LTC5510 - 1MHz to 6GHz Wideband High Linearity Active Mixer

LTC5510
1MHz to 6GHz Wideband
High Linearity Active Mixer
FEATURES
n
n
n
n
n
n
n
n
n
n
n
n
n
n
DESCRIPTION
Input Frequency Range to 6GHz
50Ω Matched Input from 30MHz to >3GHz
Capable of Up- or Down-Conversion
OIP3: 27dBm at fOUT = 1575MHz
1.5dB Conversion Gain
Noise Figure: 11.6dB at fOUT = 1575MHz
High Input P1dB: 11dBm at 5V
5V or 3.3V Supply at 105mA
Shutdown Control
LO Input Impedance Always Matched
0dBm LO Drive Level
0n-Chip Temperature Monitor
–40°C to 105°C Operation (TC)
16-Lead (4mm × 4mm) QFN Package
The LTC®5510 is a high linearity mixer optimized for applications requiring very wide input bandwidth, low distortion,
and low LO leakage. The chip includes a double-balanced
active mixer with an input buffer and a high speed LO amplifier. The input is optimized for use with 1:1 transmissionline baluns, allowing very wideband impedance matching.
The mixer can be used for both up- and down-conversion
and can be used in wideband systems.
The LO can be driven differentially or single-ended and
requires only 0dBm of LO power to achieve excellent distortion and noise performance, while also reducing external
drive circuit requirements. The LTC5510 offers low LO
leakage, greatly reducing the need for output filtering to
meet LO suppression requirements.
APPLICATIONS
n
n
n
n
The LTC5510 is optimized for 5V but can also be used
with a 3.3V supply with slightly reduced performance.
The shutdown function allows the part to be disabled for
further power savings.
Wideband Receivers/Transmitters
Cable Downlink Infrastructure
HF/VHF/UHF Mixer
Wireless Infrastructure
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear
Technology Corporation. All other trademarks are the property of their respective owners.
TYPICAL APPLICATION
Conversion Gain, IIP3 and NF
vs Input Frequency
30MHz to 4GHz Up/Down Mixer for Wideband Receiver
LO
50Ω
IN
30MHz TO
4GHz
50Ω
TCM1-43X+
1:1
0.1µF
TEMP
0.1µF
LO+
LTC5510
OUT+
IN+
0.6pF
0.1µF
IN–
OUT–
BIAS
LGND
EN VCC1
BD1222J50200AHF
4:1
LO–
VCC2 IADJ
6.8nH
6.8pF
OUT
1575MHz
50Ω
6.8nH
4.75kΩ
EN
25
IIP3
20
HS LO
15
LS LO
NF
10
fOUT = 1575MHz
PIN = –10dBm
PLO = 0dBm
TC = 25°C
5
10nF
GC
0
5V
10nF
GAIN (dB), IIP3 (dBm), NF (dB)
TEMPERATURE
MONITOR
30
0.1µF
1µF
0
1000
2000
3000
INPUT FREQUENCY (MHz)
5510 TA01
4000
5510 TA01a
5510fa
For more information www.linear.com/LTC5510
1
LTC5510
ABSOLUTE MAXIMUM RATINGS
PIN CONFIGURATION
(Note 1)
GND
LO–
LO+
TP
TOP VIEW
16 15 14 13
12 GND
TEMP 1
IN+ 2
11 OUT+
17
IN– 3
10 OUT –
LGND 4
5
6
7
8
EN
VCC2
IADJ
9
VCC1
Supply Voltage (VCC1, VCC2, OUT+, OUT–).................6.0V
Enable Voltage (EN)..........................–0.3V to VCC + 0.3V
Current Adjust Voltage (IADJ)..................... –0.3V to 2.7V
LO Input Power (1MHz to 6GHz)......................... +10dBm
LO Differential DC Voltage........................................1.5V
LO+, LO – Input DC Voltage............................ –0.3V to 3V
IN+, IN– Input Power (1MHz to 6GHz)................. +15dBm
IN+, IN– Input DC Voltage .......................... –0.3V to 2.4V
Temp Monitor Input Current (TEMP).......................10mA
Operating Temperature Range (TC)......... –40°C to 105°C
Storage Temperature Range................... –65°C to 150°C
Junction Temperature (TJ)..................................... 150°C
GND
UF PACKAGE
16-LEAD (4mm × 4mm) PLASTIC QFN
TJMAX = 150°C, θJC = 6°C/W
EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB
ORDER INFORMATION
LEAD FREE FINISH
TAPE AND REEL
PART MARKING
PACKAGE DESCRIPTION
TEMPERATURE RANGE
LTC5510IUF#PBF
LTC5510IUF#TRPBF
5510
16-Lead (4mm × 4mm) Plastic QFN
–40°C to 105°C
Consult LTC Marketing for parts specified with wider operating temperature ranges.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/
AC ELECTRICAL CHARACTERISTICS
The l denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at TC = 25°C. EN = High, PLO = 0dBm. Test circuit shown in Figure 1. (Notes 2, 3, 4)
PARAMETER
CONDITIONS
Input Frequency Range
Requires External Matching
LO Input Frequency Range
MIN
TYP
MAX
UNITS
l
1 to 6000
MHz
l
1 to 6500
MHz
l
1 to 6000
MHz
Output Frequency Range
Requires External Matching
Input Return Loss
ZO = 50Ω, 30MHz to 3GHz
LO Input Return Loss
ZO = 50Ω, 1MHz to 5GHz
>10
dB
Output Impedance
Differential at 1500MHz
201Ω||0.6pF
R||C
LO Input Power
fLO = 1MHz to 5GHz
5V Wideband Up/Downmixer Application: fIN = 30MHz to 3000MHz, fOUT = 1575MHz, VCC = 5V, R1 = 4.75kΩ
Conversion Gain
fIN = 190MHz, fLO = 1765MHz, Upmixer
fIN = 900MHz, fLO = 2475MHz, Upmixer
fIN = 2150MHz, fLO = 575MHz, Downmixer
fIN = 2600MHz, fLO = 1025MHz, Downmixer
l
Conversion Gain vs Temperature
TC = –40°C to 105°C, fIN = 900MHz
>11
–6
0
0.5
1.5
1.4
1.1
1.2
–0.007
dB
6
dBm
dB
dB
dB
dB
dB/°C
5510fa
2
For more information www.linear.com/LTC5510
LTC5510
AC ELECTRICAL CHARACTERISTICS
The l denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at TC = 25°C. EN = High, PLO = 0dBm, PIN = –10dBm (–10dBm/tone for two-tone tests),
unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4)
PARAMETER
CONDITIONS
MIN
TYP
24.0
fIN = 190MHz, fLO = 1765MHz, Upmixer
fIN = 900MHz, fLO = 2475MHz, Upmixer
fIN = 2150MHz, fLO = 575MHz, Downmixer
fIN = 2600MHz, fLO = 1025MHz, Downmixer
SSB Noise Figure
fIN = 190MHz, fLO = 1765MHz, Upmixer
fIN = 900MHz, fLO = 2475MHz, Upmixer
fIN = 2150MHz, fLO = 575MHz, Downmixer
fIN = 2600MHz, fLO = 1025MHz, Downmixer
SSB Noise Figure Under Blocking
fIN =900MHz, fLO = 2475MHz,
fBLOCK = 800MHz, PBLOCK = +5dBm
LO-IN Leakage
fLO = 20MHz to 3300MHz
LO-OUT Leakage
fLO = 20MHz to 1000MHz
fLO = 1000MHz to 3300MHz
IN-OUT Isolation
fIN = 20MHz to 1150MHz
fIN = 1150MHz to 3000MHz
IN-LO Isolation
fIN = 30MHz to 3000MHz
Input 1dB Compression
fIN = 190MHz, fLO = 1765MHz, Upmixer
fIN = 900MHz, fLO = 2475MHz, Upmixer
fIN = 2150MHz, fLO = 575MHz, Downmixer
fIN = 2600MHz, fLO = 1025MHz, Downmixer
3.3V Wideband Up/Downmixer Application: fIN = 30MHz to 3000MHz, fOUT = 1575MHz, VCC = 3.3V, R1 = 1.8kΩ
Conversion Gain
fIN = 190MHz, fLO = 1765MHz, Upmixer
fIN = 900MHz, fLO = 2475MHz, Upmixer
fIN = 2150MHz, fLO = 575MHz, Downmixer
fIN = 2600MHz, fLO = 1025MHz, Downmixer
l
Conversion Gain vs Temperature
TC = –40°C to 105°C, fIN = 900MHz
Two-Tone Output 3rd Order Intercept
fIN = 190MHz, fLO = 1765MHz, Upmixer
fIN = 900MHz, fLO = 2475MHz, Upmixer
(Δf = 2MHz)
fIN = 2150MHz, fLO = 575MHz, Downmixer
fIN = 2600MHz, fLO = 1025MHz, Downmixer
SSB Noise Figure
fIN = 190MHz, fLO = 1765MHz, Upmixer
fIN = 900MHz, fLO = 2475MHz, Upmixer
fIN = 2150MHz, fLO = 575MHz, Downmixer
fIN = 2600MHz, fLO = 1025MHz, Downmixer
SSB Noise Figure Under Blocking
