LTC5576 - 3GHz to 8GHz High Linearity Active Upconverting Mixer

LTC5576
3GHz to 8GHz
High Linearity Active
Upconverting Mixer
Description
Features
25dBm OIP3
nn –0.6dB Conversion Gain
nn 14.1dB Noise Figure at 5.8GHz
nn –154dBm/Hz Output Noise Floor
nn Low LO-RF Leakage
nn 0dBm LO Drive
nn Broadband 50Ω Matched Input
nn High Input P1dB: 10dBm at 5V
nn 5V or 3.3V Supply at 99mA
nn Single-Ended Output and LO Input
nn Enable Pin
nn –40°C to 105°C Operation (T )
C
nn 16-Lead (4mm × 4mm) QFN Package
The LTC®5576 is a high linearity active mixer optimized for
upconverting applications requiring wide input bandwidth,
low distortion and low LO leakage. The integrated output
transformer is optimized for 4GHz to 6GHz applications,
but is easily retuned for output frequencies as low as 3GHz,
or as high as 8GHz, with minor performance degradation.
The input is optimized for use with 1:1 transmission-line
baluns, allowing very wideband impedance matching.
nn
The LO input port is single-ended and requires only 0dBm
of LO power to achieve excellent distortion and noise performance while also reducing circuit requirements. The
LTC5576 offers low LO leakage, reducing the demands
of output filtering to meet LO suppression requirements.
The LTC5576 is optimized for 5V but can also be used
with a 3.3V supply with slightly reduced performance. The
enable function allows the part to be easily shut down for
further power savings.
Applications
Wideband Transmitters
4G and 5G Wireless Infrastructure
nn Fixed Wireless Access Equipment
nn Wireless Repeaters
nn
nn
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear
Technology Corporation. All other trademarks are the property of their respective owners.
Typical Application
100pF
OIP3 and Conversion Gain vs
Output Frequency (LSLO)
0.3pF
LO
50Ω
TC1-1-13M
1:1
100pF
100pF
LO
IN+
IN–
LGND
EN
OUT
BIAS
0.2pF
VCC
OUT
50Ω
25
10
20
15
fIN = 456MHz
fIN = 900MHz
OIP3
GC
10
5
0
–5
TC = 25°C, OUTPUT TUNED FOR EACH BAND
5
–10
3000
4000
5000
6000
7000
8000
OUTPUT FREQUENCY (MHz)
IADJ
2.61k
EN
15
GAIN (dB)
IN
50Ω
TEMP
OIP3 (dBm)
TEMPERATURE
MONITOR
30
5576 TA01b
5V
10nF
1µF
5576 TA01a
5576fa
For more information www.linear.com/LTC5576
1
LTC5576
Absolute Maximum Ratings
Pin Configuration
(Note 1)
Supply Voltage (VCC)...................................................6V
Enable Voltage..................................–0.3V to VCC + 0.3V
IADJ Pin Voltage...........................................–0.3 to 2.7V
LO Input Power (1GHz to 8GHz).......................... +10dBm
IN+, IN– Input Power (30MHz to 6GHz)............... +15dBm
TEMP Input Current................................................10mA
Operating Temperature Range (TC)......... –40°C to 105°C
Junction Temperature (TJ)..................................... 150°C
Storage Temperature Range................... –65°C to 150°C
GND
GND
LO
TP
TOP VIEW
16 15 14 13
12 GND
TEMP 1
IN+ 2
11 GND
17
IN– 3
10 OUT
LGND 4
7
EN
VCC
GND
8
IADJ
6
VCC
9
5
UF PACKAGE
16-LEAD (4mm × 4mm) PLASTIC QFN
TJMAX = 150°C, θJC = 6°C/W
EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB
Order Information
(http://www.linear.com/product/LTC5576#orderinfo)
LEAD FREE FINISH
TAPE AND REEL
PART MARKING
PACKAGE DESCRIPTION
CASE TEMPERATURE RANGE
LTC5576IUF#PBF
LTC5576IUF#TRPBF
5576
16-Lead (4mm × 4mm) Plastic QFN
–40°C to 105°C
Consult LTC Marketing for parts specified with wider operating temperature ranges.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through
designated sales channels with #TRMPBF suffix.
DC Electrical Characteristics
The l denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at TC = 25°C, VCC = 5V. Test circuit shown in Figure 1. (Note 2)
PARAMETER
CONDITIONS
Supply Voltage (VCC)
5V Supply
3.3V Supply
Supply Current
5V, R1 = 2.61kΩ
3.3V, R1 = 649Ω
Shutdown (EN = Low)
l
l
MIN
TYP
MAX
UNITS
4.5
3.1
5
3.3
5.3
3.5
V
V
99
85
1.3
112
mA
mA
mA
Enable Logic Input (EN)
EN Input High Voltage (On)
1.8
V
EN Input Low Voltage (Off)
EN Input Current
–0.3V to VCC + 0.3V
–20
0.5
V
200
µA
Turn-On Time
0.6
µs
Turn-Off Time
0.6
µs
Open Circuit DC Voltage
1.8
V
Short Circuit DC Current
1.9
mA
mV
mV
Current Adjust Pin (IADJ)
Temperature Sensing Diode (TEMP)
DC Voltage at TJ = 25°C
IIN = 10μA
IIN = 80μA
697
755
Voltage Temperature Coefficient
IIN = 10μA
IIN = 80μA
–1.80
–1.61
2
mV/°C
mV/°C
5576fa
For more information www.linear.com/LTC5576
LTC5576
AC Electrical Characteristics
The l denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at TC = 25°C. VCC = 5V, EN = High, PLO = 0dBm. Test circuit shown in Figure 1.
(Notes 2, 3)
PARAMETER
CONDITIONS
MIN
TYP
MAX
LO Input Frequency Range
External Matching Required
l
1 to 8
Input (IN) Frequency Range
External Matching Required
l
0.03 to 6
GHz
Output (OUT) Frequency Range
External Matching Required
l
3 to 8
GHz
Input Return Loss
ZO = 50Ω
>10
dB
LO Input Return Loss
ZO = 50Ω
LO Input Power
Single-Ended
LO to IN Leakage
fLO = 1GHz to 8GHz
≤–30
dBm
IN to LO Isolation
fIN = 0.1GHz to 6GHz
>35
dB
GHz
>10
l
–6
0
UNITS
dB
6
dBm
AC Electrical Characteristics
The l denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at TC = 25°C. VCC = 5V, EN = High, PIN = –10dBm (–10dBm/Tone for 2-tone tests, ∆f =
2MHz), PLO = 0dBm, unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3 and 4)
5V Upmixer Application: Low Side LO, PLO, = 0dBm, PIN = –10dBm
PARAMETER
CONDITIONS
MIN
TYP
Conversion Gain
fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz
fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz
fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz
–1.5
–0.6
–0.6
–2.0
Conversion Gain vs Temperature
TC = –40°C to 105°C, fOUT = 5.8GHz
–0.009
dB/°C
Output 3rd Order Intercept
fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz
fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz
fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz
25
25
25
dBm
dBm
dBm
SSB Noise Figure
fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz
fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz
fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz
12.4
14.1
17.5
dB
dB
dB
SSB Noise Floor at PIN = 5dBm
fIN = 1GHz, fOUT = 5801MHz, fLO = 4899MHz
–154
dBm/Hz
Input 1dB Compression
fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz
fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz
fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz
10.8
10.4
10.3
dBm
dBm
dBm
LO-OUT Leakage
fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz
fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz
fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz
–36
–35
–28
dBm
dBm
dBm
IN to OUT Isolation
fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz
fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz
fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz
70
38
35
dB
dB
dB
l
MAX
UNITS
dB
dB
dB
5576fa
For more information www.linear.com/LTC5576
3
LTC5576
AC Electrical Characteristics
The l denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at TC = 25°C. VCC = 3.3V, EN = High, PIN = –10dBm (–10dBm/Tone for 2-tone tests, ∆f
= 2MHz), PLO = 0dBm, unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3 and 4)
3.3V Upmixer Application: Low Side LO, PLO, = 0dBm, PIN = –10dBm
PARAMETER
CONDITIONS
MIN
Conversion Gain
fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz
fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz
fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz
TYP
–0.6
–0.6
–2.0
MAX
UNITS
dB
dB
dB
Conversion Gain vs Temperature
TC = –40°C to 105°C, fOUT = 5.8 GHz
–0.009
dB/°C
Output 3rd Order Intercept
fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz
fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz
fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz
21
23
19
dBm
dBm
dBm
SSB Noise Figure
fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz
fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz
fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz
11.5
12.8
17.8
dB
dB
dB
SSB Noise Floor at PIN = 5dBm
fIN = 1GHz, fOUT = 5801MHz, fLO = 4899MHz
–154
dBm/Hz
Input 1dB Compression
fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz
fIN = 900MHz, fOUT = 5.8GHz, fLO =4.9GHz
fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz
8.4
8.5
8.1
dBm
dBm
dBm
LO-OUT Leakage
fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz
fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz
fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz
–39
–36
–27
dBm
dBm
dBm
IN to OUT Isolation
fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz
fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz
fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz
70
38
33
dB
dB
dB
Note 1: Stresses beyond those listed under Absolute Maximum Ratings
may cause permanent damage to the device. Exposure to any Absolute
Maximum Rating condition for extended periods may affect device
reliability and lifetime.
