card to recover the clock from the data in the same manner as standard UART data exchanges. All five signals of the EMV SIM module are asynchronous with each other. There are no required timing relationships between signals in normal mode. The smart card is initiated by the interface device; the Smart card responds with Answer to Reset. Although the EMV SIM interface has no defined requirements, the ISO/IEC 7816 defines reset and power-down sequences (for detailed information see ISO/IEC 7816). SI10 EMVSIMn_PD EMVSIMn_RST SI7 EMVSIMn_CLK SI8 EMVSIMn_IO SI9 EMVSIMn_VCCEN Figure 36. EMV SIM Clock Timing Diagram Kinetis KL82 Microcontroller, Rev. 2, 11/2015 113 Freescale Semiconductor, Inc. Electrical characteristics The following table defines the general timing requirements for the EMV SIM interface. Table 80. Timing Specifications, High Drive Strength ID Parameter SI EMV SIM clock frequency 1 (EMVSIMn_CLK)1 Symbol Min Max Unit Sfreq 0.01 25 MHz SI EMV SIM clock rise time (EMVSIMn_CLK)2 2 Srise — 0.09 × (1/Sfreq) ns SI EMV SIM clock fall time (EMVSIMn_CLK)2 3 Sfall — 0.09 × (1/Sfreq) ns SI EMV SIM input transition time (EMVSIMn_IO, 4 EMVSIMn_PD) Stran 20 25 ns Si EMV SIM I/O rise time / fall time (EMVSIMn_IO)3 5 Tr/Tf — 1 ns Si EMV SIM RST rise time / fall time (EMVSIMn_RST)4 6 Tr/Tf — 1 ns 1. 2. 3. 4. 50% duty cycle clock, With C = 50 pF With Cin = 30 pF, Cout = 30 pF, With Cin = 30 pF, 5.4.7.1.1 EMV SIM Reset Sequences Smart cards may have internal reset, or active low reset. The following subset describes the reset sequences in these two cases. 5.4.7.1.1.1 Smart Cards with Internal Reset Following figure shows the reset sequence for Smart cards with internal reset. The reset sequence comprises the following steps: • After power-up, the clock signal is enabled on EMVSIMn_CLK (time T0) • After 200 clock cycles, EMVSIMn_IO must be asserted. • The card must send a response on EMVSIMn_IO acknowledging the reset between 400–40000 clock cycles after T0. 114 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics EMVSIMn_VCCEN EMVSIMn_CLK EMVSIMn_IO RESPONSE 1 2 T0 Figure 37. Internal Reset Card Reset Sequence The following table defines the general timing requirements for the SIM interface. Table 81. Timing Specifications, Internal Reset Card Reset Sequence Ref Min Max Units 1 — 200 EMVSIMx_CLK clock cycles 2 400 40,000 EMVSIMx_CLK clock cycles 5.4.7.1.1.2 Smart Cards with Active Low Reset Following figure shows the reset sequence for Smart cards with active low reset. The reset sequence comprises the following steps:: • After power-up, the clock signal is enabled on EMVSIMn_CLK (time T0) • After 200 clock cycles, EMVSIMn_IO must be asserted. • EMVSIMn_RST must remain low for at least 40,000 clock cycles after T0 (no response is to be received on RX during those 40,000 clock cycles) • EMVSIMn_RST is asserted (at time T1) • EMVSIMn_RST must remain asserted for at least 40,000 clock cycles after T1, and a response must be received on EMVSIMn_IO between 400 and 40,000 clock cycles after T1. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 115 Freescale Semiconductor, Inc. Electrical characteristics EMVSIMn_VCCEN EMVSIMn_RST EMVSIMn_CLK RESPONSE EMVSIMn_IO 2 1 3 3 T0 T1 Figure 38. Active-Low-Reset Smart Card Reset Sequence The following table defines the general timing requirements for the EMVSIM interface.. Table 82. Timing Specifications, Internal Reset Card Reset Sequence 5.4.7.1.2 Ref No Min Max Units 1 — 200 EMVSIMx_CLK clock cycles 2 400 40,000 EMVSIMx_CLK clock cycles 3 40,000 — EMVSIMx_CLK clock cycles EMVSIM Power-Down Sequence Following figure shows the EMV SIM interface power-down AC timing diagram.Table 83 table shows the timing requirements for parameters (SI7–SI10) shown in the figure. The power-down sequence for the EMV SIM interface is as follows: • EMVSIMn_SIMPD port detects the removal of the Smart Card • EMVSIMn_RST is negated • EMVSIMn_CLK is negated • EMVSIM_IO is negated • EMVSIMx_VCCENy is negated Each of the above steps requires one RTC CLK period (usually 32 kHz). Power-down may be initiated by a Smart card removal detection; or it may be launched by the processor. 