fIN = 900MHz, fLO = 2475MHz,
fBLOCK = 800MHz PBLOCK = +5dBm
LO-IN Leakage
fLO = 20MHz to 3300MHz
LO-OUT Leakage
fLO = 20MHz to 1000MHz
fLO = 1000MHz to 3300MHz
IN-OUT Isolation
fIN = 20MHz to 1150MHz
fIN = 1150MHz to 3000MHz
IN-LO Isolation
fIN = 30MHz to 3000MHz
Input 1dB Compression
fIN = 190MHz, fLO = 1765MHz, Upmixer
fIN = 900MHz, fLO = 2475MHz, Upmixer
fIN = 2150MHz, fLO = 575MHz, Downmixer
fIN = 2600MHz, fLO = 1025MHz, Downmixer
27.8
25.0
26.0
24.5
11.6
12.1
11.6
11.8
20.3
Two-Tone Output 3rd Order Intercept
(Δf = 2MHz)
MAX
UNITS
14.5
dBm
dBm
dBm
dBm
dB
dB
dB
dB
dB
<–50
<–40
<–33
>40
>22
>55
11.0
12.2
11.5
11.6
dBm
dBm
dBm
dB
dB
dB
dBm
dBm
dBm
dBm
1.5
1.4
1.1
1.2
–0.006
24.2
23.3
23.9
22.3
11.2
12.2
11.4
11.4
20.8
dB
dB
dB
dB
dB/°C
dBm
dBm
dBm
dBm
dB
dB
dB
dB
dB
<–50
<–40
<–33
>40
>22
>55
8.9
10.7
10.1
9.6
dBm
dBm
dBm
dB
dB
dB
dBm
dBm
dBm
dBm
5510fa
For more information www.linear.com/LTC5510
3
LTC5510
AC ELECTRICAL CHARACTERISTICS
The l denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at TC = 25°C. EN = High, PLO = 0dBm, PIN = –10dBm (–10dBm/tone for two-tone tests),
unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4)
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
5V Wideband Upmixer Application: fIN = 30MHz to 1000MHz, fOUT = 2140MHz, fLO = fIN + fOUT, VCC = 5V, R1 = 4.75kΩ
Conversion Gain
fIN = 190MHz
fIN = 450MHz
fIN = 900MHz
Conversion Gain vs Temperature
TC = –40°C to 105°C, fIN = 190MHz
–0.006
dB/°C
Two-Tone Output 3rd Order Intercept
(Δf = 2MHz)
fIN = 190MHz
fIN = 450MHz
fIN = 900MHz
25.6
24.6
23.9
dBm
dBm
dBm
SSB Noise Figure
fIN = 190MHz
fIN = 450MHz
fIN = 900MHz
12.0
12.2
12.4
dB
dB
dB
SSB Noise Floor at PIN = +5dBm
fIN = 800MHz, fLO = 3040MHz, fOUT = 2140MHz
LO-IN Leakage
fLO = 2100MHz to 3500MHz
<–50
dBm
LO-OUT Leakage
fLO = 2100MHz to 3500MHz
<–31
dBm
IN-OUT Isolation
fIN = 30MHz to 1100MHz
>40
dB
IN-LO Isolation
fIN = 30MHz to 1100MHz
>50
dB
Input 1dB Compression
fIN = 190MHz
fIN = 450MHz
fIN = 900MHz
11.5
11.5
11.7
dBm
dBm
dBm
1.1
1.0
1.0
l
–151.4
dB
dB
dB
dBm/Hz
5V VHF/UHF Wideband Downmixer Application: fIN = 100MHz to 1000MHz, fOUT = 44MHz, fLO = fIN + fOUT, VCC = 5V, R1 = Open
Conversion Gain
fIN = 140MHz
fIN = 456MHz
fIN = 900MHz
Conversion Gain vs Temperature
TC = –40°C to 105°C, fIN = 456MHz
–0.006
dB/°C
Two-Tone Input 3rd Order Intercept
(Δf = 2MHz)
fIN = 140MHz
fIN = 456MHz
fIN = 900MHz
27.8
28.5
26.8
dBm
dBm
dBm
SSB Noise Figure
fIN = 140MHz
fIN = 456MHz
fIN = 900MHz
10.8
10.9
11.6
dB
dB
dB
SSB Noise Figure Under Blocking
fIN = 900MHz, fLO = 944MHz,
fBLOCK = 800MHz, PBLOCK = +5dBm
20.0
dB
Two-Tone Input 2nd Order Intercept
(Δf = fIM2 = 42MHz)
fIN1 = 477MHz, fIN2 = 435MHz, fLO = 500MHz
72
dBm
2LO-2RF Output Spurious Product
(fIN = fLO – fOUT/2)
fIN = 478MHz at –6dBm, fLO = 500MHz, fOUT = 44MHz
–84
dBc
3LO-3RF Output Spurious Product
(fIN = fLO – fOUT/3)
fIN = 485.33MHz at –6dBm, fLO = 500MHz,
fOUT = 44.01MHz
–82
dBc
LO-IN Leakage
fLO = 50MHz to 1200MHz
<–62
dBm
LO-OUT Leakage
fLO = 50MHz to 1200MHz
<–31
dBm
IN-OUT Isolation
fIN = 50MHz to 1000MHz
>23
dB
IN-LO Isolation
fIN = 50MHz to 1000MHz
>62
dB
Input 1dB Compression
fIN = 456MHz
12.1
dBm
1.9
1.9
1.9
l
dB
dB
dB
5510fa
4
For more information www.linear.com/LTC5510
LTC5510
AC ELECTRICAL CHARACTERISTICS
The l denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at TC = 25°C. EN = High, PLO = 0dBm, PIN = –10dBm (–10dBm/tone for two-tone tests),
unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4)
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
5V VHF/UHF Upmixer Application: fIN = 70MHz, fOUT = 100MHz to 1000MHz, fLO = fIN + fOUT, VCC = 5V, R1 = Open, L3 = 220nH
Conversion Gain
fOUT = 456MHz
Conversion Gain vs Temperature
TC = –40°C to 105°C, fOUT = 456MHz
1.1
Two-Tone Output 3rd Order Intercept
(Δf = 2MHz)
fOUT = 456MHz
l
dB
–0.007
dB/°C
29.0
dBm
SSB Noise Figure
fOUT = 456MHz
11.3
dB
SSB Noise Floor at PIN = +5dBm
fIN = 44MHz, fLO = 532MHz, fOUT = 462MHz
–152
dBm/Hz
LO-IN Leakage
fLO = 100MHz to 1500MHz
<–62
dBm
LO-OUT Leakage
fLO = 100MHz to 1500MHz
<–39
dBm
IN-OUT Isolation
IN-LO Isolation
fIN = 50MHz to 400MHz
fIN = 50MHz to 400MHz
>43
>70
dB
dB
Input 1dB Compression
fOUT = 456MHz
11.0
dBm
DC ELECTRICAL CHARACTERISTICS
The l denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at TC = 25°C. VCC = 5V, EN = High, unless otherwise noted. Test circuit shown in
Figure 1. (Note 2)
PARAMETER
CONDITIONS
MIN
TYP
MAX
4.5
3.1
5
3.3
5.3
3.5
UNITS
Power Supply
Supply Voltage (Pins 6, 7, 10, 11)
5V Supply
3.3V Supply
Supply Current (Pins 6, 7, 10, 11)
5V, R1 = Open
5V, R1 = 4.75k
3.3V, R1 = Open
3.3V, R1 = 1.8k
105
99.6
105
94
Total Supply Current – Shutdown
EN = Low
1.3
l
l
113
2.5
V
V
mA
mA
mA
mA
mA
Enable Logic Input (EN)
EN Input High Voltage (On)
l
EN Input Low Voltage (Off)
1.8
V
l
–20
0.5
V
200
μA
EN Input Current
–0.3V to VCC + 0.3V
Turn-On Time
EN: Low to High
0.6
μs
Turn-Off Time
EN: High to Low
0.6
μs
1.8
V
IADJ Shorted to Ground
1.9
mA
DC Voltage at TJ = 25°C
IIN = 10µA
IIN = 80µA
697
755
mV
mV
Voltage Temperature Coefficient
IIN = 10µA
IIN = 80µA
Current Adjust Pin (IADJ)
Open Circuit DC Voltage
Short Circuit DC Current
Temperature Monitor Pin (TEMP)
Note 1: Stresses beyond those listed under Absolute Maximum Ratings
may cause permanent damage to the device. Exposure to any Absolute
Maximum Rating condition for extended periods may affect device
reliability and lifetime.
Note 2: The LTC5510 is guaranteed functional over the case operating
temperature range of –40°C to 105°C. (θJC = 6°C/W)
l
l
–1.80
–1.61
mV/°C
mV/°C
Note 3: SSB Noise Figure measured with a small-signal noise source,
bandpass filter and 3dB matching pad on the signal input, bandpass filter
and 6dB matching pad on the LO input, and no other RF signals applied.
Note 4: Specified performance includes all external component and
evaluation PCB losses.
For more information www.linear.com/LTC5510
5510fa
5
LTC5510
TYPICAL DC PERFORMANCE CHARACTERISTICS
5V Supply Current
vs Supply Voltage
106
3.3V Supply Current
vs Supply Voltage
98
R1 = 4.75kΩ
R1 = 1.8kΩ
96
SUPPLY CURRENT (mA)
SUPPLY CURRENT (mA)
104
TC = –40°C
102
TC = 25°C
100
98
TC = 85°C
96
4.7
4.9
5.1
SUPPLY VOLTAGE (V)
TC = –40°C
TC = 25°C
94
TC = 85°C
92
TC = 105°C
90
TC = 105°C
94
4.5
(Test Circuit Shown in Figure 1)
88
3.0
5.3
3.1
3.2
3.3
3.4
SUPPLY VOLTAGE (V)
5510 G01
3.5
3.6
5510 G02
TYPICAL
AC PERFORMANCE CHARACTERISTICS Wideband Up/Downmixer Application:
5V
VCC = 5V, TC = 25°C, fIN = 190MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), fLO = 1765MHz, PLO = 0dBm, output
measured at 1575MHz, unless otherwise noted. (Test Circuit Shown in Figure 1).