Note 2: The LTC5576 is guaranteed functional over the –40°C to 105°C
case temperature range.
4
l
Note 3: SSB noise figure measured with a small-signal noise source,
bandpass filter and 3dB matching pad on IN port, and bandpass filter on
the LO input.
Note 4: Specified performance includes all external component and
evaluation PCB losses.
5576fa
For more information www.linear.com/LTC5576
LTC5576
Typical DC Performance Characteristics
5V Supply Current vs Supply
Voltage
3.3V Supply Current vs Supply
Voltage
110
R1 = 2.61k
105
105
100
100
SUPPLY CURRENT (mA)
SUPPLY CURRENT (mA)
110
95
90
85
80
TC = 105°C
85°C
25°C
–40°C
75
70
4.5
(Test Circuit shown in Figure 1)
4.7
4.9
5.1
SUPPLY VOLTAGE (V)
R1 = 649Ω
TC = 105°C
85°C
25°C
–40°C
95
90
85
80
75
70
5.3
3
3.1
3.2
3.3
3.4
SUPPLY VOLTAGE (V)
3.5
3.6
5576 G02
5576 G01
Typical AC Performance Characteristics
5V, 5800MHz Output Frequency:
TC = 25°C. VCC = 5V, EN = High, PIN = –10dBm (–10dBm/Tone for 2-tone tests, ∆f = 2MHz), PLO = 0dBm, fIN = 900MHz, unless
otherwise noted.
Test circuit shown in Figure 1.
Conversion Gain Distribution
TC = 105°C
TC = 25°C
TC = –40°C
30
25
20
15
10
25
15
10
5
5
0
–1.5
Noise Figure Distribution
30
TC = 105°C
TC = 25°C
TC = –40°C
20
DISTRIBUTION (%)
DISTRIBUTION (%)
OIP3 Distribution
25
DISTRIBUTION (%)
35
–1
–0.5
GAIN (dB)
0
1.5
5576 G03
0
TC = 105°C
TC = 25°C
TC = –40°C
20
15
10
5
18
20
22
24
26
OIP3 (dBm)
28
30
5576 G04
0
12.5
13.5
14.5
15.5
NF (dB)
5576 G05
5576fa
For more information www.linear.com/LTC5576
5
LTC5576
Typical AC Performance Characteristics
5V, 3500MHz Output Frequency:
TC = 25°C. VCC = 5V, EN = High, PIN = –10dBm (–10dBm/Tone for 2-tone tests, ∆f = 2MHz), PLO = 0dBm, fIN = 456MHz, fLO = fOUT – fIN,
unless otherwise noted. Test circuit shown in Figure 1.
Conversion Gain and OIP3 vs
Output Frequency
30
30
25
OIP3
GAIN (dB), OIP3 (dBm)
25
20
15
NF
10
TC = 105°C
85°C
25°C
–40°C
5
GC
0
–5
0
500
1000 1500 2000 2500
INPUT FREQUENCY (MHz)
OIP3
TC = 105°C
85°C
25°C
–40°C
15
5
3200
3400
3600
3800
OUTPUT FREQUENCY (MHz)
–80
500
NF
15
10
TC = 105°C
85°C
25°C
–40°C
5
GC
–6
–4
–2
0
2
LO POWER (dBm)
4
PLO = –6dBm
–4dBm
–2dBm
0dBm
6dBm
–154
–156
–158
–162
–20
–15
–10
–5
INPUT POWER (dBm)
0
2-Tone IM3 Level vs Output
Power Level
–10
–20
15
10
ISOLATION (dB)
–60
–70
70
60
50
40
30
TC = 105°C
85°C
25°C
–40°C
20
–80
10
5
5576 G12
TC = 105°C
85°C
25°C
–40°C
5
GC
0
4.6
4.7 4.8 4.9 5
5.1
SUPPLY VOLTAGE (V)
0
5.2
5.3
5576 G11
30
80
–50
NF
Conversion Gain, OIP3, NF and
IP1dB vs Case Temperature
90
–40
–10
–5
0
OUTPUT POWER (dBm/TONE)
20
–5
4.5
5
100
–30
–90
–15
25
IN-OUT Isolation vs Input
Frequency
TC = 105°C
85°C
25°C
–40°C
3500
OIP3
5576 G10
5576 G09
0
1500 2000 2500 3000
LO FREQUENCY (MHz)
Conversion Gain, OIP3 and NF vs
Supply Voltage
30
–160
6
1000
5576 G08
GAIN AND NF (dB), OIP3 (dBm)
NOISE FLOOR (dBm/Hz)
GAIN AND NF (dB), OIP3 (dBm)
4000
fOUT = 3663MHz
fNOISE = 3581MHz
–152 fLO = 3201MHz
20
LO-IN
–70
–150
OIP3
0
IM3 LEVEL (dBc)
–50
Output Noise Floor vs Input Power
25
LO-OUT
–40
5576 G07
35
6
–30
–60
GC
–5
3000
Conversion Gain, OIP3 and NF vs
LO Input Power
–5
–20
10
5576 G06
30
TC = 25°C
–10
20
0
3000
LO Leakage vs LO Frequency
0
LO LEAKAGE (dBm)
35
0
500
1000 1500 2000 2500
INPUT FREQUENCY (MHz)
3000
5576 G13
GAIN AND NF (dB), OIP3 AND IP1dB (dBm)
GAIN AND NF (dB), OIP3 (dBm)
Conversion Gain, OIP3 and NF vs
Input Frequency
25
OIP3
20
15
10
NF
IP1dB
5
0
–5
–45
GC
–15
15
45
75
CASE TEMPERATURE (°C)
105
5576 G14
5576fa
For more information www.linear.com/LTC5576
LTC5576
Typical AC Performance Characteristics
5V, 5800MHz Output Frequency:
TC = 25°C. VCC = 5V, EN = High, PIN = –10dBm (–10dBm/Tone for 2-tone tests, ∆f = 2MHz), PLO = 0dBm, fIN = 900MHz, fLO = fOUT – fIN,
unless otherwise noted. Test circuit shown in Figure 1.