116 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics SI10 EMVSIMn_PD EMVSIMn_RST SI7 EMVSIMn_CLK SI8 EMVSIMn_IO SI9 EMVSIMn_VCCEN Figure 39. Smart Card Interface Power Down AC Timing Table 83. Timing Requirements for Power-down Sequence Ref No Parameter Symbol Min Max Units SI7 EMVSIM reset to SIM clock stop Srst2clk 0.9 × 1/ Frtcclk 1.1 × 1/Frtcclk ns SI8 EMVSIM reset to SIM Tx data low Srst2dat 1.8 × 1/ Frtcclk 2.2 × 1/Frtcclk ns SI9 EMVSIM reset to SIM voltage enable low Srst2ven 2.7 × 1/ Frtcclk 3.3 × 1/Frtcclk ns SI10 EMVSIM presence detect to SIM reset low Spd2rst 0.9 × 1/ Frtcclk 1.1 × 1/Frtcclk ns NOTE Same timing is also followed when auto power down is initiated. See Reference Manual for reference. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 117 Freescale Semiconductor, Inc. Electrical characteristics 5.4.7.2 USB DCD electrical specifications Table 84. USB DCD electrical specifications Symbol Description Min. Typ. Max. Unit VDP_SRC, VDM_SRC USB_DP and USB_DM source voltages (up to 250 μA) 0.5 — 0.7 V Threshold voltage for logic high 0.8 — 2.0 V VLGC IDP_SRC USB_DP source current 7 10 13 μA IDM_SINK, IDP_SINK USB_DM and USB_DP sink currents 50 100 150 μA RDM_DWN D- pulldown resistance for data pin contact detect 14.25 — 24.8 kΩ VDAT_REF Data detect voltage 0.25 0.33 0.4 V 5.4.7.3 DSPI switching specifications (limited voltage range) The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices. Table 85. Master mode DSPI timing (limited voltage range) Num Description Min. Max. Unit Operating voltage 2.7 3.6 V Frequency of operation — 30 MHz 2 x tBUS — ns Notes DS1 DSPI_SCK output cycle time DS2 DSPI_SCK output high/low time (tSCK/2) − 2 (tSCK/2) + 2 ns DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) − 2 — ns 1 DS4 DSPI_SCK to DSPI_PCSn invalid delay (tBUS x 2) − 2 — ns 2 DS5 DSPI_SCK to DSPI_SOUT valid — 15.0 ns DS6 DSPI_SCK to DSPI_SOUT invalid 1.0 — ns DS7 DSPI_SIN to DSPI_SCK input setup 15.8 — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns 1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK]. 2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC]. 118 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics DSPI_PCSn DS3 DS4 DS8 DS7 (CPOL=0) DS1 DS2 DSPI_SCK DSPI_SIN Data First data DSPI_SOUT Last data DS5 DS6 First data Data Last data Figure 40. DSPI classic SPI timing — master mode Table 86. Slave mode DSPI timing (limited voltage range) Num Description Min. Max. Unit Operating voltage 2.7 3.6 V Frequency of operation — 15 1 MHz 4 x tBUS — ns (tSCK/2) − 2 (tSCK/2) + 2 ns DS9 DSPI_SCK input cycle time DS10 DSPI_SCK input high/low time DS11 DSPI_SCK to DSPI_SOUT valid — 23.0 ns DS12 DSPI_SCK to DSPI_SOUT invalid 0 — ns DS13 DSPI_SIN to DSPI_SCK input setup 2.7 — ns DS14 DSPI_SCK to DSPI_SIN input hold 7.0 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 13 ns DS16 DSPI_SS inactive to DSPI_SOUT not driven — 13 ns 1. The maximum operating frequency is measured with non-continuous CS and SCK. When DSPI is configured with continuous CS and SCK, there is a constraint that SPI clock should not be greater than 1/6 of bus clock, for example, when bus clock is 60MHz, SPI clock should not be greater than 10MHz. DSPI_SS DS10 DS9 DSPI_SCK (CPOL=0) DS15 DSPI_SOUT DS12 First data DS13 DSPI_SIN DS16 DS11 Data Last data DS14 First data Data Last data Figure 41. DSPI