Conversion Gain Distribution
at 1575MHz
40
30
20
10
0
0.8
50
fIN = 190MHz
85°C
25°C
–40°C
1.2
1.4 1.6
GAIN (dB)
1.8
2
2.2
30
20
5510 G03
0
21
85°C
25°C
–40°C
40
10
1
50
fIN = 190MHz
DISTRIBUTION (%)
DISTRIBUTION (%)
40
85°C
25°C
–40°C
DISTRIBUTION (%)
50
Noise Figure Distribution
at 1575MHz
OIP3 Distribution at 1575MHz
fIN = 190MHz
30
20
10
23
25
27
29
OIP3 (dBm)
31
33
5510 G04
0
9
10
11
12
NOISE FIGURE (dB)
13
14
5510 G05
5510fa
6
For more information www.linear.com/LTC5510
LTC5510
TYPICAL AC PERFORMANCE CHARACTERISTICS
5V Wideband Up/Downmixer Application for
fIN < 1575MHz: VCC = 5V, TC = 25°C, fIN = 190MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), HSLO,
PLO = 0dBm, output measured at 1575MHz, unless otherwise noted. (Test Circuit Shown in Figure 1).
Conversion Gain, OIP3 and NF
vs Input Frequency
Conversion Gain and OIP3
vs Output Frequency
OIP3
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
20
16
12
NF
8
4
24
16
12
8
400
800
1200
INPUT FREQUENCY (MHz)
0
5510 G06
20
16
NF
NOISE FIGURE (dB)
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
12
20
16
–9
–6
–3
0
LO INPUT POWER (dBm)
3
12
–20
6
5510 G09
IM3 Level
vs Output Power (2-Tone)
–20
0
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
–20
–40
–60
–80
–100
–15
–15
–10
–5
0
BLOCKER POWER (dBm)
5
5510 G12
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
16
NF
12
8
0
4.5
5
4.7 4.8 4.9 5.0 5.1
SUPPLY VOLTAGE (V)
5.2
5.3
5510 G11
Conversion Gain, OIP3, NF and
Input P1dB vs Case Temperature
35
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
–40
–60
fIM2 = 1385MHz
–100
–10
–5
0
–15
OUTPUT POWER (dBm)
4.6
5510 G10
–80
–10
–5
0
OUTPUT POWER (dBm)
OIP3
20
IM2 Level
vs Output Power (2-Tone)
IM2 LEVEL (dBc)
0
24
4 G
C
GAIN AND NF (dB), OIP3 AND P1dB (dBm)
0
–12
5510 G08
28
14
GC
3100
32
8
4
1900
2300
2700
LO FREQUENCY (MHz)
Conversion Gain, OIP3 and NF
vs Supply Voltage
PLO = –6dBm
–3dBm
0dBm
3dBm
6dBm
18
LO-IN
5510 G07
GAIN (dB), OIP3 (dBm), NF (dB)
OIP3
–50
–80
1500
2000
fIN = 900MHz
fBLOCK = 800MHz
22 fLO = 2475MHz
28
GAIN (dB), OIP3 (dBm), NF (dB)
1400
1600
1800
OUTPUT FREQUENCY (MHz)
24
24
–40
Noise Figure
vs Input Blocker Level
32
LO-OUT
–70
GC
0
1200
1600
–30
–60
4
GC
–20
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
20
Conversion Gain, OIP3 and NF
vs LO Power
IM3 LEVEL (dBc)
–10
OIP3
LO LEAKAGE (dBm)
24
0
28
GAIN (dB), OIP3 (dBm)
GAIN (dB), OIP3 (dBm), NF (dB)
28
0
LO Leakage vs LO Frequency
32
32
5
5510 G13
30
OIP3
25
20
15
NF
10
5
IP1dB
GC
0
–45
–15
15
45
75
CASE TEMPERATURE (°C)
105
5510 G14
5510fa
For more information www.linear.com/LTC5510
7
LTC5510
TYPICAL AC PERFORMANCE CHARACTERISTICS
5V Wideband Up/Downmixer Application
for fIN > 1575MHz: VCC = 5V, TC = 25°C, fIN = 2150MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), LSLO, PLO = 0dBm,
output measured at 1575MHz, unless otherwise noted. (Test Circuit Shown in Figure 1).
Conversion Gain, OIP3 and NF
vs Input Frequency
Conversion Gain and OIP3
vs Output Frequency
10
–20
NF
15
10
0
1200
3200
1400
1600
1800
OUTPUT FREQUENCY (MHz)
5510 G15
LO-IN
–80
2000
5510 G16
0
300
600
900
1200
LO FREQUENCY (MHz)
1500
5510 G17
Conversion Gain, OIP3 and NF
vs Supply Voltage
30
25
OIP3
GAIN (dB), OIP3 (dBm), NF (dB)
GAIN (dB), OIP3 (dBm), NF (dB)
LO-OUT
–50
–70
30
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
20
NF
10
5
GC
0
–12
–9
–6
–3
0
3
LO INPUT POWER (dBm)
25
OIP3
15
10
5
–20
4.7
4.9
5.1
SUPPLY VOLTAGE (V)
5.3
5510 G20
Conversion Gain, OIP3, NF and
Input P1dB vs Case Temperature
30
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
–40
–60
–80
–100
–15
GC
5510 G18
GAIN AND NF (dB), OIP3 AND P1dB (dBm)
0
NF
0
4.5
6
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
20
IM3 Level
vs Output Power (2-Tone)
IM3 LEVEL (dBc)
–40
GC
Conversion Gain, OIP3 and NF
vs LO Power
15
–30
–60
5
2000
2400
2800
INPUT FREQUENCY (MHz)
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
20
GC
0
1600
LO LEAKAGE (dBm)
15
–10
25
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
20
0
OIP3
OIP3
25
5
LO Leakage vs LO Frequency
30
GAIN (dB), OIP3 (dBm)
GAIN (dB), OIP3 (dBm), NF (dB)
30
–10
–5
0
OUTPUT POWER (dBm)
5
25
OIP3
20
15
NF
10
IP1dB
5
0
–45
5510 G21
GC
–15
15
45
75
CASE TEMPERATURE (°C)
105
5510 G23
5510fa
8
For more information www.linear.com/LTC5510
LTC5510
TYPICAL AC PERFORMANCE CHARACTERISTICS
3.3V Wideband Up/Downmixer Application
for fIN < 1575MHz: VCC = 3.3V, TC = 25°C, fIN = 190MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), HSLO, PLO = 0dBm,
output measured at 1575MHz, unless otherwise noted. (Test Circuit Shown in Figure 1).
Conversion Gain and OIP3
vs Output Frequency
35
0
28
30
–10
OIP3
20
16
NF
12
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
8
400
800
1200
INPUT FREQUENCY (MHz)
0
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
15
10
5
5510 G24
1400
1600
1800
OUTPUT FREQUENCY (MHz)
NOISE FIGURE (dB)
16
NF
12
20
28
16
14
GC
–9
–6
–3
0
LO INPUT POWER (dBm)
3
12
–20
6
5510 G27
IM3 Level
vs Output Power (2-Tone)
–20
0
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
–20
–40
–60
–100
–15
–15
–10
–5
0
BLOCKER POWER (dBm)
–10
–5
0
OUTPUT POWER (dBm)
16
5
5510 G30
NF
12
8
3.1
5510 G28
3.2
3.3
3.4
SUPPLY VOLTAGE (V)
3.5
3.6
5510 G29
Conversion Gain, OIP3, NF and
Input P1dB vs Case Temperature
35
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
–40
–60
fIM2 = 1385MHz
–100
–10
–5
0
–15
OUTPUT POWER (dBm)
GC
0
3.0
5
–80
–80
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
20
IM2 Level
vs Output Power (2-Tone)
IM2 LEVEL (dBc)
0
OIP3
24
4
GAIN AND NF (dB), OIP3 AND P1dB (dBm)
0
–12
5510 G26
32
8
4
3100
Conversion Gain, OIP3 and NF
vs Supply Voltage
PLO = –6dBm
–3dBm
0dBm
3dBm
6dBm
18
1900
2300
2700
LO FREQUENCY (MHz)
5510 G25
24
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
LO-IN
–80
1500
2000
fIN = 900MHz
fBLOCK = 800MHz
22 fLO = 2475MHz
OIP3
–50
–70
24
28
LO-OUT
–40
Noise Figure
vs Input Blocker Level
32
20
–30
–60
GC
0
1200
1600
Conversion Gain, OIP3 and NF
vs LO Power
GAIN (dB), OIP3 (dBm), NF (dB)
OIP3
20
GAIN (dB), OIP3 (dBm), NF (dB)
0
GC
–20
25
LO LEAKAGE (dBm)
24
4
IM3 LEVEL (dBc)
LO Leakage vs LO Frequency
32
GAIN (dB), OIP3 (dBm)
GAIN (dB), OIP3 (dBm), NF (dB)
Conversion Gain, OIP3 and NF
vs Input Frequency
5
5510 G31
30
OIP3
25
20
15
NF
10
IP1dB
5
0
–45
GC
–15
15
45
75
CASE TEMPERATURE (°C)
105
5510 G32
5510fa
For more information www.linear.com/LTC5510
9
LTC5510
TYPICAL AC PERFORMANCE CHARACTERISTICS
3.3V Wideband Up/Downmixer Application for
fIN > 1575MHz: VCC = 3.3V, TC = 25°C, fIN = 2150MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), LSLO, PLO = 0dBm,
output measured at 1575MHz, unless otherwise noted. (Test Circuit Shown in Figure 1).