Conversion Gain and OIP3 vs
Output Frequency
35
35
30
30
20
NF
15
TC = 105°C
85°C
25°C
–40°C
10
5
GC
0
–5
0
OIP3
800 1200 1600 2000
INPUT FREQUENCY (MHz)
–10
20
15
10
5
GC
–5
4500
2400
TC = 105°C
85°C
25°C
–40°C
5000 5500 6000 6500 7000
OUTPUT FREQUENCY (MHz)
Conversion Gain, OIP3 and NF vs
LO Input Power
LO-IN
–50
7500
–60
3300
20
NF
TC = 105°C
85°C
25°C
–40°C
10
5
GC
–6
–4
–2
0
2
LO POWER (dBm)
4
–156
–158
–160
6
–162
–20
–20
–10
–5
INPUT POWER (dBm)
0
5
ISOLATION (dB)
40
30
TC = 105°C
85°C
25°C
–40°C
10
–80
5
5576 G21
4.6
4.7 4.8 4.9
5 5.1
SUPPLY VOLTAGE (V)
0
5.2
5.3
5576 G20
35
20
–70
GC
Conversion Gain, OIP3, NF and
IP1dB vs Case Temperature
50
–60
TC = 105°C
85°C
25°C
–40°C
10
–5
4.5
5
60
–50
–10
–5
0
OUTPUT POWER (dBm/TONE)
–15
70
TC = 105°C
85°C
25°C
–40°C
–40
NF
15
IN-OUT Isolation vs Input
Frequency
–30
–90
–15
20
5576 G19
2-Tone IM3 Level vs Output
Power Level
–10
OIP3
25
0
5576 G18
0
30
PLO = –6dBm
–4dBm
–2dBm
0dBm
6dBm
–154
5800
Conversion Gain, OIP3 and NF vs
Supply Voltage
0
500
1000
1500
2000
INPUT FREQUENCY (MHz)
2500
5576 G22
GAIN AND NF (dB), OIP3 AND IP1dB (dBm)
15
4300
4800
5300
LO FREQUENCY (MHz)
5576 G17
GAIN AND NF (dB), OIP3 (dBm)
OIP3
25
3800
35
fOUT = 5899MHz
fNOISE = 5801MHz
–152 fLO = 4899MHz
NOISE FLOOR (dBm/Hz)
GAIN AND NF (dB), OIP3 (dBm)
–40
–150
0
IM3 LEVEL (dBc)
LO-OUT
–30
Output Noise Floor vs Input Power
35
–5
–20
5576 G16
5576 G15
30
TC = 25°C
25
0
400
LO Leakage vs LO Frequency
0
LO LEAKAGE (dBm)
OIP3
25
GAIN (dB), OIP3 (dBm)
GAIN AND NF (dB), OIP3 (dBm)
Conversion Gain, OIP3 and NF vs
Input Frequency
30
OIP3
25
20
15
10
5
0
–5
–45
NF
IP1dB
GC
–15
15
45
75
CASE TEMPERATURE (°C)
105
5576 G23
5576fa
For more information www.linear.com/LTC5576
7
LTC5576
Typical AC Performance Characteristics
5V, 8000MHz Output Frequency:
TC = 25°C. VCC = 5V, EN = High, PIN = –10dBm (–10dBm/Tone for 2-tone tests, ∆f = 2MHz), PLO = –4dBm, fIN = 900MHz, fLO = fOUT – fIN,
unless otherwise noted. Test circuit shown in Figure 1.
Conversion Gain and OIP3 vs
Output Frequency
30
30
25
25
20
NF
TC = 105°C
85°C
25°C
–40°C
5
GC
0
–5
0
20
15
10
TC = 105°C
85°C
25°C
–40°C
5
800 1200 1600 2000
INPUT FREQUENCY (MHz)
–5
7400
2400
5576 G24
25
NF
10
TC = 105°C
85°C
25°C
–40°C
5
–5
–6
–4
–2
0
2
LO POWER (dBm)
4
PLO = –6dBm
–4dBm
–2dBm
0dBm
6dBm
–152
–154
6
–158
–20
–15
–10
–5
INPUT POWER (dBm)
0
5
–60
–70
30
25
20
15
TC = 105°C
85°C
25°C
–40°C
5
–10
–5
0
OUTPUT POWER (dBm/TONE)
5
5576 G30
8
35
10
–80
0
8000
Conversion Gain, OIP3 and NF vs
Supply Voltage
OIP3
25
20
NF
15
10
TC = 105°C
85°C
25°C
–40°C
5
GC
0
–5
4.5
4.6
4.7 4.8 4.9
5 5.1
SUPPLY VOLTAGE (V)
5.2
5.3
5576 G29
30
40
–50
6400 6800 7200 7600
LO FREQUENCY (MHz)
Conversion Gain, OIP3, NF and
IP1dB vs Case Temperature
45
–40
6000
5576 G26
50
TC = 105°C
85°C
25°C
–40°C
–30
–90
–15
–60
5600
IN-OUT Isolation vs Input
Frequency
ISOLATION (dB)
IM3 LEVEL (dBc)
–20
LO-IN
5576 G28
2-Tone IM3 Level vs Output
Power Level
–10
–40
30
5576 G27
0
8600
–156
GC
0
7600 7800 8000 8200 8400
OUTPUT FREQUENCY (MHz)
fOUT = 8094MHz
fNOISE = 7997MHz
fLO = 7094MHz
–150
NOISE FLOOR (dBm/Hz)
GAIN AND NF (dB), OIP3 (dBm)
–148
OIP3
15
–30
Output Noise Floor vs Input Power
20
LO-OUT
5576 G25
Conversion Gain, OIP3 and NF vs
LO Input Power
30
–20
–50
GC
0
400
TC = 25°C
–10
GAIN AND NF (dB), OIP3 (dBm)
10
OIP3
0
400
800 1200 1600 2000
INPUT FREQUENCY (MHz)
2400
5576 G31
GAIN AND NF (dB), OIP3 AND IP1dB (dBm)
15
LO Leakage vs LO Frequency
0
LO LEAKAGE (dBm)
OIP3
GAIN (dB), OIP3 (dBm)
GAIN AND NF (dB), OIP3 (dBm)
Conversion Gain, OIP3 and NF vs
Input Frequency
25
20
OIP3
NF
15
10
IP1dB
5
0
–5
–45
GC
–15
15
45
75
CASE TEMPERATURE (°C)
105
5576 G32
5576fa
For more information www.linear.com/LTC5576
LTC5576
Typical AC Performance Characteristics
3.3V, 3500MHz Output Frequency:
TC = 25°C. VCC = 3.3V, EN = High, PIN = –10dBm (–10dBm/Tone for 2-tone tests, ∆f = 2MHz), PLO = 0dBm, fIN = 456MHz, fLO = fOUT – fIN,
unless otherwise noted. Test circuit shown in Figure 1.