classic SPI timing — slave mode Kinetis KL82 Microcontroller, Rev. 2, 11/2015 119 Freescale Semiconductor, Inc. Electrical characteristics 5.4.7.4 DSPI switching specifications (full voltage range) The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices. Table 87. Master mode DSPI timing (full voltage range) Num Description Operating voltage Frequency of operation Min. Max. Unit Notes 1.71 3.6 V 1 — 15 MHz 4 x tBUS — ns DSPI_SCK output high/low time (tSCK/2) - 4 (tSCK/2) + 4 ns DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) − 4 — ns 2 DS4 DSPI_SCK to DSPI_PCSn invalid delay (tBUS x 2) − 4 — ns 3 DS5 DSPI_SCK to DSPI_SOUT valid — 16 ns DS6 DSPI_SCK to DSPI_SOUT invalid 1.0 — ns DS7 DSPI_SIN to DSPI_SCK input setup 19.1 — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns DS1 DSPI_SCK output cycle time DS2 1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced. 2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK]. 3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC]. DSPI_PCSn DS3 DSPI_SCK DS7 (CPOL=0) DSPI_SIN DS4 DS8 First data DSPI_SOUT DS1 DS2 First data Data Last data DS5 DS6 Data Last data Figure 42. DSPI classic SPI timing — master mode 120 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics Table 88. Slave mode DSPI timing (full voltage range) Num Description Min. Max. Unit 1.71 3.6 V — 7.5 MHz 8 x tBUS — ns Operating voltage Frequency of operation DS9 DSPI_SCK input cycle time DS10 DSPI_SCK input high/low time (tSCK/2) - 4 (tSCK/2) + 4 ns DS11 DSPI_SCK to DSPI_SOUT valid — 23.1 ns DS12 DSPI_SCK to DSPI_SOUT invalid 0 — ns DS13 DSPI_SIN to DSPI_SCK input setup 2.6 — ns DS14 DSPI_SCK to DSPI_SIN input hold 7.0 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 13.0 ns DS16 DSPI_SS inactive to DSPI_SOUT not driven — 13.0 ns DSPI_SS DS10 DS9 DSPI_SCK DS15 (CPOL=0) DSPI_SOUT DS12 First data DS13 DSPI_SIN DS16 DS11 Last data Data DS14 First data Data Last data Figure 43. DSPI classic SPI timing — slave mode 5.4.7.5 Inter-Integrated Circuit Interface (I2C) timing Table 89. I2C timing Characteristic Symbol Standard Mode Fast Mode Minimum Maximum Minimum Maximum Unit SCL Clock Frequency fSCL 0 100 0 4001 kHz Hold time (repeated) START condition. After this period, the first clock pulse is generated. tHD; STA 4 — 0.6 — µs LOW period of the SCL clock tLOW 4.7 — 1.25 — µs HIGH period of the SCL clock tHIGH 4 — 0.6 — µs Set-up time for a repeated START condition tSU; STA 4.7 — 0.6 — µs Data hold time for I2C bus devices tHD; DAT 02 3.453 04 0.92 µs Table continues on the next page... Kinetis KL82 Microcontroller, Rev. 2, 11/2015 121 Freescale Semiconductor, Inc. Electrical characteristics Table 89. I2C timing (continued) Characteristic Symbol Standard Mode Minimum Data set-up time tSU; DAT Rise time of SDA and SCL signals tr Fall time of SDA and SCL signals tf 2505 — Fast Mode Maximum Minimum Maximum — 1003, 6 1000 Unit — ns 7 300 ns 6 20 +0.1Cb — 300 20 +0.1Cb 300 ns Set-up time for STOP condition tSU; STO 4 — 0.6 — µs Bus free time between STOP and START condition tBUF 4.7 — 1.3 — µs Pulse width of spikes that must be suppressed by the input filter tSP N/A N/A 0 50 ns 1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can be achieved only when using the normal drive pins and VDD ≥ 2.7 V. 2. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL lines. 3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal. 4. Input signal Slew = 10 ns and Output Load = 50 pF 5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty. 6. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax + tSU; 2 DAT = 1000 + 250 = 1250 ns (according to the Standard mode I C bus specification) before the SCL line is released. 