INTERSIL HI3300

HI3300
TM
Data Sheet
March 2000
3V 10-Bit, 20MSPS A/D Converter with
Internal Voltage Reference
The HI3300 is a monolithic, 10-bit analog-to-digital converter
fabricated in an advanced CMOS process. It is designed for
high speed applications where integration, bandwidth and
accuracy are essential. The HI3300 features a 2-step
parallel architecture to allow the system designer to realize
an increased level of system integration resulting in
decreased cost and power dissipation.
The HI3300 has excellent dynamic performance while
consuming less than 40mW power at 20MSPS. The A/D only
requires a single +3.0V power supply.
• Sampling Rate . . . . . . . . . . . . . . . . . . . . . . . . . . .20MSPS
• Low Power at 20MSPS. . . . . . . . . . . . . . . . . . . . . . .40mW
• Power Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 3mW
• Wide Full Power Input Bandwidth. . . . . . . . . . . . . 100MHz
• On-Chip Sample and Hold Amplifiers
• Single Supply Voltage Operation . . . . . . . . . .+2.7V - 3.3V
Applications
• Wireless Local Loop
PACKAGE
-40 to 85 48 Ld LQFP
SAMPLING
RATE
PKG. NO.
(MSPS)
Q48.7x7-S
20
• Medical Imaging
• Wireless Communications Systems
• Battery Powered Instruments
Pinout
TSTR
AVDD
TS
VIN
CAL
AVSS
AvDD
AVSS
AVDD
AT
48 47 46 45 44 43 42 41 40 39 38 37
36
BE
AVSS
4
33
5
32
6
7
31
VRBS
VRB
VRBC
30
VRMC
D5
8
29
D6
D7
9
28
VRTC
VRT
10
27
VRTS
11
12
26
AVDD
25
13 14 15 16 17 18 19 20 21 22 23 24
AVSS
D4
DVSS
DVDD
D8
D9
CE
34
OE
AVDD
AvDD
CLK
35
LINV
MINV
2
3
AvDD
D1
TEST
1
RESET
AVSS
DO
D2
D3
1
DVDD
DVSS
HI3300
48 LEAD LQFP
TOP VIEW
TO
HI3300IN
Features
TIN
PART
NUMBER
4822.1
• PSK and QAM I&Q Demodulators
Ordering Information
TEMP.
RANGE
(oC)
File Number
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Corporation. | Copyright © Intersil Corporation 2000
HI3300
Block Diagram
S/H
AMP
VIN 38
VRT 28
+
x8
12 D9
COARSE
CORRECTION
AND
LATCH
+
-
VRTC 29
VRTS 27
11 D8
10 D7
9
D6
8
D5
5
D4
4
D3
3
D2
2
D1
1
D0 (LSB)
DAC
COARSE
COMPARATE
AND
ENCODE
VRMC 30
BE 36
FINE
FIN3
COMPARATE
AND
ENCODE
FIND
LATCH
VRBS 33
CALIBRATION
UNIT
VRB 32
+
-
20 MINV
VRBC 31
19 LINV
18 TEST MODE
CLK 22
TIMING
GEN
OE 23
CE 24
2
AUTO
CALIBRATION PULSE
GENERATOR
42 CAL
15 RESET
HI3300
Absolute Maximum Ratings
Thermal Information
Supply Voltage (AVDD) . . . . . . . . . . . . . . . . . . . AVSS -0.5V to 4.5V
(DVDD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DVSS -0.5V to 4.5V
Reference Voltage (VRT, VRB) . . . . . . . . AVDD +0.5V to AVSS -0.5V
Input Voltage (Analog) (VIN) . . . . . . . . . . . . . . AVDD +0.5V to -0.5V
Input Voltage (Digital) (VIH, VIL) . . . . . . AVDD +0.5V to AVSS -0.5V
Output Voltage (Digital) (VOH, VOL). . . . DVDD +0.5V to DVSS -0.5V
Thermal Resistance (Typical, Note 1)
θJA (oC/W)
48 Ld LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
122
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . .150oC
Maximum Storage Temperature Range . . . . . . . . . . -65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . .300oC
(Lead Tips Only)
Operating Conditions
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . -40oC to 85oC
Supply Voltage Range (AVDD, AVSS) . . . . . . . . . . . . 3.0V to ±0.3V
(DVDD, DVSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.0V to ±0.3V
 DVSS - AVSS  . . . . . . . . . . . . . . . . . . . . . . . . . . 0mV to 100mV
Reference Input Voltage (VRB). . . . . . . . . 0.3 AVDD to 0.5 AVDDV
(VRT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 AVDD to 0.8 AVDDV
Analog Input (VIN) . . . . . . . . . . . . . . . . . . . . . . . 0.9 Vp-p or More
Clock Pulse Width (tPW1), (tPW0) . . . . . . . . . . . . . . . . 25ns (Min)
Operating Ambient Temperature (TOPR) . . . . . . . . -40oC to 85oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. θJA is measured with the component mounted on an evaluation PC board in free air.
