LTC5510 1MHz to 6GHz Wideband High Linearity Active Mixer FEATURES n n n n n n n n n n n n n n DESCRIPTION Input Frequency Range to 6GHz 50Ω Matched Input from 30MHz to >3GHz Capable of Up- or Down-Conversion OIP3: 27dBm at fOUT = 1575MHz 1.5dB Conversion Gain Noise Figure: 11.6dB at fOUT = 1575MHz High Input P1dB: 11dBm at 5V 5V or 3.3V Supply at 105mA Shutdown Control LO Input Impedance Always Matched 0dBm LO Drive Level 0n-Chip Temperature Monitor –40°C to 105°C Operation (TC) 16-Lead (4mm × 4mm) QFN Package The LTC®5510 is a high linearity mixer optimized for applications requiring very wide input bandwidth, low distortion, and low LO leakage. The chip includes a double-balanced active mixer with an input buffer and a high speed LO amplifier. The input is optimized for use with 1:1 transmissionline baluns, allowing very wideband impedance matching. The mixer can be used for both up- and down-conversion and can be used in wideband systems. The LO can be driven differentially or single-ended and requires only 0dBm of LO power to achieve excellent distortion and noise performance, while also reducing external drive circuit requirements. The LTC5510 offers low LO leakage, greatly reducing the need for output filtering to meet LO suppression requirements. APPLICATIONS n n n n The LTC5510 is optimized for 5V but can also be used with a 3.3V supply with slightly reduced performance. The shutdown function allows the part to be disabled for further power savings. Wideband Receivers/Transmitters Cable Downlink Infrastructure HF/VHF/UHF Mixer Wireless Infrastructure L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. TYPICAL APPLICATION Conversion Gain, IIP3 and NF vs Input Frequency 30MHz to 4GHz Up/Down Mixer for Wideband Receiver LO 50Ω IN 30MHz TO 4GHz 50Ω TCM1-43X+ 1:1 0.1µF TEMP 0.1µF LO+ LTC5510 OUT+ IN+ 0.6pF 0.1µF IN– OUT– BIAS LGND EN VCC1 BD1222J50200AHF 4:1 LO– VCC2 IADJ 6.8nH 6.8pF OUT 1575MHz 50Ω 6.8nH 4.75kΩ EN 25 IIP3 20 HS LO 15 LS LO NF 10 fOUT = 1575MHz PIN = –10dBm PLO = 0dBm TC = 25°C 5 10nF GC 0 5V 10nF GAIN (dB), IIP3 (dBm), NF (dB) TEMPERATURE MONITOR 30 0.1µF 1µF 0 1000 2000 3000 INPUT FREQUENCY (MHz) 5510 TA01 4000 5510 TA01a 5510fa For more information www.linear.com/LTC5510 1 LTC5510 ABSOLUTE MAXIMUM RATINGS PIN CONFIGURATION (Note 1) GND LO– LO+ TP TOP VIEW 16 15 14 13 12 GND TEMP 1 IN+ 2 11 OUT+ 17 IN– 3 10 OUT – LGND 4 5 6 7 8 EN VCC2 IADJ 9 VCC1 Supply Voltage (VCC1, VCC2, OUT+, OUT–).................6.0V Enable Voltage (EN)..........................–0.3V to VCC + 0.3V Current Adjust Voltage (IADJ)..................... –0.3V to 2.7V LO Input Power (1MHz to 6GHz)......................... +10dBm LO Differential DC Voltage........................................1.5V LO+, LO – Input DC Voltage............................ –0.3V to 3V IN+, IN– Input Power (1MHz to 6GHz)................. +15dBm IN+, IN– Input DC Voltage .......................... –0.3V to 2.4V Temp Monitor Input Current (TEMP).......................10mA Operating Temperature Range (TC)......... –40°C to 105°C Storage Temperature Range................... –65°C to 150°C Junction Temperature (TJ)..................................... 150°C GND UF PACKAGE 16-LEAD (4mm × 4mm) PLASTIC QFN TJMAX = 150°C, θJC = 6°C/W EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB ORDER INFORMATION LEAD FREE FINISH TAPE AND REEL PART MARKING PACKAGE DESCRIPTION TEMPERATURE RANGE LTC5510IUF#PBF LTC5510IUF#TRPBF 5510 16-Lead (4mm × 4mm) Plastic QFN –40°C to 105°C Consult LTC Marketing for parts specified with wider operating temperature ranges. For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/ AC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25°C. EN = High, PLO = 0dBm. Test circuit shown in Figure 1. (Notes 2, 3, 4) PARAMETER CONDITIONS Input Frequency Range Requires External Matching LO Input Frequency Range MIN TYP MAX UNITS l 1 to 6000 MHz l 1 to 6500 MHz l 1 to 6000 MHz Output Frequency Range Requires External Matching Input Return Loss ZO = 50Ω, 30MHz to 3GHz LO Input Return Loss ZO = 50Ω, 1MHz to 5GHz >10 dB Output Impedance Differential at 1500MHz 201Ω||0.6pF R||C LO Input Power fLO = 1MHz to 5GHz 5V Wideband Up/Downmixer Application: fIN = 30MHz to 3000MHz, fOUT = 1575MHz, VCC = 5V, R1 = 4.75kΩ Conversion Gain fIN = 190MHz, fLO = 1765MHz, Upmixer fIN = 900MHz, fLO = 2475MHz, Upmixer fIN = 2150MHz, fLO = 575MHz, Downmixer fIN = 2600MHz, fLO = 1025MHz, Downmixer l Conversion Gain vs Temperature TC = –40°C to 105°C, fIN = 900MHz >11 –6 0 0.5 1.5 1.4 1.1 1.2 –0.007 dB 6 dBm dB dB dB dB dB/°C 5510fa 2 For more information www.linear.com/LTC5510 LTC5510 AC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25°C. EN = High, PLO = 0dBm, PIN = –10dBm (–10dBm/tone for two-tone tests), unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4) PARAMETER CONDITIONS MIN TYP 24.0 fIN = 190MHz, fLO = 1765MHz, Upmixer fIN = 900MHz, fLO = 2475MHz, Upmixer fIN = 2150MHz, fLO = 575MHz, Downmixer fIN = 2600MHz, fLO = 1025MHz, Downmixer SSB Noise Figure fIN = 190MHz, fLO = 1765MHz, Upmixer fIN = 900MHz, fLO = 2475MHz, Upmixer fIN = 2150MHz, fLO = 575MHz, Downmixer fIN = 2600MHz, fLO = 1025MHz, Downmixer SSB Noise Figure Under Blocking fIN =900MHz, fLO = 2475MHz, fBLOCK = 800MHz, PBLOCK = +5dBm LO-IN Leakage fLO = 20MHz to 3300MHz LO-OUT Leakage fLO = 20MHz to 1000MHz fLO = 1000MHz to 3300MHz IN-OUT Isolation fIN = 20MHz to 1150MHz fIN = 1150MHz to 3000MHz IN-LO Isolation fIN = 30MHz to 3000MHz Input 1dB Compression fIN = 190MHz, fLO = 1765MHz, Upmixer fIN = 900MHz, fLO = 2475MHz, Upmixer fIN = 2150MHz, fLO = 575MHz, Downmixer fIN = 2600MHz, fLO = 1025MHz, Downmixer 3.3V Wideband Up/Downmixer Application: fIN = 30MHz to 3000MHz, fOUT = 1575MHz, VCC = 3.3V, R1 = 1.8kΩ Conversion Gain fIN = 190MHz, fLO = 1765MHz, Upmixer fIN = 900MHz, fLO = 2475MHz, Upmixer fIN = 2150MHz, fLO = 575MHz, Downmixer fIN = 2600MHz, fLO = 1025MHz, Downmixer l Conversion Gain vs Temperature TC = –40°C to 105°C, fIN = 900MHz Two-Tone Output 3rd Order Intercept fIN = 190MHz, fLO = 1765MHz, Upmixer fIN = 900MHz, fLO = 2475MHz, Upmixer (Δf = 2MHz) fIN = 2150MHz, fLO = 575MHz, Downmixer fIN = 2600MHz, fLO = 1025MHz, Downmixer SSB Noise Figure fIN = 190MHz, fLO = 1765MHz, Upmixer fIN = 900MHz, fLO = 2475MHz, Upmixer fIN = 2150MHz, fLO = 575MHz, Downmixer fIN = 2600MHz, fLO = 1025MHz, Downmixer SSB Noise Figure Under Blocking fIN = 900MHz, fLO = 2475MHz, fBLOCK = 800MHz PBLOCK = +5dBm LO-IN Leakage fLO = 20MHz to 3300MHz LO-OUT Leakage fLO = 20MHz to 1000MHz fLO = 1000MHz to 3300MHz IN-OUT Isolation fIN = 20MHz to 1150MHz fIN = 1150MHz to 3000MHz IN-LO Isolation fIN = 30MHz to 3000MHz Input 1dB Compression fIN = 190MHz, fLO = 1765MHz, Upmixer fIN = 900MHz, fLO = 2475MHz, Upmixer fIN = 2150MHz, fLO = 575MHz, Downmixer fIN = 2600MHz, fLO = 1025MHz, Downmixer 27.8 25.0 26.0 24.5 11.6 12.1 11.6 11.8 20.3 Two-Tone Output 3rd Order Intercept (Δf = 2MHz) MAX