SONY CXD3300R

CXD3300R
10-bit 20MSPS Video A/D Converter
Description
The CXD3300R is a 10-bit CMOS A/D converter for
video applications. This IC is ideally suited for the
A/D conversion of video signals in TVs, VCRs,
camcorders, etc.
Features
• Resolution: 10 bits ± 1.0LSB (D.L.E.)
• Maximum sampling frequency: 20MSPS
• Low power consumption: 40mW
(Except self-bias )
• Low input capacitance
• Built-in self-bias circuit
Absolute Maximum Ratings (Ta = 25°C)
• Supply voltage
AVDD
DVDD
• Reference voltage
VRT, VRB
• Input voltage
VIN
(analog)
• Input voltage
VIH, VIL
(digital)
• Output voltage
VOH, VOL
(digital)
• Storage temperature
Tstg
48 pin LQFP (Plastic)
Structure
Silicon gate CMOS IC
AVSS – 0.5 to +4.5
DVSS – 0.5 to +4.5
AVDD + 0.5 to AVSS – 0.5
AVDD + 0.5 to AVSS – 0.5
V
V
V
V
AVDD + 0.5 to AVSS – 0.5
V
DVDD + 0.5 to DVSS – 0.5
V
–55 to +150
°C
Recommended Operating Conditions
• Supply voltage
AVDD, AVSS
3.0 ± 0.3
DVDD, DVSS
3.0 ± 0.3
| DVSS – AVSS |
0 to 100
• Reference input voltage
VRB
0.3AVDD to 0.5AVDD
VRT
0.6AVDD to 0.8AVDD
• Analog input
VIN
0.9Vp-p or more
• Clock pulse width
tPW1
25 (min.)
tPW0
25 (min.)
• Operating ambient temperature Topr
–40 to +85
V
V
mV
V
V
ns
ns
°C
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
–1–
E97310-PS
CXD3300R
Block Diagram
VIN 38
VRT 28
VRTC
29
VRTS 27
AAA
AAAA
AAA
AAAA
AAAA
AAAAAA AAAAAAA
AAAA
AAA
AAA
AAA
AAAAAA
AAA
AAAA
AAA AAAAAAA
AAA
AAA
AAA
AAA
AAAA
AAA
AAA
AAA
AAAA
AAA AAAAAAAAAA
AAAA
AAAA AAAAAA
AAAAAA
AAAAAA
S/H
Amp
+
×8
12
–
Coarse
Correction
&
Latch
D9
11 D8
10
D7
9
D6
8
D5
5
D4
4
D3
3
D2
2
D1
1
D0 (LSB)
DAC
VRMC 30
BE
36
VRBS 33
Fine
Comparate
&
Encode
Coarse
Comparate
&
Encode
Fine
Latch
Calibration
Unit
AVSS
AVDD
VRTS
VRT
VRTC
BE
Pin Configuration
VRBC
36 35 34 33 32 31 30 29 28 27 26 25
TSTR 37
VIN
24 CE
38
23
TS 39
OE
22 CLK
AVDD 40
21 AVDD
AVSS 41
20
CAL 42
MINV
19 LINV
AVDD 43
18
TESTMODE
3
4
5
6
7
8
9 10 11 12
D6
–2–
D9
2
D8
1
D5
13 TO
DVDD
14 TIN
DVSS 48
DVSS
DVDD 47
D4
15 RESET
D3
16 AVSS
AVSS 46
D1
AVDD 45
D2
17 AVDD
D0
AT 44
D7
CE 24
Auto
Calibration Pulse
Generator
VRMC
OE 23
18
TESTMODE
42
CAL
15
RESET
Timing Gen.
VRB
CLK 22
19 LINV
VRBS
VRBC 31
20 MINV
AVDD
32
AVSS
VRB
CXD3300R
Pin Description
Pin No.
Symbol
Equivalent circuit
Description
DVDD
1 to 5
8 to 12
D0 (LSB) to D9 (MSB)
output.
D0 to D9
DVSS
6, 48
DVSS
Digital VSS.
7, 47
DVDD
Digital VDD.
13
TO
Test pin.
High impedance when
TS = High.
14
TIN
Test signal input.
Normally fixed to AVDD or
AVSS.
AVDD
15
RESET
Calibration circuit reset and
startup calibration restart.