fC = 20MSPS, AVDD = 3V, DVDD = 3V, VRB = 1V, VRT = 2V, TA = 25oC
Electrical Specifications
PARAMETER
SYMBOL
CONDITIONS
fIN = 1.0kHz Triangular Wave Input
MIN.
TYP.
MAX.
UNIT
20
-
-
MSPS
-
-
0.5
Maximum Conversion Rate
fC max
Minimum Conversion Rate
fC min
Supply Voltage
Analog
IADD
fIN = 1.0kHz Triangular Wave Input
-
12
-
Digital
IDDD
BE = High
-
1.0
-
IAST
CE = AVDD
-
1.0
-
mA
-
1.0
-
µA
-
100
-
µA
-
-100
-
-
2
-
-
-2
-
-
TBD
-
MHz
-
10
-
pF
Standby Current Analog
Digital
IDST
Reference Pin Current 1
IRT1
VRTS, VRBS: Open Between VRT and VRB
IRB1
Reference Pin Current 2
IRT2
BE = AVDD Between VRTC and VRBC
IRB2
Analog Input Band
BW
Analog Input Capacitance
CIN
-1dB
mA
mA
Reference Resistance Value 1
RREF1
Between VRTS and VRT, VRT and VRB, VRB
and VRBS
-
10k
-
Ω
Reference Resistance Value 2
RREF2
Between VRTC and VRBC
-
500
-
Ω
EOT
EOT = Theoretical Value - Measured Value
-
TBD
-
mV
EOB
EOB = Measured Value - Theoretical Value
-
TBD
-
VIH
AVDD = 2.7 to 3.3V
0.7
-
-
-
-
0.2
Offset Voltage
Digital Input Voltage
VIL
Analog Input Current
Digital Input Current
AIH
VIN = 2V
-
20
-
AIL
VIN = 1V
-
-20
-
IIH
AVDD = 3.3V
VIH - AVDD
-
-
5
VIL = AVSS
-
-
5
IIL
3
V
µA
µA
HI3300
fC = 20MSPS, AVDD = 3V, DVDD = 3V, VRB = 1V, VRT = 2V, TA = 25oC (Continued)
Electrical Specifications
PARAMETER
SYMBOL
Digital Output Current
IOH
IOL
Digital Output Current
IOZH
IOZL
CONDITIONS
MIN.
TYP.
MAX.
UNIT
mA
OE = AVSS
DVDD = 2.7V
VOH = DVDD -0.4V
1.0
-
-
VOL = 0.4V
1.0
-
-
OE = AVDD
DVDD = 3.3V
VOH = DVDD
-
-
1.0
VOL = 0V
-
-
1.0
µA
Three-State Output Disable time
tPEZ
Clock not Synchronized for Active → High
Impedance
-
2
-
ns
Three-State Output Enable Time
tPEZ
Clock not Synchronized For High Impedance →
Active
-
2
-
ns
Integral Nonlinearity Error
EL
-
±1.0
-
LSB
Differential Nonlinearity Error
ED
-
±0.5
-
LSB
Differential Gain Error
DG
-
TBD
-
%
Differential Phase Error
DP
-
TBD
-
Deg
Output Data Delay
tDL
-
3
-
ns
Sampling Delay
tSD
-
2
-
ns
SNR
SNR
fIN = 100kHz
-
TBD
-
dB
fIN = 500kHz
-
TBD
-
dB
fIN = 1MHz
-
TBD
-
dB
fIN = 3MHz
-
TBD
-
dB
fIN = 7MHz
-
TBD
-
dB
fIN = 10MHz
-
TBD
-
dB
fIN = 100kHz
-
TBD
-
dB
fIN = 500kHz
-
TBD
-
dB
fIN = 1MHz
-
TBD
-
dB
fIN = 3MHz
-
TBD
-
dB
fIN = 7MHz
-
TBD
-
dB
fIN = 10MHz
-
TBD
-
dB
SFDR
SFDR
4
NTSC 40 IRE Mod Ramp, fC = 14.3MSPS
CL = 20pF
HI3300
Timing Diagrams
tPW0
tPW1
1.5V
CLOCK
tSD
N +1
ANALOG INPUT
N
N +2
N +3
tDL
DATA OUTPUT
N -3
N +4
N -1
N -2
N
1.5V
NOTE:
: Indicates point at which analog data is sampled.