Conversion Gain, OIP3 and NF vs
Input Frequency
Conversion Gain and OIP3 vs
Output Frequency
20
NF
TC = 105°C
85°C
25°C
–40°C
5
GC
0
–5
0
500
1000 1500 2000 2500
INPUT FREQUENCY (MHz)
25
–10
OIP3
15
10
5
GC
0
–5
3000
3000
5576 G33
20
NF
10
TC = 105°C
85°C
25°C
–40°C
GC
0
–5
–6
–4
4
6
3200
3400
3600
3800
OUTPUT FREQUENCY (MHz)
–156
–158
–160
–164
–20
–15
–10
–5
INPUT POWER (dBm)
–50
–60
15
40
30
10
5576 G39
NF
10
TC = 105°C
85°C
25°C
–40°C
5
GC
0
3
3.1
3.2
3.3
3.4
SUPPLY VOLTAGE (V)
3.5
0
TC = 105°C
85°C
25°C
–40°C
0
500
3.6
5576 G38
25
50
–80
5
OIP3
Conversion Gain, OIP3, NF and
IP1dB vs Case Temperature
60
20
3500
20
–5
5
70
–70
–10
–5
0
OUTPUT POWER (dBm/TONE)
0
80
–40
–90
–15
25
90
–30
1500 2000 2500 3000
LO FREQUENCY (MHz)
Conversion Gain, OIP3 and NF vs
Supply Voltage
100
TC = 105°C
85°C
25°C
–40°C
1000
5576 G35
IN-OUT Isolation vs Input
Frequency
ISOLATION (dB)
IM3 LEVEL (dBc)
–20
–80
500
5576 G37
2-Tone IM3 Level vs Output
Power Level
–10
4000
PLO = –6dBm
–4dBm
–2dBm
0dBm
6dBm
5576 G36
0
LO-IN
–70
–162
–2
0
2
LO POWER (dBm)
LO-OUT
–50
–60
fOUT = 3663MHz
fNOISE = 3581MHz
fLO = 3201MHz
–154
NOISE FLOOR (dBm/Hz)
GAIN AND NF (dB), OIP3 (dBm)
–152
5
–40
Output Noise Floor vs Input Power
OIP3
15
TC = 105°C
85°C
25°C
–40°C
–30
5576 G34
Conversion Gain, OIP3 and NF vs
LO Input Power
25
TC = 25°C
–20
20
GAIN AND NF (dB), OIP3 (dBm)
10
0
1000 1500 2000 2500
INPUT FREQUENCY (MHz)
3000
5576 G39
GAIN AND NF (dB), OIP3 AND IP1dB (dBm)
15
LO Leakage vs LO Frequency
30
LO LEAKAGE (dBm)
OIP3
25
GAIN (dB), OIP3 (dBm)
GAIN AND NF (dB), OIP3 (dBm)
30
OIP3
20
15
NF
10
IP1dB
5
0
–5
–45
GC
–15
15
45
75
CASE TEMPERATURE (°C)
105
5576 G41
5576fa
For more information www.linear.com/LTC5576
9
LTC5576
Typical AC Performance Characteristics
3.3V, 5800MHz Output Frequency:
TC = 25°C. VCC = 3.3V, EN = High, PIN = –10dBm (–10dBm/Tone for 2-tone tests, ∆f = 2MHz), PLO = 0dBm, fIN = 900MHz, fLO = fOUT – fIN,
unless otherwise noted. Test circuit shown in Figure 1.
Conversion Gain, OIP3 and NF vs
Input Frequency
Conversion Gain and OIP3 vs
Output Frequency
20
NF
10
TC = 105°C
85°C
25°C
–40°C
5
GC
0
0
400
800 1200 1600 2000
INPUT FREQUENCY (MHz)
–10
20
15
5
GC
0
–5
4500
2400
TC = 105°C
85°C
25°C
–40°C
10
5000 5500 6000 6500 7000
OUTPUT FREQUENCY (MHz)
NF
TC = 105°C
85°C
25°C
–40°C
GC
0
–5
–6
–4
–2
0
2
LO POWER (dBm)
4
–154
PLO = –6dBm
–4dBm
–2dBm
0dBm
6dBm
–156
–158
–160
6
–162
–20
–15
–10
–5
INPUT POWER (dBm)
0
–50
–60
40
30
TC = 105°C
85°C
25°C
–40°C
10
–80
5
5576 G48
NF
15
10
TC = 105°C
85°C
25°C
–40°C
5
GC
0
3
3.1
3.2
3.3
3.4
SUPPLY VOLTAGE (V)
3.5
0
3.6
5576 G47
30
20
–70
10
20
Conversion Gain, OIP3, NF and
IP1dB vs Case Temperature
50
–40
–10
–5
0
OUTPUT POWER (dBm/TONE)
25
–5
5
60
–30
–90
–15
Conversion Gain, OIP3 and NF vs
Supply Voltage
70
TC = 105°C
85°C
25°C
–40°C
5800
5576 G44
IN-OUT Isolation vs Input
Frequency
ISOLATION (dB)
IM3 LEVEL (dBc)
–20
4300
4800
5300
LO FREQUENCY (MHz)
5576 G46
2-Tone IM3 Level vs Output
Power Level
–10
3800
OIP3
5576 G45
0
–60
3300
GAIN AND NF (dB), OIP3 (dBm)
20
LO-IN
30
fOUT = 5899MHz
fNOISE = 5801MHz
fLO = 4899MHz
–152
NOISE FLOOR (dBm/Hz)
GAIN AND NF (dB), OIP3 (dBm)
–150
OIP3
5
7500
Output Noise Floor vs Input Power
30
10
–40
5576 G43
Conversion Gain, OIP3 and NF vs
LO Input Power
15
LO-OUT
–30
–50
5576 G42
25
–20
0
500
1000
1500
2000
INPUT FREQUENCY (MHz)
2500
5576 G49
GAIN AND NF (dB), OIP3 AND IP1dB (dBm)
15
TC = 25°C
OIP3
25
LO LEAKAGE (dBm)
OIP3
25
–5
LO Leakage vs LO Frequency
0
30
GAIN (dB), OIP3 (dBm)
GAIN AND NF (dB), OIP3 (dBm)
30
25
OIP3
20
15
NF
10
5
0
–5
–45
IP1dB
GC
–15
15
45
75
CASE TEMPERATURE (°C)
105
5576 G50
5576fa
For more information www.linear.com/LTC5576
LTC5576
Typical AC Performance Characteristics
3.3V, 8000MHz Output Frequency:
TC = 25°C. VCC = 3.3V, EN = High, PIN = –10dBm (–10dBm/Tone for 2-tone tests, ∆f = 2MHz), PLO = –4dBm, fIN = 900MHz, fLO = fOUT – fIN,
unless otherwise noted. Test circuit shown in Figure 1.
Conversion Gain, OIP3 and NF vs
Input Frequency
30
OIP3
20
NF
15
TC = 105°C
85°C
25°C
–40°C
GC
–5
0
10
800 1200 1600 2000
INPUT FREQUENCY (MHz)
10
TC = 105°C
85°C
25°C
–40°C
5
GC
0
5
400
15
–5
7400
0
2400
7600 7800 8000 8200 8400
OUTPUT FREQUENCY (MHz)
TC = 105°C
85°C
25°C
–40°C
GC
–5
–10
–8
–6
–4
–2
LO POWER (dBm)
0
10
5
2
0
NOISE FLOOR (dBm/Hz)
15
–154
20
–15
–10
–5
INPUT POWER (dBm)
0
15
TC = 105°C
85°C
10
25°C
–40°C
5
5
–5
5
20
10
GC
0
3
3.1
3.2
3.3
3.4
SUPPLY VOLTAGE (V)
Conversion Gain, OIP3, NF and
IP1dB vs Case Temperature
25
45
40
–30
–40
–50
–60
35
30
25
20
15
–70
10
–80
5
–90
–15
0
5
5576 G57
0
3.6
3.5
5576 G56
50
TC = 105°C
85°C
25°C
–40°C
–10
–5
0
OUTPUT POWER (dBm/TONE)
NF
15
IN-OUT Isolation vs Input
Frequency
ISOLATION (dB)
IM3 LEVEL (dBc)
–20
25
5576 G55
2-Tone IM3 Level vs Output
Power Level
–10
30
OIP3
5576 G54
0
Conversion Gain, OIP3 and NF vs
Supply Voltage
–156
–158
–20
8000
25
PLO = –6dBm
–4dBm
–2dBm
0dBm
6dBm
–152
6400 6800 7200 7600
LO FREQUENCY (MHz)
NOISE FIGURE (dB)
20
10
6000
5576 G53
fOUT = 8094MHz
fNOISE = 7997MHz
fLO = 7094MHz
–150
NOISE FIGURE (dB)
GAIN (dB), OIP3 (dBm)
–148
25
NF
LO-IN
–60
5600
GAIN (dB), OIP3 (dBm)
30
20
0
8600
Output Noise Floor vs Input Power
OIP3
5
–40
5576 G52
Conversion Gain, OIP3 and NF vs
LO Input Power
15
LO-OUT
–30
–50
5576 G51
25
–20
TC = 105°C
85°C
25°C
–40°C
0
400
800 1200 1600 2000
INPUT FREQUENCY (MHz)
2400
5576 G58
GAIN AND NF (dB), OIP3 AND IP1dB (dBm)
5
TC = 25°C
–10
LO LEAKAGE (dBm)
15
20
GAIN (dB), OIP3 (dBm)
25
0
0
OIP3
20
10
LO Leakage vs LO Frequency
25
NOISE FIGURE (dB)
GAIN (dB), OIP3 (dBm)
25
Conversion Gain and OIP3 vs
Output Frequency
OIP3
20
NF
15
10
IP1dB
5
0
GC
–5
–45
–15
15
45
75
CASE TEMPERATURE (°C)
105
5576 G59
5576fa
For more information www.linear.com/LTC5576
11
LTC5576
Pin Functions
TEMP (Pin 1): Temperature Monitor. This pin is connected
to the anode of a diode through a 30Ω resistor. It may be
used to measure the die temperature by forcing a current
into the pin and measuring the resulting pin voltage.
a 10nF capacitor located close to the IC. (See the Auto
Supply Voltage Detection and Supply Voltage Ramping
sections for additional information).