Conversion Gain and OIP3
vs Output Frequency
30
30
25
25
15
10
5
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
NF
GC
0
1600
2000
2400
2800
INPUT FREQUENCY (MHz)
LO Leakage vs LO Frequency
0
–10
OIP3
–20
LO LEAKAGE (dBm)
OIP3
20
GAIN (dB), OIP3 (dBm)
GAIN (dB), OIP3 (dBm), NF (dB)
Conversion Gain, OIP3 and NF
vs Input Frequency
20
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
15
10
0
1200
3200
1400
1600
1800
OUTPUT FREQUENCY (MHz)
5510 G33
GAIN (dB), OIP3 (dBm), NF (dB)
GAIN (dB), OIP3 (dBm), NF (dB)
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
NF
GC
0
–12
–9
–6
–3
0
LO INPUT POWER (dBm)
3
15
5510 G35
10
5
GC
3.1
3.2
3.3
3.4
SUPPLY VOLTAGE (V)
3.5
3.6
5510 G38
Conversion Gain, OIP3, NF and
Input P1dB vs Case Temperature
30
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
–60
–10
–5
0
OUTPUT POWER (dBm)
1500
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
NF
5510 G36
–40
–80
–15
600
900
1200
LO FREQUENCY (MHz)
OIP3
0
3.0
6
GAIN AND NF (dB), OIP3 AND P1dB (dBm)
IM3 LEVEL (dBc)
–20
300
20
IM3 Level
vs Output Power (2-Tone)
0
0
Conversion Gain, OIP3 and NF
vs Supply Voltage
25
5
LO-IN
5510 G34
25
10
–80
2000
30
15
LO-OUT
–50
–70
GC
30
OIP3
–40
–60
5
Conversion Gain, OIP3 and NF
vs LO Power
20
–30
5
25
OIP3
20
15
10
NF
IP1dB
5
GC
0
–45
5510 G39
–15
15
45
75
CASE TEMPERATURE (°C)
105
5510 G41
5510fa
10
For more information www.linear.com/LTC5510
LTC5510
TYPICAL AC PERFORMANCE CHARACTERISTICS
5V Wideband Upmixer Application:
VCC = 5V, TC = 25°C, fIN = 190MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), HSLO, PLO = 0dBm, output measured at
2140MHz, unless otherwise noted. (Test Circuit Shown in Figure 1).
Conversion Gain, OIP3 and NF
vs Input Frequency
Conversion Gain, OIP3 and NF
vs Output Frequency
32
OIP3
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
20
16
12
NF
4
GC
400
800
INPUT FREQUENCY (MHz)
0
24
16
NF
12
1200
5510 G42
–70
Conversion Gain, OIP3 and NF
vs Supply Voltage
Output Noise Floor vs Input Power
32
20
NF
12
8
4
–152
–154
–156
–158
–160
GC
0
–12
–9
–6
–3
0
LO INPUT POWER (dBm)
3
5510 G45
0
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
–20
–40
–60
–15
–10
–5
INPUT POWER (dBm)
0
–10
–5
0
OUTPUT POWER (dBm)
16
5
5510 G48
NF
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
12
8
0
4.5
5
4.7 4.8 4.9 5.0 5.1
SUPPLY VOLTAGE (V)
5.2
5.3
5510 G47
Conversion Gain, OIP3, NF and
Input P1dB vs Case Temperature
30
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
–40
–60
fIM2 = 1950MHz
–100
–10
–5
0
–15
OUTPUT POWER (dBm)
4.6
5510 G46
–80
–80
–100
–15
20
IM2 Level
vs Output Power (2-Tone)
IM2 LEVEL (dBc)
–20
24 OIP3
4 G
C
–162
–20
6
IM3 Level
vs Output Power (2-Tone)
0
PLO = –6dBm
–3dBm
0dBm
3dBm
6dBm
GAIN AND NF (dB), OIP3 AND P1dB (dBm)
16
–150
OUTPUT NOISE (dBm/Hz)
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
28
GAIN (dB), OIP3 (dBm), NF (dB)
28
LO-IN
–80
2100 2300 2500 2700 2900 3100 3300 3500
LO FREQUENCY (MHz)
5510 G44
fIN = 800MHz
–148 fLO = 3040MHz
OIP3
–50
4
GC
LO-OUT
–40
–60
–146
24
–30
8
0
1600 1700 1800 1900 2000 2100 2200 2300
OUTPUT FREQUENCY (MHz)
5510 G43
32
GAIN (dB), OIP3 (dBm), NF (dB)
–20
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
20
Conversion Gain, OIP3 and NF
vs LO Power
IM3 LEVEL (dBc)
–10
OIP3
LO LEAKAGE (dBm)
24
8
0
28
GAIN (dB), OIP3 (dBm), NF (dB)
GAIN (dB), OIP3 (dBm), NF (dB)
28
0
LO Leakage vs LO Frequency
32
5
5510 G49
25
OIP3
20
15
NF
10
IP1dB
5
GC
0
–45
–15
15
45
75
CASE TEMPERATURE (°C)
105
5510 G50
5510fa
For more information www.linear.com/LTC5510
11
LTC5510
TYPICAL AC PERFORMANCE CHARACTERISTICS
5V VHF/UHF Upmixer Application:
VCC = 5V, TC = 25°C, fIN = 70MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), HSLO, PLO = 0dBm, output measured at
456MHz, unless otherwise noted. (Test Circuit Shown in Figure 2).
Conversion Gain, OIP3 and NF
vs Output Frequency
OIP3
24
20
16
NF
12
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
8
4
200
400
600
800
OUTPUT FREQUENCY (MHz)
16
12
8
16
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
NF
12
8
4
–9
–6
–3
0
LO INPUT POWER (dBm)
3
–154
–156
0
–20
0
–15
–10
–5
INPUT POWER (dBm)
0
IM2 (dBc)
–80
16
12
3
6
5510 G57
NF
8
–60
–12
–9
–6
–3
0
OUTPUT POWER (dBm)
4.7 4.8 4.9 5.0 5.1
SUPPLY VOLTAGE (V)
5.2
5.3
5510 G56
32
–40
–100
–15
4.6
Conversion Gain, OIP3, NF and
Input P1dB vs Case Temperature
fIM2 = 386MHz
–9
–6
–3
0
OUTPUT POWER (dBm)
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
20
5510 G55
–80
–12
5510 G53
OIP3
0
4.5
5
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
–20
–60
–100
–15
24
IM2 Level
vs Output Power (2-Tone)
–40
1500
4 G
C
5510 G54
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
600
900
1200
LO FREQUENCY (MHz)
28
–158
IM3 Level
vs Output Power (2-Tone)
300
32
PLO = –6dBm
–3dBm
0dBm
3dBm
6dBm
–152
0
Conversion Gain, OIP3 and NF
vs Supply Voltage
–150
–162
–20
6
LO-IN
5510 G52
–160
GC
0
–12
–60
–90
400
GAIN (dB), OIP3 (dBm), NF (dB)
OIP3
OUTPUT NOISE (dBm/Hz)
GAIN (dB), OIP3 (dBm), NF (dB)
100
200
300
INPUT FREQUENCY (MHz)
0
fIN = 44MHz
–148 fOUT = 462MHz
fLO = 532MHz
20
–50
–80
GC
–146
28
LO-OUT
–40
Output Noise Floor
vs Input Power
32
24
–30
–70
5510 G51
Conversion Gain, OIP3 and NF
vs LO Power
IM3 (dBc)
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
20
0
1000
–20
24
4
GC
0
OIP3
GAIN AND NF (dB), OIP3 AND P1dB (dBm)
0
–10
28
GAIN (dB), OIP3 (dBm)
GAIN (dB), OIP3 (dBm), NF (dB)
28
LO Leakage vs LO Frequency
0
32
LO LEAKAGE (dBm)
32
Conversion Gain and OIP3
vs Input Frequency
3
6
5510 G58
28
OIP3
24
20
16
12
8
4
0
–45
IP1dB
NF
GC
–15
15
45
75
CASE TEMPERATURE (°C)
105
5510 G59
5510fa
12
For more information www.linear.com/LTC5510
LTC5510
TYPICAL AC PERFORMANCE CHARACTERISTICS
5V VHF/UHF Downmixer Application:
VCC = 5V, TC = 25°C, fIN = 456MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), HSLO, PLO = 0dBm, output measured at
44MHz, unless otherwise noted. (Test Circuit Shown in Figure 2).
Conversion Gain, IIP3 and NF
vs Input Frequency
Conversion Gain and IIP3
vs Output Frequency
10
NF
5
–20
20
10
200
400
600
800
INPUT FREQUENCY (MHz)
0
1000
50
0
IIP3
20
3
12
–20
6
–15
–10
–5
0
BLOCKER POWER (dBm)
5510 G63
–20
400
600
800 1000
LO FREQUENCY (MHz)
1200
5510 G62
5510 G64
IIP3
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
20
15
NF
10
5
GC
4.6
4.7 4.8 4.9 5.0 5.1
SUPPLY VOLTAGE (V)
5.2
5.3
5510 G65
Conversion Gain, IIP3, NF and
Input P1dB vs Case Temperature
30
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
–40
–60
–80
–100
–15
25
0
4.5
5
IM3 Level
vs Input Power (2-Tone)
0
200
30
14
–6
–3
0
LO INPUT POWER (dBm)
0
5510 G61
16
GC
–9
–80
300
fIN = 900MHz
fBLOCK = 800MHz
fLO = 944MHz
18
LO-IN
Conversion Gain, IIP3 and NF
vs Supply Voltage
GAIN AND NF (dB), IIP3 AND P1dB (dBm)
0
–12
22
NOISE FIGURE (dB)
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
10
5
100
150
200
250
OUTPUT FREQUENCY (MHz)
PLO = –6dBm
PLO = –3dBm
PLO = 0dBm
PLO = 3dBm
PLO = 6dBm
24
NF
–50
Noise Figure
vs Input Blocker Level
26
IM3 (dBc)
GAIN (dB), IIP3 (dBm), NF (dB)
15
–40
–70
GC
5510 G60
30
20
LO-OUT
–30
–60
5
Conversion Gain, IIP3 and NF
vs LO Power
25
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
15
GC
0
–10
LO LEAKAGE (dBm)
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
15
IIP3
25
IIP3
20
0
GAIN (dB), IIP3 (dBm), NF (dB)
25
0
LO Leakage vs LO Frequency
30
GAIN (dB), IIP3 (dBm)
GAIN (dB), IIP3 (dBm), NF (dB)
30
–10
–5
0
INPUT POWER (dBm)
5
IIP3
25
20
15
IP1dB
10
5
NF
GC
0
–45
5510 G66
–15
15
45
75
CASE TEMPERATURE (°C)
105
5510 G68
5510fa
For more information www.linear.com/LTC5510
13
LTC5510
PIN FUNCTIONS
TEMP (Pin 1): Temperature Monitor. This pin is connected
to the anode of a diode through a 30Ω resistor. It may be
used to measure the die temperature by forcing a current
into the pin and measuring the voltage.