7. Cb = total capacitance of the one bus line in pF. To achieve 1MHz I2C clock rates, consider the following recommendations: • To counter the effects of clock stretching, the I2C baud Rate select bits can be configured for faster than desired baud rate. • Use high drive pad and DSE bit should be set in PORTx_PCRn register. • Minimize loading on the I2C SDA and SCL pins to ensure fastest rise times for the SCL line to avoid clock stretching. • Use smaller pull up resistors on SDA and SCL to reduce the RC time constant. Table 90. I 2C 1Mbit/s timing Characteristic Symbol Minimum Maximum Unit SCL Clock Frequency fSCL 0 1 MHz Hold time (repeated) START condition. After this period, the first clock pulse is generated. tHD; STA 0.26 — µs LOW period of the SCL clock tLOW 0.5 — µs HIGH period of the SCL clock tHIGH 0.26 — µs Set-up time for a repeated START condition tSU; STA 0.26 — µs Data hold time for I2C bus devices tHD; DAT 0 — µs Data set-up time tSU; DAT 50 — ns Rise time of SDA and SCL signals tr 20 +0.1Cb 120 ns Table continues on the next page... 122 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Electrical characteristics Table 90. I 2C 1Mbit/s timing (continued) Characteristic Symbol Minimum 1 Maximum Unit 120 ns Fall time of SDA and SCL signals tf 20 +0.1Cb Set-up time for STOP condition tSU; STO 0.26 — µs Bus free time between STOP and START condition tBUF 0.5 — µs Pulse width of spikes that must be suppressed by the input filter tSP 0 50 ns 1. Cb = total capacitance of the one bus line in pF. SDA tf tSU; DAT tr tLOW tf tHD; STA tSP tr tBUF SCL S HD; STA tHD; DAT tHIGH tSU; STA tSU; STO SR P S Figure 44. Timing definition for devices on the I2C bus 5.4.7.6 LPUART switching specifications See General switching specifications. 5.4.8 Human-machine interfaces (HMI) 5.4.8.1 TSI electrical specifications Table 91. TSI electrical specifications Symbol Description Min. Typ. Max. Unit TSI_RUNF Fixed power consumption in run mode — 100 — µA TSI_RUNV Variable power consumption in run mode (depends on oscillator's current selection) 1.0 — 128 µA TSI_EN Power consumption in enable mode — 100 — µA TSI_DIS Power consumption in disable mode — 1.2 — µA TSI_TEN TSI analog enable time — 66 — µs TSI_CREF TSI reference capacitor — 1.0 — pF TSI_DVOLT Voltage variation of VP & VM around nominal values 0.19 — 1.03 V Kinetis KL82 Microcontroller, Rev. 2, 11/2015 123 Freescale Semiconductor, Inc. Design considerations 6 Design considerations 6.1 Hardware design considerations This device contains protective circuitry to guard against damage due to high static voltage or electric fields. However, take normal precautions to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. 6.1.1 Printed circuit board recommendations • Place connectors or cables on one edge of the board and do not place digital circuits between connectors. • Drivers and filters for I/O functions must be placed as close to the connectors as possible. Connect TVS devices at the connector to a good ground. Connect filter capacitors at the connector to a good ground. • Physically isolate analog circuits from digital circuits if possible. • Place input filter capacitors as close to the MCU as possible. • For best EMC performance, route signals as transmission lines; use a ground plane directly under LQFP packages; and solder the exposed pad (EP) to ground directly under QFN packages. 