Freescale Semiconductor, Inc. Data Sheet: Technical Data K82P121M150SF5 Rev. 1, 09/2015 Kinetis K82 Sub-Family High performance ARM® Cortex®-M4F MCU with up to 256KB of Flash, 256KB of SRAM, Full Speed USB connectivity, enhanced Security, and QuadSPI for interfacing to Serial NOR flash The K82 sub-family extends Kinetis products with new hardware security mechanisms including decryption from serial NOR flash memory, AES128, AES256 with side band attack protection, and Elliptical Curve Cryptography acceleration. These advancements are done while maintaining a high level of compatibility with previous Kinetis devices. The MCUs range in total flash space upto 256KB and have 256KB of SRAM. The QuadSPI interface supports connections to Non-Volatile Memory for data or code. The extended memory resources and new security features allow developers to enhance their embedded applications with greater capability. Performance • Up to 150 MHz ARM Cortex-M4 based core with DSP instructions and Single Precision Floating Point unit MK82FN256VDC15 MK82FN256VLL15 MK82FN256VLQ15 MK82FN256CAx15 121 XFBGA (DC) 8 x 8 x 0.5 mm Pitch 0.65 mm 100 LQFP (LL) 14 x 14 x 1.7 Pitch 0.5mm 144 LQFP (LQ) 20 x 20 x 1.6 Pitch 0.5 mm 121 WLCSP (Ax) 4.64 mm x 4.53 mm Analog modules • One 16-bit SAR ADCs, two 6-bit DAC and one 12-bit DAC • Two analog comparators (CMP) containing a 6-bit DAC and programmable reference input • Voltage reference 1.2V Memories and memory expansion • Up to 256 KB program flash with 256 KB RAM • FlexBus external bus interface and SDRAM controller Operating Characteristics • Dual QuadSPI with OTF decryption and XIP • 32 KB Boot ROM with built in bootloader • Main VDD Voltage and Flash write voltage • Supports SDR and DDR serial flash and octal configurations range:1.71V–3.6 V • Temperature range (ambient): -40 to 105°C System and Clocks • Independent VDDIO for PORTE (QuadSPI): • Multiple low-power modes 1.71V–3.6 V • Memory protection unit with multi-master protection Communication interfaces • 3 to 32 MHz main crystal oscillator • 32 kHz low power crystal oscillator • USB full-/low-speed On-the-Go controller • 48 MHz internal reference • Secure Digital Host Controller (SDHC) and FlexIO Timers • One I2S module, three SPI, four I2C modules • One 4 ch-Periodic interrupt timer and five LPUART modules • Two 16-bit low-power timer PWM modules Security • Two 8-ch motor control/general purpose/PWM timers • Two 2-ch quadrature decoder/general purpose timers • LP Trusted Crypto (LTC) hardware • Real-time clock with independent 3.3V power domain accelerators supporting AES, DES, 3DES, • Programmable delay block RSA and ECC • Hardware random-number generator Human-machine interface • Supports DES, AES, SHA accelerator (CAU) • Low-power hardware touch sensor interface (TSI) • Multiple levels of embedded flash security • General-purpose input/output Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products. © 2015 Freescale Semiconductor, Inc. All rights reserved. Ordering Information Part Number MK82FN256VDC15 MK82FN256VLL15 MK82FN256CAx15R 1 MK82FN256VLQ152 Memory Maximum number of I\O's Flash SRAM 256 KB 256 KB 87 256 KB 256 KB 66 256 KB 256 KB 87 256 KB 256 KB 102 1. The 121-pin WLCSP package for this product is not yet available, however it is included in a Package Your Way program for Kinetis MCUs. Visit freescale.com/KPYW for more details. 2. The 144-pin LQFP package for this product is not yet available, however it is included in a Package Your Way program for Kinetis MCUs. Visit freescale.com/KPYW for more details. Related Resources Type Description Resource Product Selector The Product Selector lets you find the right Kinetis part for your design. K-Series Product Selector Fact Sheet The Fact Sheet gives overview of the product key features and its uses. K8x Fact Sheet Reference Manual The Reference Manual contains a comprehensive description of the structure and function (operation) of a device. K82P121M150SF5RM1 Data Sheet The Data Sheet includes electrical characteristics and signal connections. This document. Chip Errata The chip mask set Errata provides additional or corrective information for Kinetis_K_1N03P1 a particular device mask set. Package drawing Package dimensions are provided in package drawings. • LQFP 100-pin: 98ASS23308W1 • XFBGA 121-pin: 98ASA00595D1 • LQFP 144-pin: 98ASS23177W2 • WLCSP 121-pin: Under development2 1. To find the associated resource, go to http://www.freescale.com and perform a search using this term. 2. This package for this product is not yet available, however it is included in a Package Your Way program for Kinetis MCUs. Visit freescale.com/KPYW for more details. 2 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Cryptographic accelerator (CAU) Trace Port TPIU JTAG & Serial Wire SWJ-DP ARM Cortex M4 ETM PPB AHB-AP NVIC PIT ITM WIC DSP FPB FPU DWT MCG DMA Mux x2 DCD USB/ FS/LS System ICODE DCODE 192 KByte RTC OSC MUX 64 KByte eDMA OSC IRC 48 MHz PLL FLL eSDHC Cache SRAM 8 Kbyte M0 8 Kbyte M1 M3 Crossbar Switch (XBS) M2 M4 S2 System Memory Protection Unit (MPU) S1 IRC 4 MHz S5 OTFAD QSPI S0 BOOT ROM S4 Flash Controller SDRAMC S3 BME2 AHB to IPS 0 FlexBus RGPIO AHB to IPS 1 x128 Flash 256 KByte LP Trusted Cryptography supports: -AES128/192/256 -PKHA RSA/ECC with timing equalization protection -3DES FlexIO LP Trusted Cryptography 6-bit DAC & CMP x2 SPI x3 EMVSIM x2 PDB PIT 16-bit ADC I2C x4 LPUART x5 FlexTimer x4 TRNG Vref TSI CMT TPM x2 CRC 12-bit DAC I2S RTC Low-power timer x2 PMC Figure 1. K82 Block Diagram Kinetis K82 Sub-Family, Rev.1, 09/2015. 3 Freescale Semiconductor, Inc. Table of Contents 1 Ratings.................................................................................... 5 1.1 Thermal handling ratings................................................. 5 1.2 Moisture handling ratings................................................ 5 1.3 ESD handling ratings....................................................... 5 1.4 Voltage and current operating ratings............................. 5 1.4.1 Recommended POR Sequencing .................... 6 2 General................................................................................... 8 2.1 AC electrical characteristics.............................................8 2.2 Nonswitching electrical specifications..............................9 2.2.1 Voltage and current operating requirements.....9 2.2.2 HVD, LVD and POR operating requirements....10 2.2.3 Voltage and current operating behaviors.......... 11 2.2.4 2.2.5 2.2.6 Power mode transition operating behaviors......13 Power consumption operating behaviors.......... 14 Electromagnetic Compatibility (EMC) specifications.....................................................20 2.2.7 Designing with radiated emissions in mind....... 20 2.2.8 Capacitance attributes...................................... 20 2.3 Switching specifications...................................................21 2.3.1 Device clock specifications............................... 21 2.3.2 General switching specifications....................... 21 2.4 Thermal specifications..................................................... 23 2.4.1 Thermal operating requirements....................... 23 2.4.2 Thermal attributes............................................. 23 3 Peripheral operating requirements and behaviors.................. 24 3.1 Core modules.................................................................. 24 3.1.1 Debug trace timing specifications..................... 24 3.1.2 JTAG electricals................................................ 25 3.2 Clock modules................................................................. 28 3.2.1 MCG specifications........................................... 28 3.2.2 IRC48M specifications...................................... 31 3.2.3 Oscillator electrical specifications..................... 32 3.2.4 32 kHz oscillator electrical characteristics.........34 3.3 Memories and memory interfaces................................... 34 3.3.1 QuadSPI AC specifications............................... 34 3.3.2 Flash electrical specifications............................39 3.3.3 Flexbus switching specifications....................... 41 3.3.4 SDRAM controller specifications.......................43 3.4 Security and integrity modules........................................ 46 3.5 Analog............................................................................. 46 3.5.1 ADC electrical specifications.............................46 4 Freescale Semiconductor, Inc. 4 5 6 7 3.5.2 CMP and 6-bit DAC electrical specifications.....50 3.5.3 12-bit DAC electrical characteristics................. 52 3.5.4 Voltage reference electrical specifications........ 55 3.6 Timers..............................................................................56 3.7 Communication interfaces............................................... 56 3.7.1 EMV SIM specifications.................................... 57 3.7.2 USB VREG electrical specifications..................61 3.7.3 USB DCD electrical specifications.................... 62 3.7.4 DSPI switching specifications (limited voltage range)................................................................63 3.7.5 DSPI switching specifications (full voltage range)................................................................64 3.7.6 I2C switching specifications.............................. 66 3.7.7 UART switching specifications.......................... 66 3.7.8 LPUART switching specifications......................66 3.7.9 SDHC specifications......................................... 67 3.7.10 I2S switching specifications.............................. 68 3.8 Human-machine interfaces (HMI)....................................74 3.8.1 TSI electrical specifications...............................74 Dimensions............................................................................. 74 4.1 Obtaining package dimensions....................................... 74 Pinout...................................................................................... 75 5.1 K82 Signal Multiplexing and Pin Assignments.................75 5.2 Recommended connection for unused analog and digital pins........................................................................82 5.3 K82 Pinouts..................................................................... 84 Ordering parts......................................................................... 88 6.1 Determining valid orderable parts....................................88 Part identification.....................................................................89 7.1 Description.......................................................................89 7.2 Format............................................................................. 89 7.3 Fields............................................................................... 89 7.4 Example...........................................................................90 8 Terminology and guidelines.................................................... 90 8.1 Definitions........................................................................ 90 8.2 Examples......................................................................... 91 8.3 Typical-value conditions.................................................. 91 8.4 Relationship between ratings and operating requirements....................................................................92 8.5 Guidelines for ratings and operating requirements..........92 9 Revision History...................................................................... 92 Kinetis K82 Sub-Family, Rev.1, 09/2015. Ratings 1 Ratings 1.1 Thermal handling ratings Symbol Description Min. Max. Unit Notes TSTG Storage temperature –55 150 °C 1 TSDR Solder temperature, lead-free — 260 °C 2 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 1.2 Moisture handling ratings Symbol MSL Description Moisture sensitivity level Min. Max. Unit Notes — 3 — 1 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 1.3 ESD handling ratings Symbol Description Min. Max. Unit Notes VHBM Electrostatic discharge voltage, human body model -2000 +2000 V 1 VCDM Electrostatic discharge voltage, charged-device model -500 +500 V 2 Latch-up current at ambient temperature of 105°C -100 +100 mA 3 ILAT 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test. 1.4 Voltage and current operating ratings Kinetis K82 Sub-Family, Rev.1, 09/2015. 5 Freescale Semiconductor, Inc. Ratings Symbol Description Min. Max. Unit VDD Digital supply voltage –0.3 3.8 V VDDA Analog supply voltage VDD – 0.3 VDD + 0.3 V –0.3 3.8 V –0.3 3.8 V VDDIO_E VBAT VDDIO_E is an independent voltage supply for PORTE 1 RTC supply voltage IDD Digital supply current — 300 mA VIO Input voltage (except PORTE, VBAT domain pins, and USB0)2 –0.3 VDD + 0.3 V PORTE input voltage3 –0.3 VDDIO_E + 0.3 V Maximum current single pin limit (digital output pins) –25 25 mA VREGIN USB regulator input –0.3 6.0 V VUSB0_Dx USB0_DP and USB_DM input voltage –0.3 3.63 V VIO_E ID 1. VDDIO_E is independent of the VDD domain and can operate at a voltage independent of VDD. However, it is required that the VDD domain be powered up before VDDIO_E. VDDIO_E must never be higher than VDD during power ramp up, or power down. VDD and VDDIO_E may ramp together if tied to the same power supply. 2. Includes ADC, CMP, and RESET_b inputs. 3. PORTE analog input voltages cannot exceed VDDIO_E supply when VDD ≥ VDDIO_E. PORTE analog input voltages cannot exceed VDD supply when VDD < VDDIO_E. 1.4.1 Recommended POR Sequencing Cases • VDD = VDDIO_E • VDD > VDDIO_E • VDD < VDDIO_E 6 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Ratings Figure 2. VDD = VDDIO_E Figure 3. VDD > VDDIO_E Kinetis K82 Sub-Family, Rev.1, 09/2015. 7 Freescale Semiconductor, Inc. General Figure 4. VDD < VDDIO_E 2 General 2.1 AC electrical characteristics Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure. VIH Input Signal Low High 80% 50% 20% Midpoint1 Fall Time VIL Rise Time The midpoint is VIL + (VIH - VIL) / 2 Figure 5. Input signal measurement reference All digital I/O switching characteristics assume: 1. output pins 8 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. General • have CL=15pF loads, • are slew rate disabled, and • are normal drive strength 2. input pins • have their passive filter disabled (PORTx_PCRn[PFE]=0) 2.2 Nonswitching electrical specifications 2.2.1 Voltage and current operating requirements Table 1. Voltage and current operating requirements Symbol Description Min. Max. Unit VDD Supply voltage 1.71 3.6 V VDDIO_E Supply voltage 1.71 3.6 V Analog supply voltage 1.71 3.6 V VDD – VDDA VDD-to-VDDA differential voltage –0.1 0.1 V VSS – VSSA VSS-to-VSSA differential voltage –0.1 0.1 V 1.71 3.6 V 0.7 × VDD — V 0.75 × VDD — V — 0.35 × VDD V — 0.3 × VDD V 0.7 × VDDIO_E — V — V 0.35 × VDDIO_E V VDDA VBAT VIH RTC battery supply voltage Input high voltage • 2.7 V ≤ VDD ≤ 3.6 V Notes • 1.7 V ≤ VDD ≤ 2.7 V VIL Input low voltage • 2.7 V ≤ VDD ≤ 3.6 V • 1.7 V ≤ VDD ≤ 2.7 V VIH_E Input high voltage • 2.7 V ≤ VDDIO_E ≤ 3.6 V • 1.7 V ≤ VDDIO_E ≤ 2.7 V VIL_E Input low voltage 0.75 × VDDIO_E — • 2.7 V ≤ VDDIO_E ≤ 3.6 V — V 0.3 × VDDIO_E • 1.7 V ≤ VDDIO_E ≤ 2.7 V VHYS Input hysteresis 0.06 × VDD — V VHYS_E Input hysteresis 0.06 × VDDIO_E — V -5 — mA IICIO I/O pin negative DC injection current — single pin • VIN < VSS-0.3V 1 Table continues on the next page... Kinetis K82 Sub-Family, Rev.1, 09/2015. 