IADJ (Pin 8): Bias Adjust Pin. This pin allows adjustment
of the internal mixer current by adding an external pulldown resistor. The typical DC voltage on this pin is 1.8V.
If not used, this pin must be left floating.
IN+, IN– (Pins 2, 3): Differential Signal Input. For optimum
performance, these pins should be driven with a differential
signal. The input can be driven single-ended, with some
performance degradation, by connecting the undriven pin
to RF ground through a capacitor. An internally generated
1.6V DC bias voltage is present on these pins, thus DC
blocking capacitors are required.
GND (Pins 9, 12, 13, Exposed Pad (Pin 17)): Ground.
These pins must be soldered to the RF ground plane on
the circuit board. The exposed metal pad of the package
provides both electrical contact to ground and a good
thermal contact to the printed circuit board.
OUT–, OUT+ (Pins 10, 11,): Differential Output. These
pins must be connected to a DC supply through impedance matching inductors and/or a transformer center-tap.
Typical DC current consumption is 32mA into each pin.
LGND (Pin 4): DC Ground Return for the Input Amplifier.
This pin must be connected to DC ground. The typical
current from this pin is 64mA. In some applications an
external chip inductor may be used. Note that any inductor DC resistance will reduce the current through this pin.
LO–, LO+ (Pins 14, 15): Differential Local Oscillator Input.
A single-ended LO may be used by connecting one pin to
RF ground through a DC blocking capacitor. These pins
are internally biased to 1.7V; thus, DC blocking capacitors
are required. Each LO input pin is internally matched to
50Ω for both EN states.
EN (Pin 5): Enable Pin. When the applied voltage is greater
than 1.8V, the IC is enabled. Below 0.5V, the IC is disabled.
VCC1 , VCC2 (Pins 6, 7): Power Supply Pins for the Bias
and LO Buffer Circuits. Typical current consumption is
41mA. These pins should be connected together on the
circuit board and decoupled with a 10nF capacitor located
close to the pins.
TP (Pin 16): Test Pin. This pin is used for production test
purposes only and must be connected to ground.
BLOCK DIAGRAM
EXPOSED PAD
GND
TP
17
16
LO+
LO–
GND
15
14
13
TEMP 1
12 GND
IN+ 2
11 OUT+
10 OUT –
IN– 3
9 GND
BIAS
LGND 4
5
6
EN
VCC1
7
8
VCC2 IADJ
5510 BD
5510fa
14
For more information www.linear.com/LTC5510
LTC5510
TEST CIRCUITS
LO
50Ω
RF
0.015”
C4
C5
GND
0.062”
BIAS
GND
0.015”
TEMPERATURE
MONITOR
IN
50Ω
3
1
T1
1:1
16
15
14
13
TP
LO+
LO–
GND
LTC5510
C1
4
6
C9
2 IN+
C3
TO VCC
C8
GND 12
1 TEMP
OUT+ 11
17
GND
C2
L3
L1
T2
4:1
OUT – 10
3 IN–
4 LGND
DC1983A
EVALUATION BOARD
STACK-UP
(NELCO N4000-13)
3
2
1
4
5
6
L2
OUT
50Ω
NC
GND 9
EN
VCC1
VCC2
IADJ
5
6
7
8
R1
EN
VCC
C7
C6
5510 F01
5V/3.3V Wideband
Up/Downmixer*
5V Wideband Upmixer
fIN = 30MHz-3000MHz
fOUT = 1575MHz
fIN = 30MHz-2500 MHz
fOUT = 2140MHz
SIZE
COMMENTS
C1, C2, C4, C5
0.1µF
0.1µF
0402
Murata GRM15, X7R
C3
0.7pF
-
0402
Murata GJM15, C0G
C6
1µF
1µF
0603
Murata GRM18, X7R
REF DES
C7, C8
10nF
10nF
0402
Murata GRM15, X7R
C9
6.8pF
5.6pF
0402
Murata GJM15, C0G
L1, L2
6.8nH
5.6nH
0402
CoilCraft 0402HP
L3
0Ω
0Ω
0603
R1
4.75kΩ (5V),
1.8kΩ (3.3V)
4.75kΩ
0402
T1
Mini-Circuits
TC1-1-13M+
Mini-Circuits
TC1-1-13M+
T2
Anaren
BD1222J50200AHF
Mini-Circuits
NCS4-232+
1%
*Standard DC1983A Eval Board Configuration
Figure 1. High Frequency Output Test Circuit Schematic (DC1983A)
5510fa
For more information www.linear.com/LTC5510
15
LTC5510
TEST CIRCUITS
LO
50Ω
RF
0.015”
C4
C5
GND
0.062”
BIAS
GND
0.015”
TEMPERATURE
MONITOR
IN
50Ω
3
1
T1
1:1
16
15
14
13
TP
LO+
LO–
GND
GND 12
1 TEMP
C1
4
6
2 IN+
C3
L4
LTC5510
OUT + 11
17
GND
C2
3
4 LGND
L3
L1
OUT – 10
IN–
VCC1
VCC2
IADJ
5
6
7
8
C9
OUT+
3 4
C8
L2
2
C10
OUT –
1 6
OPTIONAL
DIFF OUT
L5
GND 9
EN
T2
4:1
DC1984A
EVALUATION BOARD
STACK-UP
(NELCO N4000-13)
R1
EN
VCC
C7
C6
5510 F02
5V VHF/UHF Upmixer*
5V VHF/UHF
Wideband Downmixer
fIN = 70MHz
fOUT = 100MHz-1000 MHz
fIN = 100MHz-1000 MHz
fOUT = 44MHz
SIZE
COMMENTS
C1, C2, C4, C5
0.1µF
0.1µF
0402
Murata GRM15, X7R
C3
0.5pF
0.9pF
0402
Murata GJM15, C0G
C6
1µF
1µF
0603
Murata GRM18, X7R
C7, C8, C9, C10
10nF
10nF
0402
Murata GRM15, X7R
-
-
0603
L3
220nH
0Ω
0603
Coilcraft 0603HP, WE 744761
L4, L5
CoilCraft 0402HP
REF DES
L1, L2
15nH
0Ω
0402
R1
-
-
0402
T1
Mini-Circuits
TC1-1-13M+
Mini-Circuits
TC1-1-13M+
T2
Mini-Circuits
TC4-19LN+
Mini-Circuits
TC4-1W-7ALN+
*Standard DC1984A Eval Board Configuration
Figure 2. Low Frequency Output Test Circuit Schematic (DC1984A)
5510fa
16
For more information www.linear.com/LTC5510
LTC5510
APPLICATIONS INFORMATION
The LTC5510 uses wideband high performance RF and LO
amplifiers driving a double-balanced mixer core to achieve
frequency up- or down-conversion with high linearity over
a very broad frequency range. For flexibility, all ports are
differential; however, the LO port has also been optimized
for single-ended use. Low side or high side LO injection
can be used. The IN port may also be driven single-ended,
though with some reduction in performance.
See the Pin Functions and Block Diagram sections for a
description of each pin. Test circuit schematics showing all
external components required for the data sheet specified
performance are shown in Figures 1 and 2. The evaluation
boards are shown in Figures 3a and 3b.
The High Frequency Output test circuit, shown in Figure 1,
utilizes a multilayer chip balun to realize a single-ended
output. The Low Frequency Output test circuit in Figure 2
uses a wire-wound balun and is designed to accommodate
a differential output if desired. Both the IN and LO ports
are very broadband and use the same configurations for
both test circuits. Additional components may be used
to modify the DC supply current or frequency response,
which will be discussed in the following sections.
IN Port Interface
5510 F03a
3a. High Frequency Output Board (DC1983A)
A simplified schematic of the mixer’s input is shown in
Figure 4a. The IN+ and IN– pins drive the bases of the input
transistors while internal resistors are used for impedance
matching. These pins are internally biased to a common
mode voltage of 1.6V, thus external capacitors C1 and C2
are required for DC isolation and can be used for impedance
matching. A small value of C3 can be used to improve the
impedance match at high frequencies and may improve
noise figure. The 1:1 transformer, T1, provides single-ended
to differential conversion for optimum performance.
The typical return loss at the IN port is shown in Figure 5
with 0.1µF at C1 and C2. The performance is better than
12dB up to 2.6GHz without C3. Adding a capacitance of
0.7pF at C3 extends the impedance match to 3GHz.
Differential input impedances (parallel equivalent) for
various frequencies are listed in Table 1. At frequencies
below 30MHz additional external components may be
needed to optimize the input impedance. Figure 4b shows
an equivalent circuit that can be used for single-ended
or differential impedance matching at frequencies below
1GHz. Above 1GHz, the S-parameters should be used.
5510 F03b
3b. Low Frequency Output Board (DC1984A)
The DC bias current of the input amplifier flows through Pin
4 (LGND). Typically this pin should be directly connected
to a good RF ground; however, at lower input frequencies
it may be beneficial to insert an inductor to ground for
improved IP2 performance. The inductor should have low
resistance and must be rated to handle 64mA DC current.
Figure 3. LTC5510 Evaluation Board Layouts
5510fa
For more information www.linear.com/LTC5510
17
LTC5510
APPLICATIONS INFORMATION
VCC
C1
LTC5510
IN+
2
T1
1:1
IN
50Ω
C3
IN–
C2
3
64mA
VCC
LGND
4
5510 F04a
Figure 4a. IN Port with External Matching
IN+
200pF
450Ω
75Ω
450Ω
IN–
Table 1. IN Port Differential Impedance
IMPEDANCE (Ω)
REFL. COEFF.
