LTM2987 16-Channel µModule PMBus Power System Manager Features Description Sequence, Trim, Margin and Supervise 16 Power Supplies n Manage Faults, Monitor Telemetry and Create Fault Logs n PMBus™ Compliant Command Set n Supported by LTpowerPlay™ GUI n Margin or Trim Supplies to 0.25% Accuracy n Fast OV/UV Supervisors Per Channel n Coordinate Sequencing and Fault Management Across Multiple LTC PSM Devices n Automatic Fault Logging to Internal EEPROM n Operate Autonomously without Additional Software n Internal Temperature and Input Voltage Supervisors n Accurate Monitoring of 16 Output Voltages, Two Input Voltages and Internal Die Temperature n I2C/SMBus Serial Interface n Can Be Powered from 3.3V, or 4.5V to 15V n Programmable Watchdog Timer n Available in 144-Lead 15mm × 15mm BGA Package The LTM®2987 is a 16-channel µModule® (micromodule) Power System Manager used to sequence, trim (servo), margin, supervise, manage faults, provide telemetry and create fault logs. PMBus commands support power supply sequencing, precision point-of-load voltage adjustment and margining. DACs use a proprietary soft-connect algorithm to minimize supply disturbances. Supervisory functions include overvoltage and undervoltage threshold limits for sixteen power supply output channels and two power supply input channels, as well as over and under temperature limits. Programmable fault responses can disable the power supplies with optional retry after a fault is detected. Faults that disable a power supply can automatically trigger black box EEPROM storage of fault status and associated telemetry. An internal 16-bit ADC monitors sixteen output voltages, two input voltages, and die temperature. In addition, odd numbered channels can be configured to measure the voltage across a current sense resistor. A programmable watchdog timer monitors microprocessor activity for a stalled condition and resets the microprocessor if necessary. A single wire bus synchronizes power supplies across multiple LTC Power System Management (PSM) devices. Configuration EEPROM supports autonomous operation without additional software. n Applications n n n n n Computers and Network Servers Industrial Test and Measurement High Reliability Systems Medical Imaging Video L, LT, LTC, LTM, µModule, PolyPhase, Linear Technology and the Linear logo are registered trademarks and LTpowerPlay is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners. Protected by U.S. Patents including 7382303, 7420359 and 7940091. TYPICAL APPLICATION Power Supply Accuracy 16-Channel PMBus Power System Manager 20 VIN 4.5V < VIBUS < 15V** VIN_SNS 3.3V** VDD33 VDACP0 TO INTERMEDIATE BUS CONVERTER ENABLE VIN_EN SDA PMBus INTERFACE WRITE-PROTECT TO/FROM OTHER LTC POWER SUPPLY MANAGERS VSENSEP0 LTM2987* SCL VDACM0 VSENSEM0 CONTROL0 VOUT_EN0 WP FAULTB00 PWRGD WDI/RESETB ASEL0 SHARE_CLK GND R30 R20 ASEL1 2987 TA01a DIGITALLY MANAGED POWER SUPPLY VFB LOAD ALERTB 18 VOUT R10 SGND TO µP RESETB INPUT RUN/SS GND WATCHDOG TIMER INTERRUPT *SOME DETAILS OMITTED FOR CLARITY ONLY ONE OF SIXTEEN CHANNELS SHOWN 46 PARTS SOLDERED DOWN 16 NUMBER OF PARTS VPWR 14 12 10 8 6 4 2 0 –0.25 –0.15 0.05 –0.05 ERROR (%) 0.15 0.25 2987 TA01b **MAY BE POWERED FROM EITHER AN EXTERNAL 3.3V SUPPLY OR THE INTERMEDIATE BUS 2987f For more information www.linear.com/LTM2987 1 LTM2987 Absolute Maximum Ratings PIN CONFIGURATION (Notes 1, 2, 3) Supply Voltages: VPWR to GND.......................................... –0.3V to 15V VIN_SNS to GND...................................... –0.3V to 15V VDD33 to GND........................................ –0.3V to 3.6V VDD25 to GND...................................... –0.3V to 2.75V Digital Input/Output Voltages: ALERTB, SDA, SCL, CONTROL0, CONTROL1............................................. –0.3V to 5.5V PWRGD, SHARE_CLK, WDI/RESETB, WP.....................–0.3V to VDD33 + 0.3V FAULTB00, FAULTB01, FAULTB10, FAULTB11.................................