UNITS 14.5 dBm dBm dBm dBm dB dB dB dB dB <–50 <–40 <–33 >40 >22 >55 11.0 12.2 11.5 11.6 dBm dBm dBm dB dB dB dBm dBm dBm dBm 1.5 1.4 1.1 1.2 –0.006 24.2 23.3 23.9 22.3 11.2 12.2 11.4 11.4 20.8 dB dB dB dB dB/°C dBm dBm dBm dBm dB dB dB dB dB <–50 <–40 <–33 >40 >22 >55 8.9 10.7 10.1 9.6 dBm dBm dBm dB dB dB dBm dBm dBm dBm 5510fa For more information www.linear.com/LTC5510 3 LTC5510 AC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25°C. EN = High, PLO = 0dBm, PIN = –10dBm (–10dBm/tone for two-tone tests), unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4) PARAMETER CONDITIONS MIN TYP MAX UNITS 5V Wideband Upmixer Application: fIN = 30MHz to 1000MHz, fOUT = 2140MHz, fLO = fIN + fOUT, VCC = 5V, R1 = 4.75kΩ Conversion Gain fIN = 190MHz fIN = 450MHz fIN = 900MHz Conversion Gain vs Temperature TC = –40°C to 105°C, fIN = 190MHz –0.006 dB/°C Two-Tone Output 3rd Order Intercept (Δf = 2MHz) fIN = 190MHz fIN = 450MHz fIN = 900MHz 25.6 24.6 23.9 dBm dBm dBm SSB Noise Figure fIN = 190MHz fIN = 450MHz fIN = 900MHz 12.0 12.2 12.4 dB dB dB SSB Noise Floor at PIN = +5dBm fIN = 800MHz, fLO = 3040MHz, fOUT = 2140MHz LO-IN Leakage fLO = 2100MHz to 3500MHz <–50 dBm LO-OUT Leakage fLO = 2100MHz to 3500MHz <–31 dBm IN-OUT Isolation fIN = 30MHz to 1100MHz >40 dB IN-LO Isolation fIN = 30MHz to 1100MHz >50 dB Input 1dB Compression fIN = 190MHz fIN = 450MHz fIN = 900MHz 11.5 11.5 11.7 dBm dBm dBm 1.1 1.0 1.0 l –151.4 dB dB dB dBm/Hz 5V VHF/UHF Wideband Downmixer Application: fIN = 100MHz to 1000MHz, fOUT = 44MHz, fLO = fIN + fOUT, VCC = 5V, R1 = Open Conversion Gain fIN = 140MHz fIN = 456MHz fIN = 900MHz Conversion Gain vs Temperature TC = –40°C to 105°C, fIN = 456MHz –0.006 dB/°C Two-Tone Input 3rd Order Intercept (Δf = 2MHz) fIN = 140MHz fIN = 456MHz fIN = 900MHz 27.8 28.5 26.8 dBm dBm dBm SSB Noise Figure fIN = 140MHz fIN = 456MHz fIN = 900MHz 10.8 10.9 11.6 dB dB dB SSB Noise Figure Under Blocking fIN = 900MHz, fLO = 944MHz, fBLOCK = 800MHz, PBLOCK = +5dBm 20.0 dB Two-Tone Input 2nd Order Intercept (Δf = fIM2 = 42MHz) fIN1 = 477MHz, fIN2 = 435MHz, fLO = 500MHz 72 dBm 2LO-2RF Output Spurious Product (fIN = fLO – fOUT/2) fIN = 478MHz at –6dBm, fLO = 500MHz, fOUT = 44MHz –84 dBc 3LO-3RF Output Spurious Product (fIN = fLO – fOUT/3) fIN = 485.33MHz at –6dBm, fLO = 500MHz, fOUT = 44.01MHz –82 dBc LO-IN Leakage fLO = 50MHz to 1200MHz <–62 dBm LO-OUT Leakage fLO = 50MHz to 1200MHz <–31 dBm IN-OUT Isolation fIN = 50MHz to 1000MHz >23 dB IN-LO Isolation fIN = 50MHz to 1000MHz >62 dB Input 1dB Compression fIN = 456MHz 12.1 dBm 1.9 1.9 1.9 l dB dB dB 5510fa 4 For more information www.linear.com/LTC5510 LTC5510 AC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25°C. EN = High, PLO = 0dBm, PIN = –10dBm (–10dBm/tone for two-tone tests), unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4) PARAMETER CONDITIONS MIN TYP MAX UNITS 5V VHF/UHF Upmixer Application: fIN = 70MHz, fOUT = 100MHz to 1000MHz, fLO = fIN + fOUT, VCC = 5V, R1 = Open, L3 = 220nH Conversion Gain fOUT = 456MHz Conversion Gain vs Temperature TC = –40°C to 105°C, fOUT = 456MHz 1.1 Two-Tone Output 3rd Order Intercept (Δf = 2MHz) fOUT = 456MHz l dB –0.007 dB/°C 29.0 dBm SSB Noise Figure fOUT = 456MHz 11.3 dB SSB Noise Floor at PIN = +5dBm fIN = 44MHz, fLO = 532MHz, fOUT = 462MHz –152 dBm/Hz LO-IN Leakage fLO = 100MHz to 1500MHz <–62 dBm LO-OUT Leakage fLO = 100MHz to 1500MHz <–39 dBm IN-OUT Isolation IN-LO Isolation fIN = 50MHz to 400MHz fIN = 50MHz to 400MHz >43 >70 dB dB Input 1dB Compression fOUT = 456MHz 11.0 dBm DC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25°C. VCC = 5V, EN = High, unless otherwise noted. Test circuit shown in Figure 1. (Note 2) PARAMETER CONDITIONS MIN TYP MAX 4.5 3.1 5 3.3 5.3 3.5 UNITS Power Supply Supply Voltage (Pins 6, 7, 10, 11) 5V Supply 3.3V Supply Supply Current (Pins 6, 7, 10, 11) 5V, R1 = Open 5V, R1 = 4.75k 3.3V, R1 = Open 3.3V, R1 = 1.8k 105 99.6 105 94 Total Supply Current – Shutdown EN = Low 1.3 l l 113 2.5 V V mA mA mA mA mA Enable Logic Input (EN) EN Input High Voltage (On) l EN Input Low Voltage (Off) 1.8 V l –20 0.5 V 200 μA EN Input Current –0.3V to VCC + 0.3V Turn-On Time EN: Low to High 0.6 μs Turn-Off Time EN: High to Low 0.6 μs 1.8 V IADJ Shorted to Ground 1.9 mA DC Voltage at TJ = 25°C IIN = 10µA IIN = 80µA 697 755 mV mV Voltage Temperature Coefficient IIN = 10µA IIN = 80µA Current Adjust Pin (IADJ) Open Circuit DC Voltage Short Circuit DC Current Temperature Monitor Pin (TEMP) Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. Note 2: The LTC5510 is guaranteed functional over the case operating temperature range of –40°C to 105°C. (θJC = 6°C/W) l l –1.80 –1.61 mV/°C mV/°C Note 3: SSB Noise Figure measured with a small-signal noise source, bandpass filter and 3dB matching pad on the signal input, bandpass filter and 6dB matching pad on the LO input, and no other RF signals applied. Note 4: Specified performance includes all external component and evaluation PCB losses. For more information www.linear.com/LTC5510 5510fa 5 LTC5510 TYPICAL DC PERFORMANCE CHARACTERISTICS 5V Supply Current vs Supply Voltage 106 3.3V Supply Current vs Supply Voltage 98 R1 = 4.75kΩ R1 = 1.8kΩ 96 SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) 104 TC = –40°C 102 TC = 25°C 100 98 TC = 85°C 96 4.7 4.9 5.1 SUPPLY VOLTAGE (V) TC = –40°C TC = 25°C 94 TC = 85°C 92 TC = 105°C 90 TC = 105°C 94 4.5 (Test Circuit Shown in Figure 1) 88 3.0 5.3 3.1 3.2 3.3 3.4 SUPPLY VOLTAGE (V) 5510 G01 3.5 3.6 5510 G02 TYPICAL AC PERFORMANCE CHARACTERISTICS Wideband Up/Downmixer Application: 5V VCC = 5V, TC = 25°C, fIN = 190MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), fLO = 1765MHz, PLO = 0dBm, output measured at 1575MHz, unless otherwise noted. (Test Circuit Shown in Figure 1). Conversion Gain Distribution at 1575MHz 40 30 20 10 0 0.8 50 fIN = 190MHz 85°C 25°C –40°C 1.2 1.4 1.6 GAIN (dB) 1.8 2 2.2 30 20 5510 G03 0 21 85°C 25°C –40°C 40 10 1 50 fIN = 190MHz DISTRIBUTION (%) DISTRIBUTION (%) 40 85°C 25°C –40°C DISTRIBUTION (%) 50 Noise Figure Distribution at 1575MHz OIP3 Distribution at 1575MHz fIN = 190MHz 30 20 10 23 25 27 29 OIP3 (dBm) 31 33 5510 G04 0 9 10 11 12 NOISE FIGURE (dB) 13 14 5510 G05 5510fa 6 For more information www.linear.com/LTC5510 LTC5510 TYPICAL AC PERFORMANCE CHARACTERISTICS 5V Wideband Up/Downmixer Application for fIN < 1575MHz: VCC = 5V, TC = 25°C, fIN = 190MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), HSLO, PLO = 0dBm, output measured at 1575MHz, unless otherwise noted. (Test Circuit Shown in Figure 1). Conversion Gain, OIP3 and NF vs Input Frequency Conversion Gain and OIP3 vs Output Frequency OIP3 TC = 105°C TC = 85°C TC = 25°C TC = –40°C 20 16 12 NF 8 4 24 16 12 8 400 800 1200 INPUT FREQUENCY (MHz) 0 5510 G06 20 16 NF NOISE FIGURE (dB) TC = 105°C TC = 85°C TC = 25°C TC = –40°C 12 20 16 –9 –6 –3 0 LO INPUT POWER (dBm) 3 12 –20 6 5510 G09 IM3 Level vs Output Power (2-Tone) –20 