6.1.2 Power delivery system Consider the following items in the power delivery system: • Use a plane for ground. • Use a plane for MCU VDD supply if possible. • Always route ground first, as a plane or continuous surface, and never as sequential segments. • Route power next, as a plane or traces that are parallel to ground traces. • Place bulk capacitance, 10 μF or more, at the entrance of the power plane. • Place bypass capacitors for MCU power domain as close as possible to each VDD/VSS pair, including VDDA/VSSA and VREFH/VREFL. • The minimum bypass requirement is to place 0.1 μF capacitors positioned as near as possible to the package supply pins. • The USB_VDD voltage range is 3.0 V to 3.6 V. It is recommended to include a filter circuit with one bulk capacitor (no less than 2.2 μF) and one 0.1 μF capacitor at the USB_VDD pin to improve USB performance. 124 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Design considerations • Take special care to minimize noise levels on the VREFH/VREFL inputs. An option is to use the internal reference voltage (output 1.2 V typically) as the ADC reference. • VDDIO_E, which is dedicated to powering PORTE, must be powered after VDD and must be greater than or equal to VDD voltage. 6.1.3 Analog design Each ADC input must have an RC filter as shown in the following figure. The maximum value of R must be RAS max if fast sampling and high resolution are required. The value of C must be chosen to ensure that the RC time constant is very small compared to the sample period. MCU 1 Input signal 5 2 ADCx 1 R 4 2 C Figure 45. RC circuit for ADC input MCU EXT measurement 2 1 High voltage circuits require voltage division, current limiting, and over-voltage protection as shown the following figure. The voltage divider formed by R1 – R4 must yield a voltage less than or equal to VREFH. must be 1 2 The current ADCx Analog input limited to less than the injection current limit. Since theR ADC pins do not have diodes C to VDD, external clamp diodes must be included to protect against transient overvoltages. D EXT R2 1 2 R4 1 2 ADCx 2 C 2 R3 2 2 1 R5 1 1 2 1 High voltage input MCU VDD 3 1 R1 BAT54SW Figure 46. High voltage measurement with an ADC input VDD 1 3 5 J1 2 4 6 SWD_DIO SWD_CLK 125 1 Freescale Semiconductor, Inc. 10k 2 C 2 10k VDD MCU VDD 1 Kinetis KL82 Microcontroller, Rev. 2, 11/2015 RESET_b OSCILLAT OSCILLATOR EXTAL Design considerations EXTAL XTAL 1 2 1 1 MCU CRYSTAL 2 R Cx ADCx 2 1 1 Analog input 2 CRYST C 2 6.1.4 Digital design OSCILLATOR Ensure that all I/O pins cannot get pulled above VDD (Max I/O is VDD+0.3V). EXTAL CAUTION 1 2 Do not provide power to I/O pins prior to VDD, especially the RF RESET_b pin. 1 RS 2 1 1 1 ADCx RF CRYSTAL Cx 2 1 The RESET_b pin is an open-drain I/O pin that has an internal pullup resistor. An 2 C external RC circuit is recommended to filter noise as shown in the following figure. The resistor value must be in the range of 4.7 kΩ to 10 kΩ; the recommended BAT54SW capacitance value is 0.1 μF. The RESET_b pin also has a selectable digital filter to reject spurious noise. 2 2 1 1 2 2 3 1 • RESET_b 1pinR5 EXTAL XTAL MCU VDD R4 OSCILLAT VDD HDR_5X2 1 1 2 RESET_b NMI_b 1 RESET_b RESET_b 10k 2 10k SWD_DIO SWD_CLK MCU VDD 0.1uF 2 2 4 6 8 10 1 J1 2 10k 10k 2 Figure 47. Reset circuit Active high, open drain RS 1 2 1 When anSupervisor external supervisor chipVDD is connected toMCU the RESET_b pin, a series Chip resistor must be used to avoid damaging the supervisor chip or the RESET_b pin, as shown in the following figure. The series resistor value (RS below) must be in 10k the range of 100 Ω to 1 kΩ depending on the external reset chip drive strength. The 1 2 supervisor chip must have an active high, open-drain OUT RESET_b output. 