–0.3V to VDD33 + 0.3V ASEL0, ASEL1...........................–0.3V to VDD33 + 0.3V Analog Voltages: REFP to GND....................................... –0.3V to 1.35V REFM to GND......................................... –0.3V to 0.3V VSENSEP[7:0] to GND.................................. –0.3V to 6V VSENSEM[7:0] to GND................................. –0.3V to 6V VOUT_EN[3:0], VIN_EN to GND................... –0.3V to 15V VOUT_EN[7:4] to GND.................................. –0.3V to 6V VDACP[7:0] to GND..................................... –0.3V to 6V VDACM[7:0] to GND ................................. –0.3V to 0.3V Pull-Up Resistors: VPU........................................................ –0.3V to 5.5V RPU1, RPU2, RPU3, RPU4......................... –0.3V to 5.5V Operating Junction Temperature Range: LTM2987C................................................ 0°C to 70°C LTM2987I......................................... –40°C to 105°C* Storage Temperature Range................. –55°C to 125°C* Maximum Junction Temperature......................... 125°C* Maximum Solder Temperature............................... 245°C PIN 1 1 2 3 4 5 TOP VIEW 6 7 8 9 10 11 12 A B C D E F G H J K L M BGA PACKAGE 144-LEAD (15mm × 15mm × 3.42mm) TJMAX = 125°C, θJA = 25.2°C/W, θJCtop = 15.6°C/W, θJCbottom = 7.1°C/W, θJB = 10.4°C/W, WEIGHT = 1.6g, VALUES DETERMINED PER JEDEC 51-9, 51-12 *See OPERATION section of the LTC2977 data sheet for detailed EEPROM derating information for junction temperatures in excess of 105°C. ORDER INFORMATION PART NUMBER PAD OR BALL FINISH PART MARKING* DEVICE FINISH CODE PACKAGE TYPE MSL RATING OPERATING JUNCTION TEMPERATURE RANGE LTM2987CY#PBF SAC305 (RoHS) LTM2987Y e1 BGA 3 0°C to 70°C LTM2987IY#PBF SAC305 (RoHS) LTM2987Y e1 BGA 3 –40°C to 105°C Consult Marketing for parts specified with wider operating temperature ranges. *Device temperature grade is indicated by a label on the shipping container. Pad or ball finish code is per IPC/JEDEC J-STD-609. • Recommended LGA and BGA PCB Assembly and Manufacturing Procedures: www.linear.com/umodule/pcbassembly • Terminal Finish Part Marking: www.linear.com/leadfree • LGA and BGA Package and Tray Drawings: www.linear.com/packaging 2987f 2 For more information www.linear.com/LTM2987 LTM2987 Electrical Characteristics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TJ = 25°C. VPWR = VIN_SNS = 12V, VDD33, REFP and REFM pins floating, unless otherwise indicated. (Note 3) SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS Power-Supply Characteristics VPWR VPWR Supply Input Operating Range IPWR VPWR Supply Current 4.5V ≤ VPWR ≤ 15V, VDD33 Floating l IVDD33 VDD33 Supply Current 3.13V ≤ VDD33 ≤ 3.47V, VPWR = VDD33 l VUVLO_VDD33 VDD33 Undervoltage Lockout VDD33 Ramping Up, VPWR = VDD33 l l 4.5 VDD25 13 mA 2.35 10 13 mA 2.55 2.8 V 120 mV Supply Input Operating Range VPWR = VDD33 l 3.13 Regulator Output Voltage 4.5V ≤ VPWR ≤ 15V l 3.13 3.26 3.47 V Regulator Output Short-Circuit Current VPWR = 4.5V, VDD33 = 0V l 75 90 140 mA Regulator Output Voltage l 2.35 2.5 2.6 V l 30 55 80 mA 3.13V ≤ VDD33 ≤ 3.47V Regulator Output Short-Circuit Current VPWR = VDD33 = 3.47V, VDD25 = 0V tINIT V 10 VDD33 Undervoltage Lockout Hysteresis VDD33 15 Initialization Time Time from VIN Applied Until the TON_DELAY Timer Starts 3.47 30 V ms Voltage Reference Characteristics VREF Output Voltage 1.232 Temperature Coefficient Hysteresis V 3 (Note 4) ppm/°C 100 ppm ADC Characteristics VIN_ADC Voltage Sense Input Range Current Sense Input Range (Odd Numbered Channels Only) N_ADC Voltage Sense Resolution (Uses L16 Format) Current Sense Resolution (Odd Numbered Channels Only) Differential Voltage: VIN_ADC = (VSENSEPn – VSENSEMn) l 0 6 V Single-Ended Voltage: VSENSEMn l –0.1 0.1 V Single-Ended Voltage: VSENSEPn, VSENSEMn l –0.1 6 Differential Voltage: VIN_ADC l –170 170 0V ≤ VIN_ADC ≤ 6V V mV 122 µV/LSB 15.625 31.25 62.5 125 250 µV/LSB µV/LSB µV/LSB µV/LSB µV/LSB Mfr_config_adc_hires = 0 0mV ≤ |VIN_ADC| < 16mV (Note 5) 16mV ≤ |VIN_ADC| < 32mV 32mV ≤ |VIN_ADC| < 63.9mV 63.9mV ≤ |VIN_ADC| < 127.9mV 127.9mV ≤ |VIN_ADC| Mfr_config_adc_hires = 1 TUE_ADC_ VOLT_SNS Total Unadjusted Error TUE_ADC_ CURR_SNS Total Unadjusted Error Voltage Sense Mode VIN_ADC ≥ 1V l ±0.25 Voltage Sense Mode 0 ≤ VIN_ADC ≤ 1V l ±2.5 mV Current Sense Mode, Odd Numbered Channels Only, 20mV ≤ VIN_ADC ≤ 170mV l ±0.7 % of Reading Current Sense Mode, Odd Numbered Channels Only, VIN_ADC ≤ 20mV l 140 µV l ±35 µV % of Reading VOS_ADC Offset Error Current Sense Mode, Odd Numbered Channels Only tCONV_ADC Conversion Time Voltage Sense Mode (Note 6) 6.15 ms Current Sense Mode (Note 6) 24.6 ms Temperature Input (Note 6) 24.6 ms 2987f For more information www.linear.com/LTM2987 3 LTM2987 Electrical Characteristics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TJ = 25°C. VPWR = VIN_SNS = 12V, VDD33, REFP and REFM pins floating, unless otherwise indicated. (Note 3) SYMBOL PARAMETER CONDITIONS tUPDATE_ADC Maximum Update Time Odd Numbered Channels in Current Sense Mode (Note 6) MIN CIN_ADC Input Sampling Capacitance fIN_ADC Input Sampling Frequency IIN_ADC Input Leakage Current VIN_ADC = 0V, 0V ≤ VCOMMONMODE ≤ 6V, Current Sense Mode l Differential Input Current VIN_ADC = 0.17V, Current Sense Mode l VIN_ADC = 6V, Voltage Sense Mode l TYP MAX UNITS 160 ms 1 pF 62.5 kHz ±0.5 µA 80 250 nA 10 15 µA DAC Output Characteristics N_VDACP Resolution 10 VFS_VDACP Full-Scale Output Voltage (Programmable) DAC Code = 0x3FF Buffer Gain Setting_0 DAC Polarity = 1 Buffer Gain Setting_1 l l INL_VDACP Integral Nonlinearity (Note 7) l ±2 LSB DNL_VDACP Differential Nonlinearity (Note 7) l ±2.4 LSB VOS_VDACP Offset Voltage (Note 7) l ±10 mV VDACP Load Regulation (VDACPn – VDACMn) VDACPn = 2.65V, IVDACPn Sourcing = 2mA 100 ppm/mA VDACPn = 0.1V, IVDACPn Sinking = 2mA 100 ppm/mA PSRR (VDACPn – VDACMn) DC: 3.13V ≤ VDD33 ≤ 3.47V, VPWR = VDD33 60 dB 100mV Step in 20ns with 50pF Load 40 dB DC CMRR (VDACPn – VDACMn) –0.1V ≤ VDACMn ≤ 0.1V 60 dB 1.3 2.5 1.38 2.65 Bits 1.44 2.77 V V Leakage Current VDACPn Hi-Z, 0V ≤ VDACPn ≤ 6V l ±100 nA Short-Circuit Current Low VDACPn Shorted to GND l –10 –4 mA Short-Circuit Current High VDACPn Shorted to VDD33 l 4 10 mA COUT Output Capacitance VDACPn Hi-Z 10 pF tS_VDACP DAC Output Update Rate Fast Servo Mode 250 µs DAC Soft-Connect Comparator Characteristics VOS_CMP Offset Voltage VDACPn = 0.2V l ±1 ±18 mV VDACPn = 1.3V l ±2 ±26 mV VDACPn = 2.65V l ±3 ±52 mV VIN_VS = (VSENSEPn Low Resolution Mode – VSENSEMn) High Resolution Mode l l 0 0 6 3.8 V V Single-Ended Voltage: VSENSEMn l –0.1 0.1 V Voltage Supervisor Characteristics VIN_VS N_VS TUE_VS tS_VS Input Voltage Range (Programmable) Voltage Sensing Resolution Total Unadjusted Error 0V to 3.8V Range: High Resolution Mode 4 mV/LSB 0V to 6V Range: Low Resolution Mode 8 mV/LSB 2V ≤ VIN_VS ≤ 6V, Low Resolution Mode l ±1.25 % of Reading 1.5V < VIN_VS ≤ 3.8V, High Resolution Mode l ±1.0 % of Reading 0.8V ≤ VIN_VS ≤ 1.5V, High Resolution Mode l ±1.5 % of Reading Update Rate 12.21 µs 2987f 4 For more information www.linear.com/LTM2987 LTM2987 Electrical Characteristics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TJ = 25°C. VPWR = VIN_SNS = 12V, VDD33, REFP and REFM pins floating, unless otherwise indicated. (Note 3) SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS 15 V 90 110 kΩ VIN_SNS Input Characteristics VVIN_SNS VIN_SNS Input Voltage Range l 0 RVIN_SNS VIN_SNS Input Resistance l 70 TUEVIN_SNS VIN_ON, VIN_OFF Threshold Total Unadjusted Error READ_VIN Total Unadjusted Error 3V ≤ VVIN_SNS ≤ 8V l ±2.0 % of Reading VVIN_SNS > 8V l ±1.0 % of Reading 3V ≤ VVIN_SNS ≤ 8V l ±1.5 % of Reading VVIN_SNS > 8V l ±1.0 % of Reading Temperature Sensor Characteristics TUE_TS Total Unadjusted Error ±1 °C VOUT Enable Output (VOUT_EN [3:0]) Characteristics VVOUT_ENn Output High Voltage (Note 8) IVOUT_ENn = –5µA, VDD33 = 3.3V l 10 12.5 14.7 IVOUT_ENn Output Sourcing