IADJ (Pin 8): Bias Current Adjust Pin: This pin allows
adjustment of the internal mixer current by adding an
external pull-down resistor. The typical DC voltage on
this pin is 1.8V. If not used, this pin must be left floating.
IN+, IN– (Pins 2, 3): Differential Signal Input. For optimum
performance these pins should be driven with a differential
signal. The input can be driven single-ended with some
performance degradation by connecting the unused pin
to RF ground through a capacitor. An internally generated
1.6V DC bias voltage is present on these pins, thus DC
blocking is required.
GND (Pins 9, 11, 12, 13, 14, 17 (Exposed Pad)): Ground.
These pins must be soldered to the RF ground plane on the
circuit board. The exposed pad on the package provides
both electrical contact to the ground and a good thermal
contact to the printed circuit board.
LGND (Pin 4): DC Ground Return for the Input Amplifier.
This pin must be connected to a good DC and RF ground.
The typical current from this pin is 64mA. In some applications, an external chip inductor may be used, though
any DC resistance will reduce current in the mixer core,
which could affect performance.
OUT (Pin 10): Single-Ended Output Pin. This pin is connected internally to a single-ended transformer output.
A DC voltage should not be applied to this pin. External
components may be needed for impedance matching.
LO (Pin 15): Single-Ended LO Input. This pin is impedance
matched over a broad frequency range. It is internally
biased at 1.7V, thus a DC blocking capacitor is required.
EN (Pin 5): Enable Pin. The IC is enabled when the applied
voltage on this pin is greater than 1.8V. An applied voltage
less than 0.5V will disable the IC. An internal 300k resistor
pulls this pin low if it is left floating.
TP (Pin 16): Test Pin: This pin is used for production test
purposes only and must be connected to ground.
VCC (Pins 6, 7): Power Supply Pin: These pins should be
connected together on the circuit board and bypassed with
Block Diagram
17
1
2
3
4
GND
EXPOSED
PAD
16
TP
15
14
LO
GND
13
TEMP
GND
GND
LINEAR
AMP
IN+
IN–
GND
OUT
DOUBLEBALANCED
MIXER
LGND
12
LO
AMP
GND
11
10
9
BIAS
5
12
EN
6
VCC
7
VCC
8
IADJ
5576 BD01
5576fa
For more information www.linear.com/LTC5576
LTC5576
Test Circuit
DC2322A
EVALUATION BOARD
STACK-UP
(NELCO 4000-13EP)
LO
50Ω
C4
C5
0.016˝
0.062˝
16
LO
14
13
GND
BIAS
GND
0.016˝
GND
GND 12
TEMP
1
IN
50Ω
TP
15
RF
GND
C1
T1
1:1
2 IN+
LTC5576
GND 11
C3 C2
L1
OUT 10
3 IN–
L2
C6
4 LGND
5
EN
6
VCC
7
VCC
OUT
50Ω
GND 9
IADJ
8
5576 TC01
R1
EN
VCC
C7
REF DES
C8
VALUE
SIZE
VENDOR
C1, C2
1000pF
0402
Murata GRM
C3
See Table
0402
Murata GJM
C4
100pF
0402
Murata GRM
C5
0.3pF
0402
AVX Accu-P
C6
See Table
0402
AVX Accu-P
C7
10nF
0402
Murata GRM
C8
1µF
0603
Murata GRM
L1
See Table
0402
Coilcraft HP
L2
0Ω
0402
Vishay
R1
See Table
0402
Vishay
T1
1:1, 4.5MHz to 3000MHz
AT224-1
Mini-Circuits
OUTPUT FREQUENCY
C3
C6
L1
R1 (5V)
R1 (3.3V)
3500MHz
0.7pF
6.8nH (L)
0.5pF (C )
2.61kΩ, 1%
511Ω, 1%
5800MHz
-
0.2pF
0Ω
2.61kΩ, 1%
649Ω, 1%
8000MHz
-
0.2pF
1nH
2.61kΩ, 1%
649Ω, 1%
Figure 1. Test Circuit Schematic
5576fa
For more information www.linear.com/LTC5576
13
LTC5576
Applications Information
Introduction
IN Port
The LTC5576 uses a high performance LO buffer amplifier
driving a double-balanced mixer core to achieve frequency
conversion with high linearity. A differential commonemitter stage at the mixer input allows very broad band
matching of the input. The Block Diagram and Pin Functions sections provide additional details. The LTC5576
is primarily intended for upmixer applications, however,
due to its broadband input capability, it could be used as
a downmixer as well.
A simplified schematic of the mixer’s input path is shown
in Figure 3. The IN+ and IN– pins drive the bases of the
input transistors while internal R-C networks are used for
impedance matching. The input pins are internally biased to
a common-mode voltage of 1.6V, thus external DC blocking capacitors, C1 and C2 are required. A small value of
C3 can be used to extend the impedance match to higher
frequencies. The 1:1 transformer provides single-ended to
differential signal conversion for optimum performance.
The test circuit schematic in Figure 1 shows the external
component values used for the IC characterization. The
evaluation board layout is shown in Figure 2. Additional
components may be used to optimize performance for
different applications.
Single-ended operation is possible by driving one input
pin and connecting the unused input pin to RF ground
through a capacitor. The performance will be degraded
but may be acceptable at lower frequencies.
The single-ended LO port is impedance matched over a
very broad frequency range for ease of use. Low side or
high side LO injection can be used, though the value of R1
may need to be adjusted accordingly for best performance.
The IC includes an internal RF balun at the mixer output,
thus the OUT port is single-ended. External components
are required to optimize the impedance match for the
desired frequency range.
LTC5576
VCC
C1
2
IN
VBIAS
IN+
T1
C3
1:1
C2
3
IN–
VCC
VBIAS
VCC
4
LGND
5576 F03
Figure 3. IN Port with External Matching
5576 F02
Figure 2. LTC5576 Evaluation Board Layout
14
5576fa
For more information www.linear.com/LTC5576
LTC5576
Applications Information
Figure 4 shows the typical return loss at the IN port of the
evaluation board with C1 and C2 values of 1000pF. The
curves illustrate that adding a C3 value of 0.7pF improves
the return loss at higher frequencies.
Differential reflection coefficients and impedances for the
IN port are listed vs frequency in Table 1.
0
T1 = TC1-1-13M+
C3 = 0pF
C3 = 0.7pF
RETURN LOSS (dB)
–5
The tail current of the input amplifier stage flows through
pin 4 (LGND). Typically, this pin should be connected
directly to a good RF ground; however, at lower input
frequencies, it may be beneficial to insert an inductor to
ground for improved IP2 performance. To minimize the
inductors effect on DC current, the inductor should have
low DC resistance. The expected current from this pin is
approximately 64mA and any DC resistance on this pin will
reduce the current in the mixer core which could adversely
impact performance. The value of R1 can be adjusted to
account for L1's DC resistance.
–10
LO Port
–15
The LTC5576 uses a single-ended LO signal to drive an
input of a bipolar differential amplifier, as shown in Figure 5.