9 Freescale Semiconductor, Inc. General Table 1. Voltage and current operating requirements (continued) Symbol IICcont Description Contiguous pin DC injection current —regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins • Negative current injection Min. Max. Unit -25 — mA VODPU Pseudo Open drain pullup voltage level VDD VDD V VRAM VDD voltage required to retain RAM 1.2 — V VPOR_VBAT — V VRFVBAT VBAT voltage required to retain the VBAT register file Notes 2 1. All I/O pins are internally clamped to VSS through an ESD protection diode. There is no diode connection to VDD or VDDIO_E. If VIN is less than -0.3V, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(-0.3-VIN)/|IICIO|. The actual resistor value should be an order of magnitude higher to tolerate transient voltages. 2. Open drain outputs must be pulled to VDD. 2.2.2 HVD, LVD and POR operating requirements Table 2. VDD supply HVD, LVD and POR operating requirements Symbol Description Min. Typ. Max. Unit VHVDH High Voltage Detect (High Trip Point) — 3.72 — V VHVDL High Voltage Detect (Low Trip Point) — 3.46 — V VPOR Falling VDD POR detect voltage 0.8 1.1 1.5 V VLVDH Falling low-voltage detect threshold — high range (LVDV=01) 2.48 2.56 2.64 V Low-voltage warning thresholds — high range 1 VLVW1H • Level 1 falling (LVWV=00) 2.62 2.70 2.78 V VLVW2H • Level 2 falling (LVWV=01) 2.72 2.80 2.88 V VLVW3H • Level 3 falling (LVWV=10) 2.82 2.90 2.98 V VLVW4H • Level 4 falling (LVWV=11) 2.92 3.00 3.08 V — 60 — mV 1.54 1.60 1.66 V VHYSH Low-voltage inhibit reset/recover hysteresis — high range VLVDL Falling low-voltage detect threshold — low range (LVDV=00) Low-voltage warning thresholds — low range 1 VLVW1L • Level 1 falling (LVWV=00) 1.74 1.80 1.86 V VLVW2L • Level 2 falling (LVWV=01) 1.84 1.90 1.96 V VLVW3L • Level 3 falling (LVWV=10) 1.94 2.00 2.06 V VLVW4L • Level 4 falling (LVWV=11) 2.04 2.10 2.16 V — 40 — mV VHYSL Low-voltage inhibit reset/recover hysteresis — low range Notes Table continues on the next page... 10 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. General Table 2. VDD supply HVD, LVD and POR operating requirements (continued) Symbol Description Min. Typ. Max. Unit VBG Bandgap voltage reference 0.97 1.00 1.03 V tLPO Internal low power oscillator period — factory trimmed 900 1000 1100 μs Notes 1. Rising threshold is the sum of falling threshold and hysteresis voltage NOTE There is no LVD circuit for VDDIO domain Table 3. VBAT power operating requirements Symbol Description VPOR_VBAT Falling VBAT supply POR detect voltage Min. Typ. Max. Unit 0.8 1.1 1.5 V Notes 2.2.3 Voltage and current operating behaviors Table 4. Voltage and current operating behaviors Symbol VOH Description Min. Typ.1 Max. Unit Output high voltage — normal drive strength IO Group 1 • 2.7 V ≤ VBAT ≤ 3.6 V, IOH = -5mA • 1.71 V ≤ VBAT ≤ 2.7 V, IOH = -2.5mA IO Groups 2 and 3 • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -10mA • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -5mA IO Group 4 • 2.7 V ≤ VDDIO_E ≤ 3.6 V, IOH = -5mA • 1.71 V ≤ VDDIO_E ≤ 2.7 V, IOH = -2.5mA 2, 3 VBAT – 0.5 — — V VBAT – 0.5 — — V — — V — — V — — V — — V VDD – 0.5 VDD – 0.5 VDDIO_E – 0.5 VDDIO_E – 0.5 Output high voltage — High drive strength IO Group 3 • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -20mA • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -10mA IO Group 4 • 2.7 V ≤ VDDIO_E ≤ 3.6 V, IOH = -15mA • 1.71 V ≤ VDDIO_E ≤ 2.7 V, IOH = -7.5mA IOHT Output high current total for all ports VOL Output low voltage — normal drive strength Notes 2 VDD – 0.5 — — V VDD – 0.5 — — V VDDIO_E – 0.5 — — V VDDIO_E – 0.5 — — V — — 100 mA 2, 4, 5 IO Group 1 Table continues on the next page... Kinetis K82 Sub-Family, Rev.1, 09/2015. 11 Freescale Semiconductor, Inc. General Table 4. Voltage and current operating behaviors (continued) Symbol Description • 2.7 V ≤ VBAT ≤ 3.6 V, IOL = -5mA • 1.71 V ≤ VBAT ≤ 2.7 V, IOL = -2.5mA Min. Typ.1 Max. Unit — — 0.5 V — — 0.5 V — — 0.5 V — — 0.5 V — — 0.5 V — — 0.5 V Notes IO Groups 2 and 3 • 2.7 V ≤ VDD ≤ 3.6 V, IOL = -10mA • 1.71 V ≤ VDD ≤ 2.7 V, IOL = -5mA IO Group 4 • 2.7 V ≤ VDDIO_E ≤ 3.6 V, IOL = -5mA • 1.71 V ≤ VDDIO_E ≤ 2.7 V, IOL = -2.5mA Output low voltage — High drive strength 2, 4 IO Group 3 • 2.7 V ≤ VDD ≤ 3.6 V, IOL = -20mA • 1.71 V ≤ VDD ≤ 2.7 V, IOL = -10mA IO Group 4 • 2.7 V ≤ VDDIO_E ≤ 3.6 V, IOL = -15mA • 1.71 V ≤ VDDIO_E ≤ 2.7 V, IOL = -7.5mA IOLT IIN Output low current total for all ports — — 0.5 V — — 0.5 V — — 0.5 V — — 0.5 V — — 100 mA Input leakage current VDD domain pins • VSS ≤ VIN ≤ VDD PORTE pins • VSS ≤ VIN ≤ VDDIO_E 6, 7, 8 — 0.002 0.5 µA — 0.002 0.5 µA — 0.002 0.5 µA VBAT domain pins • VSS ≤ VIN ≤ VBAT RPU Internal pullup resistors(except RTC_WAKEUP pins) 20 — 50 kΩ 9 RPD Internal pulldown resistors (except RTC_WAKEUP pins) 20 — 50 kΩ 10 1. Typical values characterized at 25°C and VDD = 3.6V unless otherwise noted. 2. IO Group 1 includes VBAT domain pins: RTC_WAKEUP_b. IO Group 2 includes VDD domain pins: PORTA, PORTB, PORTC, and PORTD, except PTA4. IO Group 3 includes VDD domain pins: PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6, and PTD7. IO Group 4 includes VDDIO_E domain pins: PORTE. 3. PTA4 has lower drive strength: IOH = -5mA for high VDD range; IOH = -2.5mA for low VDD range. 4. Open drain outputs must be pulled to VDD. 5. PTA4 has lower drive strength: IOL = 5mA for high VDD range; IOL = 2.5mA for low VDD range. 6. VDD domain pins include ADC, CMP, and RESET_b inputs. Measured at VDD = 3.6V. 7. PORTE analog input voltages cannot exceed VDDIO_E supply when VDD ≥ VDDIO_E. PORTE analog input voltages cannot exceed VDD supply when VDD ˂ VDDIO_E. 8. VBAT domain pins include EXTAL32, XTAL32, and RTC_WAKEUP_b pins. 9. Measured at minimum supply voltage and VIN = VSS 10. Measured at minimum supply voltage and VIN = VDD 12 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. General 2.2.4 Power mode transition operating behaviors All specifications except tPOR, and VLLSx –> RUN recovery times in the following table assume this clock configuration: • • • • • CPU and system clocks = 100MHz Bus clock = 50MHz FlexBus clock = 50 MHz Flash clock = 25 MHz MCG mode=FEI Table 5. Power mode transition operating behaviors Symbol tPOR Description After a POR event, amount of time from the point VDD reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip. • VLLS0 –> RUN • VLLS1 –> RUN • VLLS2 –> RUN • VLLS3 –> RUN • LLS2 –> RUN • LLS3 –> RUN • VLPS –> RUN • STOP –> RUN Min. Max. Unit — 300 µs — 154 µs — 154 µs — 92 µs — 92 µs — 6.3 µs — 6.3 µs — 5.3 µs — 5.3 µs Notes Table 6. Low power mode peripheral adders — typical value Symbol Description Temperature (°C) Unit -40 25 50 70 85 105 IIREFSTEN4MHz 4 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 4 MHz IRC enabled. 56 56 56 56 56 56 µA IIREFSTEN32KH 32 kHz internal reference clock (IRC) adder. Measured by entering STOP mode with the z 32 kHz IRC enabled. 52 52 52 52 52 52 µA Table continues on the next page... Kinetis K82 Sub-Family, Rev.1, 09/2015. 13 Freescale Semiconductor, Inc. General Table 6. Low power mode peripheral adders — typical value (continued) Symbol Description IEREFSTEN4MH External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode z with the crystal enabled. Temperature (°C) Unit -40 25 50 70 85 105 206 228 237 245 251 258 IEREFSTEN32K External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and Hz EREFSTEN] bits. Measured by entering all modes with the crystal enabled. uA nA VLLS1 440 490 540 560 570 580 VLLS3 440 490 540 560 570 580 LLS2 490 490 540 560 570 680 LLS3 490 490 540 560 570 680 VLPS 510 560 560 560 610 680 STOP 510 560 560 560 610 680 ICMP CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption. 22 22 22 22 22 22 µA IRTC RTC peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the RTC_CR[OSCE] bit and the RTC ALARM set for 1 minute. Includes ERCLK32K (32 kHz external crystal) power consumption. 432 357 388 475 532 810 nA IUART UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption. µA 66 66 66 66 66 66 OSCERCLK (4 MHz external crystal) 214 234 246 254 260 268 IBG Bandgap adder when BGEN bit is set and device is placed in VLPx, LLS, or VLLSx mode. 45 45 45 45 45 45 µA IADC ADC peripheral adder combining the measured values at VDD and VDDA by placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions. 366 366 366 366 366 366 µA MCGIRCLK (4 MHz internal reference clock) 14 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. General 2.2.5 Power consumption operating behaviors The maximum values stated in the following table represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma). Table 7. Power consumption operating behaviors Symbol IDDA IDD_RUN Description Analog supply current • @ 105°C • @ 105°C Run mode current in compute operation - 120 MHz core / 24 MHz flash / bus clock disabled, code of while(1) loop executing from internal flash at 3.0 V • @ 25°C • @ 105°C IDD_HSRUN Unit Notes — — See note mA 1 2 — 28 31.55 — 39.6 50.10 • @ 105°C 3, 4 — 54 57.55 — 70 80.50 • @ 105°C 5 mA — 25.1 28.65 — 37.8 48.30 6 — 38 40.70 — 51.7 65.04 mA 7, 8 — 48 50.70 — 63.7 77.04 — 34.5 37.2 — 50.3 63.64 IDD_HSRUNCO HSRun mode current in compute operation – 150 MHz core/ 25 MHz flash / bus clock disabled, code of while(1) loop executing from internal flash at 3.0V • @ 25°C • @ 105°C mA mA Wait mode high frequency current at 3.0 V — all peripheral clocks disabled • @ 25°C • @ 105°C IDD_WAIT mA Run mode current — all peripheral clocks enabled, code executing from internal flash @ 3.0V • @ 25°C IDD_WAIT mA Run mode current — all peripheral clocks disabled, code executing from internal flash @ 3.0V • @ 25°C IDD_HSRUN Max. Run mode current — all peripheral clocks enabled, code executing from internal flash @ 3.0V • @ 25°C IDD_RUNCO Typ. Run mode current — all peripheral clocks disabled, code executing from internal flash @ 3.0V • @ 25°C IDD_RUN Min. 9 — 14.2 19.87 — 26.2 35.66 mA Wait mode reduced frequency current at 3.0 V — all peripheral clocks enabled 9 — 24.4 30.07 mA Table continues on the next page... Kinetis K82 Sub-Family, Rev.1, 09/2015. 15 Freescale Semiconductor, Inc. General Table 7. Power consumption operating behaviors (continued) Symbol Description • @ 25°C Min. Typ. Max. — 36.6 46.06 Unit Notes • @ 105°C IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks disabled • @ 25°C • @ 105°C IDD_VLPR • @ 105°C IDD_VLPRCO_ Very-low-power run mode current in compute operation - 4 MHz core / 0.8 MHz flash / bus clock CM disabled, LPTMR running with 4 MHz internal reference clock, CoreMark benchmark code executing from internal flash at 3.0 V • @ 25°C • @ 105°C IDD_PSTOP2 Stop mode current with partial stop 2 clocking option core and system disabled / 10.5 MHz bus at 3.0 V • @ 25°C • @ 105°C Very-low-power wait mode current at 3.0 V — all peripheral clocks disabled • @ 25°C • @ 105°C IDD_VLPW Very-low-power wait mode current at 3.0 V — all peripheral clocks enabled • @ 25°C • @ 105°C IDD_STOP • @ 105°C 1.10 — 3.99 7.62 mA 11 — 1.36 1.52 — 4.4 8.03 mA 12 — 1000 — — 3650 — μA 5 — 3.95 5.75 — 17.71 27.15 mA 13 — 0.45 0.63 — 3.28 6.87 — 0.75 0.93 — 3.6 7.19 — 0.55 0.85 — 5.67 9.59 — 91.48 240.90 — 1798.38 3796.94 — 4.94 7.14 — 73.68 121.9 mA mA mA Very-low-power stop mode current at 3.0 V • @ 25°C • @ 105°C IDD_LLS2 0.94 Stop mode current at 3.0 V • @ 25°C IDD_VLPS — Very-low-power run mode current at 3.0 V — all peripheral clocks enabled • @ 25°C IDD_VLPW 10 μA Low leakage stop mode current at 3.0 V • @ 25°C • @ 105°C μA Table continues on the next page... 16 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. General Table 7. Power consumption operating behaviors (continued) Symbol Description IDD_LLS3 Low leakage stop mode current at 3.0 V • @ 25°C • @ 105°C IDD_VLLS3 • @ 105°C • @ 105°C Unit — 7.78 13.16 μA — 160.91 284.31 — 5.63 9.34 — 117.89 202.55 — 3.13 4.04 — 29.49 48.7 — 1.05 1.36 — 15.31 18.56 — 0.62 0.84 — 13.92 16.95 — 0.33 0.53 — 13.42 16.44 — 0.19 0.23 — 2.56 3.71 Notes μA μA Very low-leakage stop mode 1 current at 3.0 V • @ 25°C • @ 105°C IDD_VLLS0 Max. Very low-leakage stop mode 2 current at 3.0 V • @ 25°C IDD_VLLS1 Typ. Very low-leakage stop mode 3 current at 3.0 V • @ 25°C IDD_VLLS2 Min. Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit enabled μA μA • @ 25°C • @ 105°C IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit disabled μA • @ 25°C • @ 105°C IDD_VBAT Average current with RTC and 32kHz disabled at 3.0 V μA • @ 25°C • @ 105°C IDD_VBAT Average current when CPU is not accessing RTC registers @ 1.8V 14 — 0.57 0.64 — 2.52 5.82 μA • @ 25°C • @ 105°C 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current. 2. 120 MHz core and system clock, 60 MHz bus and FlexBus clock, and 24 MHz flash clock. MCG configured for PEE mode. All peripheral clocks disabled. 3. 150 MHz core and system clock, 75 MHz bus and FlexBus clock, and 25 MHz flash clock. MCG configure for PEE mode. All peripheral clocks enabled. 4. Max values are measured with CPU executing DSP instructions. 5. MCG configured for PEE mode. 6. 150 MHz core and system clock, 50 MHz bus and FlexBus clock, and 25 MHz flash clock. MCG configured for PEE mode. All peripheral clocks disabled. Kinetis K82 Sub-Family, Rev.1, 09/2015. 17 Freescale Semiconductor, Inc. General 7. 150 MHz core and system clock, 50 MHz bus and FlexBus clock, and 25 MHz flash clock. MCG configured for PEE mode. All peripheral clocks enabled. 8. Max values are measured with CPU executing DSP instructions. 9. 120 MHz core and system clock, 60MHz bus clock, and FlexBus. MCG configured for PEE mode. 10. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing from flash. 11. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash. 12. MCG configured for BLPI mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high, optimized for balanced. 13. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. 14. Includes 32kHz oscillator current and RTC operation. 2.2.5.1 Diagram: Typical IDD_RUN operating behavior The following data was measured under these conditions: • • • • • USB regulator disabled No GPIOs toggled Code execution from flash with cache enabled For the ALLOFF curve, all peripheral clocks are disabled except FTFE VDD=VDDA=VDDIO_E 18 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. General Figure 6. Run mode supply current vs. core frequency Kinetis K82 Sub-Family, Rev.1, 09/2015. 