Current VVOUT_ENn Pull-Up Enabled, VVOUT_ENn = 1V l –5 –6 –8 µA Output Sinking Current Strong Pull-Down Enabled, VVOUT_ENn = 0.4V l 3 5 8 mA Weak Pull-Down Enabled, VVOUT_ENn = 0.4V l 33 50 Output Leakage Current Internal Pull-Up Disabled, 0V ≤ VVOUT_ENn ≤ 15V l Output Sinking Current Strong Pull-Down Enabled, VOUT_ENn = 0.1V l Output Leakage Current 0V ≤ VVOUT_ENn ≤ 6V l V 60 µA ±1 µA 9 mA ±1 µA V VOUT Enable Output (VOUT_EN [7:4]) Characteristics IVOUT_ENn 3 6 VIN Enable Output (VIN_EN) Characteristics VVIN_EN Output High Voltage IVIN_EN = –5µA, VDD33 = 3.3V l 10 12.5 14.7 IVIN_EN Output Sourcing Current VIN_EN Pull-Up Enabled, VVIN_EN = 1V l –5 –6 –8 µA Output Sinking Current VVIN_EN = 0.4V l 3 5 8 mA Leakage Current Internal Pull-Up Disabled, 0V ≤ VVIN_EN ≤ 15V l ±1 µA EEPROM Characteristics Endurance (Notes 9, 10) 0°C < TJ < 85°C During EEPROM Write Operations l 10,000 Cycles Retention (Notes 9, 10) TJ < 105°C l 20 Years Mass_Write Mass Write Operation Time (Note 11) STORE_USER_ALL, 0°C < TJ < 85°C During EEPROM Write Operations l 440 4100 ms General Purpose Pull-Up Resistors RPU Pull-Up Resistance 10 kΩ Digital Inputs SCL, SDA, CONTROL0, CONTROL1, WDI/RESETB, FAULTB00, FAULTB01, FAULTB10, FAULTB11, WP VIH High Level Input Voltage l VIL Low Level Input Voltage l VHYST Input Hysteresis 2.1 V 1.5 20 V mV 2987f For more information www.linear.com/LTM2987 5 LTM2987 Electrical Characteristics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TJ = 25°C. VPWR = VIN_SNS = 12V, VDD33, REFP and REFM pins floating, unless otherwise indicated. (Note 3) SYMBOL PARAMETER CONDITIONS ILEAK Input Leakage Current 0V ≤ VPIN ≤ 5.5V, SDA, SCL, CONTROLn Pins Only l ±2 µA 0V ≤ VPIN ≤ VDD33 + 0.3V, FAULTBzn, WDI/RESETB, WP Pins Only l ±2 µA tSP Pulse Width of Spike Suppressed MIN TYP MAX UNITS FAULTBzn, CONTROLn Pins Only 10 µs SDA, SCL Pins Only 98 ns tFAULT_MIN Minimum Low Pulse Width for Externally Generated Faults 110 tRESETB Pulse Width to Assert Reset VWDI/RESETB ≤ 1.5V l 300 tWDI Pulse Width to Reset Watchdog Timer VWDI/RESETB ≤ 1.5V l 0.3 fWDI Watchdog Interrupt Input Frequency CIN Digital Input Capacitance ms µs 200 1 l 10 µs MHz pF Digital Input SHARE_CLK VIH High Level Input Voltage l VIL Low Level Input Voltage l fSHARE_CLK_IN Input Frequency Operating Range 1.6 l 90 0.825 V 0.8 V 110 kHz tLOW Assertion Low Time VSHARE_CLK < 0.8V l 1.1 µs tRISE Rise Time VSHARE_CLK < 0.8V to VSHARE_CLK > 1.6V l 450 ns ILEAK Input Leakage Current 0V ≤ VSHARE_CLK ≤ VDD33 + 0.3V l ±1 µA CIN Input Capacitance 10 pF Digital Outputs SDA, ALERTB, PWRGD, SHARE_CLK, FAULTB00, FAULTB01, FAULTB10, FAULTB11 VOL Digital Output Low Voltage fSHARE_CLK_OUT Output Frequency Operating Range ISINK = 3mA l 5.49kΩ Pull-Up to VDD33 l 90 VDD33 – 0.5 100 0.4 V 110 kHz Digital Inputs ASEL0,ASEL1 VIH Input High Threshold Voltage l VIL Input Low Threshold Voltage l 0.5 V l ±95 µA l ±24 µA IIH, IIL High, Low Input Current IHIZ Hi-Z Input Current CIN Input Capacitance ASEL[1:0] = 0, VDD33 V 10 pF Serial Bus Timing Characteristics fSCL Serial Clock Frequency (Note 12) l 10 400 tLOW Serial Clock Low Period (Note 12) l 1.3 µs tHIGH Serial Clock High Period (Note 12) l 0.6 µs tBUF Bus Free Time Between Stop and Start (Note 12) l 1.3 µs tHD,STA Start Condition Hold Time (Note 12) l 600 ns tSU,STA Start Condition Setup Time (Note 12) l 600 ns tSU,STO Stop Condition Setup Time (Note 12) l 600 ns tHD,DAT Data Hold Time (LTM2987 Receiving Data) (Note 12) l 0 ns Data Hold Time (LTM2987 Transmitting Data) (Note 12) l 300 900 kHz ns 2987f 6 For more information www.linear.com/LTM2987 LTM2987 Electrical Characteristics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TJ = 25°C. VPWR = VIN_SNS = 12V, VDD33, REFP and REFM pins floating, unless otherwise indicated. (Note 3) SYMBOL PARAMETER tSU,DAT Data Setup Time (Note 12) CONDITIONS tSP Pulse Width of Spike Suppressed (Note 12) tTIMEOUT_BUS Time Allowed to Complete any PMBus Longer Timeout = 0 