The diff-pair provides single-ended to differential conversion to drive the mixer core. Internal resistors provide a
broad band impedance match of 50Ω that is maintained
when the part is disabled. The LO pin is biased internally
to 1.7V, thus an external DC blocking capacitor (C4) is
required. Optional capacitor, C5, can be used to improve
the return loss at higher frequencies if needed.
–20
–25
0
1000
2000
3000
FREQUENCY (MHz)
4000
5576 F04
Figure 4. IN Port Return Loss
Table 1. IN Port Differential Impedance vs Frequency
IMPEDANCE (Ω)
REFL. COEFF.
FREQUENCY
(MHz)
REAL*
IMAG*
MAG
ANG (°)
0.2
823
–j3971
0.89
–1.4
1
751
–j800
0.88
–7.2
10
133
–j154
0.50
–41
30
78.1
–j248
0.25
–36
50
73.3
–j378
0.20
–27
100
71.3
–j665
0.18
–17
200
70.7
–j961
0.17
–12
500
70.0
–j832
0.17
–14
1000
67.9
–j509
0.16
–24
1200
66.7
–j439
0.16
–28
1500
64.6
–j367
0.15
–35
2000
60.4
–j302
0.13
–49
2200
58.5
–j289
0.12
–55
2500
55.5
–j280
0.11
–66
3000
50.6
–j303
0.08
–91
4000
42.9
–j7460
0.08
–178
5000
42.7
j155
0.17
126
6000
55.9
j89
0.29
96
LTC5576
VCC
LO
50Ω
C4
15
LO
50Ω
50Ω
C5
15pF
5576 F05
Figure 5. LO Port with External Matching
*Parallel Equivalent Impedance
5576fa
For more information www.linear.com/LTC5576
15
LTC5576
Applications Information
Measured return loss of the LO port is shown in Figure 6
for a C4 value of 100pF. Without C5, the return loss is better than 10dB from 100MHz to beyond 4GHz. The addition
of 0.3pF at C5 extends the 10dB match to beyond 8GHz.
0
C5 = 0.3pF
RETURN LOSS (dB)
–5
Table 2. OUT Port Impedance vs Frequency
–10
–15
EN = ON
–20
–25
External components C6 and L2 are used to optimize the
impedance for the desired frequency range. High-Q components should be used here to minimize the impact on
conversion gain. Table 2 lists the single-ended reflection
coefficients and impedances of the OUT port and Table 3
lists component values for several application frequencies.
In Figure 8, return loss is plotted for several of these values.
EN = OFF
0
2000
4000
6000
FREQUENCY (MHz)
8000
5576 F06
Figure 6. LO Port Return Loss
OUT Port
The LTC5576 uses an on-chip balun to provide a singleended output, as shown in Figure 7. The output is optimized for 4GHz to 6GHz applications, but may be used for
output frequencies as low as 3GHz, and as high as 8GHz.
LTC5576
OUT
L2
10
VCC
OUT
50Ω
FREQ
(MHz)
REAL*
IMPEDANCE (Ω)
IMAG*
MAG
REFL COEFF
ANGLE
2500
12.8
51.8
0.78
86
3000
24.9
68.1
0.72
68
3500
50.7
80.7
0.63
51
4000
94.6
61.6
0.48
31
4500
89.5
4.7
0.29
5
5000
55.8
–8.0
0.09
–50
5500
38.7
–2.0
0.13
–169
6000
32.0
6.6
0.23
155
6500
30.6
16.5
0.31
128
7000
34.1
27.9
0.36
101
7500
41.2
39.4
0.41
79
8000
51.1
51.7
0.46
62
8500
62.5
57.7
0.47
51
*Series Impedance: Z = REAL + jIMAG
Table 3. Output Component Values
FREQ
(MHz)
12dB RL BAND
(MHz)
VALUES
C6
L2
3000
2800 to 3200
Open
0.5pF (C)
3500
3360 to 3830
6.8nH (L)
0.5pF (C)
5000
4000 to 6700
3.3nH (L)
0.6pF (C)
5200
4700 to 5800
Open
0Ω
5800
4870 to 7040
0.2pF
0Ω
8000
7500 to 8700
0.2pF
1nH
C6
5576 F07
Figure 7. OUT Port with External Matching
16
5576fa
For more information www.linear.com/LTC5576
LTC5576
Applications Information
0
LTC5576
VCC
RETURN LOSS (dB)
–5
5
50k
EN
–10
300k
D
5576 F09
–15
–20
2500
B
C
A
3500
4500 5500 6500
FREQUENCY (MHz)
Figure 9. EN Pin Interface
E
7500
8500
5576 F08
Figure 8. OUT Port Return Loss Tuned for (A) 3000MHz,
(B) 3500MHz, (C) 5200MHz, (D) 5800MHz, (E) 8000MHz
DC and RF Grounding
The LTC5576 relies on the backside ground of the package
for both RF and thermal performance. The exposed pad
must be soldered to the low impedance topside ground
plane of the board. The topside ground should also be connected to other ground layers to aid in thermal dissipation
and ensure a low inductance RF ground. The LTC5576
evaluation board (Figure 2) utilizes a four by four array of
vias under the exposed pad for this purpose.
Current Adjust Pin (IADJ)
The IADJ pin (Pin 8) can be used to optimize the performance of the mixer. The nominal open-circuit DC voltage
on this pin is 1.8V and the typical short-circuit current is
1.9mA. As shown in Figure 10, an internal 4mA reference
sets the current in the mixer core. Connecting R1 to the
IADJ pin shunts some of this current to ground, thus
reducing the mixer core current. The optimum value of
R1 depends on the supply voltage and LO injection (low
side or high side). Some recommended values are shown
in Table 4 but the values can be optimized as required for
individual applications.
LTC5576
VCC
Enable Interface
Figure 9 shows a simplified schematic of the EN interface.
To enable the part, the applied EN voltage must be greater
than 1.8V. Setting the voltage to below 0.5V will disable
the IC. If the enable function is not required, the enable
pin can be connected directly to VCC. If the enable pin
is left floating, an internal 300k pull-down resistor will
disable the IC.
8
R1
IADJ
4mA
715Ω
BIAS
5576 F10
Figure 10. Current Adjust Pin Interface
The voltage at the enable pin should never exceed the
power supply voltage (VCC) by more than 0.3V, otherwise
supply current may be sourced through the upper ESD
diode. Under no circumstances should voltage be applied
to the enable pin before the supply voltage is applied to
the VCC pin. If this occurs, damage to the IC may result.
5576fa
For more information www.linear.com/LTC5576
17
LTC5576
Applications Information
Supply Voltage Ramping
Table 4. Recommended R1 Values
VCC (V)
fIN (MHz)
fOUT (MHz)
fLO (MHz)
R1 (Ω)
3.3
456
3500
3044
511
3.3
900
5800
4900
649
3.3
900
8000
7100
649
5.0
456
3500
3044
2.61k
5.0
900
5800
4900
2.61k
5.0
1300
5000
6300
2.61K
Temperature Monitor Pin (TEMP)
The TEMP pin (pin 1) is connected to an on-chip diode that
can be used as a coarse temperature monitor by forcing
current into it and measuring the resulting voltage. The
temperature diode is protected by a series 30Ω resistor and
additional ESD diodes to ground. The TEMP pin voltage is
shown as a function of junction temperature in Figure 11.
Given the voltage at the pin, VTEMP, (in mV) the junction
temperature in °C can be estimated for forced input currents of 10µA and 80µA using the following equations:
TJ(10µA) = (742.4 – VTEMP)/1.796
Fast ramping of the supply voltage can cause a current
glitch in the internal ESD protection circuits. Depending on
the supply inductance, this could result in a supply voltage transient that exceeds the maximum rating. A supply
voltage ramp time of greater than 1ms is recommended.
It is recommended that the EN pin be used to enable or
disable the LTC5576 with VCC held constant. However,
if the EN pin and VCC are switched simultaneously, then
the configuration shown in Figure 12 is recommended.
A maximum VCC ramp rate at pins 6 and 7 of 20V/ms is
recommended.