19 Freescale Semiconductor, Inc. General Figure 7. VLPR mode supply current vs. core frequency 2.2.6 Electromagnetic Compatibility (EMC) specifications EMC measurements to IC-level IEC standards are available from Freescale on request. 2.2.7 Designing with radiated emissions in mind To find application notes that provide guidance on designing your system to minimize interference from radiated emissions: 1. Go to www.freescale.com. 2. Perform a keyword search for “EMC design.” 20 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. General 2.2.8 Capacitance attributes Table 8. Capacitance attributes Symbol Description Min. Max. Unit CIN_A Input capacitance: analog pins — 7 pF CIN_D Input capacitance: digital pins — 7 pF 2.3 Switching specifications 2.3.1 Device clock specifications Table 9. Device clock specifications Symbol Description Min. Max. Unit — 150 MHz Notes High Speed run mode fSYS System and core clock Normal run mode (and High Speed run mode unless otherwise specified above) fSYS System and core clock — 120 MHz System and core clock when Full Speed USB in operation 20 — MHz Bus clock — 75 MHz FlexBus clock — 75 MHz fFLASH Flash clock — 28 MHz fLPTMR LPTMR clock — 25 MHz fBUS FB_CLK VLPR mode1 fSYS System and core clock — 4 MHz fBUS Bus clock — 4 MHz FlexBus clock — 4 MHz fFLASH Flash clock — 1 MHz fERCLK External reference clock — 16 MHz LPTMR clock — 25 MHz — 8 MHz FB_CLK fLPTMR_pin fFlexCAN_ERCLK FlexCAN external reference clock fI2S_MCLK I2S master clock — 12.5 MHz fI2S_BCLK I2S bit clock — 4 MHz 1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module. Kinetis K82 Sub-Family, Rev.1, 09/2015. 21 Freescale Semiconductor, Inc. General 2.3.2 General switching specifications These general purpose specifications apply to all signals configured for GPIO, UART, CMT, timers, and I2C signals. Table 10. General switching specifications Symbol Description Min. Max. Unit Notes GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path 1.5 — Bus clock cycles 1, 2 NMI_b pin interrupt pulse width (analog filter enabled) — Asynchronous path 100 — ns GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path 50 — ns External RESET_b input pulse width (digital glitch filter disabled) 100 — ns 4, 5 Port rise and fall time (high drive strength) • Slew enabled • 1.71 ≤ VDD ≤ 2.7V 3 — 34 — 16 — 10 — 8 ns ns • 2.7 ≤ VDD ≤ 3.6V • Slew disabled • 1.71 ≤ VDD ≤ 2.7V ns ns • 2.7 ≤ VDD ≤ 3.6V 6, 7 Port rise and fall time (low drive strength) • Slew enabled • 1.71 ≤ VDD ≤ 2.7V — 34 — 16 — 7 — 5 ns ns • 2.7 ≤ VDD ≤ 3.6V • Slew disabled • 1.71 ≤ VDD ≤ 2.7V ns ns • 2.7 ≤ VDD ≤ 3.6V Port rise and fall time (high drive strength) • Slew enabled • 1.71 ≤ VDDIO_E ≤ 2.7V 5, 8 — 34 — 16 — 7 — 5 ns ns • 2.7 ≤ VDDIO_E ≤ 3.6V • Slew disabled • 1.71 ≤ VDDIO_E ≤ 2.7V ns ns • 2.7 ≤ VDDIO_E ≤ 3.6V Port rise and fall time (low drive strength) • Slew enabled 22 Freescale Semiconductor, Inc. 7, 8 — 34 — 16 ns ns Kinetis K82 Sub-Family, Rev.1, 09/2015. General Table 10. General switching specifications Symbol Description Min. Max. • 1.71 ≤ VDDIO_E ≤ 2.7V — 7 • 2.7 ≤ VDDIO_E ≤ 3.6V — 5 Unit Notes ns ns • Slew disabled • 1.71 ≤ VDDIO_E ≤ 2.7V • 2.7 ≤ VDDIO_E ≤ 3.6V 1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry in run modes. 2. The greater synchronous and asynchronous timing must be met. 3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes. 4. PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6, and PTD7. 5. 75 pF load. 6. Ports A, B, C, and D. 7. 25 pF load. 8. Port E pins only. 2.4 Thermal specifications 2.4.1 Thermal operating requirements Table 11. Thermal operating requirements Symbol Description Min. Max. Unit TJ Die junction temperature –40 125 °C TA Ambient temperature –40 105 °C Notes 1, 1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed the maximum. The simplest method to determine TJ is: TJ = TA + θJA x chip power dissipation 2.4.2 Thermal attributes Table 12. Thermal attributes Board type Symbol Single-layer (1S) RθJA Four-layer (2s2p) RθJA Description 100 LQFP 121 XFBGA Unit Notes Thermal resistance, junction to ambient (natural convection) 52 71 °C/W 1 Thermal resistance, junction to ambient (natural convection) 39 36.8 °C/W 1 Table continues on the next page... Kinetis K82 Sub-Family, Rev.1, 09/2015. 23 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 12. Thermal attributes (continued) Board type Symbol Single-layer (1S) RθJMA Four-layer (2s2p) Description 100 LQFP 121 XFBGA Unit Notes Thermal resistance, junction to ambient (200 ft./min. air speed) 42 55 °C/W 1 RθJMA Thermal resistance, junction to ambient (200 ft./min. air speed) 33 32.2 °C/W 1 — RθJB Thermal resistance, junction to board 24 18 °C/W 2 — RθJC Thermal resistance, junction to case 11 12.2 °C/W 3 — ΨJT Thermal characterization parameter, junction to package top outside center (natural convection) 2 0.25 °C/W 4 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air) with the single layer board horizontal. Board meets JESD51-9 specification. 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board. 3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate. 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air). 3 Peripheral operating requirements and behaviors 3.1 Core modules 3.1.1 Debug trace timing specifications Table 13. Debug trace operating behaviors Symbol Description Min. Max. Unit Tcyc Clock period Frequency dependent MHz Twl Low pulse width 2 — ns Twh High pulse width 2 — ns Tr Clock and data rise time — 3 ns Tf Clock and data fall time — 3 ns Ts Data setup 1.5 — ns Th Data hold 1.0 — ns 24 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Peripheral operating requirements and behaviors TRACECLK Tr Tf Twh Twl Tcyc Figure 8. TRACE_CLKOUT specifications TRACE_CLKOUT Ts Th Ts Th TRACE_D[3:0] Figure 9. Trace data specifications 3.1.2 JTAG electricals Table 14. JTAG limited voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 2.7 3.6 V TCLK frequency of operation MHz • Boundary Scan 0 10 • JTAG and CJTAG 0 25 • Serial Wire Debug 0 50 1/J1 — ns • Boundary Scan 50 — ns • JTAG and CJTAG 20 — ns • Serial Wire Debug 10 — ns J4 TCLK rise and fall times — 3 ns J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 2.0 — ns J7 TCLK low to boundary scan output data valid — 28 ns J8 TCLK low to boundary scan output high-Z — 25 ns J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 1 — ns J2 TCLK cycle period J3 TCLK clock pulse width Table continues on the next page... Kinetis K82 Sub-Family, Rev.1, 09/2015. 25 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 14. JTAG limited voltage range electricals (continued) Symbol Description Min. Max. Unit J11 TCLK low to TDO data valid — 19 ns J12 TCLK low to TDO high-Z — 17 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns Table 15. JTAG full voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 1.71 3.6 V TCLK frequency of operation MHz • Boundary Scan 0 10 • JTAG and CJTAG 0 20 • Serial Wire Debug 0 40 1/J1 — ns • Boundary Scan 50 — ns • JTAG and CJTAG 25 — ns • Serial Wire Debug 12.5 — ns J2 TCLK cycle period J3 TCLK clock pulse width J4 TCLK rise and fall times — 3 ns J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 2.0 — ns J7 TCLK low to boundary scan output data valid — 30.6 ns J8 TCLK low to boundary scan output high-Z — 25 ns J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 1.0 — ns J11 TCLK low to TDO data valid — 19.0 ns J12 TCLK low to TDO high-Z — 17.0 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns J2 J3 J3 TCLK (input) J4 J4 Figure 10. Test clock input timing 26 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Peripheral operating requirements and behaviors TCLK J5 Data inputs J6 Input data valid J7 Data outputs Output data valid J8 Data outputs J7 Data outputs Output data valid Figure 11. Boundary scan (JTAG) timing TCLK J9 TDI/TMS J10 Input data valid J11 TDO Output data valid J12 TDO J11 TDO Output data valid Figure 12. Test Access Port timing Kinetis K82 Sub-Family, Rev.1, 09/2015. 27 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors TCLK J14 J13 TRST Figure 13. TRST timing 3.2 Clock modules 3.2.1 MCG specifications Table 16. MCG specifications Symbol Description Min. Typ. Max. Unit Notes fints_ft Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C — 32.768 — kHz fints_t Internal reference frequency (slow clock) — user trimmed 31.25 — 39.0625 kHz Internal reference (slow clock) current — 20 — µA [O: ] Internal reference (slow clock) startup time — 32 — µs Δfdco_res_t Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM — ± 0.3 ± 0.6 %fdco 1 Δfdco_res_t Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM only — ± 0.2 ± 0.5 %fdco 1 Iints tirefsts Δfdco_t Total deviation of trimmed average DCO output frequency over voltage and temperature — ±1 ±2 %fdco 1 Δfdco_t Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C — ± 0.5 ±1 %fdco 1 fintf_ft Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C — 4 — MHz fintf_t Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C 3 — 5 MHz Internal reference (fast clock) current — 25 — µA tirefsts [L: ] Internal reference startup time (fast clock) — 10 15 µs floc_low Loss of external clock minimum frequency — RANGE = 00 (3/5) x fints_t — — kHz Iintf ext clk freq: above (3/5)fint never reset Table continues on the next page... 28 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Peripheral operating requirements and behaviors Table 16. MCG specifications (continued) Symbol Description Min. Typ. Max. Unit (16/5) x fints_t — — kHz Notes ext clk freq: between (2/5)fint and (3/5)fint maybe reset (phase dependency) ext clk freq: below (2/5)fint always reset floc_high Loss of external clock minimum frequency — RANGE = 01, 10, or 11 ext clk freq: above (16/5)fint never reset ext clk freq: between (15/5)fint and (16/5)fint maybe reset (phase dependency) ext clk freq: below (15/5)fint always reset FLL ffll_ref FLL reference frequency range 31.25 — 39.0625 kHz fdco_ut DCO output frequency range — untrimmed 16.0 23.04 26.66 MHz 2 32.0 46.08 53.32 48.0 69.12 79.99 64.0 92.16 106.65 18.3 26.35 30.50 36.6 52.70 60.99 54.93 79.09 91.53 73.23 105.44 122.02 20 20.97 25 MHz 3, 4 40 41.94 50 MHz Low range (DRS=00, DMX32=0) 640 × fints_ut Mid range (DRS=01, DMX32=0) 1280 × fints_ut Mid-high range (DRS=10, DMX32=0) 1920 × fints_ut High range (DRS=11, DMX32=0) 2560 × fints_ut Low range (DRS=00, DMX32=1) 732 × fints_ut Mid range (DRS=01, DMX32=1) 1464 × fints_ut Mid-high range (DRS=10, DMX32=1) 2197 × fints_ut High range (DRS=11, DMX32=1) 2929 × fints_ut fdco DCO output frequency range Low range (DRS=00) 640 × ffll_ref Mid range (DRS=01) Table continues on the next page... Kinetis K82 Sub-Family, Rev.1, 09/2015. 29 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 16. MCG specifications (continued) Symbol Description Min. Typ. Max. Unit 60 62.91 75 MHz 80 83.89 100 MHz — 23.99 — MHz — 47.97 — MHz — 71.99 — MHz — 95.98 — MHz — 180 — — 150 — — — 1 ms 8 — 16 MHz Notes 1280 × ffll_ref Mid-high range (DRS=10) 1920 × ffll_ref High range (DRS=11) 2560 × ffll_ref fdco_t_DMX3 DCO output frequency 2 Low range (DRS=00) 5, 6 732 × ffll_ref Mid range (DRS=01) 1464 × ffll_ref Mid-high range (DRS=10) 2197 × ffll_ref High range (DRS=11) 2929 × ffll_ref Jcyc_fll FLL period jitter • fDCO = 48 MHz • fDCO = 98 MHz tfll_acquire FLL target frequency acquisition time ps 7 PLL fpll_ref PLL reference frequency range fvcoclk_2x VCO output frequency fvcoclk PLL output frequency fvcoclk_90 PLL quadrature output frequency Ipll PLL operating current • VCO @ 176 MHz (fpll_ref = 8 MHz, VDIV multiplier = 22, PRDIV divide=1) Ipll PLL operating current • VCO @ 360 MHz (fpll_ref = 8 MHz, VDIV multiplier = 45, PRDIV divide=1) Jcyc_pll Jacc_pll Dunl tpll_lock 180 90 90 — — — 360 180 180 MHz MHz MHz — 1.1 — mA — 2 — mA PLL period jitter (RMS) — 100 — ps • fvco = 360 MHz — 75 — ps PLL accumulated jitter over 1µs (RMS) 9 • fvco = 180 MHz — 600 — ps • fvco = 360 MHz — 300 — ps ± 4.47 — ± 5.97 Lock detector detection time 30 Freescale Semiconductor, Inc. 8 9 • fvco = 180 MHz Lock exit frequency tolerance 8 — — 10-6 150 × + 1075(1/ fpll_ref) % s 10 Kinetis K82 Sub-Family, Rev.1, 09/2015. Peripheral operating requirements and behaviors 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode). 2. This applies when SCTRIM at value (0x80) and SCFTRIM control bit at value (0x0). 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0. 4. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δfdco_t) over voltage and temperature should be considered. 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1. 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device. 7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 8. Excludes any oscillator currents that are also consuming power while PLL is in operation. 9. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary. 10. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 3.2.2 IRC48M specifications Table 17. IRC48M specifications Symbol Description Min. Typ. Max. Unit VDD Supply voltage 1.71 — 3.6 V IDD48M Supply current — 520 — μA firc48m Internal reference frequency — 48 — MHz — ± 0.5 ± 1.0 %firc48m — ± 0.5 ± 1.5 — ± 0.5 ± 1.0 %firc48m Δfirc48m_ol_lv Open loop total deviation of IRC48M frequency at low voltage (VDD=1.71V-1.89V) over temperature • Regulator disable (USB_CLK_RECOVER_IRC_EN[REG_EN]=0) • Regulator enable (USB_CLK_RECOVER_IRC_EN[REG_EN]=1) Δfirc48m_ol_hv Open loop total deviation of IRC48M frequency at high voltage (VDD=1.89V-3.6V) over temperature • Regulator enable (USB_CLK_RECOVER_IRC_EN[REG_EN]=1) Δfirc48m_cl Closed loop total deviation of IRC48M frequency over voltage and temperature — — ± 0.1 %fhost Jcyc_irc48m Period Jitter (RMS) — 35 150 ps Startup time — 2 3 μs tirc48mst Notes 1 2 1. Closed loop operation of the IRC48M is only feasible for USB device operation; it is not usable for USB host operation. It is enabled by configuring for USB Device, selecting IRC48M as USB clock source, and enabling the clock recover function (USB_CLK_RECOVER_IRC_CTRL[CLOCK_RECOVER_EN]=1, USB_CLK_RECOVER_IRC_EN[IRC_EN]=1). 2. IRC48M startup time is defined as the time between clock enablement and clock availability for system use. Enable the clock by one of the following settings: • USB_CLK_RECOVER_IRC_EN[IRC_EN]=1, or • MCG_C7[OSCSEL]=10, or • SIM_SOPT2[PLLFLLSEL]=11 Kinetis K82 Sub-Family, Rev.1, 09/2015. 