FIGURE 1. TIMING CHART 1
tPZE
tPEZ
1.5V
1.5V
OUTPUT ENABLE (OE)
1.5V
DATA OUTPUT
ACTIVE
HIGH IMPEDANCE
FIGURE 2. TIMING CHART 2
5
ACTIVE
HI3300
S
Pin Description
PIN NO.
SYMBOL
1 to 5 8 to 12
D0 to D9
EQUIVALENT CIRCUIT
DESCRIPTION
D0 (LSB) to D9 (MSB) output.
DVDD
DVSS
6, 48
DVSS
Digital Ground.
7, 47
DVDD
Digital Power.
13
TO
Test signal output. High impedance when
TS = high.
14
TIN
Test signal input. Normally fixed to AVDD or
AVSS .
15
RESET
AVDD
Calibration circuit reset and startup calibration
restart.
15
AVSS
16, 25, 34, 4,
46
AVSS
Analog Ground.
17, 21, 26, 35,
40, 43, 45
AVDD
Analog Power.
18
TEST
MODE
AVDD
N/C
Do not use.
18
AVSS
19
LINV
AVDD
19
AVSS
6
Output Inversion.
High: D0 to D8 are inverted and output.
Low: D0 to D8 are normal output.
HI3300
Pin Description
(Continued)
PIN NO.
SYMBOL
20
MINV
EQUIVALENT CIRCUIT
AVDD
DESCRIPTION
Output Inversion.
High: D9 is inverted and output.
Low: D9 is Normal output.
20
AVSS
22
CLK
Clock Input.
AVDD
22
AVSS
23
OE
AVDD
D0 to D9 Output Enable.
Low: Output Active.
High: High Impedance state.
23
AVSS
24
CE
AVDD
24
AVSS
7
Chip Enable.
Low: Active state.
High: Standby state.
HI3300
Pin Description
(Continued)
PIN NO.
SYMBOL
27
VRTS
28
VRT
29
VRTC
30
VRMC
31
VRBC
32
EQUIVALENT CIRCUIT
Self bias (Reference top).
AVDD
VRBS
36
BE
Reference top.
Reference top output.
27
Reference middle output.
Reference bottom output.
AVSS
VRB
33
DESCRIPTION
Reference bottom.
AVDD
Self bias (reference bottom).
Bias enable.
28
+
-
AVSS
AVDD
29
AVSS
AVDD
30
AVSS
AVDD
31
AVSS
AVDD
32
+
-
AVSS
AVDD
33
AVSS
AVDD
36
AVSS
37
TSTR
Test signal input. Tie to AVDD or AVSS .
8
HI3300
Pin Description
(Continued)
PIN NO.
SYMBOL
44
AT
38
VIN
EQUIVALENT CIRCUIT
DESCRIPTION
No Connect
Analog input.
AVDD
38
AVSS
42
CAL
Calibration pulse input.
AVDD
42
AVSS
39
TS
Test signal input. Normally fixed to AVDD.
9
HI3300
Digital Output
The following table shows the correlation between the analog input voltage and the digital output code (TESTMODE = 1, LINV,
MINV = 0).
TABLE 1.
DIGITAL OUTPUT CODE
INPUT SIGNAL
VOLTAGE
STEP
VRT
1023
1111111111
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
512
1000000000
511
0 1 1 1 1 1 1 11 1
•
•
•
•
•
•
•
•
0
0000000000
VRB
MSB
LSB
The following table shows the output state for the combination of TESTMODE, LINV, and MlNV states.
TABLE 2.