15
AVSS
16, 25, 34,
41, 46
AVSS
Analog VSS.
17, 21, 26, 35,
AVDD
40, 43, 45
Analog VDD.
AVDD
18
TESTMODE
Test mode.
High: Output state
Low: Output fixed
18
AVSS
AVDD
19
LINV
Output inversion.
High: D0 to D8 are
inverted and output.
Low: D0 to D8 are
normal output.
19
AVSS
–3–
CXD3300R
Pin No.
Symbol
Equivalent circuit
Description
AVDD
20
MINV
Output inversion.
High: D9 is inverted and
output.
Low: D9 is normal output.
20
AVSS
AVDD
22
CLK
Clock.
22
AVSS
AVDD
23
OE
D0 to D9 output enable.
Low: Output state
High: High impedance
state
23
AVSS
AVDD
24
CE
Chip enable.
Low: Active state
High: Standby state
24
AVSS
–4–
CXD3300R
Pin No.
Symbol
Equivalent circuit
Description
AVDD
27
Self-bias.
(Reference top)
VRTS
27
AVSS
AVDD
28
Reference top.
VRT
28
AVSS
AVDD
29
VRTC
Reference top output.
29
AVSS
AVDD
30
Reference middle output.
VRMC
30
AVSS
AVDD
31
Reference bottom output.
VRBC
31
AVSS
AVDD
32
VRB
Reference bottom.
32
AVSS
AVDD
33
Self-bias.
(Reference bottom)
VRBS
33
AVDD
AVSS
36
36
Bias enable.
BE
AVSS
–5–
CXD3300R
Pin No.
Symbol
Equivalent circuit
Description
37
TSTR
Test signal input.
Normally fixed to AVDD or
AVSS.
44
AT
Test signal input.
High impedance when
TS = High.
AVDD
38
VIN
Analog input.
38
AVSS
AVDD
42
CAL
Calibration pulse input.
42
AVSS
39
Test signal input.
Normally fixed to AVDD.
TS
–6–
CXD3300R
Digital Output
The following table shows the correlation between the analog input voltage and the digital output code.
(TESTMODE = 1, LINV, MINV = 0)
Digital output code
Input signal
voltage
Step
VRT
1023
1 1 1 1 1 1 1 1 1 1
512
511
1 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1
0
0 0 0 0 0 0 0 0 0 0
VRB
MSB
LSB
The following table shows the output state for the combination of TESTMODE, LINV, and MINV states.
TESTMODE
LINV
MINV
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
1
1
1
1
0
0
0
0
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
P
N
P
N
1
0
1
0
P
N
P
N
0
1
0
1
P
N
P
N
1
0
1
0
P
N
P
N
0
1
0
1
P
N
P
N
1
0
1
0
P
N
P
N
0
1
0
1
P
N
P
N
1
0
1
0
P
N
P
N
0
1
0
1
P
N
P
N
1
0
1
0
P
P
N
N
0
0
1
1
P: Forward-phase output N: Inverted output
Timing Chart 1
tPW1
tPW0
1.5V
Clock
A
tSD
Analog input
AA
AA
N+1
N
N+2
Data output
N–3
N–2
A
N–1
N+4
N
A
1.5V
Timing Chart 2
A
A
N+3
tDL
: Indicates point at which analog data is sampled
tPZE
tPEZ
1.5V
1.5V
Output enable (OE)
1.5V
Data output
Active
High Impedance
–7–
Active
CXD3300R
Electrical Characteristics
(Fc = 20MSPS, AVDD = 3V, DVDD = 3V, VRB = 1V, VRT = 2V, Ta = 25°C)
Item
Symbol
Maximum conversion rate
Fc max
Minimum conversion rate
Fc min
Supply current
Standby
current
Analog
IADD
Digital
IDDD
Analog
IAST
Digital
IDST
Reference pin current 1
IRT1
IRB1
IRT2
Conditions
FIN = 1.0kHz sine wave input
FIN = 1.0kHz sine wave input
BE = High
VRTS, VRBS: Open
Between VRT and VRB
Analog input band
BW
–1dB
Analog input capacitance
CIN
Reference resistance
value 1
RREF1
Between VRTS and VRT, VRT
and VRB, VRB and VRBS
Reference resistance
value 2
RREF2
EOT1
Offset voltage2
Digital input voltage
Analog input current
Digital input current
Digital output current
Digital output current
EOB1
EOT2
EOB2
11
14
17
1.0
4
1.0
µA
87
97
111
–111
97
–87
1.81
2.04
2.33
–2.33
–2.04
1.81
10
pF
10.3k
11.5k
Ω
Between VRTC and VRBC
430
490
550
Ω
BE = AVDD
EOT1 = Theoretical value – Measured value
EOB1 = Measured value – Theoretical value
–30
+5
+40
–30
+5
+40
BE = AVSS
EOT2 = Theoretical value – Measured value
EOB2 = Measured value – Theoretical value
–30
+5
+40
–20
+10
+40
AVDD = 2.7 to 3.3V
0.7AVDD
0.2AVDD
55
AIL
VIN = 1V
–55
–48
–40
IIH
IOZL
mA
MHz
48
IOZH
µA
85
40
IOL
mA
mA
VIN = 2V
IOH
MSPS
3.0
AIH
IIL
Unit
9k
VIH
VIL
Max.