31 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 3.2.3 Oscillator electrical specifications 3.2.3.1 Oscillator DC electrical specifications Table 18. Oscillator DC electrical specifications Symbol Description Min. Typ. Max. Unit VDD Supply voltage 1.71 — 3.6 V IDDOSC IDDOSC Supply current — low-power mode (HGO=0) Notes 1 • 32 kHz — 600 — nA • 4 MHz — 200 — μA • 8 MHz (RANGE=01) — 300 — μA • 16 MHz — 950 — μA • 24 MHz — 1.2 — mA • 32 MHz — 1.5 — mA Supply current — high gain mode (HGO=1) 1 • 32 kHz — 7.5 — μA • 4 MHz — 500 — μA • 8 MHz (RANGE=01) — 650 — μA • 16 MHz — 2.5 — mA • 24 MHz — 3.25 — mA • 32 MHz — 4 — mA Cx EXTAL load capacitance — — — 2, 3 Cy XTAL load capacitance — — — 2, 3 RF Feedback resistor — low-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — low-frequency, high-gain mode (HGO=1) — 10 — MΩ Feedback resistor — high-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — high-frequency, high-gain mode (HGO=1) — 1 — MΩ Series resistor — low-frequency, low-power mode (HGO=0) — — — kΩ Series resistor — low-frequency, high-gain mode (HGO=1) — 200 — kΩ Series resistor — high-frequency, low-power mode (HGO=0) — — — kΩ RS 2, 4 Series resistor — high-frequency, high-gain mode (HGO=1) Table continues on the next page... 32 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Peripheral operating requirements and behaviors Table 18. Oscillator DC electrical specifications (continued) Symbol Vpp5 1. 2. 3. 4. 5. Description Min. Typ. Max. Unit — 0 — kΩ Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1) — VDD — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1) — VDD — V Notes VDD=3.3 V, Temperature =25 °C, Internal capacitance = 20 pf See crystal or resonator manufacturer's recommendation Cx,Cy can be provided by using either the integrated capacitors or by using external components. When low power mode is selected, RF is integrated and must not be attached externally. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices. 3.2.3.2 Symbol Oscillator frequency specifications Table 19. Oscillator frequency specifications Min. Typ. Max. Unit Oscillator crystal or resonator frequency — lowfrequency mode (MCG_C2[RANGE]=00) 32 — 40 kHz fosc_hi_1 Oscillator crystal or resonator frequency — high-frequency mode (low range) (MCG_C2[RANGE]=01) 3 — 8 MHz fosc_hi_2 Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x) 8 — 32 MHz tdc_extal Input clock duty cycle (external clock mode) 40 50 60 % Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0) — 750 — ms Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1) — 250 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0) — 0.6 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1) — 1 — ms fosc_lo tcst Description Notes 1, 2 1. Proper PC board layout procedures must be followed to achieve specifications. Kinetis K82 Sub-Family, Rev.1, 09/2015. 33 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 2. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set. NOTE The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode. 3.2.4 32 kHz oscillator electrical characteristics 3.2.4.1 32 kHz oscillator DC electrical specifications Table 20. 32kHz oscillator DC electrical specifications Symbol Description Min. Typ. Max. Unit VBAT Supply voltage 1.71 — 3.6 V Internal feedback resistor — 100 — MΩ Cpara Parasitical capacitance of EXTAL32 and XTAL32 — 5 7 pF Vpp1 Peak-to-peak amplitude of oscillation — 0.6 — V RF 1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices. 3.2.4.2 Symbol fosc_lo tstart fec_extal32 32 kHz oscillator frequency specifications Table 21. 32 kHz oscillator frequency specifications Description Min. Typ. Max. Unit Oscillator crystal — 32.768 — kHz Crystal start-up time — 1000 — ms — 32.768 — kHz 2 700 — VBAT mV 2, 3 Externally provided input clock frequency vec_extal32 Externally provided input clock amplitude Notes 1 1. Proper PC board layout procedures must be followed to achieve specifications. 2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected. 3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the applied clock must be within the range of VSS to VBAT. 3.3 Memories and memory interfaces 34 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Peripheral operating requirements and behaviors 3.3.1 QuadSPI AC specifications • All data is based on a negative edge data launch from the device and a positive edge data capture, as shown in the timing diagrams in this section. • Measurements are with a load of 15pf (1.8V) and 35pf (3V) on output pins. Input slew: 1ns • Timings assume a setting of 0x0000_000x for QuadSPI _SMPR register (see the reference manual for details). The following table lists the QuadSPI delay chain read/write settings. Refer the device reference manual for register and bit descriptions. Table 22. QuadSPI delay chain read/write settings Mode QuadSPI registers Notes QuadSPI_MCR[DQ S_EN] QuadSPI_SOCCR[ SOCCFG] QuadSPI_MCR[SC LKCFG] QuadSPI_FLSHC R[TDH] SDR Yes 3Fh 5 No Delay of 63 buffer and 64 mux DDR Yes 3Fh 1 2 Delay of 63 buffer and 64 mux Hyperflash RDS driven from Flash 0h No 2 Delay of 1 mux SDR mode 1 2 3 Clock Tck SFCK Tcss Tcsh CS Tis Tih Data in Figure 14. QuadSPI input timing (SDR mode) diagram NOTE • The below timing values are with default settings for sampling registers like QuadSPI_SMPR. Kinetis K82 Sub-Family, Rev.1, 09/2015. 35 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors • A negative time indicates the actual capture edge inside the device is earlier than clock appearing at pad. • The below timing are for a load of 15pf (1.8V) and 35pf (3V) or output pads • All board delays need to be added appropriately • Input hold time being negative does not have any implication or max achievable frequency Table 23. QuadSPI input timing (SDR mode) specifications Symbol Parameter Value Min Unit Max Tis Setup time for incoming data 4 - ns Tih Hold time requirement for incoming data 1.5 - ns 1 2 3 Clock Tck SFCK Tcss Tcsh CS Toh Tov Data out Figure 15. QuadSPI output timing (SDR mode) diagram Table 24. QuadSPI output timing (SDR mode) specifications Symbol Parameter Value Min Unit Max Tov Output Data Valid - 2.8 ns Toh Output Data Hold -1.4 - ns Tck SCK clock period - 100 MHz Tcss Chip select output setup time 2 - ns Tcsh Chip select output hold time -1 - ns NOTE For any frequency setup and hold specifications of the memory should be met. 36 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Peripheral operating requirements and behaviors DDR Mode 1 2 3 Clock Tck SFCK Tcss Tcsh CS Tis Tih Data in Figure 16. QuadSPI input timing (DDR mode) diagram NOTE • Numbers are for a load of 15pf (1.8V) and 35pf (3V) • The numbers are for setting of hold condition in register QuadSPI_SMPR[DDRSNP] Table 25. QuadSPI input timing (DDR mode) specifications Symbol Parameter Value Min Tis Setup time for incoming data Unit Max 4 (Without learning) ns 1 (With learning) Tih Hold time requirement for incoming data 1 1.5 - ns 2 3 Clock Tck SFCK Tcss Tcsh CS Tov Toh Data out Figure 17. QuadSPI output timing (DDR mode) diagram Kinetis K82 Sub-Family, Rev.1, 09/2015. 37 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 26. QuadSPI output timing (DDR mode) specifications Symbol Parameter Value Min Unit Max Tov Output Data Valid - 4.5 ns Toh Output Data Hold 1.5 - ns Tck SCK clock period - 75 (with learning) MHz - 45 (without learning) Tcss Chip select output setup time 2 - Clk(sck) Tcsh Chip select output hold time -1 - Clk(sck) Hyperflash mode RDS TsMIN ThMIN DI[7:0] Figure 18. QuadSPI input timing (Hyperflash mode) diagram Table 27. QuadSPI input timing (Hyperflash mode) specifications Symbol Parameter Value Min Unit Max TsMIN Setup time for incoming data 2 - ns ThMIN Hold time requirement for incoming data 2 - ns 38 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Peripheral operating requirements and behaviors CK CK 2 Tclk SKMAX Tclk SKMIN THO TDVO Output Invalid Data Figure 19. QuadSPI output timing (Hyperflash mode) diagram Table 28. QuadSPI output timing (Hyperflash mode) specifications Symbol Parameter Value Min Unit Max TdvMAX Output Data Valid - 4.3 ns Tho Output Data Hold 1.3 - ns TclkSKMAX Ck to Ck2 skew max - T/4 + 0.5 ns TclkSKMIN Ck to Ck2 skew min T/4 - 0.5 - ns NOTE Maximum clock frequency = 75 MHz. 3.3.2 Flash electrical specifications This section describes the electrical characteristics of the flash memory module. 3.3.2.1 Flash timing specifications — program and erase The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead. Table 29. NVM program/erase timing specifications Symbol Description thvpgm4 Longword Program high-voltage time Min. Typ. Max. Unit Notes — 7.5 18 μs — Table continues on the next page... Kinetis K82 Sub-Family, Rev.1, 09/2015. 39 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 29. NVM program/erase timing specifications (continued) Symbol Description Min. Typ. Max. Unit Notes thversscr Sector Erase high-voltage time — 13 113 ms 1 thversall Erase All high-voltage time — 208 1808 ms 1 1. Maximum time based on expectations at cycling end-of-life. 3.3.2.2 Flash timing specifications — commands Table 30. Flash command timing specifications Symbol Description Min. Typ. Max. Unit Notes trd1sec4k Read 1s Section execution time (flash sector) — — 60 μs 1 tpgmchk Program Check execution time — — 45 μs 1 trdrsrc Read Resource execution time — — 30 μs 1 tpgm4 Program Longword execution time — 65 145 μs — tersscr Erase Flash Sector execution time — 14 114 ms 2 trd1all Read 1s All Blocks execution time — — 0.9 ms 1 trdonce Read Once execution time — — 30 μs 1 Program Once execution time — 100 — μs — tersall Erase All Blocks execution time — 280 2100 ms 2 tvfykey Verify Backdoor Access Key execution time — — 30 μs 1 tpgmonce 1. Assumes 25 MHz flash clock frequency. 2. Maximum times for erase parameters based on expectations at cycling end-of-life. 3.3.2.3 Flash high voltage current behaviors Table 31. Flash high voltage current behaviors Symbol Description IDD_PGM IDD_ERS 3.3.2.4 Symbol Min. Typ. Max. Unit Average current adder during high voltage flash programming operation — 2.5 6.0 mA Average current adder during high voltage flash erase operation — 1.5 4.0 mA Reliability specifications Table 32. NVM reliability specifications Description Min. Typ.1 Max. Unit Notes 50 — years — Program Flash tnvmretp10k Data retention after up to 10 K cycles 5 Table continues on the next page... 40 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Peripheral operating requirements and behaviors Table 32. NVM reliability specifications (continued) Symbol Description tnvmretp1k Data retention after up to 1 K cycles nnvmcycp Cycling endurance Min. Typ.1 Max. Unit Notes 20 100 — years — 10 K 50 K — cycles 2 1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619. 2. Cycling endurance represents number of program/erase cycles at –40 °C ≤ Tj ≤ °C. 3.3.3 Flexbus switching specifications All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency. The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values. Table 33. Flexbus limited voltage range switching specifications Num Description Min. Max. Unit Operating voltage 2.7 3.6 V Frequency of operation — FB_CLK MHz FB1 Clock period 1/FB_CLK — ns FB2 Address, data, and control output valid — 11.8 ns FB3 Address, data, and control output hold 1.0 — ns FB4 Data and FB_TA input setup 6 — ns FB5 Data and FB_TA input hold 0.0 — ns Notes 1 2 1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS. 2. Specification is valid for all FB_AD[31:0] and FB_TA. Table 34. Flexbus full voltage range switching specifications Num Description Min. Max. Unit Operating voltage 1.71 3.6 V — FB_CLK MHz 1/FB_CLK — ns — 12.6 ns Frequency of operation FB1 Clock period FB2 Address, data, and control output valid Notes Table continues on the next page... Kinetis K82 Sub-Family, Rev.1, 09/2015. 41 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 34. Flexbus full voltage range switching specifications (continued) Num Description Min. Max. Unit Notes FB3 Address, data, and control output hold 1.0 — ns 1 FB4 Data and FB_TA input setup 12.5 — ns FB5 Data and FB_TA input hold 0 — ns 2 1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS. 2. Specification is valid for all FB_AD[31:0] and FB_TA. FB1 FB_CLK FB3 FB5 FB_A[Y] Address FB4 FB2 FB_D[X] Address Data FB_RW FB_TS FB_ALE AA=1 FB_CSn AA=0 FB_OEn FB4 FB_BEn FB5 AA=1 FB_TA FB_TSIZ[1:0] AA=0 TSIZ Figure 20. FlexBus read timing diagram 42 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Peripheral operating requirements and behaviors FB1 FB_CLK FB2 FB3 FB_A[Y] FB_D[X] Address Address Data FB_RW FB_TS FB_ALE AA=1 FB_CSn AA=0 FB_OEn FB4 FB_BEn FB5 AA=1 FB_TA AA=0 FB_TSIZ[1:0] TSIZ Figure 21. FlexBus write timing diagram 3.3.4 SDRAM controller specifications Following figure shows SDRAM read cycle. Kinetis K82 Sub-Family, Rev.1, 09/2015. 43 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 0 1 D0 2 3 4 5 6 7 8 9 10 11 12 13 CLKOUT D3 D1 Row A[23:0] Column D4 SRAS D2 SCAS 1 D4 DRAMW D5 D[31:0] D6 SDRAM_CS[1:0] D4 BS[3:0] ACTV 1DACR[CASL] NOP READ NOP PRE =2 Figure 22. SDRAM read timing diagram Table 35. SDRAM Timing (Full voltage range) NUM Characteristic 1 Symbol MIn Max Operating voltage 1.71 3.6 V Frequency of operation Unit — CLKOUT MHz 1/CLKOUT — ns 2 CLKOUT high to SDRAM address valid tCHDAV - 11.2 ns D2 CLKOUT high to SDRAM control valid tCHDCV 11.1 ns D3 CLKOUT high to SDRAM address invalid tCHDAI 1.0 - ns D4 CLKOUT high to SDRAM control invalid tCHDCI 1.0 - ns D5 SDRAM data valid to CLKOUT high tDDVCH 12.0 - ns D6 CLKOUT high to SDRAM data invalid tCHDDI 1.0 - ns D73 CLKOUT high to SDRAM data valid tCHDDVW - 12.0 ns D83 CLKOUT high to SDRAM data invalid tCHDDIW 1.0 - ns D0 Clock period D1 1. All timing specifications are based on taking into account, a 25pF load on the SDRAM output pins. 2. CLKOUT is same as FB_CLK, maximum frequency can be 75 MHz 44 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Peripheral operating requirements and behaviors 3. D7 and D8 are for write cycles only. Table 36. SDRAM Timing (Limited voltage range) NUM Characteristic 1 Symbol MIn Max Operating voltage 2.7 3.6 V Frequency of operation — CLKOUT MHz 1/CLKOUT — ns 2 - 11.1 ns 11.1 ns Unit D0 Clock period D1 CLKOUT high to SDRAM address valid tCHDAV D2 CLKOUT high to SDRAM control valid tCHDCV D3 CLKOUT high to SDRAM address invalid tCHDAI 1.0 - ns D4 CLKOUT high to SDRAM control invalid tCHDCI 1.0 - ns D5 SDRAM data valid to CLKOUT high tDDVCH 7.3 - ns D6 CLKOUT high to SDRAM data invalid tCHDDI 1.0 - ns D73 CLKOUT high to SDRAM data valid tCHDDVW - 11.1 ns D83 CLKOUT high to SDRAM data invalid tCHDDIW 1.0 - ns 1. All timing specifications are based on taking into account, a 25pF load on the SDRAM output pins. 2. CLKOUT is same as FB_CLK, maximum frequency can be 75 MHz 3. D7 and D8 are for write cycles only. Following figure shows an SDRAM write cycle. Kinetis K82 Sub-Family, Rev.1, 09/2015. 45 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 0 D0 1 2 3 4 5 6 7 8 9 10 11 12 CLKOUT D3 D1 Row A[23:0] Column SRAS D2 SCAS1 D4 DRAMW D7 D[31:0] D8 SDRAM_CS[1:0] D2 D4 D4 BS[3:0] D4 ACTV 1 NOP WRITE NOP PALL DACR[CASL] = 2 Figure 23. SDRAM write timing diagram 3.4 Security and integrity modules There are no specifications necessary for the device's security and integrity modules. 