0 TC = 105°C TC = 85°C TC = 25°C TC = –40°C –20 –40 –60 –80 –100 –15 –15 –10 –5 0 BLOCKER POWER (dBm) 5 5510 G12 TC = 105°C TC = 85°C TC = 25°C TC = –40°C 16 NF 12 8 0 4.5 5 4.7 4.8 4.9 5.0 5.1 SUPPLY VOLTAGE (V) 5.2 5.3 5510 G11 Conversion Gain, OIP3, NF and Input P1dB vs Case Temperature 35 TC = 105°C TC = 85°C TC = 25°C TC = –40°C –40 –60 fIM2 = 1385MHz –100 –10 –5 0 –15 OUTPUT POWER (dBm) 4.6 5510 G10 –80 –10 –5 0 OUTPUT POWER (dBm) OIP3 20 IM2 Level vs Output Power (2-Tone) IM2 LEVEL (dBc) 0 24 4 G C GAIN AND NF (dB), OIP3 AND P1dB (dBm) 0 –12 5510 G08 28 14 GC 3100 32 8 4 1900 2300 2700 LO FREQUENCY (MHz) Conversion Gain, OIP3 and NF vs Supply Voltage PLO = –6dBm –3dBm 0dBm 3dBm 6dBm 18 LO-IN 5510 G07 GAIN (dB), OIP3 (dBm), NF (dB) OIP3 –50 –80 1500 2000 fIN = 900MHz fBLOCK = 800MHz 22 fLO = 2475MHz 28 GAIN (dB), OIP3 (dBm), NF (dB) 1400 1600 1800 OUTPUT FREQUENCY (MHz) 24 24 –40 Noise Figure vs Input Blocker Level 32 LO-OUT –70 GC 0 1200 1600 –30 –60 4 GC –20 TC = 105°C TC = 85°C TC = 25°C TC = –40°C 20 Conversion Gain, OIP3 and NF vs LO Power IM3 LEVEL (dBc) –10 OIP3 LO LEAKAGE (dBm) 24 0 28 GAIN (dB), OIP3 (dBm) GAIN (dB), OIP3 (dBm), NF (dB) 28 0 LO Leakage vs LO Frequency 32 32 5 5510 G13 30 OIP3 25 20 15 NF 10 5 IP1dB GC 0 –45 –15 15 45 75 CASE TEMPERATURE (°C) 105 5510 G14 5510fa For more information www.linear.com/LTC5510 7 LTC5510 TYPICAL AC PERFORMANCE CHARACTERISTICS 5V Wideband Up/Downmixer Application for fIN > 1575MHz: VCC = 5V, TC = 25°C, fIN = 2150MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), LSLO, PLO = 0dBm, output measured at 1575MHz, unless otherwise noted. (Test Circuit Shown in Figure 1). Conversion Gain, OIP3 and NF vs Input Frequency Conversion Gain and OIP3 vs Output Frequency 10 –20 NF 15 10 0 1200 3200 1400 1600 1800 OUTPUT FREQUENCY (MHz) 5510 G15 LO-IN –80 2000 5510 G16 0 300 600 900 1200 LO FREQUENCY (MHz) 1500 5510 G17 Conversion Gain, OIP3 and NF vs Supply Voltage 30 25 OIP3 GAIN (dB), OIP3 (dBm), NF (dB) GAIN (dB), OIP3 (dBm), NF (dB) LO-OUT –50 –70 30 TC = 105°C TC = 85°C TC = 25°C TC = –40°C 20 NF 10 5 GC 0 –12 –9 –6 –3 0 3 LO INPUT POWER (dBm) 25 OIP3 15 10 5 –20 4.7 4.9 5.1 SUPPLY VOLTAGE (V) 5.3 5510 G20 Conversion Gain, OIP3, NF and Input P1dB vs Case Temperature 30 TC = 105°C TC = 85°C TC = 25°C TC = –40°C –40 –60 –80 –100 –15 GC 5510 G18 GAIN AND NF (dB), OIP3 AND P1dB (dBm) 0 NF 0 4.5 6 TC = 105°C TC = 85°C TC = 25°C TC = –40°C 20 IM3 Level vs Output Power (2-Tone) IM3 LEVEL (dBc) –40 GC Conversion Gain, OIP3 and NF vs LO Power 15 –30 –60 5 2000 2400 2800 INPUT FREQUENCY (MHz) TC = 105°C TC = 85°C TC = 25°C TC = –40°C 20 GC 0 1600 LO LEAKAGE (dBm) 15 –10 25 TC = 105°C TC = 85°C TC = 25°C TC = –40°C 20 0 OIP3 OIP3 25 5 LO Leakage vs LO Frequency 30 GAIN (dB), OIP3 (dBm) GAIN (dB), OIP3 (dBm), NF (dB) 30 –10 –5 0 OUTPUT POWER (dBm) 5 25 OIP3 20 15 NF 10 IP1dB 5 0 –45 5510 G21 GC –15 15 45 75 CASE TEMPERATURE (°C) 105 5510 G23 5510fa 8 For more information www.linear.com/LTC5510 LTC5510 TYPICAL AC PERFORMANCE CHARACTERISTICS 3.3V Wideband Up/Downmixer Application for fIN < 1575MHz: VCC = 3.3V, TC = 25°C, fIN = 190MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), HSLO, PLO = 0dBm, output measured at 1575MHz, unless otherwise noted. (Test Circuit Shown in Figure 1). Conversion Gain and OIP3 vs Output Frequency 35 0 28 30 –10 OIP3 20 16 NF 12 TC = 105°C TC = 85°C TC = 25°C TC = –40°C 8 400 800 1200 INPUT FREQUENCY (MHz) 0 TC = 105°C TC = 85°C TC = 25°C TC = –40°C 15 10 5 5510 G24 1400 1600 1800 OUTPUT FREQUENCY (MHz) NOISE FIGURE (dB) 16 NF 12 20 28 16 14 GC –9 –6 –3 0 LO INPUT POWER (dBm) 3 12 –20 6 5510 G27 IM3 Level vs Output Power (2-Tone) –20 0 TC = 105°C TC = 85°C TC = 25°C TC = –40°C –20 –40 –60 –100 –15 –15 –10 –5 0 BLOCKER POWER (dBm) –10 –5 0 OUTPUT POWER (dBm) 16 5 5510 G30 NF 12 8 3.1 5510 G28 3.2 3.3 3.4 SUPPLY VOLTAGE (V) 3.5 3.6 5510 G29 Conversion Gain, OIP3, NF and Input P1dB vs Case Temperature 35 TC = 105°C TC = 85°C TC = 25°C TC = –40°C –40 –60 fIM2 = 1385MHz –100 –10 –5 0 –15 OUTPUT POWER (dBm) GC 0 3.0 5 –80 –80 TC = 105°C TC = 85°C TC = 25°C TC = –40°C 20 IM2 Level vs Output Power (2-Tone) IM2 LEVEL (dBc) 0 OIP3 24 4 GAIN AND NF (dB), OIP3 AND P1dB (dBm) 0 –12 5510 G26 32 8 4 3100 Conversion Gain, OIP3 and NF vs Supply Voltage PLO = –6dBm –3dBm 0dBm 3dBm 6dBm 18 1900 2300 2700 LO FREQUENCY (MHz) 5510 G25 24 TC = 105°C TC = 85°C TC = 25°C TC = –40°C LO-IN –80 1500 2000 fIN = 900MHz fBLOCK = 800MHz 22 fLO = 2475MHz OIP3 –50 –70 24 28 LO-OUT –40 Noise Figure vs Input Blocker Level 32 20 –30 –60 GC 0 1200 1600 Conversion Gain, OIP3 and NF vs LO Power GAIN (dB), OIP3 (dBm), NF (dB) OIP3 20 GAIN (dB), OIP3 (dBm), NF (dB) 0 GC –20 25 LO LEAKAGE (dBm) 24 4 IM3 LEVEL (dBc) LO Leakage vs LO Frequency 32 GAIN (dB), OIP3 (dBm) GAIN (dB), OIP3 (dBm), NF (dB) Conversion Gain, OIP3 and NF vs Input Frequency 5 5510 G31 30 OIP3 25 20 15 NF 10 IP1dB 5 0 –45 GC –15 15 45 75 CASE TEMPERATURE (°C) 105 5510 G32 5510fa For more information www.linear.com/LTC5510 9 LTC5510 TYPICAL AC PERFORMANCE CHARACTERISTICS 3.3V Wideband Up/Downmixer Application for fIN > 1575MHz: VCC = 3.3V, TC = 25°C, fIN = 2150MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), LSLO, PLO = 0dBm, output measured at 1575MHz, unless otherwise noted. (Test Circuit Shown in Figure 1). Conversion Gain and OIP3 vs Output Frequency 30 30 25 25 15 10 5 TC = 105°C TC = 85°C TC = 25°C TC = –40°C NF GC 0 1600 2000 2400 2800 INPUT FREQUENCY (MHz) LO Leakage vs LO Frequency 0 –10 OIP3 –20 LO LEAKAGE (dBm) OIP3 20 GAIN (dB), OIP3 (dBm) GAIN (dB), OIP3 (dBm), NF (dB) Conversion Gain, OIP3 and NF vs Input Frequency 20 TC = 105°C TC = 85°C TC = 25°C TC = –40°C 15 10 0 1200 3200 1400 1600 1800 OUTPUT FREQUENCY (MHz) 5510 G33 GAIN (dB), OIP3 (dBm), NF (dB) GAIN (dB), OIP3 (dBm), NF (dB) TC = 105°C TC = 85°C TC = 25°C TC = –40°C NF GC 0 –12 –9 –6 –3 0 LO INPUT POWER (dBm) 3 15 5510 G35 10 5 GC 3.1 3.2 3.3 3.4 SUPPLY VOLTAGE (V) 3.5 3.6 5510 G38 Conversion Gain, OIP3, NF and Input P1dB vs Case Temperature 30 TC = 105°C TC = 85°C TC = 25°C TC = –40°C –60 –10 –5 0 OUTPUT POWER (dBm) 1500 TC = 105°C TC = 85°C TC = 25°C TC = –40°C NF 5510 G36 –40 –80 –15 600 900 1200 LO FREQUENCY (MHz) OIP3 0 3.0 6 GAIN AND NF (dB), OIP3 AND P1dB (dBm) IM3 LEVEL (dBc) –20 300 20 IM3 Level vs Output Power (2-Tone) 0 0 Conversion Gain, OIP3 and NF vs Supply Voltage 25 5 LO-IN 5510 G34 25 10 –80 2000 30 15 LO-OUT –50 –70 GC 30 OIP3 –40 –60 5 Conversion Gain, OIP3 and NF vs LO Power 20 –30 5 25 OIP3 20 15 10 NF IP1dB 5 GC 0 –45 5510 G39 –15 15 45 75 CASE TEMPERATURE (°C) 105 5510 G41 5510fa 10 For more information www.linear.com/LTC5510 LTC5510 TYPICAL AC PERFORMANCE CHARACTERISTICS 5V Wideband Upmixer Application: VCC = 5V, TC = 25°C, fIN = 190MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), HSLO, PLO = 0dBm, output measured at 2140MHz, unless otherwise noted. (Test Circuit Shown in Figure 