Command After Which Time SDA Will Longer Timeout = 1 Be Released and Command Terminated MIN l TYP MAX 100 ns 98 l l UNITS 25 200 ns 35 280 ms ms Additional Digital Timing Characteristics tOFF_MIN Minimum Off Time for Any Channel 100 Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating for extended periods may affect device reliability and lifetime. Note 2: All currents into device pins are positive. All currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified. If power is supplied to the chip via the VDD33 pin only, connect VPWR and VDD33 pins together. Note 3: The LTM2987 electrical characteristics apply to each half of the device, unless otherwise noted. The specifications and functions are the same for both Device A pins and Device B pins. Note 4: Hysteresis in the output voltage is created by package stress that differs depending on whether the module was previously at a higher or lower temperature. Output voltage is always measured at 25°C, but the module is cycled to 105°C or –40°C before successive measurements. Hysteresis is roughly proportional to the square of the temperature change. Note 5: The current sense resolution is determined by the L11 format and the mV units of the returned value. For example a full scale value of 170mV returns a L11 value of 0xF2A8 = 680 • 2–2 = 170. This is the lowest range that can represent this value without overflowing the L11 mantissa and the resolution for 1LSB in this range is 2–2 mV = 250µV. Each successively lower range improves resolution by cutting the LSB size in half. ms Note 6: The time between successive ADC conversions (latency of the ADC) for any given channel is given as: 36.9ms + (6.15ms • number of ADC channels configured in Low Resolution mode) + (24.6ms • number of ADC channels configured in High Resolution mode). Note 7: Nonlinearity is defined from the first code that is greater than or equal to the maximum offset specification to full-scale code, 1023. Note 8: Output enable pins are charge pumped from VDD33. Note 9: EEPROM endurance and retention are guaranteed by design, characterization and correlation with statistical process controls. The minimum retention specification applies for devices whose EEPROM has been cycled less than the minimum endurance specification. Note 10: EEPROM endurance and retention will be degraded when TJ > 105°C. Note 11: The LTM2987 will not acknowledge any PMBus commands while a mass write operation is being executed. This includes the STORE_USER_ALL and MFR_FAULT_LOG_STORE commands or a fault log store initiated by a channel faulting off. Note 12: Maximum capacitive load, CB, for SCL and SDA is 400pF. Data and clock rise time (tr) and fall time (tf) are: (20 + 0.1 • CB) (ns) < tr < 300ns and (20 + 0.1 • CB) (ns) < tf < 300ns. CB = capacitance of one bus line in pF. SCL and SDA external pull-up voltage, VIO, is 3.13V < VIO < 5.5V. 2987f For more information www.linear.com/LTM2987 7 LTM2987 PMBus TIMING DIAGRAM SDA tf tLOW tr tSU(DAT) tHD(SDA) tf tSP tr tBUF SCL tHD(STA) START CONDITION tHD(DAT) tHIGH tSU(STA) tSU(STO) 2987 TD REPEATED START CONDITION STOP CONDITION START CONDITION 2987f 8 For more information www.linear.com/LTM2987 LTM2987 Typical Performance Characteristics Temperature Sensor Error vs Temperature Reference Voltage vs Temperature 1.2325 ADC Total Unadjusted Error vs Temperature 1.5 THREE TYPICAL PARTS REFERENCE OUTPUT VOLTAGE (V) 1.2320 0.25 1.0 0.15 1.2315 0.10 ERROR (°C) 1.2305 1.2300 ERROR (%) 0.5 1.2310 0 –0.5 90 110 VOLTAGE SENSE MODE THREE TYPICAL PARTS 2.5 ERROR (LSBs) 100 50 0 –50 –100 122µV/LSB 2.0 0.4 1.5 0.2 1.0 0.5 0 –0.2 0 –0.4 –0.6 –200 –1.0 –0.8 90 –1.5 –0.2 110 0.8 1.8 2.8 3.8 4.8 INPUT VOLTAGE (V) 2987 G04 400 200 0 –20 –10 0 10 READ_VOUT (µV) 20 2987 G07 5.8 9 VSENSEP0 = 1.5V 0.8 HIGH RESOLUTION MODE THREE TYPICAL PARTS 0.6 8 INPUT SAMPLING CURRENT (µA) 600 1.8 2.8 3.8 4.8 INPUT VOLTAGE (V) Input Sampling Current vs Differential Input Voltage 1.0 VIN = 0V HIGH RESOLUTION MODE 800 0.8 2987 G06 Voltage Supervisor Total Unadjusted Error vs Temperature SUPERVISOR ERROR (%) NUMBER OF READINGS 1000 –1.0 –0.2 5.8 2987 G05 ADC Noise Histogram 1200 122µV/LSB 0.6 –0.5 –50 –30 –10 10 30 50 70 TEMPERATURE (°C) 110 ADC DNL 0.8 –150 –250 90 2987 G03 ADC INL 3.0 150 OFFSET (µV) –0.25 –50 –30 –10 10 30 50 70 TEMPERATURE (°C) 2987 G02 ADC Zero Code Center Offset Voltage vs Temperature 200 –0.20 –1.5 –50 –30 –10 10 30 50 70 90 110 130 TEMPERATURE (°C) 2987 G01 250 –0.15 –1.0 –50 –30 –10 10 30 50 70 TEMPERATURE (°C) 0 –0.05 ERROR (LSBs) 1.2285 0.05 –0.10 1.2295 1.2290 VSENSEP0 = 1.8V THREE TYPICAL PARTS 0.20 0.4 0.2 0 –0.2 –0.4 –0.6 7 6 5 4 3 2 –0.8 1 –1.0 –50 –30 –10 10 30 50 70 TEMPERATURE (°C) 0 90 110 2987 G08 0 1 2 3 4 INPUT VOLTAGE (V) 5 6 2987 G09 2987f For more information www.linear.com/LTM2987 9 LTM2987 Typical Performance Characteristics 2.68 80 2.67 70 60 50 40 30 20 10 GAIN SETTING = 1 THREE TYPICAL PARTS 8 2.66 2.65 2.64 2.63 2.62 4 2 0 –2 –4 –6 2.61 10 –8 2.60 –50 –30 –10 10 30 50 70 TEMPERATURE (°C) 20 40 60 80 100 120 140 160 180 DIFFERENTIAL INPUT VOLTAGE (mV) 0 90 2987 G10 DAC Short-Circuit Current vs Temperature GAIN SETTING = 1 THREE TYPICAL PARTS 110 –10 –50 –30 –10 10 30 50 70 TEMPERATURE (°C) DAC Output Impedance vs Frequency 7 6 5 110 2987 G12 Closed-Loop Servo Accuracy 20 18 8 90 2987 G11 100 46 PARTS SOLDERED DOWN 16 NUMBER OF PARTS 9 1000 OUTPUT IMPEDANCE (Ω) 10 GAIN SETTING = 1 THREE TYPICAL PARTS 6 DAC OUTPUT VOLTAGE (mV) 90 0 SHORT-CIRCUIT CURRENT (mA) DAC Offset Voltage vs Temperature DAC Full-Scale Output Voltage vs Temperature DAC OUTPUT VOLTAGE (V) DIFFERENTIAL INPUT CURRENT (nA) ADC High Resolution Mode Differential Input Current 10 1 0.1 14 12 10 8 6 4 2 4 –50 –30 –10 10 30 50 70 TEMPERATURE (°C) 90 110 0.01 0.01 2987 G13 0.1 10 1 FREQUENCY (kHz) 100 1000 0 –0.25 –0.15 0.05 –0.05 ERROR (%) 0.15 0.25 2987 G14 2987 G15 DAC Soft-Connect Transient Response When Transitioning from Hi-Z State to ON State DAC Transient Response to 1LSB DAC Code Change DAC Soft-Connect Transient Response When Transitioning from ON State to Hi-Z State CODE ‘h200 HI-Z 500µV/DIV HI-Z 10mV/DIV 10mV/DIV CONNECTED CODE ‘h1FF 2µs/DIV 2987 G16 500µs/DIV 100k SERIES RESISTANCE ON CODE: ‘h1FF CONNECTED 2987 G17 500µs/DIV 100k SERIES RESISTANCE ON CODE: ‘h1FF 2987 G18 2987f 10 For more information www.linear.com/LTM2987 LTM2987 Typical Performance Characteristics VDD33 Regulator Output Voltage vs Temperature 3.28 THREE TYPICAL PARTS 3.26 OUTPUT VOLTAGE (V) 3.26 3.25 3.24 –40°C 3.22 3.20 25°C SUPPLY CURRENT (mA) 3.24 3.27 105°C 3.18 3.16 3.14 3.23 3.12 3.22 –50 –30 –10 10 30 50 70 TEMPERATURE (°C) 90 3.10 110 0 20 40 60 80 100 CURRENT SOURCING (mA) 120 2987 G19 9.6 TEMPERATURE = 33°C THREE TYPICAL PARTS 4 6 8 12 10 SUPPLY VOLTAGE (V) 16 2987 G21 14.0 VPWR = 15V 13.5 OUTUPT HIGH VOLTAGE (V) 9.4 9.3 9.2 9.1 9.0 8.9 105°C 13.0 25°C 12.5 –40°C 12.0 11.5 11.0 10.5 10.0 8.8 –50 –30 –10 10 30 50 70 TEMPERATURE (°C) 90 9.5 110 0 1 2 3 4 5 CURRENT SOURCING (µA) 7 6 2987 G22 2987 G23 VOUT_EN[3:0] and VIN_EN Output VOL vs Current VOUT_EN[7:4] VOL vs Current 1.4 0.6 1.2 105°C 105°C 0.5 25°C 1.0 25°C 0.4 0.8 –40°C 0.6 0.3 –40°C 0.2 0.4 0.1 0.2 0 14 VOUT_EN[3:0] and VIN_EN Output High Voltage vs Current 9.5 SUPPLY CURRENT (mA) 9.24 9.22 9.20 9.18 9.16 9.14 9.12 9.10 9.08 9.06 9.04 9.02 9.00 8.98 8.96 2987 G20 Supply Current vs Temperature (1/2 LTM2987) VOL (V) OUTPUT VOLTAGE (V) 3.28 VOL (V) 3.29 Supply Current vs Supply Voltage (1/2 LTM2987) VDD33 Regulator Load Regulation 0 2 8 6 10 4 CURRENT SINKING (mA) 12 0 0 2987 G24 4 8 12 16 20 CURRENT SINKING (mA) 24 2987 G25 2987f For more information www.linear.com/LTM2987 11 LTM2987 Pin Functions PIN NAME VSENSEP0 VSENSEM0 VSENSEP1 VSENSEM1 VSENSEP2 VSENSEM2 VSENSEP3 VSENSEM3 VSENSEP4 VSENSEM4 VSENSEP5 VSENSEM5 VSENSEP6 VSENSEM6 VSENSEP7 VSENSEM7 VOUT_EN0 VOUT_EN1 VOUT_EN2 VOUT_EN3 VOUT_EN4 VOUT_EN5 VOUT_EN6 VOUT_EN7 