3.5 Analog 3.5.1 ADC electrical specifications The 16-bit accuracy specifications listed in Table 37 and Table 38 are achievable on the differential pins ADCx_DP0, ADCx_DM0. 46 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Peripheral operating requirements and behaviors All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications. 3.5.1.1 ADC operating conditions Table 37. ADC operating conditions Symbol Description Conditions Min. Typ.1 Max. Unit Notes VDDA Supply voltage Absolute 1.71 — 3.6 V ΔVDDA Supply voltage Delta to VDD (VDD – VDDA) -100 0 +100 mV 2 ΔVSSA Ground voltage Delta to VSS (VSS – VSSA) -100 0 +100 mV 2 VREFH ADC reference voltage high 1.13 VDDA VDDA V VREFL ADC reference voltage low VSSA VSSA VSSA V VADIN Input voltage • 16-bit differential mode VREFL — 31/32 × VREFH V • All other modes VREFL — — 4 5 pF — 2 5 kΩ CADIN Input capacitance RADIN Input series resistance RAS Analog source resistance (external) • 8-bit / 10-bit / 12-bit modes VREFH 13-bit / 12-bit modes 3 fADCK < 4 MHz — — 5 kΩ fADCK ADC conversion ≤ 13-bit mode clock frequency 1.0 — 18.0 MHz Crate ADC conversion ≤ 13-bit modes rate No ADC hardware averaging 4 5 20.000 — 818.330 ksps Continuous conversions enabled, subsequent conversion time 1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production. 2. DC potential difference. 3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The RAS/CAS time constant should be kept to < 1 ns. 4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear. 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool. Kinetis K82 Sub-Family, Rev.1, 09/2015. 47 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT ZADIN SIMPLIFIED CHANNEL SELECT CIRCUIT Pad leakage due to input protection ZAS RAS ADC SAR ENGINE RADIN VADIN CAS VAS RADIN INPUT PIN RADIN INPUT PIN RADIN INPUT PIN CADIN Figure 24. ADC input impedance equivalency diagram 3.5.1.2 ADC electrical characteristics Table 38. ADC characteristics (VREFH = VDDA, VREFL = VSSA) Symbol Description Conditions1 Min. Typ.2 Max. Unit Notes 0.215 — 1.7 mA 3 • ADLPC = 1, ADHSC = 0 1.2 2.4 3.9 MHz • ADLPC = 1, ADHSC = 1 2.4 4.0 6.1 MHz tADACK = 1/ fADACK • ADLPC = 0, ADHSC = 0 3.0 5.2 7.3 MHz • ADLPC = 0, ADHSC = 1 4.4 6.2 9.5 MHz LSB4 5 LSB4 5 LSB4 5 IDDA_ADC Supply current ADC asynchronous clock source fADACK Sample Time TUE DNL INL See Reference Manual chapter for sample times Total unadjusted error • 12-bit modes — ±4 ±6.8 • <12-bit modes — ±1.4 ±2.1 Differential nonlinearity • 12-bit modes — ±0.7 –1.1 to +1.9 • <12-bit modes — ±0.2 • 12-bit modes — ±1.0 Integral non-linearity –0.3 to 0.5 –2.7 to +1.9 Table continues on the next page... 48 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Peripheral operating requirements and behaviors Table 38. ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued) Symbol Description Conditions1 Min. Typ.2 Max. — ±0.5 –0.7 to +0.5 • 12-bit modes — –4 –5.4 • <12-bit modes — –1.4 –1.8 • ≤13-bit modes — — ±0.5 • <12-bit modes EFS EQ ENOB Full-scale error Quantization error Effective number of bits Unit Notes LSB4 VADIN = VDDA5 LSB4 16-bit differential mode 6 • Avg = 32 12.8 14.5 • Avg = 4 11.9 13.8 — — bits bits 16-bit single-ended mode • Avg = 32 • Avg = 4 THD Total harmonic distortion 12.2 13.9 11.4 13.1 — — 16-bit differential mode • Avg = 32 bits bits dB — -94 7 — dB 16-bit single-ended mode • Avg = 32 SFDR Spurious free dynamic range — -85 82 95 16-bit differential mode • Avg = 32 16-bit single-ended mode 78 — — dB — dB 7 90 • Avg = 32 EIL Input leakage error IIn × RAS mV IIn = leakage current (refer to the MCU's voltage and current operating ratings) Temp sensor slope Across the full temperature range of the device VTEMP25 Temp sensor voltage 25 °C 1.55 1.62 1.69 mV/°C 8 706 716 726 mV 8 1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA 2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed. 4. 1 LSB = (VREFH - VREFL)/2N 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11) 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz. 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz. Kinetis K82 Sub-Family, Rev.1, 09/2015. 49 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 8. ADC conversion clock < 3 MHz Typical ADC 16-bit Differential ENOB vs ADC Clock 100Hz, 90% FS Sine Input 15.00 14.70 14.40 14.10 ENOB 13.80 13.50 13.20 12.90 12.60 Hardware Averaging Disabled Averaging of 4 samples Averaging of 8 samples Averaging of 32 samples 12.30 12.00 1 2 3 4 5 6 7 8 9 10 11 12 ADC Clock Frequency (MHz) Figure 25. Typical ENOB vs. ADC_CLK for 16-bit differential mode 3.5.2 CMP and 6-bit DAC electrical specifications Table 39. Comparator and 6-bit DAC electrical specifications Symbol Description Min. Typ. VDD Supply voltage Max. Unit 1.71 — 3.6 V IDDHS Supply current, High-speed mode (EN=1, PMODE=1) — — 200 μA IDDLS Supply current, low-speed mode (EN=1, PMODE=0) — — 20 μA VAIN Analog input voltage VSS – 0.3 — VDD V VAIO Analog input offset voltage — — 20 mV • CR0[HYSTCTR] = 00 — 5 — mV • CR0[HYSTCTR] = 01 — 10 — mV • CR0[HYSTCTR] = 10 — 20 — mV • CR0[HYSTCTR] = 11 — 30 — mV VH Analog comparator hysteresis1 VCMPOh Output high VDD – 0.5 — — V VCMPOl Output low — — 0.5 V tDHS Propagation delay, high-speed mode (EN=1, PMODE=1) 20 50 200 ns tDLS Propagation delay, low-speed mode (EN=1, PMODE=0) 80 250 600 ns — — 40 μs — 7 — μA Analog comparator initialization IDAC6b delay2 6-bit DAC current adder (enabled) Table continues on the next page... 50 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Peripheral operating requirements and behaviors Table 39. Comparator and 6-bit DAC electrical specifications (continued) Symbol Description Min. Typ. Max. Unit INL 6-bit DAC integral non-linearity –0.5 — 0.5 LSB3 DNL 6-bit DAC differential non-linearity –0.3 — 0.3 LSB 1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V. 2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level. 3. 1 LSB = Vreference/64 0.08 0.07 CMP Hystereris (V) 0.06 HYSTCTR Setting 0.05 00 0.04 01 10 11 0.03 0.02 0.01 0 0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 Vin level (V) Figure 26. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0) Kinetis K82 Sub-Family, Rev.1, 09/2015. 51 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 0.18 0.16 0.14 CMP Hysteresis (V) 0.12 HYSTCTR Setting 0.1 00 01 10 11 0.08 0.06 0.04 0.02 0 0.1 0.4 0.7 1 1.3 1.6 1.9 Vin level (V) 2.2 2.5 2.8 3.1 Figure 27. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1) 3.5.3 12-bit DAC electrical characteristics 3.5.3.1 Symbol 12-bit DAC operating requirements Table 40. 12-bit DAC operating requirements Desciption VDDA Supply voltage VDACR Reference voltage Min. Max. Unit 3.6 V Notes 1.13 3.6 V 1 CL Output load capacitance — 100 pF 2 IL Output load current — 1 mA 1. The DAC reference can be selected to be VDDA or VREFH. 2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC. 52 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Peripheral operating requirements and behaviors 3.5.3.2 Symbol 12-bit DAC operating behaviors Table 41. 12-bit DAC operating behaviors Description IDDA_DACL Supply current — low-power mode Min. Typ. Max. Unit — — 150 μA — — 700 μA Notes P IDDA_DACH Supply current — high-speed mode P tDACLP Full-scale settling time (0x080 to 0xF7F) — low-power mode — 100 200 μs 1 tDACHP Full-scale settling time (0x080 to 0xF7F) — high-power mode — 15 30 μs 1 — 0.7 1 μs 1 tCCDACLP Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and highspeed mode Vdacoutl DAC output voltage range low — highspeed mode, no load, DAC set to 0x000 — — 100 mV Vdacouth DAC output voltage range high — highspeed mode, no load, DAC set to 0xFFF VDACR −100 — VDACR mV INL Integral non-linearity error — high speed mode — — ±8 LSB 2 DNL Differential non-linearity error — VDACR > 2 V — — ±1 LSB 3 DNL Differential non-linearity error — VDACR = VREF_OUT — — ±1 LSB 4 — ±0.4 ±0.8 %FSR 5 Gain error — ±0.1 ±0.6 %FSR 5 Power supply rejection ratio, VDDA ≥ 2.4 V 60 — 90 dB TCO Temperature coefficient offset voltage — 3.7 — μV/C TGE Temperature coefficient gain error — 0.000421 — %FSR/C AC Offset aging coefficient — — 100 μV/yr Rop Output resistance (load = 3 kΩ) — — 250 Ω SR Slew rate -80h→ F7Fh→ 80h VOFFSET Offset error EG PSRR 1. 2. 3. 4. 5. V/μs • High power (SPHP) 1.2 1.7 — • Low power (SPLP) 0.05 0.12 — — — -80 CT Channel to channel cross talk BW 3dB bandwidth 6 dB kHz • High power (SPHP) 550 — — • Low power (SPLP) 40 — — Settling within ±1 LSB The INL is measured for 0 + 100 mV to VDACR −100 mV The DNL is measured for 0 + 100 mV to VDACR −100 mV The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV Kinetis K82 Sub-Family, Rev.1, 09/2015. 53 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6. VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device 8 6 4 DAC12 INL (LSB) 2 0 -2 -4 -6 -8 0 500 1000 1500 2000 2500 3000 3500 4000 Digital Code Figure 28. Typical INL error vs. digital code 54 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Peripheral operating requirements and behaviors 1.499 DAC12 Mid Level Code Voltage 1.4985 1.498 1.4975 1.497 1.4965 1.496 25 -40 55 85 105 125 Temperature °C Figure 29. Offset at half scale vs. temperature 3.5.4 Voltage reference electrical specifications Table 42. VREF full-range operating requirements Symbol Description VDDA Supply voltage TA Temperature CL Output load capacitance Min. Max. Unit 3.6 V Operating temperature range of the device °C 100 nF Notes 1, 2 1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference. 2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature range of the device. Kinetis K82 Sub-Family, Rev.1, 09/2015. 55 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 43. VREF full-range operating behaviors Symbol Description Min. Typ. Max. Unit Notes Vout Voltage reference output with factory trim at nominal VDDA and temperature=25C 1.1915 1.195 1.1977 V 1 Vout Voltage reference output — factory trim 1.1584 — 1.2376 V 1 Vout Voltage reference output — user trim 1.193 — 1.197 V 1 Vstep Voltage reference trim step — 0.5 — mV 1 Vtdrift Temperature drift (Vmax -Vmin across the full temperature range) — — 80 mV 1 Ibg Bandgap only current — — 80 µA 1 Ilp Low-power buffer current — — 360 uA 1 Ihp High-power buffer current — — 1 mA 1 µV 1, 2 ΔVLOAD Load regulation • current = ± 1.0 mA Tstup Buffer startup time Tchop_osc_st Internal bandgap start-up delay with chop oscillator enabled up Vvdrift Voltage drift (Vmax -Vmin across the full voltage range) — 200 — — — 100 µs — — 35 ms — — 2 — mV 1 1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register. 2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load Table 44. VREF limited-range operating requirements Symbol Description Min. Max. Unit TA Temperature 0 50 °C Notes Table 45. VREF limited-range operating behaviors Symbol Vout Description Voltage reference output with factory trim Min. Max. Unit 1.173 1.225 V Notes 3.6 Timers See General switching specifications. 3.7 Communication interfaces 56 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Peripheral operating requirements and behaviors 3.7.1 EMV SIM specifications Each EMV SIM module interface consists of a total of five pins. The interface is designed to be used with synchronous Smart cards, meaning the EMV SIM module provides the clock used by the Smart card. The clock frequency is typically 372 times the Tx/Rx data rate; however, the EMV SIM module can also work with CLK frequencies of 16 times the Tx/Rx data rate. There is no timing relationship between the clock and the data. The clock that the EMV SIM module provides to the Smart card is used by the Smart card to recover the clock from the data in the same manner as standard UART data exchanges. All five signals of the EMV SIM module are asynchronous with each other. There are no required timing relationships between signals in normal mode. The smart card is initiated by the interface device; the Smart card responds with Answer to Reset. Although the EMV SIM interface has no defined requirements, the ISO/IEC 7816 defines reset and power-down sequences (for detailed information see ISO/IEC 7816). SI10 EMVSIMn_PD EMVSIMn_RST SI7 EMVSIMn_CLK SI8 EMVSIMn_IO SI9 EMVSIMn_VCCEN Figure 30. EMV SIM Clock Timing Diagram Kinetis K82 Sub-Family, Rev.1, 09/2015. 57 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors The following table defines the general timing requirements for the EMV SIM interface. Table 46. Timing Specifications, High Drive Strength ID Parameter SI EMV SIM clock frequency 1 (EMVSIMn_CLK)1 Symbol Min Max Unit Sfreq 1 5 MHz SI EMV SIM clock rise time (EMVSIMn_CLK)2 2 Srise — 0.09 × (1/Sfreq) ns SI EMV SIM clock fall time (EMVSIMn_CLK)2 3 Sfall — 0.09 × (1/Sfreq) ns SI EMV SIM input transition time (EMVSIMn_IO, 4 EMVSIMn_PD) Stran 20 25 ns Si EMV SIM I/O rise time / fall time (EMVSIMn_IO)3 5 Tr/Tf — 1 ns Si EMV SIM RST rise time / fall time (EMVSIMn_RST)4 6 Tr/Tf — 1 ns 1. 2. 3. 4. 50% duty cycle clock, With C = 50 pF With Cin = 30 pF, Cout = 30 pF, With Cin = 30 pF, 3.7.1.1 EMV SIM Reset Sequences Smart cards may have internal reset, or active low reset. The following subset describes the reset sequences in these two cases. 3.7.1.1.1 Smart Cards with Internal Reset Following figure shows the reset sequence for Smart cards with internal reset. The reset sequence comprises the following steps: • After power-up, the clock signal is enabled on EMVSIMn_CLK (time T0) • After 200 clock cycles, EMVSIMn_IO must be asserted. • The card must send a response on EMVSIMn_IO acknowledging the reset between 400–40000 clock cycles after T0. 58 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Peripheral operating requirements and behaviors EMVSIMn_VCCEN EMVSIMn_CLK EMVSIMn_IO RESPONSE 1 2 T0 Figure 31. Internal Reset Card Reset Sequence The following table defines the general timing requirements for the SIM interface. Table 47. Timing Specifications, Internal Reset Card Reset Sequence Ref Min Max Units 1 — 200 EMVSIMx_CLK clock cycles 2 400 40,000 EMVSIMx_CLK clock cycles 3.7.1.1.2 Smart Cards with Active Low Reset Following figure shows the reset sequence for Smart cards with active low reset. The reset sequence comprises the following steps:: • After power-up, the clock signal is enabled on EMVSIMn_CLK (time T0) • After 200 clock cycles, EMVSIMn_IO must be asserted. • EMVSIMn_RST must remain low for at least 40,000 clock cycles after T0 (no response is to be received on RX during those 40,000 clock cycles) • EMVSIMn_RST is asserted (at time T1) • EMVSIMn_RST must remain asserted for at least 40,000 clock cycles after T1, and a response must be received on EMVSIMn_IO between 400 and 40,000 clock cycles after T1. Kinetis K82 Sub-Family, Rev.1, 09/2015. 