0.1uF 2 1 3 5 7 9 MCU VDD 1 126 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 2 CRYST 2 10k 4 Design considerations 3 OSCILLATOR Supervisor Chip EXTAL OSCILLATOR VDD EXTAL XTAL MCU XTAL OSCILLATOR EXTAL XTAL 1 MCU RF RS EXTAL XTAL 1 2 RF RS RS 2 Do not add a pull-down resistor or capacitor on the NMI_b pin, because a low 1 2 2 1 level on this pin will trigger non-maskable interrupt.1 When this pin is enabled as CRYSTAL CRYSTAL the NMI function, an external pull-up resistor Cx (10 kΩ) as shown Cy in the following figure is recommended for robustness. RESONATOR 2 2 1 2 3 1 2 DCx XTAL 1 2 1 2 reset chip Figure 48. Reset signal connection to external RF 2 2 2 EXTAL XTAL OSCILLATOR 1 • NMI pin OSCILLATOR 1 MCU RESET_b 1 EXTAL RESONATOR 2 OSCILLATOR Cy 0.1uF 2 RS 3 1 1 Active high, open drain 1 1 2 2 CRYSTAL Cx 1 OUT 1 10k CRYSTAL DCx 2 2 1 If the NMI_b pin is used as an I/O pin, the non-maskable interrupt handler is required to disable the NMI function by remapping to another function. The NMI function is disabled by programming the FOPT[NMI_DIS] bit to zero. MCU MCU VDD 1 1 VDD 10k RESET_b NMI_b 1 2 2 10k 2 0.1uF • Debug interface This MCU MCU uses the standard ARM SWD interface protocol as shown in the following figure. While pull-up or pull-down resistors are not required (SWD_DIO has an internal pull-up and SWD_CLK has an internal pull-down), external 10 kΩ pull resistors are recommended for system robustness. The RESET_b RESET_b pin recommendations mentioned above must also be considered. 1 VDD 1 0.1uF 2 RS 2 10k 2 Figure 49. NMI pin biasing 127 Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Freescale Semiconductor, Inc. 4 1 2 C 2 2 2 1 1 R4 R3 BAT54SW Design considerations VDD 1 1 1 10k 2 SWD_DIO SWD_CLK RESET_b RESET_b RESET_b 0.1uF 1 2 0.1uF 2 4 6 8 10 1 1 3 5 7 9 C J1 2 10k VDD MCU VDD 2 HDR_5X2 2 10k Figure 50. SWD debug interface • Low leakage stop mode wakeup Supervisor Chip MCU 1 VDD OUT • Unused pin 0.1uF 2 Active high, open drain RS 1 2 Select low leakage wakeup pins (LLWU_Px) to wake the MCU from one of the10k low leakage stop modes (LLS/VLLSx). See for pin selection. 1 2 Unused GPIO pins must be left floating (no electrical connections) with the MUX field of the pin’s PORTx_PCRn register equal to 0:0:0. This disables the digital input path to the MCU. B If the USB module is not used, leave the USB data pins (USB0_DP, USB0_DM) floating. Connect USB_VDD to ground through a 10 kΩ resistor if the USB module is not used. 6.1.5 Crystal oscillator When using an external crystal or ceramic resonator as the frequency reference for the MCU clock system, refer to the following table and diagrams. The feedback resistor, RF, is incorporated internally with the low power oscillators. An external feedback is required when using high gain (HGO=1) mode. Internal load capacitors (Cx, Cy) are provided in the low frequency (32.786kHz) mode. Use the SCxP bits in the OSC0_CR register to adjust the load capacitance for the crystal. Typically, values of 10pf to 16pF are sufficient for 32.768kHz crystals that have a 12.5pF CL specification. The internal load capacitor selection must not be used for high frequency crystals and resonators. A 128 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 5 4 RESET_b Design considerations Table 92. External crystal/resonator connections Oscillator mode Oscillator mode Low frequency (32.768kHz), low power Diagram 1 Low4 frequency (32.768kHz), high gain Diagram 2, Diagram 4 High frequency (3-32MHz), low power Diagram 3 High frequency (3-32MHz), high gain Diagram 4 3 OSCILLATOR EXTAL EXTAL XTAL CRYSTAL ADCx CRYSTAL 1 Cy 2 CRYSTAL Cx Figure 51. Crystal connection – Diagram 1 EXT 2 1 ADCx Cx 2 2 XTAL 1 1 CRYSTAL 1 1 EXTAL XTAL 1 2 2 EXTAL 1 XTAL OSCILLATOR OSCILLATOR MCU OSCILLATOR Cy 2 MCU 2 4 3 C OSCILLATOR OSCILLATOR OSCILLATOR EXTAL OSCILLATOR XTAL EXTAL 2 2 1 1 RF RF RS OSCILLATOR EXTAL 2 1 CRYSTAL 2 2 1 RF 0.1uF RF Cx 2 1 3 2 1 2 NMI_b 1 2 CRYSTAL 2 2 RS 10k Cy RESONATOR NMI_b 2 1 2 RESET_b 1 2 2 2 CRYSTAL 1 1 1 RESET_b RESET_b 2 10k 10k RS 2 2 RS MCU 2 1 1 XTAL 2 RF VDDEXTAL XTAL 1 10k VDD 53. Crystal connection – Diagram 3 MCU OSCILLATOR OSCILLATOR EXTAL 2 RESONATOR 1 XTAL