20
CE = AVDD
IRB2
Offset voltage1
Typ.
0.5
BE = AVDD
Between VRTC and VRBC
Reference pin current 2
Min.
AVDD = 3.3V
VIH = AVDD
5
VIL = AVSS
5
OE = AVSS VOH = DVDD – 0.4V
DVDD = 2.7V VOL = 0.4V
1.0
mV
mV
V
µA
µA
mA
1.0
1
OE = AVDD VOH = DVDD
DVDD = 3.3V VOL = 0V
1
µA
Tri-state output disable
time
tPEZ
Clock not synchronized for
active → high impedance
6
8
10
ns
Tri-state output enable
time
tPZE
Clock not synchronized for
high impedance → active
3
5
7
ns
Integral nonlinearity error
EL
±1.0
±3.0
LSB
Differential nonlinearity
error
ED
±0.5
±1.0
LSB
–8–
CXD3300R
Item
Symbol
Differential gain error
DG
Differential phase error
DP
Output data delay
tDL
tSD
Sampling delay
SNR
SFDR
SNR
SFDR
Conditions
Min.
NTSC 40 IRE mod
ramp, Fc = 14.3MSPS
CL = 3pF, Ta = –40 to +85°C
Typ.
Unit
1.0
%
0.3
deg
6
9
18
ns
6
7
8
ns
FIN = 100kHz
50
FIN = 500kHz
50
FIN = 1MHz
50
FIN = 3MHz
50
FIN = 7MHz
45
FIN = 10MHz
44
FIN = 100kHz
52
FIN = 500kHz
52
FIN = 1MHz
52
FIN = 3MHz
52
FIN = 7MHz
49
FIN = 10MHz
50
–9–
Max.
dB
dB
CXD3300R
Application Circuit 1
When not using self-bias and the internal bias circuits, and supplying the reference voltage from an external
source.
1V
2V
AVDD
AVDD
AVSS
AVDD 21
41 AVSS
MINV 20
42 CAL
LINV 19
TESTMODE 18
48 DVSS
TO 13
1
2
3
4
D6
TIN 14
D5
47 DVDD
DVDD
RESET 15
D4
46 AVSS
DVSS
AVSS 16
D3
AVDD 17
D2
44 AT
45 AVDD
D1
DVSS
AVSS
40 AVDD
D0
DVDD
AVDD
CLK 22
43 AVDD
AVSS
VRTS
VRT
VRTC
VRMC
VRB
VRBC
OE 23
39 TS
5
6
7
8
9 10 11 12
Clock
input
AVDD
Reset
pulse
AVSS
D9
Calibration
pulse
CE 24
38 VIN
D7
Signal input
D8
1.0V
AVSS
BE
37 TSTR
VRBS
2.0V
AVDD
36 35 34 33 32 31 30 29 28 27 26 25
AVDD
: 0.1µF
DVSS
DVDD
Digital output
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
– 10 –
CXD3300R
Application Circuit 2
When not using self-bias circuit, using only the internal bias circuit, and supplying the reference voltage from
an external source.