59 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors EMVSIMn_VCCEN EMVSIMn_RST EMVSIMn_CLK RESPONSE EMVSIMn_IO 2 1 3 3 T0 T1 Figure 32. Active-Low-Reset Smart Card Reset Sequence The following table defines the general timing requirements for the EMVSIM interface.. Table 48. Timing Specifications, Internal Reset Card Reset Sequence Ref No Min Max Units 1 — 200 EMVSIMx_CLK clock cycles 2 400 40,000 EMVSIMx_CLK clock cycles 3 40,000 — EMVSIMx_CLK clock cycles 3.7.1.2 EMVSIM Power-Down Sequence Following figure shows the EMV SIM interface power-down AC timing diagram.Table 49 table shows the timing requirements for parameters (SI7–SI10) shown in the figure. The power-down sequence for the EMV SIM interface is as follows: • EMVSIMn_SIMPD port detects the removal of the Smart Card • EMVSIMn_RST is negated • EMVSIMn_CLK is negated • EMVSIM_IO is negated • EMVSIMx_VCCENy is negated Each of the above steps requires one Frtcclk period (usually 32 kHz and selected by SIM_SOPT1[OSC32KSEL]). Power-down may be initiated by a Smart card removal detection; or it may be launched by the processor. 60 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Peripheral operating requirements and behaviors SI10 EMVSIMn_PD EMVSIMn_RST SI7 EMVSIMn_CLK SI8 EMVSIMn_IO SI9 EMVSIMn_VCCEN Figure 33. Smart Card Interface Power Down AC Timing Table 49. Timing Requirements for Power-down Sequence Ref No Parameter Symbol Min Max Units SI7 EMVSIM reset to SIM clock stop Srst2clk 0.9 × 1/ Frtcclk1 1.1 × 1/Frtcclk μs SI8 EMVSIM reset to SIM Tx data low Srst2dat 1.8 × 1/ Frtcclk 2.2 × 1/Frtcclk μs SI9 EMVSIM reset to SIM voltage enable low Srst2ven 2.7 × 1/ Frtcclk 3.3 × 1/Frtcclk μs SI10 EMVSIM presence detect to SIM reset low Spd2rst 0.9 × 1/ Frtcclk 1.1 × 1/Frtcclk μs 1. Frtcclk is ERCLK32K, and this clock must be enabled during the power down sequence. NOTE Same timing is also followed when auto power down is initiated. See Reference Manual for reference. Kinetis K82 Sub-Family, Rev.1, 09/2015. 61 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 3.7.2 USB VREG electrical specifications Table 50. USB VREG electrical specifications Symbol Description Min. Typ.1 Max. Unit VREGIN Input supply voltage 2.7 — 5.5 V IDDon Quiescent current — Run mode, load current equal zero, input supply (VREGIN) > 3.6 V — 125 186 μA IDDstby Quiescent current — Standby mode, load current equal zero — 1.1 10 μA IDDoff Quiescent current — Shutdown mode — 650 — nA — — 4 μA • VREGIN = 5.0 V and temperature=25 °C • Across operating voltage and temperature ILOADrun Maximum load current — Run mode — — 120 mA ILOADstby Maximum load current — Standby mode — — 1 mA VReg33out Regulator output voltage — Input supply (VREGIN) > 3.6 V 3 3.3 3.6 V 2.1 2.8 3.6 V Regulator output voltage — Input supply (VREGIN) < 3.6 V, pass-through mode 2.1 — 3.6 V COUT External output capacitor 1.76 2.2 8.16 μF ESR External output capacitor equivalent series resistance 1 — 100 mΩ ILIM Short circuit current — 290 — mA • Run mode • Standby mode VReg33out Notes 2 1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated. 2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad. 3.7.3 USB DCD electrical specifications Table 51. USB DCD electrical specifications Symbol Description Min. Typ. Max. Unit VDP_SRC, VDM_SRC USB_DP and USB_DM source voltages (up to 250 μA) 0.5 — 0.7 V Threshold voltage for logic high 0.8 — 2.0 V VLGC IDP_SRC USB_DP source current 7 10 13 μA IDM_SINK, IDP_SINK USB_DM and USB_DP sink currents 50 100 150 μA RDM_DWN D- pulldown resistance for data pin contact detect 14.25 — 24.8 kΩ VDAT_REF Data detect voltage 0.25 0.33 0.4 V 62 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Peripheral operating requirements and behaviors 3.7.4 DSPI switching specifications (limited voltage range) The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices. Table 52. Master mode DSPI timing (limited voltage range) Num Description Min. Max. Unit Operating voltage 2.7 3.6 V Frequency of operation — 30 MHz 2 x tBUS — ns Notes DS1 DSPI_SCK output cycle time DS2 DSPI_SCK output high/low time (tSCK/2) − 2 (tSCK/2) + 2 ns DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) − 2 — ns 1 DS4 DSPI_SCK to DSPI_PCSn invalid delay (tBUS x 2) − 2 — ns 2 DS5 DSPI_SCK to DSPI_SOUT valid — 15.0 ns DS6 DSPI_SCK to DSPI_SOUT invalid 1.0 — ns DS7 DSPI_SIN to DSPI_SCK input setup 15.8 — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns 1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK]. 2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC]. DSPI_PCSn DS3 (CPOL=0) DSPI_SIN DS1 DS2 DSPI_SCK DS4 DS8 DS7 First data DSPI_SOUT First data Data Last data DS5 DS6 Data Last data Figure 34. DSPI classic SPI timing — master mode Kinetis K82 Sub-Family, Rev.1, 09/2015. 63 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 53. Slave mode DSPI timing (limited voltage range) Num Description Operating voltage Min. Max. Unit 2.7 3.6 V Frequency of operation 15 DS9 DSPI_SCK input cycle time DS10 DSPI_SCK input high/low time DS11 DSPI_SCK to DSPI_SOUT valid DS12 DSPI_SCK to DSPI_SOUT invalid DS13 1 MHz 4 x tBUS — ns (tSCK/2) − 2 (tSCK/2) + 2 ns — 23.0 ns 0 — ns DSPI_SIN to DSPI_SCK input setup 2.7 — ns DS14 DSPI_SCK to DSPI_SIN input hold 7.0 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 13 ns DS16 DSPI_SS inactive to DSPI_SOUT not driven — 13 ns 1. The maximum operating frequency is measured with non-continuous CS and SCK. When DSPI is configured with continuous CS and SCK, there is a constraint that SPI clock should not be greater than 1/6 of bus clock, for example, when bus clock is 60MHz, SPI clock should not be greater than 10MHz. DSPI_SS DS10 DS9 DSPI_SCK DS15 (CPOL=0) DSPI_SOUT DS12 First data DS13 DSPI_SIN DS16 DS11 Data Last data DS14 First data Data Last data Figure 35. DSPI classic SPI timing — slave mode 64 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Peripheral operating requirements and behaviors 3.7.5 DSPI switching specifications (full voltage range) The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices. Table 54. Master mode DSPI timing (full voltage range) Num Description Operating voltage Frequency of operation Min. Max. Unit Notes 1.71 3.6 V 1 — 15 MHz 4 x tBUS — ns DS1 DSPI_SCK output cycle time DS2 DSPI_SCK output high/low time (tSCK/2) - 4 (tSCK/2) + 4 ns DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) − 4 — ns 2 DS4 DSPI_SCK to DSPI_PCSn invalid delay (tBUS x 2) − 4 — ns 3 DS5 DSPI_SCK to DSPI_SOUT valid — 16 ns DS6 DSPI_SCK to DSPI_SOUT invalid 1.0 — ns DS7 DSPI_SIN to DSPI_SCK input setup 19.1 — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns 1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced. 2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK]. 3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC]. DSPI_PCSn DS3 DSPI_SCK (CPOL=0) DS4 DS8 DS7 DSPI_SIN DS1 DS2 First data DSPI_SOUT Data Last data DS5 First data DS6 Data Last data Figure 36. DSPI classic SPI timing — master mode Table 55. Slave mode DSPI timing (full voltage range) Num Description Operating voltage Min. Max. Unit 1.71 3.6 V Table continues on the next page... Kinetis K82 Sub-Family, Rev.1, 09/2015. 65 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 55. Slave mode DSPI timing (full voltage range) (continued) Num Description Frequency of operation Min. Max. Unit — 7.5 MHz 8 x tBUS — ns (tSCK/2) - 4 (tSCK/2) + 4 ns DS9 DSPI_SCK input cycle time DS10 DSPI_SCK input high/low time DS11 DSPI_SCK to DSPI_SOUT valid — 23.1 ns DS12 DSPI_SCK to DSPI_SOUT invalid 0 — ns DS13 DSPI_SIN to DSPI_SCK input setup 2.6 — ns DS14 DSPI_SCK to DSPI_SIN input hold 7.0 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 13.0 ns DS16 DSPI_SS inactive to DSPI_SOUT not driven — 13.0 ns DSPI_SS DS10 DS9 DSPI_SCK DS15 (CPOL=0) DSPI_SOUT DS12 First data DS13 DSPI_SIN DS16 DS11 Data Last data DS14 First data Data Last data Figure 37. DSPI classic SPI timing — slave mode 3.7.6 I2C switching specifications See General switching specifications. 3.7.7 UART switching specifications See General switching specifications. 3.7.8 LPUART switching specifications See General switching specifications. 66 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Peripheral operating requirements and behaviors 3.7.9 SDHC specifications The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. Table 56. SDHC full voltage range switching specifications Num Symbol Description Min. Max. Unit Operating voltage 1.71 3.6 V Card input clock SD1 fpp Clock frequency (low speed) 0 400 kHz fpp Clock frequency (SD\SDIO full speed\high speed) 0 25/45 MHz fpp Clock frequency (MMC full speed\high speed) 0 25/45 MHz fOD Clock frequency (identification mode) 0 400 kHz SD2 tWL Clock low time 7 — ns SD3 tWH Clock high time 7 — ns SD4 tTLH Clock rise time — 3 ns SD5 tTHL Clock fall time — 3 ns SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK) SD6 tOD SDHC output delay (output valid) 0 8.1 ns SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK) SD7 tISU SDHC input setup time 5 — ns SD8 tIH SDHC input hold time 0 — ns Table 57. SDHC limited voltage range switching specifications Num Symbol Description Min. Max. Unit Operating voltage 2.7 3.6 V Card input clock SD1 fpp Clock frequency (low speed) 0 400 kHz fpp Clock frequency (SD\SDIO full speed\high speed) 0 25\50 MHz fpp Clock frequency (MMC full speed\high speed) 0 20\50 MHz fOD Clock frequency (identification mode) 0 400 kHz SD2 tWL Clock low time 7 — ns SD3 tWH Clock high time 7 — ns SD4 tTLH Clock rise time — 3 ns SD5 tTHL Clock fall time — 3 ns SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK) SD6 tOD SDHC output delay (output valid) 0 7 ns SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK) Table continues on the next page... Kinetis K82 Sub-Family, Rev.1, 09/2015. 67 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 57. SDHC limited voltage range switching specifications (continued) Num Symbol SD7 tISU SD8 tIH Description Min. Max. Unit SDHC input setup time 5 — ns SDHC input hold time 0 — ns SD3 SD2 SD1 SDHC_CLK SD6 Output SDHC_CMD Output SDHC_DAT[3:0] SD7 SD8 Input SDHC_CMD Input SDHC_DAT[3:0] Figure 38. SDHC timing 3.7.10 I2S switching specifications This section provides the AC timings for the I2S in master (clocks driven) and slave modes (clocks input). All timings are given for non-inverted serial clock polarity (TCR[TSCKP] = 0, RCR[RSCKP] = 0) and a non-inverted frame sync (TCR[TFSI] = 0, RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (I2S_BCLK) and/or the frame sync (I2S_FS) shown in the figures below. Table 58. I2S master mode timing (limited voltage range) Num Description Min. Max. Unit Operating voltage 2.7 3.6 V S1 I2S_MCLK cycle time S2 I2S_MCLK pulse width high/low 40 — ns 45% 55% MCLK period S3 I2S_BCLK cycle time 80 — ns S4 I2S_BCLK pulse width high/low 45% 55% BCLK period S5 I2S_BCLK to I2S_FS output valid — 15 ns S6 I2S_BCLK to I2S_FS output invalid 0 — ns Table continues on the next page... 68 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Peripheral operating requirements and behaviors Table 58. I2S master mode timing (limited voltage range) (continued) Num Description Min. Max. Unit S7 I2S_BCLK to I2S_TXD valid — 15 ns S8 I2S_BCLK to I2S_TXD invalid 0 — ns S9 I2S_RXD/I2S_FS input setup before I2S_BCLK 15 — ns S10 I2S_RXD/I2S_FS input hold after I2S_BCLK 0 — ns S1 S2 S2 I2S_MCLK (output) S3 I2S_BCLK (output) S4 S4 S6 S5 I2S_FS (output) S10 S9 I2S_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 39. I2S timing — master mode Table 59. I2S slave mode timing (limited voltage range) Num Description Min. Max. Unit Operating voltage 2.7 3.6 V S11 I2S_BCLK cycle time (input) 80 — ns S12 I2S_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_FS input setup before I2S_BCLK 4.5 — ns S14 I2S_FS input hold after I2S_BCLK 2 — ns S15 I2S_BCLK to I2S_TXD/I2S_FS output valid — 20 ns S16 I2S_BCLK to I2S_TXD/I2S_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_BCLK 4.5 — ns S18 I2S_RXD hold after I2S_BCLK 2 — ns 25 ns S19 I2S_TX_FS input assertion to I2S_TXD output valid1 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear Kinetis K82 Sub-Family, Rev.1, 09/2015. 69 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors S11 S12 I2S_BCLK (input) S12 S15 S16 I2S_FS (output) S13 I2S_FS (input) S14 S15 S19 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 40. I2S timing — slave modes 3.7.10.1 Normal Run, Wait and Stop mode performance over the full operating voltage range This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes. Table 60. I2S/SAI master mode timing Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S1 I2S_MCLK cycle time 40 — ns S2 I2S_MCLK (as an input) pulse width high/low 45% 55% MCLK period S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 80 — ns S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid — 15 ns S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid 0 — ns S7 I2S_TX_BCLK to I2S_TXD valid — 15 ns S8 I2S_TX_BCLK to I2S_TXD invalid 0 — ns S9 I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK 15 — ns S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 — ns 70 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Peripheral operating requirements and behaviors S1 S2 S2 I2S_MCLK (output) S3 I2S_TX_BCLK/ I2S_RX_BCLK (output) S4 S4 S6 S5 I2S_TX_FS/ I2S_RX_FS (output) S10 S9 I2S_TX_FS/ I2S_RX_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 41. I2S/SAI timing — master modes Table 61. I2S/SAI slave mode timing Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 80 — ns S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK 4.5 — ns S14 I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK 2 — ns S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid — 23.1 ns S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_RX_BCLK 4.5 — ns S18 I2S_RXD hold after I2S_RX_BCLK 2 — ns S19 I2S_TX_FS input assertion to I2S_TXD output valid1 — 25 ns 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear Kinetis K82 Sub-Family, Rev.1, 09/2015. 71 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors S11 S12 I2S_TX_BCLK/ I2S_RX_BCLK (input) S12 S15 S16 I2S_TX_FS/ I2S_RX_FS (output) S13 I2S_TX_FS/ I2S_RX_FS (input) S19 S14 S15 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 42. I2S/SAI timing — slave modes 3.7.10.2 VLPR, VLPW, and VLPS mode performance over the full operating voltage range This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes. Table 62. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S1 I2S_MCLK cycle time 62.5 — ns S2 I2S_MCLK pulse width high/low 45% 55% MCLK period S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 250 — ns S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid — 45 ns S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid 0 — ns S7 I2S_TX_BCLK to I2S_TXD valid — 45 ns S8 I2S_TX_BCLK to I2S_TXD invalid 0 — ns S9 I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK 45 — ns S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 — ns 72 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Peripheral operating requirements and behaviors S1 S2 S2 I2S_MCLK (output) S3 I2S_TX_BCLK/ I2S_RX_BCLK (output) S4 S4 S6 S5 I2S_TX_FS/ I2S_RX_FS (output) S10 S9 I2S_TX_FS/ I2S_RX_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 43. I2S/SAI timing — master modes Table 63. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 250 — ns S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK 30 — ns S14 I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK 5 — ns S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid — 56.5 ns S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_RX_BCLK 30 — ns S18 I2S_RXD hold after I2S_RX_BCLK 5 — ns — 72 ns S19 I2S_TX_FS input assertion to I2S_TXD output valid1 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear Kinetis K82 Sub-Family, Rev.1, 09/2015. 73 Freescale Semiconductor, Inc. Dimensions S11 S12 I2S_TX_BCLK/ I2S_RX_BCLK (input) S12 S15 S16 I2S_TX_FS/ I2S_RX_FS (output) S13 I2S_TX_FS/ I2S_RX_FS (input) S19 S14 S15 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 44. I2S/SAI timing — slave modes 3.8 Human-machine interfaces (HMI) 3.8.1 TSI electrical specifications Table 64. TSI electrical specifications Symbol Description Min. Typ. Max. Unit TSI_RUNF Fixed power consumption in run mode — 100 — µA TSI_RUNV Variable power consumption in run mode (depends on oscillator's current selection) 1.0 — 128 µA TSI_EN Power consumption in enable mode — 100 — µA TSI_DIS Power consumption in disable mode — 1.2 — µA TSI_TEN TSI analog enable time — 66 — µs TSI_CREF TSI reference capacitor — 1.0 — pF TSI_DVOLT Voltage variation of VP & VM around nominal values 0.19 — 1.03 V 4 Dimensions 4.1 Obtaining package dimensions Package dimensions are provided in package drawings. 74 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Pinout To find a package drawing, go to freescale.com and perform a keyword search for the drawing’s document number: If you want the drawing for this package Then use this document number 100-pin LQFP 98ASS23308W 121-pin XFBGA 98ASA00595D 144-pin LQFP 98ASS23177W1 1. The 144-pin LQFP package for this product is not yet available, however it is included in a Package Your Way program for Kinetis MCUs. Visit freescale.com/KPYW for more details. 5 Pinout 5.1 K82 Signal Multiplexing and Pin Assignments The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin. NOTE The 144-pin LQFP and 121-WLCSP packages for this product are not yet available, however they are included in a Package Your Way program for Kinetis MCUs. Visit freescale.com/KPYW for more details. 144 100 121 LQFP LQFP XFB GA 121 WLC SP Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 x — H6 K9 NC NC NC — — — G8 ADC0_ SE16 ADC0_ SE16 ADC0_ SE16 — — A11 — NC NC NC — — J6 — NC NC NC — — J4 — NC NC NC 1 1 B1 C10 PTE0 DISABLED PTE0 SPI1_ PCS1 LPUART1_ SDHC0_D1 QSPI0A_ TX DATA3 I2C1_SDA RTC_ CLKOUT 2 2 C2 D9 PTE1/ LLWU_P0 DISABLED PTE1/ LLWU_P0 SPI1_SCK LPUART1_ SDHC0_D0 QSPI0A_ RX SCLK I2C1_SCL SPI1_SIN 3 3 C1 D10 PTE2/ LLWU_P1 DISABLED PTE2/ LLWU_P1 SPI1_ SOUT LPUART1_ SDHC0_ CTS_b DCLK QSPI0A_ DATA0 SPI1_SCK 4 4 D2 B11 DISABLED PTE3 SPI1_ PCS2 LPUART1_ SDHC0_ RTS_b CMD QSPI0A_ DATA2 SPI1_ SOUT PTE3 Kinetis K82 Sub-Family, Rev.1, 09/2015. QSPI_SIP_ MODE 75 Freescale Semiconductor, Inc. Pinout 144 100 121 LQFP LQFP XFB GA 121 WLC SP Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 QSPI_SIP_ MODE 5 5 F7 F6 VSS VSS VSS 6 6 E5 F7 VDDIO_E VDDIO_E VDDIO_E 7 7 D1 C11 PTE4/ LLWU_P2 DISABLED PTE4/ LLWU_P2 SPI1_SIN LPUART3_ SDHC0_D3 QSPI0A_ TX DATA1 8 8 E2 E8 PTE5 DISABLED PTE5 SPI1_ PCS0 LPUART3_ SDHC0_D2 QSPI0A_ RX SS0_B FTM3_CH0 USB0_ SOF_OUT 9 9 E1 E9 PTE6/ DISABLED LLWU_P16 PTE6/ SPI1_ LLWU_P16 PCS3 LPUART3_ I2S0_ CTS_b MCLK FTM3_CH1 SDHC0_D4 10 10 F3 E10 PTE7 DISABLED PTE7 SPI2_SCK LPUART3_ I2S0_RXD0 QSPI0B_ RTS_b SCLK 11 11 F2 D11 PTE8 DISABLED PTE8 I2S0_RXD1 SPI2_ SOUT I2S0_RX_ FS QSPI0B_ DATA0 FTM3_CH3 SDHC0_D5 12 12 F1 E11 PTE9/ DISABLED LLWU_P17 PTE9/ I2S0_TXD1 SPI2_ LLWU_P17 PCS1 I2S0_RX_ BCLK QSPI0B_ DATA2 FTM3_CH4 SDHC0_D6 13 13 G2 F8 PTE10/ DISABLED LLWU_P18 PTE10/ I2C3_SDA LLWU_P18 SPI2_SIN I2S0_TXD0 QSPI0B_ DATA1 FTM3_CH5 SDHC0_D7 14 14 G1 F9 PTE11 DISABLED PTE11 SPI2_ PCS0 I2S0_TX_ FS QSPI0B_ SS0_B FTM3_CH6 QSPI0A_ DQS 15 — — — PTE12 DISABLED PTE12 LPUART2_ I2S0_TX_ TX BCLK QSPI0B_ DQS FTM3_CH7 FXIO0_D2 QSPI0A_ DATA3 16 — — — PTE13 DISABLED PTE13 LPUART2_ RX QSPI0B_ SS1_B SDHC0_ CLKIN FXIO0_D3 QSPI0A_ SCLK 17 15 — F10 VDDIO_E VDDIO_E VDDIO_E 18 16 — F11 VSS VSS VSS 19 — — — PTE16 ADC0_ SE4a ADC0_ SE4a PTE16 LPUART2_ FTM_ TX CLKIN0 FTM0_ FLT3 FXIO0_D4 QSPI0A_ DATA0 20 — — — PTE17/ ADC0_ LLWU_P19 SE5a ADC0_ SE5a PTE17/ SPI0_SCK LLWU_P19 LPUART2_ FTM_ RX CLKIN1 LPTMR0_ ALT3/ LPTMR1_ ALT3 FXIO0_D5 QSPI0A_ DATA2 21 — — — PTE18/ ADC0_ LLWU_P20 SE6a ADC0_ SE6a PTE18/ SPI0_ LLWU_P20 SOUT LPUART2_ I2C0_SDA CTS_b FXIO0_D6 QSPI0A_ DATA1 22 — — — PTE19 ADC0_ SE7a ADC0_ SE7a PTE19 LPUART2_ I2C0_SCL RTS_b FXIO0_D7 QSPI0A_ SS0_B 23 16 H3 F11 VSS VSS VSS 24 17 H2 G11 USB0_DP USB0_DP USB0_DP 25 18 H1 H11 USB0_DM USB0_DM USB0_DM 26 19 J1 G10 VOUT33 VOUT33 VOUT33 27 20 J2 H10 VREGIN VREGIN VREGIN 28 21 — G9 NC NC NC 29 — K2 J10 ADC0_DP0 ADC0_DP0 ADC0_DP0 30 — K1 K10 ADC0_ DM0 31 — J3 J11 ADC0_DP3 ADC0_DP3 ADC0_DP3 76 Freescale Semiconductor, Inc. ADC0_ DM0 I2C3_SCL SPI0_ PCS0 SPI0_SIN QSPI0B_ DATA3 FTM3_CH2 QSPI0A_ SS1_B ADC0_ DM0 Kinetis K82 Sub-Family, Rev.1, 09/2015. Pinout 144 100 121 LQFP LQFP XFB GA 121 WLC SP Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 32 — K3 K11 ADC0_ DM3 ADC0_ DM3 ADC0_ DM3 33 22 F5 H8 VDDA VDDA VDDA 34 23 G5 H9 VREFH VREFH VREFH 35 24 G6 J9 VREFL VREFL VREFL 36 25 F6 J8 VSSA VSSA VSSA 37 26 L2 — ADC0_DP1 ADC0_DP1 ADC0_DP1 38 27 L1 — ADC0_ DM1 ADC0_ DM1 ADC0_ DM1 39 28 L3 L11 VREF_ OUT/ CMP1_IN5/ CMP0_IN5/ ADC0_ SE22 VREF_ OUT/ CMP1_IN5/ CMP0_IN5/ ADC0_ SE22 VREF_ OUT/ CMP1_IN5/ CMP0_IN5/ ADC0_ SE22 40 29 K4 L10 DAC0_ OUT/ CMP1_IN3/ ADC0_ SE23 DAC0_ OUT/ CMP1_IN3/ ADC0_ SE23 DAC0_ OUT/ CMP1_IN3/ ADC0_ SE23 42 30 K5 H7 RTC_ RTC_ RTC_ WAKEUP_ WAKEUP_ WAKEUP_ B B B 43 31 L4 L9 XTAL32 XTAL32 XTAL32 44 32 L5 L8 EXTAL32 EXTAL32 EXTAL32 45 33 K6 K8 VBAT VBAT VBAT 46 34 — G7 VDD VDD VDD 47 35 — F6 VSS VSS VSS 48 — H5 L7 PTA20 DISABLED 49 — J5 K7 PTA21/ DISABLED LLWU_P21 50 36 L7 J7 PTA0 JTAG_ TCLK/ SWD_CLK TSI0_CH1 PTA0 LPUART0_ FTM0_CH5 CTS_b FXIO0_D10 EMVSIM0_ JTAG_ CLK TCLK/ SWD_CLK 51 37 H8 J6 PTA1 JTAG_TDI TSI0_CH2 PTA1 LPUART0_ FTM0_CH6 I2C3_SDA RX FXIO0_D11 EMVSIM0_ JTAG_TDI IO 52 38 J7 K6 PTA2 JTAG_ TDO/ TRACE_ SWO TSI0_CH3 PTA2 LPUART0_ FTM0_CH7 I2C3_SCL TX FXIO0_D12 EMVSIM0_ JTAG_ PD TDO/ TRACE_ SWO 53 39 H9 L6 PTA3 JTAG_ TMS/ SWD_DIO TSI0_CH4 PTA3 LPUART0_ FTM0_CH0 RTS_b FXIO0_D13 EMVSIM0_ JTAG_ RST TMS/ SWD_DIO 54 40 J8 H6 PTA4/ LLWU_P3 NMI_b TSI0_CH5 PTA4/ LLWU_P3 Kinetis K82 Sub-Family, Rev.1, 09/2015. PTA20 I2C0_SCL PTA21/ I2C0_SDA LLWU_P21 LPUART4_ FTM_ TX CLKIN1 FXIO0_D8 EWM_ OUT_b LPUART4_ RX FXIO0_D9 EWM_IN FTM0_CH1 QSPI_SIP_ MODE TPM_ CLKIN1 FXIO0_D14 EMVSIM0_ NMI_b VCCEN 77 Freescale Semiconductor, Inc. Pinout 144 100 121 LQFP LQFP XFB GA 121 WLC SP Pin Name Default ALT0 55 41 K7 H5 PTA5 DISABLED 56 — L10 G6 VDD VDD VDD 57 — K10 F5 VSS VSS VSS 58 — — — PTA6 DISABLED 59 — — — PTA7 ADC0_ SE10 60 — — — PTA8 ADC0_ SE11 61 — — — PTA9 DISABLED 62 — J9 L5 63 — H7 64 42 65 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 PTA5 USB0_ CLKIN FTM0_CH2 PTA6 I2C2_SCL FTM0_CH3 EMVSIM1_ CLKOUT CLK TRACE_ CLKOUT ADC0_ SE10 PTA7 I2C2_SDA FTM0_CH4 EMVSIM1_ IO TRACE_D3 ADC0_ SE11 PTA8 FTM1_CH0 EMVSIM1_ PD FTM1_QD_ TRACE_D2 PHA/ TPM1_CH0 PTA9 FTM1_CH1 EMVSIM1_ RST FTM1_QD_ TRACE_D1 PHB/ TPM1_CH1 PTA10/ DISABLED LLWU_P22 PTA10/ I2C2_SDA LLWU_P22 FTM2_CH0 EMVSIM1_ FXIO0_D16 FTM2_QD_ TRACE_D0 VCCEN PHA/ TPM2_CH0 L4 PTA11/ DISABLED LLWU_P23 PTA11/ I2C2_SCL LLWU_P23 FTM2_CH1 FXIO0_D17 FTM2_QD_ PHB/ TPM2_CH1 K8 K5 PTA12 DISABLED PTA12 FTM1_CH0 TRACE_ CLKOUT FXIO0_D18 I2S0_TXD0 FTM1_QD_ PHA/ TPM1_CH0 43 L8 J5 PTA13/ LLWU_P4 DISABLED PTA13/ LLWU_P4 FTM1_CH1 TRACE_D3 FXIO0_D19 I2S0_TX_ FS FTM1_QD_ PHB/ TPM1_CH1 66 44 K9 L3 PTA14 DISABLED PTA14 SPI0_ PCS0 LPUART0_ TRACE_D2 FXIO0_D20 I2S0_RX_ TX BCLK I2S0_TXD1 67 45 L9 K4 PTA15 DISABLED PTA15 SPI0_SCK LPUART0_ TRACE_D1 FXIO0_D21 I2S0_RXD0 RX 68 46 J10 J4 PTA16 DISABLED PTA16 SPI0_ SOUT LPUART0_ TRACE_D0 FXIO0_D22 I2S0_RX_ CTS_b FS 69 47 H10 K3 PTA17 DISABLED PTA17 SPI0_SIN LPUART0_ RTS_b 70 48 E6 L2 VDD VDD VDD 71 49 G7 K2 VSS VSS VSS 72 50 L11 L1 PTA18 EXTAL0 EXTAL0 PTA18 FTM0_ FLT2 FTM_ CLKIN0 73 51 K11 K1 PTA19 XTAL0 XTAL0 PTA19 FTM1_ FLT0 FTM_ CLKIN1 74 52 J11 J1 RESET_b RESET_b RESET_b 75 — — — PTA24 DISABLED 78 Freescale Semiconductor, Inc. PTA24 EMVSIM0_ CLK FXIO0_D15 I2S0_TX_ BCLK ALT7 QSPI_SIP_ MODE JTAG_ TRST_b I2S0_RXD1 FXIO0_D23 I2S0_ MCLK TPM_ CLKIN0 LPTMR0_ ALT1/ LPTMR1_ ALT1 TPM_ CLKIN1 FB_A29 Kinetis K82 Sub-Family, Rev.1, 09/2015. Pinout 144 100 121 LQFP LQFP XFB GA 121 WLC SP Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 76 — — — PTA25 DISABLED PTA25 EMVSIM0_ IO FB_A28 77 — — — PTA26 DISABLED PTA26 EMVSIM0_ PD FB_A27 78 — — — PTA27 DISABLED PTA27 EMVSIM0_ RST FB_A26 79 — — — PTA28 DISABLED PTA28 EMVSIM0_ VCCEN FB_A25 80 — H11 J2 PTA29 DISABLED PTA29 81 53 G11 J3 PTB0/ LLWU_P5 ADC0_ SE8/ TSI0_CH0 ADC0_ SE8/ TSI0_CH0 PTB0/ LLWU_P5 I2C0_SCL FTM1_CH0 SDRAM_ CAS_b FTM1_QD_ FXIO0_D0 PHA/ TPM1_CH0 82 54 G10 H2 PTB1 ADC0_ SE9/ TSI0_CH6 ADC0_ SE9/ TSI0_CH6 PTB1 I2C0_SDA FTM1_CH1 SDRAM_ RAS_b FTM1_QD_ FXIO0_D1 PHB/ TPM1_CH1 83 55 G9 H1 PTB2 ADC0_ SE12/ TSI0_CH7 ADC0_ SE12/ TSI0_CH7 PTB2 I2C0_SCL LPUART0_ RTS_b SDRAM_ WE FTM0_ FLT3 FXIO0_D2 84 56 G8 H3 PTB3 ADC0_ SE13/ TSI0_CH8 ADC0_ SE13/ TSI0_CH8 PTB3 I2C0_SDA LPUART0_ CTS_b SDRAM_ CS0_b FTM0_ FLT0 FXIO0_D3 85 — B11 H4 PTB4 DISABLED PTB4 EMVSIM1_ IO SDRAM_ CS1_b FTM1_ FLT0 86 — C11 G1 PTB5 DISABLED PTB5 EMVSIM1_ CLK 87 — F11 G2 PTB6 DISABLED PTB6 EMVSIM1_ VCCEN FB_AD23/ SDRAM_ D23 88 — E11 G3 PTB7 DISABLED PTB7 EMVSIM1_ PD FB_AD22/ SDRAM_ D22 89 — D11 G4 PTB8 DISABLED PTB8 EMVSIM1_ LPUART3_ RST RTS_b FB_AD21/ SDRAM_ D21 90 57 E10 G5 PTB9 DISABLED PTB9 SPI1_ PCS1 LPUART3_ CTS_b FB_AD20/ SDRAM_ D20 91 58 D10 F1 PTB10 DISABLED PTB10 SPI1_ PCS0 LPUART3_ I2C2_SCL RX FB_AD19/ SDRAM_ D19 FTM0_ FLT1 FXIO0_D4 92 59 C10 F2 PTB11 DISABLED PTB11 SPI1_SCK LPUART3_ I2C2_SDA TX FB_AD18/ SDRAM_ D18 FTM0_ FLT2 FXIO0_D5 93 60 L6 F5 VSS VSS VSS 94 61 E7 G6 VDD VDD VDD Kinetis K82 Sub-Family, Rev.1, 09/2015. QSPI_SIP_ MODE FB_A24 FTM2_ FLT0 79 Freescale Semiconductor, Inc. Pinout 144 100 121 LQFP LQFP XFB GA 121 WLC SP Pin Name Default ALT0 TSI0_CH9 ALT1 95 62 B10 E1 PTB16 TSI0_CH9 96 63 E9 F3 PTB17 TSI0_CH10 TSI0_CH10 PTB17 97 64 D9 F4 PTB18 98 65 C9 E2 99 66 F10 100 67 101 ALT3 ALT4 ALT5 ALT6 ALT7 SPI1_ SOUT LPUART0_ FTM_ RX CLKIN0 FB_AD17/ SDRAM_ D17 EWM_IN TPM_ CLKIN0 SPI1_SIN LPUART0_ FTM_ TX CLKIN1 FB_AD16/ SDRAM_ D16 EWM_ OUT_b TPM_ CLKIN1 TSI0_CH11 TSI0_CH11 PTB18 FTM2_CH0 I2S0_TX_ BCLK FB_AD15/ SDRAM_ A23 FTM2_QD_ FXIO0_D6 PHA/ TPM2_CH0 PTB19 TSI0_CH12 TSI0_CH12 PTB19 FTM2_CH1 I2S0_TX_ FS FB_OE_b FTM2_QD_ FXIO0_D7 PHB/ TPM2_CH1 D1 PTB20 DISABLED PTB20 SPI2_ PCS0 FB_AD31/ SDRAM_ D31 CMP0_ OUT FXIO0_D8 F9 E3 PTB21 DISABLED PTB21 SPI2_SCK FB_AD30/ SDRAM_ D30 CMP1_ OUT FXIO0_D9 68 F8 E4 PTB22 DISABLED PTB22 SPI2_ SOUT FB_AD29/ SDRAM_ D29 FXIO0_D10 102 69 E8 D2 PTB23 DISABLED PTB23 SPI2_SIN SPI0_ PCS5 FB_AD28/ SDRAM_ D28 FXIO0_D11 103 70 B9 C1 PTC0 ADC0_ ADC0_ PTC0 SE14/ SE14/ TSI0_CH13 TSI0_CH13 SPI0_ PCS4 PDB0_ EXTRG FB_AD14/ SDRAM_ A22 I2S0_TXD1 FXIO0_D12 104 71 D8 D3 PTC1/ LLWU_P6 ADC0_ ADC0_ PTC1/ SE15/ SE15/ LLWU_P6 TSI0_CH14 TSI0_CH14 SPI0_ PCS3 LPUART1_ FTM0_CH0 FB_AD13/ RTS_b SDRAM_ A21 I2S0_TXD0 FXIO0_D13 105 72 C8 C2 PTC2 ADC0_ SE4b/ CMP1_IN0/ TSI0_CH15 SPI0_ PCS2 LPUART1_ FTM0_CH1 FB_AD12/ CTS_b SDRAM_ A20 I2S0_TX_ FS 106 73 B8 B1 PTC3/ LLWU_P7 CMP1_IN1 CMP1_IN1 PTC3/ LLWU_P7 SPI0_ PCS1 LPUART1_ FTM0_CH2 CLKOUT RX I2S0_TX_ BCLK 107 74 — E5 VSS VSS VSS 108 75 — G6 VDD VDD VDD 109 76 A8 A1 PTC4/ LLWU_P8 DISABLED PTC4/ LLWU_P8 SPI0_ PCS0 LPUART1_ FTM0_CH3 FB_AD11/ TX SDRAM_ A19 CMP1_ OUT 110 77 D7 B2 PTC5/ LLWU_P9 DISABLED PTC5/ LLWU_P9 SPI0_SCK LPTMR0_ ALT2/ LPTMR1_ ALT2 I2S0_RXD0 FB_AD10/ SDRAM_ A18 CMP0_ OUT FTM0_CH2 111 78 C7 C3 PTC6/ CMP0_IN0 CMP0_IN0 PTC6/ SPI0_ LLWU_P10 LLWU_P10 SOUT PDB0_ EXTRG I2S0_RX_ BCLK I2S0_ MCLK FXIO0_D14 80 Freescale Semiconductor, Inc. PTB16 ALT2 ADC0_ PTC2 SE4b/ CMP1_IN0/ TSI0_CH15 USB0_ SOF_OUT FB_AD9/ SDRAM_ A17 QSPI_SIP_ MODE Kinetis K82 Sub-Family, Rev.1, 09/2015. Pinout 144 100 121 LQFP LQFP XFB GA 121 WLC SP Pin Name Default ALT0 ALT1 112 79 B7 A2 PTC7 CMP0_IN1 CMP0_IN1 PTC7 113 80 A7 B3 PTC8 CMP0_IN2 CMP0_IN2 PTC8 114 81 D6 D4 PTC9 CMP0_IN3 CMP0_IN3 PTC9 115 82 C6 A3 PTC10 DISABLED 116 83 C5 C4 PTC11/ DISABLED LLWU_P11 117 84 B6 B4 PTC12 118 85 A6 A4 119 86 A5 120 87 121 ALT2 ALT3 ALT4 SPI0_SIN USB0_ SOF_OUT I2S0_RX_ FS ALT5 ALT6 ALT7 FB_AD8/ SDRAM_ A16 FXIO0_D15 FTM3_CH4 I2S0_ MCLK FB_AD7/ SDRAM_ A15 FXIO0_D16 FTM3_CH5 I2S0_RX_ BCLK FB_AD6/ SDRAM_ A14 FTM3_CH6 I2S0_RX_ FS FB_AD5/ SDRAM_ A13 FXIO0_D18 PTC11/ I2C1_SDA LLWU_P11 FTM3_CH7 I2S0_RXD1 FB_RW_b FXIO0_D19 DISABLED PTC12 LPUART4_ FTM_ RTS_b CLKIN0 FB_AD27/ SDRAM_ D27 PTC13 DISABLED PTC13 LPUART4_ FTM_ CTS_b CLKIN1 FB_AD26/ SDRAM_ D26 TPM_ CLKIN1 D5 PTC14 DISABLED PTC14 LPUART4_ RX FB_AD25/ SDRAM_ D25 FXIO0_D20 B5 C5 PTC15 DISABLED PTC15 LPUART4_ TX FB_AD24/ SDRAM_ D24 FXIO0_D21 88 — F6 VSS VSS VSS 122 89 — E6 VDD VDD VDD 123 — D5 A5 PTC16 DISABLED PTC16 LPUART3_ RX FB_CS5_b/ FB_TSIZ1/ FB_BE23_ 16_BLS15_ 8_b/ SDRAM_ DQM2 124 90 C4 B5 PTC17 DISABLED PTC17 LPUART3_ TX FB_CS4_b/ FB_TSIZ0/ FB_BE31_ 24_BLS7_ 0_b/ SDRAM_ DQM3 125 — B4 A6 PTC18 DISABLED PTC18 LPUART3_ RTS_b FB_TBST_ b/ FB_CS2_b/ FB_BE15_ 8_BLS23_ 16_b/ Kinetis K82 Sub-Family, Rev.1, 09/2015. PTC10 I2C1_SCL FTM2_ FLT0 FTM3_ FLT0 QSPI_SIP_ MODE FXIO0_D17 TPM_ CLKIN0 81 Freescale Semiconductor, Inc. Pinout 144 100 121 LQFP LQFP XFB GA 121 WLC SP Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 QSPI_SIP_ MODE SDRAM_ DQM1 126 — A4 B6 PTC19 DISABLED 127 91 D4 C6 PTD0/ DISABLED LLWU_P12 128 92 D3 D6 PTD1 129 93 C3 D7 PTD2/ DISABLED LLWU_P13 130 94 B3 A7 PTD3 131 95 A3 B7 PTD4/ DISABLED LLWU_P14 132 96 A2 C7 PTD5 ADC0_ SE6b 133 97 B2 A8 134 98 — 135 99 136 ADC0_ SE5b ADC0_ SE5b DISABLED PTC19 LPUART3_ CTS_b PTD0/ SPI0_ LLWU_P12 PCS0 LPUART2_ FTM3_CH0 FB_ALE/ RTS_b FB_CS1_b/ FB_TS_b FXIO0_D22 PTD1 LPUART2_ FTM3_CH1 FB_CS0_b CTS_b FXIO0_D23 PTD2/ SPI0_ LLWU_P13 SOUT LPUART2_ FTM3_CH2 FB_AD4/ RX SDRAM_ A12 I2C0_SCL PTD3 LPUART2_ FTM3_CH3 FB_AD3/ TX SDRAM_ A11 I2C0_SDA SPI0_SCK SPI0_SIN FB_CS3_b/ FB_TA_b FB_BE7_ 0_BLS31_ 24_b/ SDRAM_ DQM0 PTD4/ SPI0_ LLWU_P14 PCS1 LPUART0_ FTM0_CH4 FB_AD2/ RTS_b SDRAM_ A10 EWM_IN SPI1_ PCS0 ADC0_ SE6b PTD5 SPI0_ PCS2 LPUART0_ FTM0_CH5 FB_AD1/ CTS_b SDRAM_ A9 EWM_ OUT_b SPI1_SCK PTD6/ ADC0_ LLWU_P15 SE7b ADC0_ SE7b PTD6/ SPI0_ LLWU_P15 PCS3 LPUART0_ FTM0_CH6 FB_AD0 RX FTM0_ FLT0 SPI1_ SOUT F6 VSS VSS VSS — E7 VDD VDD VDD 100 A1 B8 PTD7 DISABLED PTD7 LPUART0_ FTM0_CH7 SDRAM_ TX CKE FTM0_ FLT1 SPI1_SIN 137 — A10 A9 PTD8/ DISABLED LLWU_P24 PTD8/ I2C0_SCL