LTC5576
EN
VCC
VCC
5
6
7
10k
VCC
SUPPLY
0.5Ω
220µF
10nF
5576 F12
TJ(80µA) = (795.6 – VTEMP)/1.609
Figure 12. Suggested Configuration for Simultaneous VCC
and EN Switching
900
TEMP PIN VOLTAGE (mV)
850
800
Spurious Output Levels
IIN = 80µA
750
Mixer spurious output levels vs harmonics of the IN and
LO frequencies are tabulated in Tables 5 and 6 for the 5V,
5800MHz application. Results are shown for spur frequencies up to 18GHz. The spur frequencies can be calculated
using the following equation:
700
650
IIN = 10µA
600
550
500
–50 –30 –10 10 30 50 70 90 110
JUNCTION TEMPERATURE (°C) 5576 F11
Figure 11. TEMP Pin Voltage vs Junction Temperature
Auto Supply Voltage Detection
An internal circuit automatically detects the supply voltage and configures internal components for 3.3V or 5V
operation. The DC current is affected when the auto-detect
circuit switches at approximately 4.1V. To avoid undesired
operation, the mixer should only be operated in the 3.1V
to 3.5V or 4.5V to 5.3V supply ranges.
18
fSPUR = |M • fIN ± N • fLO|
Table 5 lists the difference spurs (fSPUR = |M • fIN – N •
fLO|) and Table 6 lists the sum spurs (fSPUR = |M • fIN +
N • fLO|). The spur levels were measured on a standard
evaluation board at room temperature using the test circuit
of Figure 1.
The spurious output levels for any application will be dependent on the external matching circuits and the particular
application frequencies.
For more information www.linear.com/LTC5576
5576fa
LTC5576
Applications Information
Table 5. Output Spur Levels (dBc), fSPUR = |M • fIN – N • fLO|
(fIN = 900MHz, fOUT = 5.8GHz, Low Side LO at 0dBm)
Table 6. Output Spur Levels (dBc), fSPUR = |M • fIN + N • fLO|
(fIN = 900MHz, fOUT = 5.8GHz, Low Side LO at 0dBm)
N
M
N
0
1
2
3
4
0
–
–22.4
2.3
–24.6
1
–56.3
–0.8
–38.5
–34.6
2
–72.3
–51.9
–49.7
–68.6
3
–81.9
–75.7
–76.7
4
*
*
*
5
*
*
6
*
7
*
8
5
0
1
2
3
0
–
–22.4
2.3
–24.7
1
–56.3
0.0
–39.3
–39.5
–81.1
2
–72.2
–49.2
–45.6
–73.4
–69.7
*
3
-81.9
–71.7
–82.6
*
*
*
4
*
*
–87.0
*
*
*
5
*
*
*
*
*
*
*
6
*
*
*
*
*
*
*
7
*
*
*
*
*
*
*
*
*
8
*
*
*
9
*
*
*
*
*
*
9
*
*
*
10
*
*
*
*
*
*
10
*
*
M
*Less Than –90dBc
4
5
*Less Than –90dBc
Typical Applications
1.2GHz to 5.8GHz Upmixer with 2.3GHz Bandwidth
Conversion Gain and OIP3 vs
Output Frequency
LO
4600MHz
30
100pF
25
16
TEMP
IN
100MHz TO
2400MHz
TC1-1-13M+
1:1
1
TP
15
14
LO
GND
13
GAIN (dB), OIP3 (dBm)
0.3pF
GND
GND 12
TEMP
1000pF
2 IN+
LTC5576
0Ω
OUT 10
3 IN–
0.2pF
4 LGND
5
6
VCC
7
fLO = 4.6GHz
15
10
5
GND 11
1000pF
EN
20
VCC
8
GND 9
IADJ
OUT
4700MHz TO
7000MHz
TC = 105°C
85°C
25°C
–40°C
0
–5
4500
5000
5500
6000
6500
OUTPUT FREQUENCY (MHz)
7000
5576 TA02b
5576 TA02a
2.61k
EN
5V
10nF
1µF
5576fa
For more information www.linear.com/LTC5576
19
LTC5576
Typical Applications
Upmixer with Broadband Input and 3GHz Output
LO 1800MHz
TO 4200MHz
100pF
0.3pF
16
TEMP
15
LO
14
GND
13
GND
GND 12
TEMP
1
1000pF
TC1-1-13M+
1:1
IN
100MHz TO
1200MHz
TP
2 IN+
0.7pF
GND 11
LTC5576
0.5pF
1000pF
3
4 LGND
5
OUT
3000MHz
OUT 10
IN–
EN
6
VCC
7
VCC
GND 9
IADJ
8
5576 TA03a
2.61k
EN
5V
10nF
1µF
Conversion Gain and OIP3 vs
Input Frequency
4
25
3
15
LSLO
HSLO
2
1
10
0
5
–1
0
0
200
400
600
800 1000
INPUT FREQUENCY (MHz)
TC = 25°C
LSLO
HSLO
–10
GAIN (dB)
TC = 25°C
0
LO LEAKAGE (dBm)
30
20
OIP3 (dBm)
LO-OUT Leakage vs LO
Frequency
–20
–30
–40
–50
–60
–2
1200
–70
1800
2200
2600 3000 3400 3800
LO FREQUENCY (MHz)
5576 TA03b
5576 TA03c
IN, OUT and LO Port Return Loss
vs Frequency
Noise Figure vs Input Frequency
16
0
TC = 25°C
15
–5
RETURN LOSS (dB)
NOISE FIGURE (dB)
14
13
12
11
10
OUT
–10
–15
IN
–20
9
8
LSLO
HSLO
0
200
400
600
800 1000
INPUT FREQUENCY (MHz)
1200
LO
–25
0
5576 TA03d
20
4200
1000
2000
3000
FREQUENCY (MHz)
4000
5576 TA03e
5576fa
For more information www.linear.com/LTC5576
LTC5576
Typical Applications
Broadband 4GHz to 6GHz Output Matching with Fixed LO Frequency (High Side LO)
LO 6.3GHz
100pF
0.3pF
16
TEMP
IN
300MHz TO
2300MHz
1
15
TP
LO
14
13
GND
GND
GND 12
TEMP
1000pF
TC1-1-13M+
1:1
2 IN+
0.7pF
GND 11
LTC5576
0.6pF
1000pF
3
3.3nH
4 LGND
5
OUT
4GHz TO 6GHz
OUT 10
IN–
EN
6
VCC
7
VCC
8
GND 9
IADJ
5576 TA04a
2.61k
EN
5V
10nF
1µF
Conversion Gain vs Input
Frequency
OIP3 vs Input Frequency
35
5
fLO = 6300MHz
3
GAIN (dB)
20
15
10
0
500
1000
1500
2000
INPUT FREQUENCY (MHz)
fLO = 6300MHz
2
1
0
–1
TC = 105°C
85°C
25°C
–40°C
5
–2
–3
2500
0
5576 TA04b
500
1000
1500
2000
INPUT FREQUENCY (MHz)
2500
5576 TA04c
IN, OUT and LO Return Loss vs
Frequency
0
OUT
–5
RETURN LOSS (dB)
OIP3 (dBm)
25
0
TC = 105°C
85°C
25°C
–40°C
4
30
–10
IN
–15
LO
–20
–25
0
2000
4000
6000
FREQUENCY (MHz)
8000
5576 TA04d
5576fa
For more information www.linear.com/LTC5576
21
LTC5576
Typical Applications
Very Broadband 100MHz to 6GHz Input Matching with 6.5GHz Output and Low Side LO
LO 500MHz TO
6400MHz
100pF
0.3pF
16
TEMP
IN
100MHz TO
6000MHz
TCM1-63AX+
1:1
1
TP
15
LO
14
GND
13
GND
GND 12
TEMP
1000pF
2 IN+
0.3pF 1000pF
0.05pF
3
GND 11
LTC5576
0Ω
OUT 10
IN–
OUT
6500MHz
0.2pF
4 LGND
5
EN
6
VCC
7
VCC
8
GND 9
IADJ
5576 TA05a
1.7k
EN
5V
10nF
1µF
Conversion Gain, OIP3 and IN Return
Loss vs Input Frequency
5
30
0
OIP3
–5
20
IN RET LOSS
15
–10
–15
10
TC = 25°C
fOUT = 6.5GHz
fLO = fOUT –fIN
5
0
–5
GC
0
2000
4000
6000
INPUT FREQUENCY (MHz)
–20
RETURN LOSS (dB)
GAIN(dB), OIP3 (dBm)
25
–25
–30
8000
5576 TA05b
22
5576fa
For more information www.linear.com/LTC5576
LTC5576
Typical Applications
Downmixer Applications, 5.8GHz to 3.5GHz with Low Side LO
LO 2300MHz
100pF
0.3pF
16
TEMP
TCM1-63AX+
1:1
LO
14
GND
13
GND
GND 12
TEMP
1
1000pF
2 IN+
0.3pF 1000pF
GND 11
LTC5576
0.05pF
0.5pF
4 LGND
5
OUT 3.2GHz
TO 3.7GHz
OUT 10
IN–
3
EN
6
VCC
7
VCC
GND 9
IADJ
8
6.8nH
5576 TA06a
OPEN
EN
5V
10nF
1µF
Conversion Gain and OIP3
vs Input Frequency
25
20
GAIN (dB), OIP3 (dBm)
IN
5.5GHz TO
6GHz
15
TP
15
10
fLO = 2300MHz
fOUT = fIN – fLO
TC = 105°C
85°C
25°C
–40°C
5
0
–5
5500
5600
5700
5800
5900
INPUT FREQUENCY (MHz)
6000
5576 TA06b
5576fa
For more information www.linear.com/LTC5576
23
LTC5576
Package Description
Please refer to http://www.linear.com/product/LTC5576#packaging for the most recent package drawings.