FREQUENCY
(MHz)
REAL*
IMAG*
MAG
ANG (°)
0.2
823
–j3971
0.89
–1.4
1
751
–j800
0.88
–7.2
10
133
–j154
0.50
–41
30
78.1
–j248
0.25
–36
50
73.3
–j378
0.20
–27
100
71.3
–j665
0.18
–17
200
70.7
–j961
0.17
–12
500
70.0
–j832
0.17
–14
1000
67.9
–j509
0.16
–24
1200
66.7
–j439
0.16
–28
1500
64.6
–j367
0.15
–35
2000
60.4
–j302
0.13
–49
2200
58.5
–j289
0.12
–55
2500
55.5
–j280
0.11
–66
3000
50.6
–j303
0.08
–91
4000
42.9
–j7460
0.08
–178
5000
42.7
j155
0.17
126
6000
55.9
j89
0.29
96
*Parallel Equivalent Impedance
5510 F04b
Figure 4b. IN Port Equivalent Circuit (< 1GHz)
LO Input Interface
0
The LTC5510 can be driven by a single-ended or differential LO signal. Internal resistors, as shown in Figure 6,
provide an impedance match of 50Ω per side or 100Ω
differential. The impedance match is maintained when the
part is disabled as well. The LO input pins are internally
biased to 1.7V, thus external capacitors, C4 and C5 are
used to provide DC isolation.
T1 = TC1-1-13M+
C1, C2 = 0.1µF
RETURN LOSS (dB)
–6
C3 = OPEN
–12
–18
–24
C3 = 0.7pF
–30
0
1000
2000
3000
FREQUENCY (MHz)
4000
5510 F05
Figure 5. IN Port Return Loss
5510fa
18
For more information www.linear.com/LTC5510
LTC5510
APPLICATIONS INFORMATION
The measured return loss of the LO input port is shown
in Figure 7 for C4 and C5 values of 0.1µF. The return loss
is better than 10dB from 5MHz to 6GHz. For frequencies
below 5MHz, larger C4 and C5 values are required. Table
2 lists the single-ended input impedance and reflection
coefficient versus frequency for the LO input. The differential impedance is listed in Table 3.
C5
LTC5510
LO–
14
VCC
C4
LO
50Ω
LO+
15
5510 F06
Figure 6. LO Input Circuit
C4, C5 = 0.1µF
–5
RETURN LOSS (dB)
IMPEDANCE (Ω)
REFL. COEFF.
FREQUENCY
(MHz)
REAL
IMAG
MAG
ANG (°)
1
90.3
–1.0
0.29
–1
10
87.5
–7.1
0.28
–8
100
55.3
–16.4
0.16
–63
600
47.8
–5.0
0.06
–111
1100
47.0
–4.7
0.06
–119
1600
46.2
–5.0
0.06
–124
2100
45.2
–5.1
0.07
–130
2600
44.2
–4.7
0.08
–138
3100
43.2
–3.9
0.08
–148
3600
42.3
–2.4
0.09
–161
4100
41.5
–0.3
0.09
–178
4500
40.8
2.0
0.10
166
5000
40.1
5.6
0.13
147
6000
38.6
14.3
0.20
120
6500
37.7
19.1
0.25
110
Table 3. Differential LO Input Impedance
0
–10
–15
ON (EN = HIGH)
–20
–25
–30
Table 2. Single-Ended LO Input Impedance
OFF (EN = LOW)
0
1000
2000
3000
4000
FREQUENCY (MHz)
5000
5510 F07
Figure 7. Single-Ended LO Input Return Loss
IMPEDANCE (Ω)
REFL. COEFF.
FREQUENCY
(MHz)
REAL
IMAG
MAG
ANG (°)
1
94.9
–0.1
0.31
–0.1
10
95.3
–0.5
0.31
–0.4
100
94.8
–2.3
0.31
–2
600
91.7
–12.5
0.31
–12
1100
85.6
–20.1
0.30
–21
1600
78.4
–24.2
0.29
–30
2100
71.5
–25.4
0.27
–38
2600
65.7
–24.3
0.24
–45
3100
61.3
–21.7
0.22
–51
3600
58.2
–17.9
0.18
–56
4100
56.2
–13.3
0.14
–58
4500
55.2
–9.1
0.10
–55
5000
54.6
–2.9
0.05
–31
6000
54.0
11.0
0.11
64
6500
53.7
18.5
0.18
69
5510fa
For more information www.linear.com/LTC5510
19
LTC5510
APPLICATIONS INFORMATION
OUT Port Interface
Output Matching: High Frequency Output Board
The differential output interface is shown in Figure 8.
The OUT+ and OUT– pins are open collector outputs with
internal load resistors that provide a 245Ω differential
output resistance at low frequencies.
The high frequency (HF) output evaluation board (DC1983A)
shown in Figure 3a is designed to use multilayer chip hybrid
baluns at the output. This board is intended for frequencies above about 800MHz (limited by balun availability).
These baluns deliver good performance and are smaller
than wire-wound baluns. The board is configured for the
matching topology shown in Figure 10. Inductors L1 and
L2 are used to tune out the parasitic output capacitance,
while the transformer provides differential to single-ended
conversion and impedance transformation. The DC bias
to the mixer core can be applied through the matching
inductors. Each pin draws approximately 32mA of DC
supply current.
Figure 9 shows the equivalent circuit of the output and
Table 4 lists differential impedances for various frequencies.
The impedance values are listed in parallel equivalent form,
with equivalent capacitances also shown. For optimum
single-ended performance, the differential output signal
must be combined through an external transformer or a
discrete balun circuit. In applications where differential filters
or amplifiers follow the mixer, it is possible to eliminate
the transformer and drive these components differentially.
LTC5510
Table 4. Differential OUT Port Impedance
32mA
11
OUT+
VCC
10
OUT –
32mA
5510 F08
Figure 8. Output Interface
LTC5510
245Ω
1.2nH
0.4pF
1.2nH
11
OUT+
0.2pF
10
OUT –
FREQUENCY
(MHz)
IMPEDANCE (Ω)
REAL*
IMAG* (CAP)
REFL. COEFF.
MAG
ANG
1
245
–j240k (0.67pF)
0.66
0.0
10
244
–j40k (0.40pF)
0.66
–0.2
50
244
–j5.31k (0.60pF)
0.66
–1.1
100
245
–j2.66k (0.60pF)
0.66
–2.3
300
243
–j884 (0.60pF)
0.66
–6.8
500
240
–j529 (0.60pF)
0.66
–11
1000
224
–j260 (0.61pF)
0.65
–23
1500
201
–j169 (0.63pF)
0.63
–35
2000
171
–j122 (0.65pF)
0.60
–48
2500
138
–j93 (0.69pF)
0.57
–62
3000
104
–j73 (0.73pF)
0.53
–78
3500
73
–j59 (0.77pF)
0.48
–97
4000
47
–j51 (0.78pF)
0.43
–120
4500
29
–j59 (0.60pF)
0.39
–148
5000
22
j4.74K
0.38
180
6000
49
j51
0.44
117
* Parallel Equivalent
5510 F09
Figure 9. Output Port Equivalent Circuit
5510fa
20
For more information www.linear.com/LTC5510
LTC5510
APPLICATIONS INFORMATION
Capacitor C9 can be used to improve the impedance match.
The component values used for characterization are listed
in Table 5, along with the 12dB return loss bandwidths.
The measured return loss curves are plotted in Figure 11.
VCC
C8
OUT+
11
C9
OUT
L1
VCC
OUT –
L2
3
2
1
4
5
6
NC
Output Matching: Low Frequency Output Board
For lower output frequencies, wire-wound transformers provide better performance. The low frequency (LF) evaluation
board (DC1984A) in Figure 3(b) accommodates these applications. The output matching topology is shown in Figure 12.
Components L1, L2, L4 and L5 are used to tune the impedance match, while T2 provides the desired impedance
transformation. C9 and C10 are used for DC blocking in
some applications. Table 6 lists component values used
for characterization, and the measured return loss perfor­
mance is plotted in Figure 13.
10
OUT+
5510 F10
L4
11
T2
Figure 10. HF Board Output Schematic
L1
FREQUENCY RANGE*
(MHz)
(GHz)
L1, L2
(nH)
C9
(pF)
2
C8
1575
1.2 to 2.1
6.8
6.8
Anaren
BD1222J50200AHF
2140
1.6 to 2.5
5.6
5.6
Mini-Circuits
NCS4-232+
* 12dB Return Loss Bandwidth
OUT –
L5
10
VCC
5510 F12
Figure 12. LF Board Output Schematic
Table 6. OUT Port Component Values: LF Output Board (DC1984A)
0
FREQUENCY
(MHz)
RANGE*
(MHz)
L1, L2
(nH)
L4, L5
(nH)
44
5 to 325
–
0Ω
Mini-Circuits
TC4-1W-7ALN+
456
10 to 1300
–
15
Mini-Circuits
TC4-19LN+
RETURN LOSS (dB)
–6
a
C10
1 6
L2
T2
OUT
3 4
LTC5510
Table 5. OUT Port Component Values: HF Output Board (DC1983A)
C9
b
–12
T2
* 12dB Return Loss Bandwidth
–18
–24
1000
1500
2000
2500
FREQUENCY (MHz)
3000
5510 F11
Figure 11. Out Port Return Loss of HF Board (DC1983A).
Tuned for 1575MHz (a), and 2140MHz (b)
5510fa
For more information www.linear.com/LTC5510
21
LTC5510
APPLICATIONS INFORMATION
0
LTC5510
VCC1
6
EN
RETURN LOSS (dB)
–6
5
a
300k
–12
b
5510 F14
–18
–24
Figure 14. Enable Pin Interface
0
300
600
900
1200
FREQUENCY (MHz)
1500
5510 F13
Figure 13. Out Port Return Loss of LF Board (DC1984A)
Tuned for 44MHz (a), and 456MHz (b)
DC and RF Grounding
The LTC5510 relies on the backside ground for both RF and
thermal performance. The exposed pad must be soldered
to the low impedance top side ground plane of the board.