1). Conversion Gain, OIP3 and NF vs Input Frequency Conversion Gain, OIP3 and NF vs Output Frequency 32 OIP3 TC = 105°C TC = 85°C TC = 25°C TC = –40°C 20 16 12 NF 4 GC 400 800 INPUT FREQUENCY (MHz) 0 24 16 NF 12 1200 5510 G42 –70 Conversion Gain, OIP3 and NF vs Supply Voltage Output Noise Floor vs Input Power 32 20 NF 12 8 4 –152 –154 –156 –158 –160 GC 0 –12 –9 –6 –3 0 LO INPUT POWER (dBm) 3 5510 G45 0 TC = 105°C TC = 85°C TC = 25°C TC = –40°C –20 –40 –60 –15 –10 –5 INPUT POWER (dBm) 0 –10 –5 0 OUTPUT POWER (dBm) 16 5 5510 G48 NF TC = 105°C TC = 85°C TC = 25°C TC = –40°C 12 8 0 4.5 5 4.7 4.8 4.9 5.0 5.1 SUPPLY VOLTAGE (V) 5.2 5.3 5510 G47 Conversion Gain, OIP3, NF and Input P1dB vs Case Temperature 30 TC = 105°C TC = 85°C TC = 25°C TC = –40°C –40 –60 fIM2 = 1950MHz –100 –10 –5 0 –15 OUTPUT POWER (dBm) 4.6 5510 G46 –80 –80 –100 –15 20 IM2 Level vs Output Power (2-Tone) IM2 LEVEL (dBc) –20 24 OIP3 4 G C –162 –20 6 IM3 Level vs Output Power (2-Tone) 0 PLO = –6dBm –3dBm 0dBm 3dBm 6dBm GAIN AND NF (dB), OIP3 AND P1dB (dBm) 16 –150 OUTPUT NOISE (dBm/Hz) TC = 105°C TC = 85°C TC = 25°C TC = –40°C 28 GAIN (dB), OIP3 (dBm), NF (dB) 28 LO-IN –80 2100 2300 2500 2700 2900 3100 3300 3500 LO FREQUENCY (MHz) 5510 G44 fIN = 800MHz –148 fLO = 3040MHz OIP3 –50 4 GC LO-OUT –40 –60 –146 24 –30 8 0 1600 1700 1800 1900 2000 2100 2200 2300 OUTPUT FREQUENCY (MHz) 5510 G43 32 GAIN (dB), OIP3 (dBm), NF (dB) –20 TC = 105°C TC = 85°C TC = 25°C TC = –40°C 20 Conversion Gain, OIP3 and NF vs LO Power IM3 LEVEL (dBc) –10 OIP3 LO LEAKAGE (dBm) 24 8 0 28 GAIN (dB), OIP3 (dBm), NF (dB) GAIN (dB), OIP3 (dBm), NF (dB) 28 0 LO Leakage vs LO Frequency 32 5 5510 G49 25 OIP3 20 15 NF 10 IP1dB 5 GC 0 –45 –15 15 45 75 CASE TEMPERATURE (°C) 105 5510 G50 5510fa For more information www.linear.com/LTC5510 11 LTC5510 TYPICAL AC PERFORMANCE CHARACTERISTICS 5V VHF/UHF Upmixer Application: VCC = 5V, TC = 25°C, fIN = 70MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), HSLO, PLO = 0dBm, output measured at 456MHz, unless otherwise noted. (Test Circuit Shown in Figure 2). Conversion Gain, OIP3 and NF vs Output Frequency OIP3 24 20 16 NF 12 TC = 105°C TC = 85°C TC = 25°C TC = –40°C 8 4 200 400 600 800 OUTPUT FREQUENCY (MHz) 16 12 8 16 TC = 105°C TC = 85°C TC = 25°C TC = –40°C NF 12 8 4 –9 –6 –3 0 LO INPUT POWER (dBm) 3 –154 –156 0 –20 0 –15 –10 –5 INPUT POWER (dBm) 0 IM2 (dBc) –80 16 12 3 6 5510 G57 NF 8 –60 –12 –9 –6 –3 0 OUTPUT POWER (dBm) 4.7 4.8 4.9 5.0 5.1 SUPPLY VOLTAGE (V) 5.2 5.3 5510 G56 32 –40 –100 –15 4.6 Conversion Gain, OIP3, NF and Input P1dB vs Case Temperature fIM2 = 386MHz –9 –6 –3 0 OUTPUT POWER (dBm) TC = 105°C TC = 85°C TC = 25°C TC = –40°C 20 5510 G55 –80 –12 5510 G53 OIP3 0 4.5 5 TC = 105°C TC = 85°C TC = 25°C TC = –40°C –20 –60 –100 –15 24 IM2 Level vs Output Power (2-Tone) –40 1500 4 G C 5510 G54 TC = 105°C TC = 85°C TC = 25°C TC = –40°C 600 900 1200 LO FREQUENCY (MHz) 28 –158 IM3 Level vs Output Power (2-Tone) 300 32 PLO = –6dBm –3dBm 0dBm 3dBm 6dBm –152 0 Conversion Gain, OIP3 and NF vs Supply Voltage –150 –162 –20 6 LO-IN 5510 G52 –160 GC 0 –12 –60 –90 400 GAIN (dB), OIP3 (dBm), NF (dB) OIP3 OUTPUT NOISE (dBm/Hz) GAIN (dB), OIP3 (dBm), NF (dB) 100 200 300 INPUT FREQUENCY (MHz) 0 fIN = 44MHz –148 fOUT = 462MHz fLO = 532MHz 20 –50 –80 GC –146 28 LO-OUT –40 Output Noise Floor vs Input Power 32 24 –30 –70 5510 G51 Conversion Gain, OIP3 and NF vs LO Power IM3 (dBc) TC = 105°C TC = 85°C TC = 25°C TC = –40°C 20 0 1000 –20 24 4 GC 0 OIP3 GAIN AND NF (dB), OIP3 AND P1dB (dBm) 0 –10 28 GAIN (dB), OIP3 (dBm) GAIN (dB), OIP3 (dBm), NF (dB) 28 LO Leakage vs LO Frequency 0 32 LO LEAKAGE (dBm) 32 Conversion Gain and OIP3 vs Input Frequency 3 6 5510 G58 28 OIP3 24 20 16 12 8 4 0 –45 IP1dB NF GC –15 15 45 75 CASE TEMPERATURE (°C) 105 5510 G59 5510fa 12 For more information www.linear.com/LTC5510 LTC5510 TYPICAL AC PERFORMANCE CHARACTERISTICS 5V VHF/UHF Downmixer Application: VCC = 5V, TC = 25°C, fIN = 456MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), HSLO, PLO = 0dBm, output measured at 44MHz, unless otherwise noted. (Test Circuit Shown in Figure 2). Conversion Gain, IIP3 and NF vs Input Frequency Conversion Gain and IIP3 vs Output Frequency 10 NF 5 –20 20 10 200 400 600 800 INPUT FREQUENCY (MHz) 0 1000 50 0 IIP3 20 3 12 –20 6 –15 –10 –5 0 BLOCKER POWER (dBm) 5510 G63 –20 400 600 800 1000 LO FREQUENCY (MHz) 1200 5510 G62 5510 G64 IIP3 TC = 105°C TC = 85°C TC = 25°C TC = –40°C 20 15 NF 10 5 GC 4.6 4.7 4.8 4.9 5.0 5.1 SUPPLY VOLTAGE (V) 5.2 5.3 5510 G65 Conversion Gain, IIP3, NF and Input P1dB vs Case Temperature 30 TC = 105°C TC = 85°C TC = 25°C TC = –40°C –40 –60 –80 –100 –15 25 0 4.5 5 IM3 Level vs Input Power (2-Tone) 0 200 30 14 –6 –3 0 LO INPUT POWER (dBm) 0 5510 G61 16 GC –9 –80 300 fIN = 900MHz fBLOCK = 800MHz fLO = 944MHz 18 LO-IN Conversion Gain, IIP3 and NF vs Supply Voltage GAIN AND NF (dB), IIP3 AND P1dB (dBm) 0 –12 22 NOISE FIGURE (dB) TC = 105°C TC = 85°C TC = 25°C TC = –40°C 10 5 100 150 200 250 OUTPUT FREQUENCY (MHz) PLO = –6dBm PLO = –3dBm PLO = 0dBm PLO = 3dBm PLO = 6dBm 24 NF –50 Noise Figure vs Input Blocker Level 26 IM3 (dBc) GAIN (dB), IIP3 (dBm), NF (dB) 15 –40 –70 GC 5510 G60 30 20 LO-OUT –30 –60 5 Conversion Gain, IIP3 and NF vs LO Power 25 TC = 105°C TC = 85°C TC = 25°C TC = –40°C 15 GC 0 –10 LO LEAKAGE (dBm) TC = 105°C TC = 85°C TC = 25°C TC = –40°C 15 IIP3 25 IIP3 20 0 GAIN (dB), IIP3 (dBm), NF (dB) 25 0 LO Leakage vs LO Frequency 30 GAIN (dB), IIP3 (dBm) GAIN (dB), IIP3 (dBm), NF (dB) 30 –10 –5 0 INPUT POWER (dBm) 5 IIP3 25 20 15 IP1dB 10 5 NF GC 0 –45 5510 G66 –15 15 45 75 CASE TEMPERATURE (°C) 105 5510 G68 5510fa For more information www.linear.com/LTC5510 13 LTC5510 PIN FUNCTIONS TEMP (Pin 1): Temperature Monitor. This pin is connected to the anode of a diode through a 30Ω resistor. It may be used to measure the die temperature by forcing a current into the pin and measuring the voltage. IADJ (Pin 8): Bias Adjust Pin. This pin allows adjustment of the internal mixer current by adding an external pulldown resistor. The typical DC voltage on this pin is 1.8V. If not used, this pin must be left floating. IN+, IN– (Pins 2, 3): Differential Signal Input. For optimum performance, these pins should be driven with a differential signal. The input can be driven single-ended, with some performance degradation, by connecting the undriven pin to RF ground through a capacitor. An internally generated 1.6V DC bias voltage is present on these pins, thus DC blocking capacitors are required. GND (Pins 9, 12, 13, Exposed Pad (Pin 17)): Ground. These pins must be soldered to the RF ground plane on the circuit board. The exposed metal pad of the package provides both electrical contact to ground and a good thermal contact to the printed circuit board. OUT–, OUT+ (Pins 10, 11,): Differential Output. These pins must be connected to a DC supply through impedance matching inductors and/or a transformer