2V
1V
AVDD
AVDD
AVSS
AVSS
40 AVDD
AVDD 21
41 AVSS
MINV 20
42 CAL
LINV 19
TESTMODE 18
TIN 14
48 DVSS
TO 13
D6
47 DVDD
D5
RESET 15
DVDD
46 AVSS
DVSS
AVSS 16
D4
45 AVDD
D3
AVDD 17
D2
44 AT
D1
DVSS
AVSS
CLK 22
D0
DVDD
AVDD
39 TS
43 AVDD
AVSS
VRTS
VRT
VRTC
VRBC
VRMC
VRB
OE 23
1
2
3
4
5
6
7
8
9 10 11 12
Clock
input
AVDD
Reset
pulse
AVSS
D9
Calibration
pulse
CE 24
38 VIN
D8
Signal input
D7
1.0V
VRBS
BE
37 TSTR
AVSS
2.0V
AVDD
36 35 34 33 32 31 30 29 28 27 26 25
AVDD
: 0.1µF
DVSS
DVDD
Digital output
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
– 11 –
CXD3300R
Application Circuit 3
When using the self-bias and internal bias circuits, and supplying the reference voltage.
AVDD
AVDD
AVSS
AVSS
AVDD 21
41 AVSS
MINV 20
42 CAL
LINV 19
TESTMODE 18
TO 13
1
2
3
4
5
6
D6
TIN 14
48 DVSS
DVDD
47 DVDD
D5
RESET 15
DVSS
46 AVSS
D4
AVSS 16
D3
AVDD 17
D1
44 AT
45 AVDD
D2
DVSS
AVSS
40 AVDD
D0
DVDD
AVDD
VRT
CLK 22
43 AVDD
AVSS
VRTS
VRTC
VRBC
VRMC
VRB
OE 23
39 TS
7
8
9 10 11 12
Clock
input
AVDD
Reset
pulse
AVSS
D9
Calibration
pulse
CE 24
38 VIN
D8
Signal input
D7
1.0V
VRBS
BE
37 TSTR
AVSS
2.0V
AVDD
36 35 34 33 32 31 30 29 28 27 26 25
AVDD
: 0.1µF
DVSS
DVDD
Digital output
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
– 12 –
CXD3300R
1. Calibration function
1) Activating startup calibration
To achieve superior linearity, the CXD3300R has a built-in calibration circuit. When using this IC, therefore,
startup calibration must be activated when the power supply and reference voltage have risen and stabilized.
Care should be taken as only the upper five bits may be output in the worst case if startup calibration is not
activated.
Startup calibration can be activated either at the rise of the RESET pin (Pin 15) or at the fall of the CE pin (Pin
24). The startup calibration activation method for each case is shown in Fig. 1.
a) When using RESET
[V]
0
CE
[V]
AVDD
3
RESET
b) When using CE
VRT
VRT
VRB
VRB
0
[t]
H
RESET
L
H
CE
L
Startup
calibration
AVDD
3
[t]
H
L
H
L
Startup
calibration
33,000 CLK
33,000 CLK
Fig. 1. Startup Calibration Activation Methods
As shown in the figure above, startup calibration must be activated after the supply voltage has risen and
stabilized (full scale of 90% or more). After activation, startup calibration is performed for an interval of about
33,000 clocks. Therefore, care should be taken as the output data during this interval (about 2.3ms at
14.3MHz) cannot be used.
2) Calibration pulse supply
The IC's operating status with changes due to fluctuations in the supply voltage and ambient temperature
during use can be constantly monitored and then compensated appropriately by inputting a pulse at regular
intervals to the CAL pin (Pin 41). Fig. 2 shows the timing chart.
10ns or more
7 clocks
CLK
CAL
D0 to D9
1 clock or more
N–3 N–2
N–1
Fig. 2. Calibration Timing Chart
– 13 –
N
N+5
CXD3300R
Calibration starts when the fall of the pulse input to the CAL pin (Pin 41) is detected at the clock rise. At this
time, the comparator is used in an exclusive manner for a four clock interval. So, the output data holds the
immediately previous data for a four clock interval after seven clocks from the rise of the clock where the fall of
the calibration pulse was detected, and then the data during this interval is missing.
Therefore, the effects of this function can be avoided by inputting a sync or other signal as the calibration pulse
so that calibration is performed outside of the interval of the actually used video signal. An input example is
shown below.
[1] Input every H sync
Input
CLK
CAL
[2] Input every V sync
Input
CLK
RESET
CAL
2. Latch-up
Ensure that the AVDD and DVDD pins share the same power supply on a board to prevent latch-up which may
be caused by power-ON time lag.