The top side ground should also be connected to other
ground layers to aid in thermal dissipation and ensure a
low inductance RF ground. The LTC5510 evaluation boards
(Figures 3a and 3b) utilize a 4 × 4 array of vias under the
exposed pad for this purpose.
Enable Interface
Figure 14 shows a schematic of the EN pin interface. To
enable the part, the applied EN voltage must be greater
than 1.8V. Setting the voltage below 0.5V will disable
the IC. If the enable function is not required, the enable
pin can be connected to VCC through a 1k resistor. The
ramp-up time of the supply voltage should be greater than
1ms. The voltage at the enable pin should never exceed
the power supply voltage (VCC) by more than 0.3V. Under
no circumstances should voltage be applied to the enable
pin before the supply voltage is applied to the VCC pin. If
this occurs, damage to the IC may result.
Current Adjust Pin (IADJ)
The IADJ pin (Pin 8) can be used to optimize the performance of the mixer core over temperature. The nominal
open-circuit DC voltage on this pin is 1.8V and the typical
short-circuit current is 1.9mA. As shown in Figure 15, an
internal 4mA reference sets the current in the mixer core.
Connecting resistor R1 to the IADJ pin shunts some of
the reference current to ground, thus reducing the mixer
core current. The optimum value of R1 depends on the
supply voltage and intended output frequency. Some
recommended values are shown in Table 7, but the values
can be optimized as required for individual applications.
Table 7. Recommended Values for R1
VCC (V)
fOUT (MHz)
R1 (Ω)
ICC (mA)
5
<1200
Open
105
5
>1200
4.75k
99
3.3
<1200
1k
90
3.3
>1200
1.8k
94
VCC1
LTC5510
IADJ
715Ω
6
8
R1
3V
4mA
BIAS
5510 F15
Figure 15. Current Adjust Pin Interface
5510fa
22
For more information www.linear.com/LTC5510
LTC5510
APPLICATIONS INFORMATION
Temperature Monitor (TEMP)
Supply Voltage Ramping
The TEMP input (pin 1) is connected to an on-chip diode
that can be used as a coarse temperature monitor by forcing current into it and measuring the resulting voltage. The
temperature diode is protected by a series 30Ω resistor
and additional ESD diodes to ground.
Fast ramping of the supply voltage can cause a current
glitch in the internal ESD protection circuits. Depending on
the supply inductance, this could result in a supply voltage transient that exceeds the maximum rating. A supply
voltage ramp time of greater than 1ms is recommended.
The TEMP pin voltage is shown as a function of junction
temperature in Figure 16. Given the voltage (in mV) at
the pin, VD, the junction temperature can be estimated
for forced input currents of 10µA and 80µA using the
following equations:
The ramp rate of the supply voltage at the VCC pins should
not exceed 20V/ms. If the EN and VCC pins are switched
simultaneously, the configuration in Figure 17 can be used
to slow the rise time at the VCC pins if needed.
LTC5510
TJ (10µA) = (VD – 742.4)/ –1.796
TJ (80µA) = (VD – 795.6)/ –1.609
10k
900
VCC
TEMP PIN VOLTAGE (mV)
850
800
VCC
VCC
5
6
7
0.5Ω
220µF
10nF
5510 F17
IIN = 80µA
Figure 17. Suggested Configuration for Simultaneous VCC
and EN Switching
750
700
650
EN
Spurious Output Levels
IIN = 10µA
600
550
500
–50 –30 –10 10 30 50 70 90 110
JUNCTION TEMPERATURE (°C) 5510 G16
Figure 16. TEMP Pin Voltage vs Junction Temperature
Auto Supply Voltage Detect
An internal circuit automatically detects the supply voltage and configures internal components for 3.3V or 5V
operation. The DC current is affected when the auto-detect
circuit switches at approximately 4.1V. To avoid undesired
operation, the mixer should only be operated in the 3.1V
to 3.6V or 4.5V to 5.3V supply ranges.
Mixer spurious output levels versus harmonics of the IN
and LO frequencies are tabulated in Tables 8 and 9 for
the 5V Wideband Up/Downmixer application. Results
are shown for frequencies up to 15GHz. The spur frequencies can be calculated using the following equation:
fSPUR = |M • fIN ± N • fLO|
Table 8 shows the “difference” spurs (fSPUR = |M • fIN – N
• fLO|) and Table 9 shows the “sum” spurs (fSPUR = M • fIN
+ N • fLO ). The spur levels were measured on a standard
evaluation board at room temperature using the test circuit
shown in Figure 1. The spurious output levels for each
application will be dependent on the external matching
circuits and the particular application frequencies.
5510fa
For more information www.linear.com/LTC5510
23
LTC5510
APPLICATIONS INFORMATION
Table 8. Output Spur Levels (dBc), fSPUR = |M • fIN – N • fLO|
(fIN = 190MHz at –7dBm, fLO = 1765MHz at 0dBm, VCC = 5V)
Table 9. Output Spur Levels (dBc), fSPUR = M • fIN + N • fLO
(fIN = 190MHz at –7dBm, fLO = 1765MHz at 0dBm, VCC = 5V)
N
M
N
0
1
2
3
4
5
6
7
8
0
–
–30
–30
–40
–18
–44
–4
–46
–24
0
0
1
2
3
4
5
6
7
8
–
–30
–30
–40
–18
–44
–4
–46
–24
1
–64
0**
–50
–30
–64
–22
–55
–47
–72
1
–50
–16
–55
–26
–52
–52
–69
2
*
–37
–73
–65
–65
–58
–49
–72
–59
2
*
–36
–73
–50
–63
–59
–46
–76
–62
3
*
–48
*
–71
*
–66
–79
–75
–86
3
*
–49
–88
–65
*
–72
–74
–84
–81
4
*
–66
*
–84
–90
*
–79
*
*
5
*
–70
*
*
*
*
*
*
4
*
–68
*
–83
*
–84
*
*
*
5
*
–77
*
–84
*
–87
*
*
*
M
-64 –0.4**
6
*
–89
*
–87
*
*
*
*
*
6
*
–73
*
*
*
*
*
*
7
*
*
*
–86
*
*
*
*
*
7
*
–75
*
*
*
*
*
*
8
*
*
*
–84
*
*
*
*
*
8
*
–74
*
*
*
*
*
*
9
*
*
*
*
*
*
*
*
*
9
*
–80
*
*
*
*
*
*
10
*
*
*
*
*
*
*
*
*
10
*
*
*
*
*
*
*
*
* Less Than <–90dBc
**Carrier Frequency
* Less Than <–90dBc
**Image Frequency
5510fa
24
For more information www.linear.com/LTC5510
LTC5510
TYPICAL APPLICATIONS
Upmixer with 3.3GHz to 3.8GHz Output
LO
50Ω
0.1µF
LO+
MINI-CIRCUITS
TC1-1-13M+
1:1
IN
456MHz
0.1µF
IN+
5V
10nF
0.1µF
LTC5510
LO–
OUT+
4.7pF
2nH
0.7pF
0.1µF
IN–
OUT–
2nH
MINI-CIRCUITS
NCS1-422+
1:1
BIAS
LGND
EN VCC1 VCC2 IADJ
4.75kΩ
5V
1µF
5510 TA02
Conversion Gain, OIP3 and NF
vs Output Frequency
5
25
4
20
3
NF
10
NC
2
6
LSLO
HSLO
15
3300
3500
3700
OUTPUT FREQUENCY (MHz)
3
10
1
5
0
3900
0
2
–60
IN-OUT
–80
20
1000
2000
3000
4000
FREQUENCY (MHz)
–100
5000
RETURN LOSS (dB)
LO-IN
LO LEAKAGE (dBm)
–40
0
–6
–20
LO-OUT
60
0
0
1000
200
400
600
800
INPUT FREQUENCY (MHz)
5510 TA04
0
0
40
0
1
IN, OUT and LO Port Return Loss
vs Frequency
100
IN-LO
GC
5510 TA03
IN Isolation and LO Leakage
vs Frequency
80
4
fOUT = 3500MHz
GC
0
3100
5
OIP3
fIN = 456MHz
5
ISOLATION (dB)
6
GAIN (dB)
15
30
GAIN (dB)
OIP3 (dBm), NF (dB)
LSLO
HSLO
6
OIP3 (dBm)
25
20
1
5
Conversion Gain and OIP3
vs Input Frequency
30
OIP3
2
4
TYPICAL PERFORMANCE (ROOM TEMPERATURE)
IN = 456MHz, OUT = 3500MHz, LO = 3956MHz
PIN = –10dBm, PLO = 0dBm
GC = 0.6dB
OIP3 = 24.7dBm
SSB NF = 13.3dB
INPUT P1dB = 11dBm
EN
10nF
3
OUT
50Ω
OUT
–12
IN
LO
–18
–24
–30
0
5510 TA05
1000
2000
3000
4000
FREQUENCY (MHz)
5000
5510 TA06
5510fa