center-tap. Typical DC current consumption is 32mA into each pin. LGND (Pin 4): DC Ground Return for the Input Amplifier. This pin must be connected to DC ground. The typical current from this pin is 64mA. In some applications an external chip inductor may be used. Note that any inductor DC resistance will reduce the current through this pin. LO–, LO+ (Pins 14, 15): Differential Local Oscillator Input. A single-ended LO may be used by connecting one pin to RF ground through a DC blocking capacitor. These pins are internally biased to 1.7V; thus, DC blocking capacitors are required. Each LO input pin is internally matched to 50Ω for both EN states. EN (Pin 5): Enable Pin. When the applied voltage is greater than 1.8V, the IC is enabled. Below 0.5V, the IC is disabled. VCC1 , VCC2 (Pins 6, 7): Power Supply Pins for the Bias and LO Buffer Circuits. Typical current consumption is 41mA. These pins should be connected together on the circuit board and decoupled with a 10nF capacitor located close to the pins. TP (Pin 16): Test Pin. This pin is used for production test purposes only and must be connected to ground. BLOCK DIAGRAM EXPOSED PAD GND TP 17 16 LO+ LO– GND 15 14 13 TEMP 1 12 GND IN+ 2 11 OUT+ 10 OUT – IN– 3 9 GND BIAS LGND 4 5 6 EN VCC1 7 8 VCC2 IADJ 5510 BD 5510fa 14 For more information www.linear.com/LTC5510 LTC5510 TEST CIRCUITS LO 50Ω RF 0.015” C4 C5 GND 0.062” BIAS GND 0.015” TEMPERATURE MONITOR IN 50Ω 3 1 T1 1:1 16 15 14 13 TP LO+ LO– GND LTC5510 C1 4 6 C9 2 IN+ C3 TO VCC C8 GND 12 1 TEMP OUT+ 11 17 GND C2 L3 L1 T2 4:1 OUT – 10 3 IN– 4 LGND DC1983A EVALUATION BOARD STACK-UP (NELCO N4000-13) 3 2 1 4 5 6 L2 OUT 50Ω NC GND 9 EN VCC1 VCC2 IADJ 5 6 7 8 R1 EN VCC C7 C6 5510 F01 5V/3.3V Wideband Up/Downmixer* 5V Wideband Upmixer fIN = 30MHz-3000MHz fOUT = 1575MHz fIN = 30MHz-2500 MHz fOUT = 2140MHz SIZE COMMENTS C1, C2, C4, C5 0.1µF 0.1µF 0402 Murata GRM15, X7R C3 0.7pF - 0402 Murata GJM15, C0G C6 1µF 1µF 0603 Murata GRM18, X7R REF DES C7, C8 10nF 10nF 0402 Murata GRM15, X7R C9 6.8pF 5.6pF 0402 Murata GJM15, C0G L1, L2 6.8nH 5.6nH 0402 CoilCraft 0402HP L3 0Ω 0Ω 0603 R1 4.75kΩ (5V), 1.8kΩ (3.3V) 4.75kΩ 0402 T1 Mini-Circuits TC1-1-13M+ Mini-Circuits TC1-1-13M+ T2 Anaren BD1222J50200AHF Mini-Circuits NCS4-232+ 1% *Standard DC1983A Eval Board Configuration Figure 1. High Frequency Output Test Circuit Schematic (DC1983A) 5510fa For more information www.linear.com/LTC5510 15 LTC5510 TEST CIRCUITS LO 50Ω RF 0.015” C4 C5 GND 0.062” BIAS GND 0.015” TEMPERATURE MONITOR IN 50Ω 3 1 T1 1:1 16 15 14 13 TP LO+ LO– GND GND 12 1 TEMP C1 4 6 2 IN+ C3 L4 LTC5510 OUT + 11 17 GND C2 3 4 LGND L3 L1 OUT – 10 IN– VCC1 VCC2 IADJ 5 6 7 8 C9 OUT+ 3 4 C8 L2 2 C10 OUT – 1 6 OPTIONAL DIFF OUT L5 GND 9 EN T2 4:1 DC1984A EVALUATION BOARD STACK-UP (NELCO N4000-13) R1 EN VCC C7 C6 5510 F02 5V VHF/UHF Upmixer* 5V VHF/UHF Wideband Downmixer fIN = 70MHz fOUT = 100MHz-1000 MHz fIN = 100MHz-1000 MHz fOUT = 44MHz SIZE COMMENTS C1, C2, C4, C5 0.1µF 0.1µF 0402 Murata GRM15, X7R C3 0.5pF 0.9pF 0402 Murata GJM15, C0G C6 1µF 1µF 0603 Murata GRM18, X7R C7, C8, C9, C10 10nF 10nF 0402 Murata GRM15, X7R - - 0603 L3 220nH 0Ω 0603 Coilcraft 0603HP, WE 744761 L4, L5 CoilCraft 0402HP REF DES L1, L2 15nH 0Ω 0402 R1 - - 0402 T1 Mini-Circuits TC1-1-13M+ Mini-Circuits TC1-1-13M+ T2 Mini-Circuits TC4-19LN+ Mini-Circuits TC4-1W-7ALN+ *Standard DC1984A Eval Board Configuration Figure 2. Low Frequency Output Test Circuit Schematic (DC1984A) 5510fa 16 For more information www.linear.com/LTC5510 LTC5510 APPLICATIONS INFORMATION The LTC5510 uses wideband high performance RF and LO amplifiers driving a double-balanced mixer core to achieve frequency up- or down-conversion with high linearity over a very broad frequency range. For flexibility, all ports are differential; however, the LO port has also been optimized for single-ended use. Low side or high side LO injection can be used. The IN port may also be driven single-ended, though with some reduction in performance. See the Pin Functions and Block Diagram sections for a description of each pin. Test circuit schematics showing all external components required for the data sheet specified performance are shown in Figures 1 and 2. The evaluation boards are shown in Figures 3a and 3b. The High Frequency Output test circuit, shown in Figure 1, utilizes a multilayer chip balun to realize a single-ended output. The Low Frequency Output test circuit in Figure 2 uses a wire-wound balun and is designed to accommodate a differential output if desired. Both the IN and LO ports are very broadband and use the same configurations for both test circuits. Additional components may be used to modify the DC supply current or frequency response, which will be discussed in the following sections. IN Port Interface 5510 F03a 3a. High Frequency Output Board (DC1983A) A simplified schematic of the mixer’s input is shown in Figure 4a. The IN+ and IN– pins drive the bases of the input transistors while internal resistors are used for impedance matching. These pins are internally biased to a common mode voltage of 1.6V, thus external capacitors C1 and C2 are required for DC isolation and can be used for impedance matching. A small value of C3 can be used to improve the impedance match at high frequencies and may improve noise figure. The 1:1 transformer, T1, provides single-ended to differential conversion for optimum performance. The typical return loss at the IN port is shown in Figure 5 with 0.1µF at C1 and C2. The performance is better than 12dB up to 2.6GHz without C3. Adding a capacitance of 0.7pF at C3 extends the impedance match to 3GHz. Differential input impedances (parallel equivalent) for various frequencies are listed in Table 1. At frequencies below 30MHz additional external components may be needed to optimize the input impedance. Figure 4b shows an equivalent circuit that can be used for single-ended or differential impedance matching at frequencies below 1GHz. Above 1GHz, the S-parameters should be used. 5510 F03b 3b. Low Frequency Output Board (DC1984A) The DC bias current of the input amplifier flows through Pin 4 (LGND). Typically this pin should be directly connected to a good RF ground; however, at lower input frequencies it may be beneficial to insert an inductor to ground for improved IP2 performance. The inductor should have low resistance and must be rated to handle 64mA DC current. Figure 3. LTC5510 Evaluation Board Layouts 5510fa For more information www.linear.com/LTC5510 17 LTC5510 APPLICATIONS INFORMATION VCC C1 LTC5510 IN+ 2 T1 1:1 IN 50Ω C3 IN– C2 3 64mA VCC LGND 4 5510 F04a Figure 4a. IN Port with External Matching IN+ 200pF 450Ω 75Ω 450Ω IN– Table 1. IN Port Differential Impedance IMPEDANCE (Ω) REFL. COEFF. FREQUENCY (MHz) REAL* IMAG* MAG ANG (°) 0.2 823 –j3971 0.89 –1.4 1 751 –j800 0.88 –7.2 10 133 –j154 0.50 –41 30 78.1 –j248 0.25 –36 50 73.3 –j378 0.20 –27 100 71.3 –j665 0.18 –17 200 70.7 –j961 0.17 –12 500 70.0 –j832 0.17 –14 1000 67.9 –j509 0.16 –24 1200 66.7 –j439 0.16 –28 1500 64.6 –j367 0.15 –35 2000 60.4 –j302 0.13 –49 2200 58.5 –j289 0.12 –55 2500 55.5 –j280 0.11 –66 3000 50.6 –j303 0.08 –91 4000 42.9 –j7460 0.08 –178 5000 42.7 j155 0.17 126 6000 55.9 j89 0.29 96 *Parallel Equivalent Impedance 5510 F04b Figure 4b. IN Port Equivalent Circuit (< 1GHz) LO Input Interface 0 The LTC5510 can be driven by a single-ended or differential LO signal. Internal resistors, as shown in Figure 6, provide an impedance match of 50Ω per side or 100Ω differential. The impedance match is maintained when the part is disabled as well. The LO input pins are internally biased to 1.7V, thus external capacitors, C4 and C5 are used to provide DC isolation. T1 = TC1-1-13M+ C1, C2 = 0.1µF RETURN LOSS (dB) –6 C3 = OPEN –12 –18 –24 C3 = 0.7pF –30 0 1000 2000 3000 FREQUENCY (MHz) 4000 5510 F05 Figure 5. IN Port Return Loss 5510fa 18 For more information www.linear.com/LTC5510 LTC5510 APPLICATIONS INFORMATION The measured return loss of the LO input port is shown in Figure 7 for C4 and C5 values of 0.1µF. The return loss is better than 10dB from 5MHz to 6GHz. For frequencies below 5MHz, larger C4 and C5 values are required. Table 2 lists the single-ended input impedance and reflection coefficient versus frequency for the LO input. The differential impedance is listed in Table 3. C5 LTC5510 LO– 14 VCC C4 LO 50Ω LO+ 15 5510 F06 Figure 6. LO Input Circuit C4, C5 = 0.1µF –5 RETURN LOSS (dB) IMPEDANCE (Ω) REFL. COEFF. FREQUENCY (MHz) REAL IMAG MAG ANG (°) 1 90.3 –1.0 0.29 –1 10 87.5 –7.1 0.28 –8 100 55.3 –16.4 0.16 –63 600 47.8 –5.0 0.06 –111 1100 47.0 –4.7 0.06 –119 1600 46.2 –5.0 0.06 –124 2100 45.2 –5.1 0.07 –130 2600 44.2 –4.7 0.08 –138 3100 43.2 –3.9 0.08 –148 3600 42.3 –2.4 0.09 –161 4100 41.5 –0.3 0.09 –178 4500 40.8 2.0 0.10 166 5000 40.1 5.6 0.13 147 6000 38.6 14.3 0.20 120 6500 37.7 19.1 0.25 110 Table 3. Differential LO Input Impedance 0 –10 –15 ON (EN = HIGH) –20 –25 –30 Table 2. Single-Ended LO Input Impedance OFF (EN = LOW) 0 1000 2000 3000 4000 FREQUENCY (MHz) 5000 5510 F07 Figure 7. Single-Ended LO Input Return Loss IMPEDANCE (Ω) REFL. COEFF. FREQUENCY (MHz) REAL IMAG MAG ANG (°) 1 94.9 –0.1 0.31 –0.1 10 95.3 –0.5 0.31 –0.4 100 94.8 –2.3 0.31 –2 600 91.7 –12.5 0.31 –12 1100 85.6 –20.1 0.30 –21 1600 78.4 –24.2 0.29 –30 2100 71.5 –25.4 0.27 –38 2600 65.7 –24.3 0.24 –45 3100 61.3 –21.7 0.22 –51 3600 58.2 –17.9 0.18 –56 4100 56.2 –13.3 0.14 –58 4500 55.2 –9.1 0.10 –55 5000 54.6 –2.9 0.05 –31 6000 54.0 11.0 0.11 64 6500 53.7 18.5 0.18 69 5510fa For more information www.linear.com/LTC5510 19 LTC5510 APPLICATIONS INFORMATION OUT Port Interface Output Matching: High Frequency Output Board The differential output interface is shown in Figure 8. The OUT+ and OUT– pins are open collector outputs with internal load resistors that provide a 245Ω differential output resistance at low frequencies. The high frequency (HF) output evaluation board (DC1983A) shown in Figure 3a is designed to use multilayer chip hybrid baluns at the output. This board is intended for frequencies above about 800MHz (limited by balun availability). These baluns deliver good performance and are smaller than wire-wound baluns. The board is configured for the matching topology shown in Figure 10. Inductors L1 and L2 are used to tune out the parasitic output capacitance, while the transformer provides differential to single-ended conversion and impedance transformation. The DC bias to the mixer core can be applied through the matching inductors. Each pin draws approximately 32mA of DC supply current. Figure 9 shows the equivalent circuit of the output and Table 4 lists differential impedances for various frequencies. The impedance values are listed in parallel equivalent form, with equivalent capacitances also shown. For optimum single-ended performance, the differential output signal must be combined through an external transformer or a discrete balun circuit. In applications where differential filters or amplifiers follow the mixer, it is possible to eliminate the transformer and drive these components differentially. LTC5510 Table 4. Differential OUT Port Impedance 32mA 11 OUT+ VCC 10 OUT – 32mA 5510 F08 Figure 8. Output Interface LTC5510 245Ω 1.2nH 0.4pF 1.2nH 11 OUT+ 0.2pF 10 OUT – FREQUENCY (MHz) IMPEDANCE (Ω) REAL* IMAG* (CAP) REFL. COEFF. MAG ANG 1 245 –j240k (0.67pF) 0.66 0.0 10 244 –j40k (0.40pF) 0.66 –0.2 50 244 –j5.31k (0.60pF) 0.66 –1.1 100 245 –j2.66k (0.60pF) 0.66 –2.3 300 243 –j884 (0.60pF) 0.66 –6.8 500 240 –j529 (0.60pF) 0.66 –11 1000 224 –j260 (0.61pF) 0.65 –23 1500 201 –j169 (0.63pF) 0.63 –35 2000 171 –j122 (0.65pF) 0.60 –48 2500 138 –j93 (0.69pF) 0.57 –62 3000 104 –j73 (0.73pF) 0.53 –78 3500 73 –j59 (0.77pF) 0.48 –97 4000 47 –j51 (0.78pF) 0.43 –120 4500 29 –j59 (0.60pF) 0.39 –148 5000 22 j4.74K 0.38 180 6000 49 j51 0.44 117 * Parallel Equivalent 5510 F09 Figure 9. Output Port Equivalent Circuit 5510fa 20 For more information www.linear.com/LTC5510 LTC5510 APPLICATIONS INFORMATION Capacitor C9 can be used to improve the impedance match. The component values used for characterization are listed in Table 5, along with the 12dB return loss bandwidths. The measured return loss curves are plotted in Figure 11. VCC C8 OUT+ 11 C9 OUT L1 VCC OUT – L2 3 2 1 4 5 6 NC Output Matching: Low Frequency Output Board For lower output frequencies, wire-wound transformers provide better performance. The low frequency (LF) evaluation board (DC1984A) in Figure 3(b) accommodates these applications. The output matching topology is shown in Figure 12. Components L1, L2, L4 and L5 are used to tune the impedance match, while T2 provides the desired impedance transformation. C9 and C10 are used for DC blocking in some applications. Table 6 lists component values used for characterization, and the measured return loss perfor mance is plotted in Figure 13. 