MCU EXTAL 1 1 Figure MCU OSCILLATOR Cy 1 VDD 1 VDD 3 2 Cx Cy XTAL 2 CRYSTAL EXTAL 2 1 2 1 1 2 OSCILLATOR XTAL 1 XTAL 2 1 OSCILLATOR EXTAL 2 3 12 CRYSTAL CRYSTAL Cx Cx Figure 52. Crystal connection – Diagram 2 C 4 1 1 1 CRYSTAL CRYSTAL b DD 22 2 11 ADCx 2 ADCx RS RS 2 RS 2 RF EXT 2 1 2 RF 1 1 MCU 1 2 1 XTAL XTAL 1 MCU EXTAL XTAL 1 EXTAL 0.1uF Kinetis KL82 Microcontroller, Rev. 2, 11/2015 MCU 129 Freescale Semiconductor, Inc. VDD MCU Cy CRYSTAL 2 1 CRYSTAL Cy RESONATOR 2 2 Cx 3 2 1 1 2 1 1 Design considerations OSCILLATOR EXTAL XTAL 2 1 RF 1 RF 2 Cx CRYSTAL 2 2 1 3 1 CRYSTAL 2 RS Cy RESONATOR 2 1 1 2 2 RS 2 RS 1 XTAL 2 RF EXTAL 2 1 1 XTAL 1 EXTAL OSCILLATOR 1 OSCILLATOR Figure 54. Crystal connection – Diagram 4 6.2 Software considerations VDD MCU 2 1 All Kinetis MCUs are supported by comprehensive Freescale and third-party hardware and software enablement solutions, which can reduce development costs and time to 10kFeatured software and tools are listed below. Visit http://www.freescale.com/ market. kinetis/sw for more information and supporting collateral. NMI_b Evaluation and Prototyping Hardware • Freescale Freedom Development Platform: http://www.freescale.com/freedom • Tower System Development Platform: http://www.freescale.com/tower IDEs for Kinetis MCUs • Kinetis Design Studio IDE: http://www.freescale.com/kds • Partner IDEs: http://www.freescale.com/kide Development Tools • PEG Graphics Software: http://www.freescale.com/peg • Processor Expert Software and Embedded Components: http://www.freescale.com/ processorexpert ) Run-time Software • • • • Kinetis SDK: http://www.freescale.com/ksdk Kinetis Bootloader: http://www.freescale.com/kboot ARM mbed Development Platform: http://www.freescale.com/mbed MQX RTOS: http://www.freescale.com/mqx 130 Freescale Semiconductor, Inc. Kinetis KL82 Microcontroller, Rev. 2, 11/2015 Part identification For all other partner-developed software and tools, visit http://www.freescale.com/ partners. 6.3 Soldering temperature Base on JEDEC/IPC J-STD-020 Industry Standard, refer to AN3298: Solder Joint Temperature and Package Peak Temperature for soldering guideline of different packages. 7 Part identification 7.1 Description Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received. 7.2 Format Part numbers for this device have the following format: Q KL## A FFF R T PP CC N 7.3 Fields This table lists the possible values for each field in the part number (not all combinations are valid): Field Description Values Q Qualification status • M = Fully qualified, general market flow • P = Prequalification KL## Kinetis KL family • KL82 A Key attribute • Z = Cortex-M0+ FFF Program flash memory size • 128 = 128 KB R Silicon revision • (Blank) = Main • A = Revision after main T Temperature range (°C) • V = –40 to 105 Table continues on the next page... Kinetis KL82 Microcontroller, Rev. 2, 11/2015 131 Freescale Semiconductor, Inc. Revision history Field Description Values PP Package identifier • • • • • LH = 64 LQFP (10 mm x 10 mm) MP = 64 MAPBGA (5 mm x 5 mm) LK = 80 LQFP (12 mm x 12 mm) LL = 100 LQFP (14 mm x 14 mm) MC = 121 MAPBGA (8 mm x 8 mm) CC Maximum CPU frequency (MHz) • 7 = 72 MHz N Packaging type • R = Tape and reel • (Blank) = Trays 7.4 Example This is an example part number: MKL82Z128VMC7 8 Revision history The following table provides a revision history for this document. Table 93. Revision history Rev. No. Date 2 11/2015 132 Freescale Semiconductor, Inc. Substantial Changes Initial public release Kinetis KL82 Microcontroller, Rev. 2, 11/2015 How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale, the Freescale logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. © 2015 Freescale Semiconductor, Inc. Document Number KL82P121M72SF0 Revision 2, 11/2015