VIN_EN VIN_SNS PIN Device A Device B F7* M7* F6* M6* F12* M12* F11* M11* E12* L12* E11* L11* D12* K12* D11* K11* C12* J12* C11* J11* B12* H12* B11* H11* A12* G12* A11* G11* A7* G7* A6* G6* D7 K7 F8 M8 E8 L8 D8 K8 C8 J8 B8 H8 A8 G8 C7 J7 E5 L5 A5 G5 PIN TYPE In In In In In In In In In In In In In In In In Out Out Out Out Out Out Out Out Out In VPWR B5 H5 In VDD33 A4 G4 In/Out VDD33 VDD25 WP PWRGD A3 A2 A1 B1 G3 G2 G1 H1 In In/Out In Out SHARE_CLK WDI/RESETB B2 B4 H2 H4 In/Out In FAULTB00 C3 J3 In/Out FAULTB01 D3 K3 In/Out FAULTB10 C4 J4 In/Out FAULTB11 D4 K4 In/Out DESCRIPTION DC/DC Converter Differential (+) Output Voltage-0 Sensing Pin DC/DC Converter Differential (–) Output Voltage-0 Sensing Pin DC/DC Converter Differential (+) Output Voltage or Current-1 Sensing Pins. DC/DC Converter Differential (–) Output Voltage or Current-1 Sensing Pins. DC/DC Converter Differential (+) Output Voltage-2 Sensing Pin DC/DC Converter Differential (–) Output Voltage-2 Sensing Pin DC/DC Converter Differential (+) Output Voltage or Current-3 Sensing Pins. DC/DC Converter Differential (–) Output Voltage or Current-3 Sensing Pins. DC/DC Converter Differential (+) Output Voltage-4 Sensing Pin DC/DC Converter Differential (–) Output Voltage-4 Sensing Pin DC/DC Converter Differential (+) Output Voltage or Current-5 Sensing Pins. DC/DC Converter Differential (–) Output Voltage or Current-5 Sensing Pins. DC/DC Converter Differential (+) Output Voltage-6 Sensing Pin DC/DC Converter Differential (–) Output Voltage-6 Sensing Pin DC/DC Converter Differential (+) Output Voltage or Current-7 Sensing Pin DC/DC Converter Differential (–) Output Voltage or Current-7 Sensing Pin DC/DC Converter Enable-0 Pin. Output High Voltage Optionally Pulled Up to 12V by 5µA DC/DC Converter Enable-1 Pin. Output High Voltage Optionally Pulled Up to 12V by 5µA DC/DC Converter Enable-2 Pin. Output High Voltage Optionally Pulled Up to 12V by 5µA DC/DC Converter Enable-3 Pin. Output High Voltage Optionally Pulled Up to 12V by 5µA DC/DC Converter Enable-4 Pin. Open-Drain Pull-Down Output. DC/DC Converter Enable-5 Pin. Open-Drain Pull-Down Output. DC/DC Converter Enable-6 Pin. Open-Drain Pull-Down Output. DC/DC Converter Enable-7 Pin. Open-Drain Pull-Down Output. DC/DC Converter VIN ENABLE Pin. Output High Voltage Optionally Pulled Up to 12V by 5µA VIN SENSE Input. This Voltage is Compared Against the VIN On and Off Voltage Thresholds in Order to Determine When to Enable and Disable, Respectively, the Downstream DC/DC Converters VPWR Serves as the Unregulated Power Supply Input to the Chip (4.5V to 15V). If a 4.5V to 15V Supply Voltage is Unavailable, Short VPWR to VDD33 and Power the Chip Directly from a 3.3V Supply If Shorted to VPWR, it Serves as 3.13V to 3.47V Supply Input Pin. Otherwise it is a 3.3V Internally Regulated Voltage Output. Input for Internal 2.5V Sub-Regulator. Short Pin A3 to Pin A4 and Pin G3 to Pin G4 2.5V Internally Regulated Voltage Output Digital Input. Write-Protect Input Pin, Active High Power Good Open-Drain Output. Indicates When Outputs are Power Good. Can be Used as System Power-On Reset. The Latency of This Signal May Be as Long as the ADC Latency. See Note 6 Bidirectional Clock Sharing Pin. Connect a 5.49k Pull-Up Resistor to VDD33 Watchdog Timer Interrupt and Chip Reset Input. Connect a 10k Pull-Up Resistor to VDD33. Rising Edge Resets Watchdog Counter. Holding This Pin Low for More Than tRESETB Resets the Chip Open-Drain Output and Digital Input. Active Low Bidirectional Fault Indicator-00. Connect a 10k Pull-Up Resistor to VDD33 Open-Drain Output and Digital Input. Active Low Bidirectional Fault Indicator-01. Connect a 10k Pull-Up Resistor to VDD33 Open-Drain Output and Digital Input. Active Low Bidirectional Fault Indicator-10. Connect a 10k Pull-Up Resistor to VDD33 Open-Drain Output and Digital Input. Active Low Bidirectional Fault Indicator-11. Connect a 10k Pull-Up Resistor to VDD33 2987f 12 For