10 OUT+ 5510 F10 L4 11 T2 Figure 10. HF Board Output Schematic L1 FREQUENCY RANGE* (MHz) (GHz) L1, L2 (nH) C9 (pF) 2 C8 1575 1.2 to 2.1 6.8 6.8 Anaren BD1222J50200AHF 2140 1.6 to 2.5 5.6 5.6 Mini-Circuits NCS4-232+ * 12dB Return Loss Bandwidth OUT – L5 10 VCC 5510 F12 Figure 12. LF Board Output Schematic Table 6. OUT Port Component Values: LF Output Board (DC1984A) 0 FREQUENCY (MHz) RANGE* (MHz) L1, L2 (nH) L4, L5 (nH) 44 5 to 325 – 0Ω Mini-Circuits TC4-1W-7ALN+ 456 10 to 1300 – 15 Mini-Circuits TC4-19LN+ RETURN LOSS (dB) –6 a C10 1 6 L2 T2 OUT 3 4 LTC5510 Table 5. OUT Port Component Values: HF Output Board (DC1983A) C9 b –12 T2 * 12dB Return Loss Bandwidth –18 –24 1000 1500 2000 2500 FREQUENCY (MHz) 3000 5510 F11 Figure 11. Out Port Return Loss of HF Board (DC1983A). Tuned for 1575MHz (a), and 2140MHz (b) 5510fa For more information www.linear.com/LTC5510 21 LTC5510 APPLICATIONS INFORMATION 0 LTC5510 VCC1 6 EN RETURN LOSS (dB) –6 5 a 300k –12 b 5510 F14 –18 –24 Figure 14. Enable Pin Interface 0 300 600 900 1200 FREQUENCY (MHz) 1500 5510 F13 Figure 13. Out Port Return Loss of LF Board (DC1984A) Tuned for 44MHz (a), and 456MHz (b) DC and RF Grounding The LTC5510 relies on the backside ground for both RF and thermal performance. The exposed pad must be soldered to the low impedance top side ground plane of the board. The top side ground should also be connected to other ground layers to aid in thermal dissipation and ensure a low inductance RF ground. The LTC5510 evaluation boards (Figures 3a and 3b) utilize a 4 × 4 array of vias under the exposed pad for this purpose. Enable Interface Figure 14 shows a schematic of the EN pin interface. To enable the part, the applied EN voltage must be greater than 1.8V. Setting the voltage below 0.5V will disable the IC. If the enable function is not required, the enable pin can be connected to VCC through a 1k resistor. The ramp-up time of the supply voltage should be greater than 1ms. The voltage at the enable pin should never exceed the power supply voltage (VCC) by more than 0.3V. Under no circumstances should voltage be applied to the enable pin before the supply voltage is applied to the VCC pin. If this occurs, damage to the IC may result. Current Adjust Pin (IADJ) The IADJ pin (Pin 8) can be used to optimize the performance of the mixer core over temperature. The nominal open-circuit DC voltage on this pin is 1.8V and the typical short-circuit current is 1.9mA. As shown in Figure 15, an internal 4mA reference sets the current in the mixer core. Connecting resistor R1 to the IADJ pin shunts some of the reference current to ground, thus reducing the mixer core current. The optimum value of R1 depends on the supply voltage and intended output frequency. Some recommended values are shown in Table 7, but the values can be optimized as required for individual applications. Table 7. Recommended Values for R1 VCC (V) fOUT (MHz) R1 (Ω) ICC (mA) 5 <1200 Open 105 5 >1200 4.75k 99 3.3 <1200 1k 90 3.3 >1200 1.8k 94 VCC1 LTC5510 IADJ 715Ω 6 8 R1 3V 4mA BIAS 5510 F15 Figure 15. Current Adjust Pin Interface 5510fa 22 For more information www.linear.com/LTC5510 LTC5510 APPLICATIONS INFORMATION Temperature Monitor (TEMP) Supply Voltage Ramping The TEMP input (pin 1) is connected to an on-chip diode that can be used as a coarse temperature monitor by forcing current into it and measuring the resulting voltage. The temperature diode is protected by a series 30Ω resistor and additional ESD diodes to ground. Fast ramping of the supply voltage can cause a current glitch in the internal ESD protection circuits. Depending on the supply inductance, this could result in a supply voltage transient that exceeds the maximum rating. A supply voltage ramp time of greater than 1ms is recommended. The TEMP pin voltage is shown as a function of junction temperature in Figure 16. Given the voltage (in mV) at the pin, VD, the junction temperature can be estimated for forced input currents of 10µA and 80µA using the following equations: The ramp rate of the supply voltage at the VCC pins should not exceed 20V/ms. If the EN and VCC pins are switched simultaneously, the configuration in Figure 17 can be used to slow the rise time at the VCC pins if needed. LTC5510 TJ (10µA) = (VD – 742.4)/ –1.796 TJ (80µA) = (VD – 795.6)/ –1.609 10k 900 VCC TEMP PIN VOLTAGE (mV) 850 800 VCC VCC 5 6 7 0.5Ω 220µF 10nF 5510 F17 IIN = 80µA Figure 17. Suggested Configuration for Simultaneous VCC and EN Switching 750 700 650 EN Spurious Output Levels IIN = 10µA 600 550 500 –50 –30 –10 10 30 50 70 90 110 JUNCTION TEMPERATURE (°C) 5510 G16 Figure 16. TEMP Pin Voltage vs Junction Temperature Auto Supply Voltage Detect An internal circuit automatically detects the supply voltage and configures internal components for 3.3V or 5V operation. The DC current is affected when the auto-detect circuit switches at approximately 4.1V. To avoid undesired operation, the mixer should only be operated in the 3.1V to 3.6V or 4.5V to 5.3V supply ranges. Mixer spurious output levels versus harmonics of the IN and LO frequencies are tabulated in Tables 8 and 9 for the 5V Wideband Up/Downmixer application. Results are shown for frequencies up to 15GHz. The spur frequencies can be calculated using the following equation: fSPUR = |M • fIN ± N • fLO| Table 8 shows the “difference” spurs (fSPUR = |M • fIN – N • fLO|) and Table 9 shows the “sum” spurs (fSPUR = M • fIN + N • fLO ). The spur levels were measured on a standard evaluation board at room temperature using the test circuit shown in Figure 1. The spurious output levels for each application will be dependent on the external matching circuits and the particular application frequencies. 5510fa For more information www.linear.com/LTC5510 23 LTC5510 APPLICATIONS INFORMATION Table 8. Output Spur Levels (dBc), fSPUR = |M • fIN – N • fLO| (fIN = 190MHz at –7dBm, fLO = 1765MHz at 0dBm, VCC = 5V) Table 9. Output Spur Levels (dBc), fSPUR = M • fIN + N • fLO (fIN = 190MHz at –7dBm, fLO = 1765MHz at 0dBm, VCC = 5V) N M N 0 1 2 3 4 5 6 7 8 0 – –30 –30 –40 –18 –44 –4 –46 –24 0 0 1 2 3 4 5 6 7 8 – –30 –30 –40 –18 –44 –4 –46 –24 1 –64 0** –50 –30 –64 –22 –55 –47 –72 1 –50 –16 –55 –26 –52 –52 –69 2 * –37 –73 –65 –65 –58 –49 –72 –59 2 * –36 –73 –50 –63 –59 –46 –76 –62 3 * –48 * –71 * –66 –79 –75 –86 3 * –49 –88 –65 * –72 –74 –84 –81 4 * –66 * –84 –90 * –79 * * 5 * –70 * * * * * * 4 * –68 * –83 * –84 * * * 5 * –77 * –84 * –87 * * * M -64 –0.4** 6 * –89 * –87 * * * * * 6 * –73 * * * * * * 7 * * * –86 * * * * * 7 * –75 * * * * * * 8 * * * –84 * * * * * 8 * –74 * * * * * * 9 * * * * * * * * * 9 * –80 * * * * * * 10 * * * * * * * * * 10 * * * * * * * * * Less Than <–90dBc **Carrier Frequency * Less Than <–90dBc **Image Frequency 5510fa 24 For more information www.linear.com/LTC5510 LTC5510 TYPICAL APPLICATIONS Upmixer with 3.3GHz to 3.8GHz Output LO 50Ω 0.1µF LO+ MINI-CIRCUITS TC1-1-13M+ 1:1 IN 456MHz 0.1µF IN+ 5V 10nF 0.1µF LTC5510 LO– OUT+ 4.7pF 2nH 0.7pF 0.1µF IN– OUT– 2nH MINI-CIRCUITS NCS1-422+ 1:1 BIAS LGND EN VCC1 VCC2 IADJ 4.75kΩ 5V 1µF 5510 TA02 Conversion Gain, OIP3 and NF vs Output Frequency 5 25 4 20 3 NF 10 NC 2 6 LSLO HSLO 15 3300 3500 3700 OUTPUT FREQUENCY (MHz) 3 10 1 5 0 3900 0 2 –60 IN-OUT –80 20 1000 2000 3000 4000 FREQUENCY (MHz) –100 5000 RETURN LOSS (dB) LO-IN LO LEAKAGE (dBm) –40 0 –6 –20 LO-OUT 60 0 0 1000 200 400 600 800 INPUT FREQUENCY (MHz) 5510 TA04 0 0 40 0 1 IN, OUT and LO Port Return Loss vs Frequency 100 IN-LO GC 5510 TA03 IN Isolation and LO Leakage vs Frequency 80 4 fOUT = 3500MHz GC 0 3100 5 OIP3 fIN = 456MHz 5 ISOLATION (dB) 6 GAIN (dB) 15 30 GAIN (dB) OIP3 (dBm), NF (dB) LSLO HSLO 6 OIP3 (dBm) 25 20 1 5 Conversion Gain and OIP3 vs Input Frequency 30 OIP3 2 4 TYPICAL PERFORMANCE (ROOM TEMPERATURE) IN = 456MHz, OUT = 3500MHz, LO = 3956MHz PIN = –10dBm, PLO = 0dBm GC = 0.6dB OIP3 = 24.7dBm SSB NF = 13.3dB INPUT P1dB = 11dBm EN 10nF 3 OUT 50Ω OUT –12 