TEST
MODE
LlNV
MlNV
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
1
0
0
P
P
P
P
P
P
P
P
P
P
1
1
0
N
N
N
N
N
N
N
N
N
P
1
0
1
P
P
P
P
P
P
P
P
P
N
1
1
1
N
N
N
N
N
N
N
N
N
N
0
0
0
1
0
1
0
1
0
1
0
1
0
0
1
0
0
1
0
1
0
1
0
1
0
0
0
0
1
1
0
1
0
1
0
1
0
1
1
0
1
1
0
1
0
1
0
1
0
1
0
1
NOTE: P: Forward-phase output; N: Inverted output.
10
HI3300
Application Circuit 1
When not using self-bias and the internal bias circuits and supplying the reference voltage from an external source.
1V
2V
AVDD
AVDD
AVSS
1.0V
SIGNAL INPUT
AVSS
AVDD
VRT
VRTS
VRTC
VRBC
VRMC
VRB
VRBS
BE
37 TSTR
AVSS
2.0V
AVDD
36 35 34 33 32 31 30 29 28 27 26 25
AVDD
38 VIN
OE 23
39 TS
CLK 22
40 AVDD
AVDD 21
41 AVSS
MINV 20
LINV 19
42 CAL
AVDD
1
2
3
4
5
6
7
8
9
10 11 12
RESET
PULSE
AVSS
D9
D7
TO 13
D6
48 DVSS
D5
TIN 14
DVDD
47 DVDD
DVSS
RESET 15
D4
46 AVSS
D3
AVSS 16
D2
DVSS
AVDD 17
45 AVDD
D1
DVDD
44 AT
D0
AVSS
CLOCK
PULSE
TESTMODE 18
43 AVDD
D8
CALIBRATION
PULSE
CE 24
: 0.1µF
DVSS
DVDD
POWER SUPPLY
DECOUPLERS
DIGITAL OUTPUT
NOTE: Application circuits shown are typical examples illustrating the operation of the devices. Intersil cannot assume responsibility for any
problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
11
HI3300
Application Circuit 2
When not using self-bias circuit, using only the internal bias circuit, and supplying the reference voltage from an external source.
AVDD
1V
2V
AVDD
AVSS
1.0V
SIGNAL INPUT
AVSS
AVDD
VRT
VRTS
VRTC
VRBC
VRMC
VRB
VRBS
BE
37 TSTR
AVSS
2.0V
AVDD
36 35 34 33 32 31 30 29 28 27 26 25
AVDD
38 VIN
OE 23
39 TS
CLK 22
40 AVDD
AVDD 21
41 AVSS
MINV 20
LINV 19
42 CAL
AVDD
1
2
3
4
5
6
7
8
9
10 11 12
RESET
PULSE
AVSS
D9
D7
TO 13
D6
48 DVSS
D5
TIN 14
DVDD
47 DVDD
DVSS
RESET 15
D4
46 AVSS
D3
AVSS 16
D2
DVSS
AVDD 17
45 AVDD
D1
DVDD
44 AT
D0
AVSS
CLOCK
PULSE
TESTMODE 18
43 AVDD
D8
CALIBRATION
PULSE
CE 24
: 0.1µF
DVSS
DVDD
DIGITAL OUTPUT
NOTE: Application circuits shown are typical examples illustrating the operation of the devices. Intersil cannot assume responsibility for any
problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
12
HI3300
Application Circuit 3
When not using self bias circuit, using only the internal bias circuit, and supplying the reference voltage from an external source.
AVDD
AVDD
AVSS
1.0V
SIGNAL INPUT
AVSS
AVDD
VRT
VRTS
VRTC
VRBC
VRMC
VRB
VRBS
BE
37 TSTR
AVSS
2.0V
AVDD
36 35 34 33 32 31 30 29 28 27 26 25
AVDD
38 VIN
OE 23
39 TS
CLK 22
40 AVDD
AVDD 21
41 AVSS
MINV 20
LINV 19
42 CAL
AVDD
1
2
3
4
5
6
7
8
9
10 11 12
RESET
PULSE
AVSS
D9
D7
TO 13
D6
48 DVSS
D5
TIN 14
DVDD
47 DVDD
DVSS
RESET 15
D4
46 AVSS
D3
AVSS 16
D2
DVSS
AVDD 17
45 AVDD
D1
DVDD
44 AT
D0
AVSS
CLOCK
PULSE
TESTMODE 18
43 AVDD
D8
CALIBRATION
PULSE
CE 24
: 0.1µF
DVSS
DVDD
DIGITAL OUTPUT
NOTE: Application circuits shown are typical examples illustrating the operation of the devices. Intersil cannot assume responsibility for any
problems arising out of these use of the circuits or for any infringement of third party patent and other right due to same.