3. Board
To obtain full-expected performance from this IC, be sure that the mounting board has a large ground pattern
for lower impedance. It is recommended that the IC be mounted on a board without using a socket to evaluate
its characteristics adequately.
– 14 –
CXD3300R
Example of Representative Characteristics
Maximum operating frequency vs.
Ambient temperature
Supply current vs. Ambient temperature
20
38
Maximum operating frequency [MHz]
Supply current [mA]
AVDD = 3.0V
DVDD = 3.0V
Fc = 20MHz
fIN = 1kHz sine wave
18
16
14
AVDD = 3.0V
DVDD = 3.0V
Fc = 20MHz
fIN = 1kHz sine wave
36
34
32
–40
0
25
50
85
–40
Ambient temperature [°C]
25
50
85
Ambient temperature [°C]
Output data delay vs. Ambient temperature
Sampling delay vs. Ambient temperature
8
Sampling delay [ns]
11
Output data delay [ns]
0
10
9
6
4
AVDD = 3.0V
DVDD = 3.0V
Fc = 2MHz
CL = 30pF
AVDD = 3.0V
DVDD = 3.0V
Fc = 2MHz
8
2
–40
0
25
50
85
–40
Ambient temperature [°C]
0
25
50
85
Ambient temperature [°C]
VRTC vs. Ambient temperature
VRBC vs. Ambient temperature
2.0
1.20
AVDD = 3.0V
DVDD = 3.0V
Fc = 20MHz
fIN = 1kHz sine wave
1.15
VRBC [V]
VRTC [V]
1.95
1.90
1.10
AVDD = 3.0V
DVDD = 3.0V
Fc = 20MHz
fIN = 1kHz sine wave
1.85
–40
1.05
0
25
50
85
–40
Ambient temperature [°C]
0
25
50
Ambient temperature [°C]
– 15 –
85
CXD3300R
SNR vs. Analog input frequency
SFDR vs. Analog input frequency
70
70
AVDD = 3.0V
DVDD = 3.0V
Fc = 20MHz
VIN = 1Vp-p
Ta = 25°C
AVDD = 3.0V
DVDD = 3.0V
Fc = 20MHz
VIN = 1Vp-p
Ta = 25°C
60
SNR [dB]
SFDR [dB]
60
50
50
40
100k
1M
40
100k
100M
Analog input frequency [Hz]
1M
100M
Analog input frequency [Hz]
Effective bit vs. Analog input frequency
Analog input band
1
8
Output level [dB]
Effective bit [bit]
0
7
AVDD = 3.0V
DVDD = 3.0V
Fc = 20MHz
VIN = 1Vp-p
Ta = 25°C
6
100k
–1
AVDD = 3.0V
DVDD = 3.0V
Fc = 20MHz
VIN = 1Vp-p
Ta = 25°C
–2
–3
1M
5M
100M
10M
50M
75M
85M
Analog input frequency [Hz]
Analog input frequency [Hz]
– 16 –
100M
CXD3300R
Package Outline
Unit: mm
48PIN LQFP (PLASTIC)
9.0 ± 0.2
∗
7.0 ± 0.1
36
S
25
13
0.5 ± 0.2
B
A
48
(8.0)
24
37
(0.22)
12
1
+ 0.05
0.127 – 0.02
0.5
+ 0.08
0.18 – 0.03
+ 0.2
1.5 – 0.1
0.13 M
0.1
S
0.5 ± 0.2
(0.18)
0° to 10°
DETAIL B:SOLDER
DETAIL A
0.18 ± 0.03
0.127 ± 0.04
+ 0.08
0.18 – 0.03
(0.127)
+0.05
0.127 – 0.02
0.1 ± 0.1
DETAIL B:PALLADIUM
NOTE: Dimension “∗” does not include mold protrusion.
PACKAGE STRUCTURE
PACKAGE MATERIAL
EPOXY RESIN
SONY CODE
LQFP-48P-L01
LEAD TREATMENT
SOLDER/PALLADIUM
PLATING
EIAJ CODE
LQFP048-P-0707
LEAD MATERIAL
42/COPPER ALLOY
PACKAGE MASS
0.2g
JEDEC CODE
– 17 –