IN LO –18 –24 –30 0 5510 TA05 1000 2000 3000 4000 FREQUENCY (MHz) 5000 5510 TA06 5510fa For more information www.linear.com/LTC5510 25 LTC5510 TYPICAL APPLICATIONS Mixer with Extended Input Frequency Range to 6GHz LO 50Ω 0.1µF 0.1µF LO+ MINI-CIRCUITS TCM1-63AX+ 1:1 IN 30MHz TO 6000MHz 0.1µF 0.3pF 0.1µF IN+ LTC5510 MINI-CIRCUITS TC4-1W-7ALN+ 4:1 LO– OUT 140MHz OUT+ 0.05pF TYPICAL PERFORMANCE (ROOM TEMPERATURE) IN = 3GHz, OUT = 140MHz, LO = 3.14GHz PIN = –10dBm, PLO = 0dBm GC = 1.3dB IIP3 = 21.3dBm OUT– BIAS LGND EN VCC1 VCC2 IADJ 4.75kΩ IN– 10nF EN 5V 10nF 1µF 5510 TA07 Conversion Gain and IIP3 vs Input Frequency LO-OUT Leakage and IN-OUT Isolation vs Frequency 35 30 LO-OUT LEAKAGE (dBm) RETURN LOSS (dB) 20 15 10 5 GC 0 –5 0 60 –10 50 –20 –30 30 –40 20 –50 1000 –60 2000 3000 4000 5000 6000 INPUT FREQUENCY (MHz) 5510 TA08 IN PORT and LO PORT Return Loss vs Frequency 0 1000 2000 3000 4000 FREQUENCY (MHz) 5000 0 6000 5510 TA09 0 –5 –5 –10 RETURN LOSS (dB) RETURN LOSS (dB) 10 LO-OUT OUT PORT Return Loss vs Frequency 0 IN-PORT –15 –20 LO-PORT –25 –10 –15 –20 –30 –35 40 IN-OUT IN-OUT ISOLATION (dB) IIP3 25 0 0 1000 2000 3000 4000 FREQUENCY (MHz) 5000 6000 –25 0 5510 TA10 100 200 300 FREQUENCY (MHz) 400 500 5510 TA11 5510fa 26 For more information www.linear.com/LTC5510 LTC5510 TYPICAL APPLICATIONS Broadband Downmixer Application Using Single-Ended Input LO 50Ω 10nF 10nF LO+ 10nF IN 100MHz TO 1000MHz 50Ω IN+ LTC5510 LO– TC4-1W-7ALN+ 4:1 OUT 44MHZ 50Ω OUT+ TYPICAL PERFORMANCE (TC = 25°C) IN = 450MHz, OUT = 44MHz, LO = 494MHz PIN = –5dBm, PLO = 0dBm GC = 1.8dB IIP3 = 26.3dBm SSB NF = 11.5dB INPUT P1dB = 8.8dBm 10nF IN– OUT– BIAS LGND EN VCC1 VCC2 IADJ 100nH 10nF 5V 10nF EN 1µF 5510 TA12 Conversion Gain, IIP3 and NF vs Input Frequency Conversion Gain and IIP3 vs Output Frequency 30 6 28 25 15 GAIN (dB) 20 NF fIN = 450MHz HSLO 4 26 24 3 22 10 2 5 0 0 GC 200 400 600 800 INPUT FREQUENCY (MHz) 1 1000 80 –20 70 50 –50 40 –60 30 –70 20 10 IN-OUT LO-IN 0 300 600 900 FREQUENCY (MHz) 0 1200 –5 IN ISOLATION (dB) 60 IN-LO –40 –80 100 150 200 250 OUTPUT FREQUENCY (MHz) 18 300 5510 TA14 0 RETURN LOSS (dB) 90 LO-OUT 50 IN, OUT and LO Port Return Loss vs Frequency 0 –30 0 5510 TA13 –10 –90 20 GC LO Leakage and IN Isolation vs Frequency LO LEAKAGE (dBm) IIP3 5 fOUT = 44MHz HSLO IIP3 (dBm) GAIN (dB), IIP3 (dBm), NF (dB) IIP3 OUT –10 IN –15 –20 –25 LO –30 –35 0 5510 TA15 200 400 600 800 FREQUENCY (MHz) 1000 1200 5510 TA16 5510fa For more information www.linear.com/LTC5510 27 LTC5510 PACKAGE DESCRIPTION Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings. UF Package 16-Lead Plastic QFN (4mm × 4mm) (Reference LTC DWG # 05-08-1692 Rev Ø) 0.72 ±0.05 4.35 ±0.05 2.15 ±0.05 2.90 ±0.05 (4 SIDES) PACKAGE OUTLINE 0.30 ±0.05 0.65 BSC RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS BOTTOM VIEW—EXPOSED PAD 4.00 ±0.10 (4 SIDES) 0.75 ±0.05 R = 0.115 TYP 15 PIN 1 NOTCH R = 0.20 TYP OR 0.35 × 45° CHAMFER 16 0.55 ±0.20 PIN 1 TOP MARK (NOTE 6) 1 2.15 ±0.10 (4-SIDES) 2 (UF16) QFN 10-04 0.200 REF 0.00 – 0.05 0.30 ±0.05 0.65 BSC NOTE: 1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC) 2. DRAWING NOT TO SCALE 3. ALL DIMENSIONS ARE IN MILLIMETERS 4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE 5. EXPOSED PAD SHALL BE SOLDER PLATED 6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE 5510fa 28 For more information www.linear.com/LTC5510 LTC5510 REVISION HISTORY REV DATE DESCRIPTION A 06/15 LO and OUTPUT frequency range increased to 6500 and 6000MHz, respectively. PAGE NUMBER Corrected Figure 4 caption. 2, 19, 20, 22, 23, 26 22 5510fa Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. For more information www.linear.com/LTC5510 29 LTC5510 TYPICAL APPLICATION 5V CATV Downmixer with 1GHz IF Bandwidth Conversion Gain, OIP3 and 2RF-LO Spur vs IF Output Frequency LO 50Ω 30 10nF GND 10nF IN+ 0.5pF OUT+ LTC5510 10nF 15nH 3 4 15nH 1 6 OUT– IN– LGND EN VCC1 VCC2 2 IFOUT 50MHz TO 1000MHz 50Ω 10nF GND IADJ 10nF EN 5V 10nF 1µF 21 18 15 –30 –40 –50 2RF-LO –60 12 –70 9 –80 6 –90 3 0 5510 TA17 –20 fIN = 1150MHz PIN = –7dBm fLO = fIN + fOUT PLO = 0dBm TC = 25°C 24 –100 GC 0 2RF-LO SPUR (dBc) IN 1150MHz 50Ω TC1-1-13M+ 1:1 TC4-19LN+ 4:1 10nF –10 OIP3 27 GAIN (dB), OIP3 (dBm) TP 10nF LO+ LO– GND 200 400 600 800 IF OUTPUT FREQUENCY (MHz) –110 1000 5510 TA18 RELATED PARTS PART NUMBER DESCRIPTION Mixers and Modulators LT®5527 400MHz to 3.7GHz, 5V Downconverting Mixer LT5557 400MHz to 3.8GHz, 3.3V Downconverting Mixer LTC559x 600MHz to 4.5GHz Dual Downconverting Mixer Family LTC5569 300MHz to 4GHz, 3.3V Dual Active Downconverting Mixer LTC554x 600MHz to 4GHz, 5V Downconverting Mixer Family LT5578 400MHz to 2.7GHz Upconverting Mixer LT5579 1.5GHz to 3.8GHz Upconverting Mixer LTC5588-1 200MHz to 6GHz I/Q Modulator LTC5585 700MHz to 3GHz Wideband I/Q Demodulator Amplifiers LTC6430-15 High Linearity Differential IF Amp LTC6431-15 High Linearity Single-Ended IF Amp LTC6412 31dB Linear Analog VGA LT5554 Ultralow Distortion IF Digital VGA RF Power Detectors LT5538 40MHz to 3.8GHz Log Detector LT5581 6GHz Low Power RMS Detector LTC5582 40MHz to 10GHz RMS Detector LTC5583 Dual 6GHz RMS Power Detector ADCs LTC2208 16-Bit, 130Msps ADC LTC2153-14 14-Bit, 310Msps Low Power ADC RF PLL/Synthesizer with VCO LTC6946-1/ Low Noise, Low Spurious Integer-N PLL with LTC6946-2/ Integrated VCO LTC6946-3 COMMENTS 2.3dB Gain, 23.5dBm IIP3 and 12.5dB NF at 1900MHz, 5V/78mA Supply 2.9dB Gain, 24.7dBm IIP3 and 11.7dB NF at 1950MHz, 3.3V/82mA Supply 8.5dB Gain, 26.5dBm IIP3, 9.9dB NF, 3.3V/380mA Supply 2dB Gain, 26.8dBm IIP3 and 11.7dB NF, 3.3V/180mA Supply 8dB Gain, >25dBm IIP3 and 10dB NF, 3.3V/200mA Supply 27dBm OIP3 at 900MHz, 24.2dBm at 1.95GHz, Integrated RF Output Transformer 27.3dBm OIP3 at 2.14GHz, NF = 9.9dB, 3.3V Supply, Single-Ended LO and RF Ports 31dBm OIP3 at 2.14GHz, –160.6dBm/Hz Noise Floor >530MHz Demodulation Bandwidth, IIP2 Tunable to >80dBm, DC Offset Nulling 20MHz to 2GHz Bandwidth, 15.2dB Gain, 50dBm OIP3, 3dB NF at 240MHz 20MHz to 1.7GHz Bandwidth, 15.5dB Gain, 47dBm OIP3, 3.3dB NF at 240MHz 35dBm OIP3 at 240MHz, Continuous Gain Range –14dB to 17dB 48dBm OIP3 at 200MHz, 2dB to 18dB Gain Range, 0.125dB Gain Steps ±0.8dB Accuracy Over Temperature, –72dBm Sensitivity, 75dB Dynamic Range 40dB Dynamic Range, ±1dB Accuracy Over Temperature, 1.5mA Supply Current ±0.5dB Accuracy Over Temperature, ±0.2dB Linearity Error, 57dB Dynamic Range Up to 60dB Dynamic Range, ±0.5dB Accuracy Over Temperature, >50dB Isolation 78dBFS Noise Floor, >83dB SFDR at 250MHz 68.8dBFS SNR, 88dB SFDR, 401mW Power Consumption 373MHz to 5.79GHz, –157dBc/Hz WB Phase Noise Floor, –100dBc/Hz Closed-Loop Phase Noise 5510fa 30 Linear Technology Corporation 1630 McCarthy Blvd., Milpitas, CA 95035-7417 For more information www.linear.com/LTC5510 (408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com/LTC5510 LT 0615 REV A • PRINTED IN USA LINEAR TECHNOLOGY CORPORATION 2013