13
HI3300
Calibration Function
Activating Startup Calibration
As shown in the Figure 3, startup calibration must be
activated after the supply voltage has risen and stabilized
(full scale of 90% or more). After activation, startup
calibration is performed for an interval of about 33,000
clocks. Therefore, care should be taken as the output data
during this interval (about 2.3ms at 14.3MHz) cannot be
used.
To achieve superior linearity, the HI3300 has a built-in
calibration circuit. Startup calibration must be activated when
the power supply and reference voltage have risen and
stabilized. Care should be taken as only the upper five bits
may be output in the worst case if startup calibration is not
activated.
Calibration Pulse Supply
Startup calibration can be activated either at the rise of the
RESET pin (Pin 15) or at the fall of the CE pin (Pin 24). The
startup calibration activation method for each case is shown
in Figure 3.
The IC’s operating status with changes due to fluctuations in
the supply voltage and ambient temperature during use can
be constantly monitored and then compensated
appropriately by inputting a pulse at regular intervals to the
CAL pin (Pin 41). Figure 4 shows the timing chart.
B. WHEN USING CE
A. WHEN USING RESET
[V]
[V]
AVDD
VRT
VRT
VRB
VRB
0
0
[t]
H
RESET
CE
AVDD
3
3
RESET
L
[t]
H
L
H
H
CE
L
STARTUP
CALIBRATION
L
STARTUP
CALIBRATION
33,000 CLK
33,000 CLK
FIGURE 3. STARTUP CALIBRATION ACTIVATION METHODS
10ns OR MORE
7CLOCK
CLK
1CLOCK OR MORE
CAL
D0 TO D9
N-3
N-2
N-1
FIGURE 4. CALIBRATION TIMING CHART
14
N
N +5
HI3300
Calibration starts when the fall of the pulse input to the CAL
pin (Pin 41) is detected at the clock rise. At this time, the
comparator is used in an exclusive manner for a four clock
interval. So, the output data holds the immediately previous
data for a four clock interval after seven clocks from the rise
of the clock where the fall of the calibration pulse was
detected, and then the data during this interval is missing.
Therefore, the effects of this function can be avoided by
inputting a sync or other signal as the calibration pulse so
that calibration is performed outside of the interval of the
actually used video signal. An input example is shown below.
Input ever H Sync
INPUT
CLK
CAL
Input ever V Sync
INPUT
CLK
RESET
CAL
Latch-up
Board
Ensure that the AVDD and DVDD pins share the same
power supply on a board to prevent latch-up which may be
caused by power-ON time lag.
To obtain full-expected performance from this IC, be sure
that the mounting board has a large ground pattern for lower
impedance. It is recommended that the IC be mounted on a
board without using a socket to evaluate its characteristics
adequately.
15
HI3300
Metric Plastic Quad Flatpack Packages (MQFP/PQFP)
D
Q48.7x7-S
D1
48 LEAD METRIC PLASTIC QUAD FLATPACK PACKAGE
INCHES
E
E1
e
MILLIMETERS
SYMBOL
MIN
MAX
MIN
MAX
NOTES
A
0.056
0.066
1.40
1.70
-
A1
0.000
0.007
0.00
0.20
-
B
0.006
0.010
0.15
0.26
5
D
0.347
0.362
8.80
9.20
2
D1
0.272
0.279
6.90
7.10
3, 4
E
0.347
0.362
8.80
9.20
2
E1
0.272
0.279
6.90
7.10
3, 4
L
0.012
0.027
0.30
0.70
N
48
48
e
0.020 BSC
0.500 BSC
6
Rev. 1 4/95
PIN 1
NOTES:
-H-
SEATING
PLANE
A
1. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.
2. Dimensions D and E to be determined at seating plane -C- .
0.10
0.004
-C-
0.24 M
B
3. Dimensions D1 and E1 to be determined at datum plane
-H- .
4. Dimensions D1 and E1 do not include mold protrusion.
5. Dimension B does not include dambar protrusion.
6. “N” is the number of terminal positions.
A1
0o-10o
L
0.107/0.177
0.004/0.007
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (321) 724-7000
FAX: (321) 724-7240
16
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029