LLWU_P24 FB_A16 FXIO0_D24 138 — A9 C8 PTD9 DISABLED PTD9 FB_A17 FXIO0_D25 139 — E4 B9 PTD10 DISABLED PTD10 FB_A18 FXIO0_D26 140 — E3 A10 PTD11/ DISABLED LLWU_P25 PTD11/ SPI2_ LLWU_P25 PCS0 FB_A19 FXIO0_D27 141 — F4 D8 PTD12 DISABLED PTD12 SPI2_SCK FB_A20 FXIO0_D28 142 — G3 C9 PTD13 DISABLED PTD13 SPI2_ SOUT FB_A21 FXIO0_D29 143 — G4 B10 PTD14 DISABLED PTD14 SPI2_SIN FB_A22 FXIO0_D30 144 — H4 A11 PTD15 DISABLED PTD15 SPI2_ PCS1 FB_A23 FXIO0_D31 82 Freescale Semiconductor, Inc. CMT_IRO I2C0_SDA FTM3_ FLT0 Kinetis K82 Sub-Family, Rev.1, 09/2015. Pinout 5.2 Recommended connection for unused analog and digital pins Table 65 shows the recommended connections for analog interface pins if those analog interfaces are not used in the customer's application Table 65. Recommended connection for unused analog interfaces Pin Type Short recommendation Detailed recommendation Analog/non GPIO ADCx/CMPx Float Analog input - Float Analog/non GPIO VREF_OUT Float Analog output - Float Analog/non GPIO DAC0_OUT, DAC1_OUT Float Analog output - Float Analog/non GPIO RTC_WAKEUP_B Float Analog output - Float Analog/non GPIO XTAL32 Float Analog output - Float Analog/non GPIO EXTAL32 Float Analog input - Float GPIO/Analog PTA18/EXTAL0 Float Analog input - Float GPIO/Analog PTA19/XTAL0 Float Analog output - Float GPIO/Analog PTx/ADCx Float Float (default is analog input) GPIO/Analog PTx/CMPx Float Float (default is analog input) GPIO/Analog PTx/TSIOx Float Float (default is analog input) GPIO/Digital PTA0/JTAG_TCLK Float Float (default is JTAG with pulldown) GPIO/Digital PTA1/JTAG_TDI Float Float (default is JTAG with pullup) GPIO/Digital PTA2/JTAG_TDO Float Float (default is JTAG with pullup) GPIO/Digital PTA3/JTAG_TMS Float Float (default is JTAG with pullup) GPIO/Digital PTA4/NMI_b 10kΩ pullup or disable and float Pull high or disable in PCR & FOPT and float GPIO/Digital PTx Float Float (default is disabled) USB USB0_DP Float Float USB USB0_DM Float Float USB VOUT33 Tie to input and ground through 10kΩ Tie to input and ground through 10kΩ USB VREGIN Tie to output and ground through 10kΩ Tie to output and ground through 10kΩ USB USB0_VSS Always connect to VSS Always connect to VSS VBAT VBAT Float Float VDDA VDDA Always connect to VDD potential Always connect to VDD potential VREFH VREFH Always connect to VDD potential Always connect to VDD potential VREFL VREFL Always connect to VSS potential Always connect to VSS potential Table continues on the next page... Kinetis K82 Sub-Family, Rev.1, 09/2015. 83 Freescale Semiconductor, Inc. Pinout Table 65. Recommended connection for unused analog interfaces (continued) Pin Type VSSA Short recommendation VSSA Always connect to VSS potential Detailed recommendation Always connect to VSS potential 5.3 K82 Pinouts The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section. 84 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. PTD0/LLWU_P12 PTC17 VDD VSS PTC15 PTC14 PTC13 PTC12 PTC11/LLWU_P11 PTC10 PTC9 PTC8 91 90 89 88 87 86 85 84 83 82 81 80 PTC4/LLWU_P8 PTD1 92 PTC5/LLWU_P9 PTD2/LLWU_P13 93 76 PTD3 94 77 PTD4/LLWU_P14 96 95 PTC7 PTD5 97 PTC6/LLWU_P10 PTD6/LLWU_P15 98 78 VSS 99 79 PTD7 VDD 100 Pinout PTE0 1 75 VDD PTE1/LLWU_P0 2 74 VSS PTE2/LLWU_P1 3 73 PTC3/LLWU_P7 PTE3 4 72 PTC2 VSS 5 71 PTC1/LLWU_P6 VDDIO_E 6 70 PTC0 PTE4/LLWU_P2 7 69 PTB23 PTE5 8 68 PTB22 9 67 PTB21 PTE7 10 66 PTB20 PTE8 11 65 PTB19 PTE6/LLWU_P16 45 46 47 48 49 50 PTA16 PTA17 VDD VSS PTA18 PTA19 PTA15 51 44 25 PTA14 RESET_b VSSA 43 PTB0/LLWU_P5 52 PTA13/LLWU_P4 53 24 42 23 VREFL PTA12 VREFH 41 PTB1 PTA5 54 40 22 PTA4/LLWU_P3 PTB2 VDDA 39 PTB3 55 38 56 21 PTA3 20 NC PTA2 VREGIN 37 PTB9 PTA1 57 36 19 PTA0 VOUT33 35 PTB10 VSS 58 34 18 VDD PTB11 USB0_DM 33 59 VBAT 17 32 VSS USB0_DP EXTAL32 60 31 16 30 VDD VSS VSS XTAL32 61 RTC_WAKEUP_B 15 DAC0_OUT/CMP1_IN3/ADC0_SE23 PTB16 VDDIO_E 29 62 28 14 VREF_OUT/CMP1_IN5/CMP0_IN5/ADC0_SE22 PTB17 PTE11 27 PTB18 63 26 64 ADC0_DP1 12 13 ADC0_DM1 PTE9/LLWU_P17 PTE10/LLWU_P18 Figure 45. K82 100 LQFP Pinout Diagram Kinetis K82 Sub-Family, Rev.1, 09/2015. 85 Freescale Semiconductor, Inc. Pinout 1 2 3 4 5 6 7 8 9 10 11 A PTD7 PTD5 PTD4/ LLWU_P14 PTC19 PTC14 PTC13 PTC8 PTC4/ LLWU_P8 PTD9 PTD8/ LLWU_P24 NC A B PTE0 PTD6/ LLWU_P15 PTD3 PTC18 PTC15 PTC12 PTC7 PTC3/ LLWU_P7 PTC0 PTB16 PTB4 B C PTE2/ LLWU_P1 PTC17 PTC11/ LLWU_P11 PTC10 PTC6/ LLWU_P10 PTC2 PTB19 PTB11 PTB5 C D PTE4/ LLWU_P2 PTE3 PTD1 PTD0/ LLWU_P12 PTC16 PTC9 PTC5/ LLWU_P9 PTC1/ LLWU_P6 PTB18 PTB10 PTB8 D E PTE6/ LLWU_P16 PTE5 PTD11/ LLWU_P25 PTD10 VDDIO_E VDD VDD PTB23 PTB17 PTB9 PTB7 E F PTE9/ LLWU_P17 PTE8 PTE7 PTD12 VDDA VSSA VSS PTB22 PTB21 PTB20 PTB6 F G PTE11 PTE10/ LLWU_P18 PTD13 PTD14 VREFH VREFL VSS PTB3 PTB2 PTB1 PTB0/ LLWU_P5 G H USB0_DM USB0_DP VSS PTD15 PTA20 NC PTA11/ LLWU_P23 PTA1 PTA3 PTA17 PTA29 H J VOUT33 VREGIN ADC0_DP3 NC PTA21/ LLWU_P21 NC PTA2 PTA16 RESET_b J PTE1/ PTD2/ LLWU_P0 LLWU_P13 PTA4/ PTA10/ LLWU_P3 LLWU_P22 K DAC0_OUT/ ADC0_DM0 ADC0_DP0 ADC0_DM3 CMP1_IN3/ RTC_ ADC0_SE23 WAKEUP_B VBAT PTA5 PTA12 PTA14 VSS PTA19 K L VREF_OUT/ CMP1_IN5/ ADC0_DM1 ADC0_DP1 CMP0_IN5/ ADC0_SE22 L 1 2 3 XTAL32 EXTAL32 VSS PTA0 PTA13/ LLWU_P4 PTA15 VDD PTA18 4 5 6 7 8 9 10 11 Figure 46. K82 121 XFBGA Pinout Diagram 86 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. PTC7 PTC6/LLWU_P10 PTC5/LLWU_P9 PTC4/LLWU_P8 111 110 109 PTC13 PTC8 PTC14 118 112 PTC15 119 PTC9 VSS 120 113 VDD 121 PTC10 PTC16 122 115 PTC17 123 114 PTC18 124 PTC12 PTC19 125 PTC11/LLWU_P11 PTD0/LLWU_P12 126 116 PTD1 127 117 PTD2/LLWU_P13 VSS 134 128 VDD 135 PTD3 PTD7 136 129 PTD8/LLWU_P24 137 PTD4/LLWU_P14 PTD9 138 131 PTD10 139 130 PTD11/LLWU_P25 140 PTD6/LLWU_P15 PTD12 141 PTD5 PTD13 142 132 PTD14 143 133 PTD15 144 Pinout PTE0 1 108 VDD PTE1/LLWU_P0 2 107 VSS PTE2/LLWU_P1 3 106 PTC3/LLWU_P7 PTE3 4 105 PTC2 VSS 5 104 PTC1/LLWU_P6 VDDIO_E 6 103 PTC0 PTE4/LLWU_P2 7 102 PTB23 PTE5 8 101 PTB22 PTE6/LLWU_P16 9 100 PTB21 PTB20 PTE7 10 99 PTE8 11 98 PTB19 PTE9/LLWU_P17 12 97 PTB18 PTE10/LLWU_P18 13 96 PTB17 PTE11 14 95 PTB16 PTE12 15 94 VDD PTE13 16 93 VSS VDDIO_E 17 92 PTB11 VSS 18 91 PTB10 PTE16 19 90 PTB9 PTE17/LLWU_P19 20 89 PTB8 PTE18/LLWU_P20 21 88 PTB7 PTE19 22 87 PTB6 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 VSS PTA6 PTA7 PTA8 PTA9 PTA10/LLWU_P22 PTA11/LLWU_P23 PTA12 PTA13/LLWU_P4 PTA14 PTA15 PTA16 PTA17 VDD VSS PTA18 PTA19 VDD RESET_b 73 55 74 36 PTA5 35 VSSA 54 VREFL PTA4/LLWU_P3 PTA24 53 75 PTA3 34 52 PTA25 VREFH PTA2 PTA26 76 51 77 33 50 32 VDDA PTA1 ADC0_DM3 PTA0 PTA27 49 78 PTA21/LLWU_P21 31 48 PTA28 ADC0_DP3 PTA20 79 47 30 VSS PTA29 ADC0_DM0 46 80 VDD 29 45 PTB0/LLWU_P5 ADC0_DP0 VBAT 81 44 28 EXTAL32 PTB1 NC 43 82 XTAL32 27 42 PTB2 VREGIN RTC_WAKEUP_B 83 41 26 40 PTB3 VOUT33 DAC0_OUT/CMP1_IN3/ADC0_SE23 84 39 25 VREF_OUT/CMP1_IN5/CMP0_IN5/ADC0_SE22 PTB4 USB0_DM 38 PTB5 85 37 86 24 ADC0_DP1 23 ADC0_DM1 VSS USB0_DP Figure 47. K82 144 LQFP Pinout Diagram NOTE The 144-pin LQFP package for this product is not yet available, however it is included in a Package Your Way program for Kinetis MCUs. Visit freescale.com/KPYW for more details. Kinetis K82 Sub-Family, Rev.1, 09/2015. 87 Freescale Semiconductor, Inc. Ordering parts 1 2 3 4 5 6 7 A PTC4/ LLWU_P8 PTC7 PTC10 PTC13 PTC16 PTC18 PTD3 B PTC3/ LLWU_P7 PTC5/ LLWU_P9 PTC8 PTC12 PTC17 PTC19 PTD4/ LLWU_P14 PTD7 PTD10 C PTC0 PTC2 PTC6/ PTC11/ LLWU_P10 LLWU_P11 PTC15 PTD0/ LLWU_P12 PTD5 PTD9 D PTB20 PTB23 PTC1/ LLWU_P6 PTC9 PTC14 PTD1 PTD2/ LLWU_P13 E PTB16 PTB19 PTB21 PTB22 VSS VDD F PTB10 PTB11 PTB17 PTB18 VSS VSS G PTB5 PTB6 PTB7 PTB8 H PTB2 PTB1 PTB3 J RESET_b PTA29 K PTA19 L 8 9 10 PTD15 A PTD14 PTE3 B PTD13 PTE0 PTE4/ LLWU_P2 C PTD12 PTE1/ LLWU_P0 PTE2/ LLWU_P1 PTE8 D VDD PTE5 PTE6/ LLWU_P16 PTE7 PTE9/ LLWU_P17 E VSS VSS VSS VSS VDDIO_E PTE10/ LLWU_P18 PTE11 VDDIO_E VSS VSS F PTB9 VDD VDD VDD VDD ADC0_SE16 NC VOUT33 USB0_DP G PTB4 PTA5 PTA4/ RTC_ LLWU_P3 WAKEUP_B VDDA VREFH VREGIN USB0_DM H PTB0/ LLWU_P5 PTA16 PTA13/ LLWU_P4 PTA1 PTA0 VSSA VREFL ADC0_DP0 ADC0_DP3 J VSS PTA17 PTA15 PTA12 PTA2 PTA21/ LLWU_P21 VBAT NC ADC0_DM0 ADC0_DM3 K PTA18 VDD PTA14 PTA3 PTA20 EXTAL32 XTAL32 VREF_OUT/ DAC0_OUT/ CMP1_IN5/ CMP1_IN3/ CMP0_IN5/ ADC0_SE23 ADC0_SE22 L 1 2 3 6 7 8 9 PTA11/ PTA10/ LLWU_P23 LLWU_P22 4 5 PTD6/ PTD8/ PTD11/ LLWU_P15 LLWU_P24 LLWU_P25 11 10 11 Figure 48. K82 121 WLCSP Pinout Diagram NOTE The 121-pin WLCSP package for this product is not yet available, however it is included in a Package Your Way program for Kinetis MCUs. Visit freescale.com/KPYW for more details. 6 Ordering parts 88 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Part identification 6.1 Determining valid orderable parts Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: MK82. 7 Part identification 7.1 Description Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received. 7.2 Format Part numbers for this device have the following format: Q K## A M FFF R T PP CC N 7.3 Fields This table lists the possible values for each field in the part number (not all combinations are valid): Field Description Values Q Qualification status • M = Fully qualified, general market flow • P = Prequalification K## Kinetis family • K82 A Key attribute • D = Cortex-M4 w/ DSP • F = Cortex-M4 w/ DSP and FPU M Flash memory type • N = Program flash only • X = Program flash and FlexMemory FFF Program flash memory size • • • • • • • 32 = 32 KB 64 = 64 KB 128 = 128 KB 256 = 256 KB 512 = 512 KB 1M0 = 1 MB 2M0 = 2 MB Table continues on the next page... Kinetis K82 Sub-Family, Rev.1, 09/2015. 89 Freescale Semiconductor, Inc. Terminology and guidelines Field Description Values R Silicon revision • Z = Initial • (Blank) = Main • A = Revision after main T Temperature range (°C) • V = –40 to 105 • C = –40 to 85 PP Package identifier • • • • • • • • • • • FM = 32 QFN (5 mm x 5 mm) FT = 48 QFN (7 mm x 7 mm) LF = 48 LQFP (7 mm x 7 mm) LH = 64 LQFP (10 mm x 10 mm) MP = 64 MAPBGA (5 mm x 5 mm) LK = 80 LQFP (12 mm x 12 mm) LL = 100 LQFP (14 mm x 14 mm) MC = 121 MAPBGA (8 mm x 8 mm) DC = 121 XFBGA (8 mm x 8 mm x 0.5 mm) LQ = 144 LQFP (20 mm x 20 mm) MD = 144 MAPBGA (13 mm x 13 mm) CC Maximum CPU frequency (MHz) • • • • • • 5 = 50 MHz 7 = 72 MHz 10 = 100 MHz 12 = 120 MHz 15 = 150 MHz 18 = 180 MHz N Packaging type • R = Tape and reel • (Blank) = Trays 7.4 Example This is an example part number: MK82FN256VLL15 8 Terminology and guidelines 8.1 Definitions Key terms are defined in the following table: Term Rating Definition A minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure: • Operating ratings apply during operation of the chip. • Handling ratings apply when the chip is not powered. Table continues on the next page... 90 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Terminology and guidelines Term Definition NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings. Operating requirement A specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip Operating behavior A specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions Typical value A specified value for a technical characteristic that: • Lies within the range of values specified by the operating behavior • Is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions NOTE: Typical values are provided as design guidelines and are neither tested nor guaranteed. 8.2 Examples EX AM PL E Operating rating: EX AM PL E Operating requirement: EX AM PL E Operating behavior that includes a typical value: 8.3 Typical-value conditions Typical values assume you meet the following conditions (or other conditions as specified): Kinetis K82 Sub-Family, Rev.1, 09/2015. 91 Freescale Semiconductor, Inc. Revision History Symbol Description Value Unit TA Ambient temperature 25 °C VDD 3.3 V supply voltage 3.3 V 8.4 Relationship between ratings and operating requirements O a gr tin ra pe g tin ( ) in. (m nt me n.) mi t era Op ing e uir req g tin era Op t en em uir req ax (m .) rat pe g tin ra ing ax (m .) O Fatal range Degraded operating range Normal operating range Degraded operating range Fatal range Expected permanent failure - No permanent failure - Possible decreased life - Possible incorrect operation - No permanent failure - Correct operation - No permanent failure - Possible decreased life - Possible incorrect operation Expected permanent failure –∞ ∞ Operating (power on) dli n Ha ng ra g tin x.) ) in. (m li nd Ha ma g( tin a r ng Fatal range Handling range Fatal range Expected permanent failure No permanent failure Expected permanent failure –∞ ∞ Handling (power off) 8.5 Guidelines for ratings and operating requirements Follow these guidelines for ratings and operating requirements: • Never exceed any of the chip’s ratings. • During normal operation, don’t exceed any of the chip’s operating requirements. • If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible. 9 Revision History The following table provides a revision history for this document. 92 Freescale Semiconductor, Inc. Kinetis K82 Sub-Family, Rev.1, 09/2015. Revision History Table 66. Revision History Rev. No. Date 1 09/2015 Substantial Changes • Updated part numbers. • Updated Related Resources table to include package drawing numbers and other relevant resource information. • Updated title of section 2.2.2 to 'HVD, LVD and POR operating requirements'. • Updated 'VDD supply LVD and POR operating requirements' table. • Added rows for VHVDH and VHVDL. • Updated 'Power consumption operating behaviors' table. • Updated Typ. values and Max. values. • Added data for 105°C. • Updated IDD charts - Figure 6. Run mode supply current vs. core frequency and Figure 7. VLPR mode supply current vs. core frequency. • Replaced section 2.2.6 'EMC radiated emissions operating behaviors' with 'Electromagnetic Compatibility (EMC) specifications'. • Removed EZPort information from 'General switching specifications' table. • Updated 100 LQFP and 121 XFBGA values in the 'Thermal attributes' table. • Updated 'MCG specifications' table • Updated Typ. value of Δfdco_t from -1 to ±1. • Removed Jacc_fll data. • Updated description of Ipll and their corresponding Typ. values. • Updated Typ. values of Jcyc_pll and Jacc_pll. • Updated footnote 2 in 'SDRAM Timing (Full voltage range)' table - corrected maximum frequency of FB_CLK to 75MHz. • Removed IALKG data from 'Comparator and 6-bit DAC electrical specifications' table. • Updated Min and Max values of Sfreq in the 'Timing Specifications, High Drive Strength' table. • Updated the 'Timing Requirements for Power-down Sequence' table. • Added a footnote - "Frtcclk is ERCLK32K, and this clock must be enabled during the power down sequence." • Updated unit from ns to μs. • Added 121 WLCSP pin assignment information and diagram to the Pinout section. Kinetis K82 Sub-Family, Rev.1, 09/2015. 93 Freescale Semiconductor, Inc. How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale, the Freescale logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. © 2015 Freescale Semiconductor, Inc. Document Number K82P121M150SF5 Revision 1, 09/2015