For more information www.linear.com/LTC5510
25
LTC5510
TYPICAL APPLICATIONS
Mixer with Extended Input Frequency Range to 6GHz
LO
50Ω
0.1µF
0.1µF
LO+
MINI-CIRCUITS
TCM1-63AX+
1:1
IN
30MHz TO 6000MHz
0.1µF
0.3pF
0.1µF
IN+
LTC5510
MINI-CIRCUITS
TC4-1W-7ALN+
4:1
LO–
OUT
140MHz
OUT+
0.05pF
TYPICAL PERFORMANCE (ROOM TEMPERATURE)
IN = 3GHz, OUT = 140MHz, LO = 3.14GHz
PIN = –10dBm, PLO = 0dBm
GC = 1.3dB
IIP3 = 21.3dBm
OUT–
BIAS
LGND
EN VCC1 VCC2 IADJ
4.75kΩ
IN–
10nF
EN
5V
10nF
1µF
5510 TA07
Conversion Gain and IIP3
vs Input Frequency
LO-OUT Leakage and IN-OUT
Isolation vs Frequency
35
30
LO-OUT LEAKAGE (dBm)
RETURN LOSS (dB)
20
15
10
5
GC
0
–5
0
60
–10
50
–20
–30
30
–40
20
–50
1000
–60
2000 3000 4000 5000 6000
INPUT FREQUENCY (MHz)
5510 TA08
IN PORT and LO PORT Return Loss
vs Frequency
0
1000
2000 3000 4000
FREQUENCY (MHz)
5000
0
6000
5510 TA09
0
–5
–5
–10
RETURN LOSS (dB)
RETURN LOSS (dB)
10
LO-OUT
OUT PORT Return Loss
vs Frequency
0
IN-PORT
–15
–20
LO-PORT
–25
–10
–15
–20
–30
–35
40
IN-OUT
IN-OUT ISOLATION (dB)
IIP3
25
0
0
1000
2000 3000 4000
FREQUENCY (MHz)
5000
6000
–25
0
5510 TA10
100
200
300
FREQUENCY (MHz)
400
500
5510 TA11
5510fa
26
For more information www.linear.com/LTC5510
LTC5510
TYPICAL APPLICATIONS
Broadband Downmixer Application Using Single-Ended Input
LO
50Ω
10nF
10nF
LO+
10nF
IN
100MHz TO 1000MHz
50Ω
IN+
LTC5510
LO–
TC4-1W-7ALN+
4:1
OUT
44MHZ
50Ω
OUT+
TYPICAL PERFORMANCE (TC = 25°C)
IN = 450MHz, OUT = 44MHz, LO = 494MHz
PIN = –5dBm, PLO = 0dBm
GC = 1.8dB
IIP3 = 26.3dBm
SSB NF = 11.5dB
INPUT P1dB = 8.8dBm
10nF
IN–
OUT–
BIAS
LGND
EN VCC1 VCC2 IADJ
100nH
10nF
5V
10nF
EN
1µF
5510 TA12
Conversion Gain, IIP3 and NF
vs Input Frequency
Conversion Gain and IIP3
vs Output Frequency
30
6
28
25
15
GAIN (dB)
20
NF
fIN = 450MHz
HSLO
4
26
24
3
22
10
2
5
0
0
GC
200
400
600
800
INPUT FREQUENCY (MHz)
1
1000
80
–20
70
50
–50
40
–60
30
–70
20
10
IN-OUT
LO-IN
0
300
600
900
FREQUENCY (MHz)
0
1200
–5
IN ISOLATION (dB)
60
IN-LO
–40
–80
100
150
200
250
OUTPUT FREQUENCY (MHz)
18
300
5510 TA14
0
RETURN LOSS (dB)
90
LO-OUT
50
IN, OUT and LO Port Return Loss
vs Frequency
0
–30
0
5510 TA13
–10
–90
20
GC
LO Leakage and IN Isolation
vs Frequency
LO LEAKAGE (dBm)
IIP3
5
fOUT = 44MHz
HSLO
IIP3 (dBm)
GAIN (dB), IIP3 (dBm), NF (dB)
IIP3
OUT
–10
IN
–15
–20
–25
LO
–30
–35
0
5510 TA15
200
400
600
800
FREQUENCY (MHz)
1000
1200
5510 TA16
5510fa
For more information www.linear.com/LTC5510
27
LTC5510
PACKAGE DESCRIPTION
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.
UF Package
16-Lead Plastic QFN (4mm × 4mm)
(Reference LTC DWG # 05-08-1692 Rev Ø)
0.72 ±0.05
4.35 ±0.05
2.15 ±0.05
2.90 ±0.05 (4 SIDES)
PACKAGE OUTLINE
0.30 ±0.05
0.65 BSC
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS
BOTTOM VIEW—EXPOSED PAD
4.00 ±0.10
(4 SIDES)
0.75 ±0.05
R = 0.115
TYP
15
PIN 1 NOTCH R = 0.20 TYP
OR 0.35 × 45° CHAMFER
16
0.55 ±0.20
PIN 1
TOP MARK
(NOTE 6)
1
2.15 ±0.10
(4-SIDES)
2
(UF16) QFN 10-04
0.200 REF
0.00 – 0.05
0.30 ±0.05
0.65 BSC
NOTE:
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION
ON THE TOP AND BOTTOM OF PACKAGE
5510fa
28
For more information www.linear.com/LTC5510
LTC5510
REVISION HISTORY
REV
DATE
DESCRIPTION
A
06/15
LO and OUTPUT frequency range increased to 6500 and 6000MHz, respectively.
PAGE NUMBER
Corrected Figure 4 caption.
2, 19, 20, 22,
23, 26
22
5510fa
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection
of its circuits
as described
herein will not infringe on existing patent rights.
For more
information
www.linear.com/LTC5510
29
LTC5510
TYPICAL APPLICATION
5V CATV Downmixer with 1GHz IF Bandwidth
Conversion Gain, OIP3 and 2RF-LO
Spur vs IF Output Frequency
LO
50Ω
30
10nF
GND
10nF
IN+
0.5pF
OUT+
LTC5510
10nF
15nH
3 4
15nH
1 6
OUT–
IN–
LGND
EN VCC1 VCC2
2
IFOUT
50MHz TO
1000MHz
50Ω
10nF
GND
IADJ
10nF
EN
5V
10nF
1µF
21
18
15
–30
–40
–50
2RF-LO
–60
12
–70
9
–80
6
–90
3
0
5510 TA17
–20
fIN = 1150MHz
PIN = –7dBm
fLO = fIN + fOUT
PLO = 0dBm
TC = 25°C
24
–100
GC
0
2RF-LO SPUR (dBc)
IN
1150MHz
50Ω
TC1-1-13M+
1:1
TC4-19LN+
4:1 10nF
–10
OIP3
27
GAIN (dB), OIP3 (dBm)
TP
10nF
LO+ LO– GND
200
400
600
800
IF OUTPUT FREQUENCY (MHz)
–110
1000
5510 TA18
RELATED PARTS
PART NUMBER DESCRIPTION
Mixers and Modulators
LT®5527
400MHz to 3.7GHz, 5V Downconverting Mixer
LT5557
400MHz to 3.8GHz, 3.3V Downconverting Mixer
LTC559x
600MHz to 4.5GHz Dual Downconverting Mixer
Family
LTC5569
300MHz to 4GHz, 3.3V Dual Active
Downconverting Mixer
LTC554x
600MHz to 4GHz, 5V Downconverting Mixer Family
LT5578
400MHz to 2.7GHz Upconverting Mixer
LT5579
1.5GHz to 3.8GHz Upconverting Mixer
LTC5588-1
200MHz to 6GHz I/Q Modulator
LTC5585
700MHz to 3GHz Wideband I/Q Demodulator
Amplifiers
LTC6430-15
High Linearity Differential IF Amp
LTC6431-15
High Linearity Single-Ended IF Amp
LTC6412
31dB Linear Analog VGA
LT5554
Ultralow Distortion IF Digital VGA
RF Power Detectors
LT5538
40MHz to 3.8GHz Log Detector
LT5581
6GHz Low Power RMS Detector
LTC5582
40MHz to 10GHz RMS Detector
LTC5583
Dual 6GHz RMS Power Detector
ADCs
LTC2208
16-Bit, 130Msps ADC
LTC2153-14
14-Bit, 310Msps Low Power ADC
RF PLL/Synthesizer with VCO
LTC6946-1/
Low Noise, Low Spurious Integer-N PLL with
LTC6946-2/
Integrated VCO
LTC6946-3
COMMENTS
2.3dB Gain, 23.5dBm IIP3 and 12.5dB NF at 1900MHz, 5V/78mA Supply
2.9dB Gain, 24.7dBm IIP3 and 11.7dB NF at 1950MHz, 3.3V/82mA Supply
8.5dB Gain, 26.5dBm IIP3, 9.9dB NF, 3.3V/380mA Supply
2dB Gain, 26.8dBm IIP3 and 11.7dB NF, 3.3V/180mA Supply
8dB Gain, >25dBm IIP3 and 10dB NF, 3.3V/200mA Supply
27dBm OIP3 at 900MHz, 24.2dBm at 1.95GHz, Integrated RF Output Transformer
27.3dBm OIP3 at 2.14GHz, NF = 9.9dB, 3.3V Supply, Single-Ended LO and RF Ports
31dBm OIP3 at 2.14GHz, –160.6dBm/Hz Noise Floor
>530MHz Demodulation Bandwidth, IIP2 Tunable to >80dBm, DC Offset Nulling
20MHz to 2GHz Bandwidth, 15.2dB Gain, 50dBm OIP3, 3dB NF at 240MHz
20MHz to 1.7GHz Bandwidth, 15.5dB Gain, 47dBm OIP3, 3.3dB NF at 240MHz
35dBm OIP3 at 240MHz, Continuous Gain Range –14dB to 17dB
48dBm OIP3 at 200MHz, 2dB to 18dB Gain Range, 0.125dB Gain Steps
±0.8dB Accuracy Over Temperature, –72dBm Sensitivity, 75dB Dynamic Range
40dB Dynamic Range, ±1dB Accuracy Over Temperature, 1.5mA Supply Current
±0.5dB Accuracy Over Temperature, ±0.2dB Linearity Error, 57dB Dynamic Range
Up to 60dB Dynamic Range, ±0.5dB Accuracy Over Temperature, >50dB Isolation
78dBFS Noise Floor, >83dB SFDR at 250MHz
68.8dBFS SNR, 88dB SFDR, 401mW Power Consumption
373MHz to 5.79GHz, –157dBc/Hz WB Phase Noise Floor, –100dBc/Hz Closed-Loop
Phase Noise
5510fa
30 Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
For more information www.linear.com/LTC5510
(408) 432-1900 ● FAX: (408) 434-0507
●
www.linear.com/LTC5510
LT 0615 REV A • PRINTED IN USA
 LINEAR TECHNOLOGY CORPORATION 2013