UF Package
16-Lead Plastic QFN (4mm × 4mm)
(Reference LTC DWG # 05-08-1692 Rev Ø)
0.72 ±0.05
4.35 ±0.05
2.15 ±0.05
2.90 ±0.05 (4 SIDES)
PACKAGE OUTLINE
0.30 ±0.05
0.65 BSC
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS
BOTTOM VIEW—EXPOSED PAD
4.00 ±0.10
(4 SIDES)
0.75 ±0.05
R = 0.115
TYP
15
PIN 1 NOTCH R = 0.20 TYP
OR 0.35 × 45° CHAMFER
16
0.55 ±0.20
PIN 1
TOP MARK
(NOTE 6)
1
2.15 ±0.10
(4-SIDES)
2
(UF16) QFN 10-04
0.200 REF
0.00 – 0.05
0.30 ±0.05
0.65 BSC
NOTE:
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION
ON THE TOP AND BOTTOM OF PACKAGE
24
5576fa
For more information www.linear.com/LTC5576
LTC5576
Revision History
REV
DATE
DESCRIPTION
A
02/16
Delete Conversion Gain Maximum value
PAGE NUMBER
3
5576fa
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representaFor more
information
www.linear.com/LTC5576
tion that the interconnection
of its circuits
as described
herein will not infringe on existing patent rights.
25
LTC5576
Typical Application
Single-Ended Input with 3.5GHz Output
LO 3600MHz
TO 4700MHz
Gain and OIP3 vs Input Frequency
100pF
30
TEMP
IN
100MHz TO
1200MHz
1
TP
15
LO
14
GND
13
25
GND
GND 12
TEMP
1000pF
2 IN+
GND 11
LTC5576
0.5pF
1000pF
3
4 LGND
5
OUT 3.5GHz
OUT 10
IN–
EN
6
VCC
VCC
7
8
GND 9
IADJ
6.8nH
20
5576 TA07a
TC = 105°C
85°C
25°C
–40°C
fOUT = 3500MHz
fLO = fOUT – fIN
15
10
5
0
–5
3k
EN
GAIN (dB), OIP3 (dBm)
16
0
200
400
600
800 1000
INPUT FREQUENCY (MHz)
1200
5576 TA07b
5V
1µF
10nF
Related Parts
PART NUMBER DESCRIPTION
Mixers and Modulators
LTC5510
1MHz to 6MHz, Wideband High Linearity Active
Mixer
LT®5578
400MHz to 2.7GHz Upconverting Mixer
LT5579
1.5GHz to 3.8GHz Upconverting Mixer
LTC5577
300MHz to 6GHz High Signal Level Active
Downconverting Mixer
LTC5551
300MHz to 3.5GHz Ultra High Dynamic Range
Downconverting Mixer
LTC5544
4GHz to 6GHz, 3.3V High Gain Downconverting
Mixer
LTC5588-1
200MHz to 6GHz I/Q Modulator
LTC5585
700MHz to 3GHz Wideband I/Q Demodulator
Amplifiers
LTC6430-15
High Linearity Differential IF Amp
LTC6431-15
High Linearity Single-Ended IF Amp
LTC6412
31dB Linear Analog VGA
LT5554
Ultralow Distortion IF Digital VGA
RF Power Detectors
LT5538
40MHz to 3.8GHz Log Detector
LT5581
6GHz Low Power RMS Detector
LTC5582
40MHz to 10GHz RMS Detector
LTC5583
Dual 6GHz RMS Power Detector
ADCs
LTC2208
16-Bit, 130Msps ADC
LTC2153-14
14-Bit, 310Msps Low Power ADC
RF PLL/Synthesizer with VCO
LTC6948
Low Noise, Low Spurious Fractional-N PLL with
Integrated VCO
26 Linear Technology Corporation
COMMENTS
1.5dB Gain, Up and Downconversion, 3.3V or 5V Supply
27dBm OIP3 at 900MHz, 24.2dBm at 1.95GHz, Integrated RF Output Transformer
27.3dBm OIP3 at 2.14GHz, NF = 9.9dB, 3.3V Supply, Single-Ended LO and RF Ports
0dB Gain, 30dBm IIP3 and 15dBm Input P1dB, 3.3V/180mA Supply
36dBm IIP3, 2.4dB Gain, 9.7dB NF, 0dBm LO Drive, 18dBm P1dB
24dB Gain, 25.9dBm IIP3 and 11.3dB NF at 5.25GHz, 3.3V/194mA Supply
31dBm OIP3 at 2.14GHz, –160.6dBm/Hz Noise Floor
>530MHz Demodulation Bandwidth, IIP2 Tunable to >80dBm, DC Offset Nulling
20MHz to 2GHz Bandwidth, 15.2dB Gain, 50dBm OIP3, 3dB NF at 240MHz
20MHz to 1.7GHz Bandwidth, 15.5dB Gain, 47dBm OIP3, 3.3dB NF at 240MHz
35dBm OIP3 at 240MHz, Continuous Gain Range –14dB to 17dB
48dBm OIP3 at 200MHz, 2dB to 18dB Gain Range, 0.125dB Gain Steps
±0.8dB Accuracy Over Temperature, –72dBm Sensitivity, 75dB Dynamic Range
40dB Dynamic Range, ±1dB Accuracy Over Temperature, 1.5mA Supply Current
±0.5dB Accuracy Over Temperature, ±0.2dB Linearity Error, 57dB Dynamic Range
Up to 60dB Dynamic Range, ±0.5dB Accuracy Over Temperature, >50dB Isolation
78dBFS Noise Floor, >83dB SFDR at 250MHz
68.8dBFS SNR, 88dB SFDR, 401mW Power Consumption
373MHz to 6.39GHz, –157dBc/Hz WB Phase Noise Floor, –108dBc/Hz Closed-Loop
Phase Noise
1630 McCarthy Blvd., Milpitas, CA 95035-7417
For more information www.linear.com/LTC5576
(408) 432-1900 ● FAX: (408) 434-0507
●
www.linear.com/LTC5576
5576fa
LT 0216 REV A • PRINTED IN USA
 LINEAR TECHNOLOGY CORPORATION 2015