more information www.linear.com/LTM2987 LTM2987 Pin Functions PIN Device A Device B PIN TYPE DESCRIPTION C1 J1 In/Out PMBus Bidirectional Serial Data Pin D1 K1 In PMBus Serial Clock Input Pin (400kHz Maximum) E2 L2 Out Open-Drain Output. Generates an Interrupt Request in a Fault/Warning Situation E1 L1 In Control Pin 0 Input F1 M1 In Control Pin 1 Input F3 M3 In Ternary Address Select Pin 0 Input. Connect to VDD33, GND or Float to Encode 1 of 3 Logic States F2 M2 In Ternary Address Select Pin 1 Input. Connect to VDD33, GND or Float to Encode 1 of 3 Logic States F5 M5 Out Reference Voltage Output F4 M4 Out Reference Return Pin E7 L7 Out DAC0 Output E6* L6* Out DAC0 Return. Connect to Channel 0 DC/DC Converter’s GND Sense or Return to GND F10 M10 Out DAC1 Output F9* M9* Out DAC1 Return. Connect to Channel 1 DC/DC Converter’s GND Sense or Return to GND E10 L10 Out DAC2 Output E9* L9* Out DAC2 Return. Connect to Channel 2 DC/DC Converter’s GND Sense or Return to GND D10 K10 Out DAC3 Output D9* K9* Out DAC3 Return. Connect to Channel 3 DC/DC Converter’s GND Sense or Return to GND C10 J10 Out DAC4 Output C9* J9* Out DAC4 Return. Connect to Channel 4 DC/DC Converter’s GND Sense or Return to GND B10 H10 Out DAC5 Output B9* H9* Out DAC5 Return. Connect to Channel 5 DC/DC Converter’s GND Sense or Return to GND A10 G10 Out DAC6 Output A9* G9* Out DAC6 Return. Connect to Channel 6 DC/DC Converter’s GND Sense or Return to GND B7 H7 Out DAC7 Output B6* H6* Out DAC7 Return. Connect to Channel 7 DC/DC Converter’s GND Sense or Return to GND B3 H3 In Common Connection for Internal Pull-Up Resistors E3 L3 Out General Purpose 10k Pull-Up Resistor 1 D2 K2 Out General Purpose 10k Pull-Up Resistor 2 C2 J2 Out General Purpose 10k Pull-Up Resistor 3 E4 L4 Out General Purpose 10k Pull-Up Resistor 4 C6, D5, J6, K5, Ground Device A Ground Pins are Isolated from the Device B Ground Pins D6 K6 DNC C5 J5 Do Not Connect Do Not Connect to This Pin *Any unused VSENSEPn or VSENSEMn or VDACMn pins must be tied to GND. PIN NAME SDA SCL ALERTB CONTROL0 CONTROL1 ASEL0 ASEL1 REFP REFM VDACP0 VDACM0 VDACP1 VDACM1 VDACP2 VDACM2 VDACP3 VDACM3 VDACP4 VDACM4 VDACP5 VDACM5 VDACP6 VDACM6 VDACP7 VDACM7 VPU RPU1 RPU2 RPU3 RPU4 GND 2987f For more information www.linear.com/LTM2987 13 LTM2987 Block Diagram VPWR (B5, H5) VDD33 (A4, G4) 100nF VIN_SNS (A5, G5) VDD33 (A3, G3) VIN_EN (E5, L5) VDD25 (A2, G2) DNC (C5, J5) 100nF 100nF REFP (F5, M5) 100nF GND (C6, J6) REFM (F4, M4) VSENSEP0 (F7, M7) REFP REFM VDD25 VDD33 VDD33 VPWR VIN_SNS 100Ω DNC GND (D6, K6) VIN_EN GND GND (D5, K5) VSENSEP7 VSENSEP0 100nF VSENSEM0 (F6, M6) VDACP0 (E7, L7) VSENSEM7 100Ω VOUT_EN0 VOUT_EN7 VSENSEP1 VSENSEP6 VDACP1 (F10, M10) VDACM1 (F9, M9) VOUT_EN1 (F8, M8) VSENSEP2 (E12, L12) 100Ω VSENSEM6 VDACP1 VDACP6 VDACM1 VDACM6 VOUT_EN1 VOUT_EN6 VSENSEP2 VSENSEP5 VDACP2 (E10, L10) VDACM2 (E9, L9) VOUT_EN2 (E8, L8) VSENSEP3 (D12, K12) 100Ω VSENSEM5 VDACP2 VDACP5 VDACM2 VDACM5 VOUT_EN2 VOUT_EN5 VSENSEP3 VSENSEP4 VDACP3 (D10, K10) VDACM3 (D9, K9) VOUT_EN3 (D8, K8) VSENSEP6 (A12, G12) VSENSEM6 (A11, G11) VDACP6 (A10, G10) VDACM6 (A9, G9) VOUT_EN6 (A8, G8) 100Ω VSENSEP5 (B12, H12) 100Ω VSENSEM5 (B11, H11) VDACP5 (B10, H10) VDACM5 (B9, H9) VOUT_EN5 (B8, H8) 100Ω VSENSEP4 (C12, J12) 100nF 100nF 100Ω 100Ω 100nF VSENSEM2 100nF VSENSEM3 (D11, K11) 100Ω 100nF 1/2 LTM2987 (LTC2977)* 100nF 100Ω VOUT_EN7 (C7, J7) 100nF VSENSEM1 100nF VSENSEM2 (E11, L11) VDACP7 (B7, H7) 100nF 100nF 100Ω VSENSEM7 (A6, G6) VDACM7 (B6, H6) VDACM7 100nF VSENSEM1 (F11, M11) 100Ω VDACP7 VDACM0 VOUT_EN0 (D7, K7) VSENSEP1 (F12, M12) 100nF VSENSEM0 VDACP0 VDACM0 (E6, L6) VSENSEP7 (A7, G7) 100nF 100nF 100Ω 100Ω 100nF VSENSEM3 VSENSEM4 VDACP3 VDACP4 VDACM3 VDACM4 VOUT_EN3 VOUT_EN4 100Ω VSENSEM4 (C11, J11) VDACP4 (C10, J10) VDACM4 (C9, J9) VOUT_EN4 (C8, J8) WP SHARE_CLK WDI ALERTB SDA SCL PWRGD PWRGD (B1, H1) WP (A1, G1) SHARE_CLK (B2, H2) WDI (B4, H4) ALERTB (E2, L2) SDA (C1, J1) SCL (D1, K1) FAULTB11 FAULTB11 (D4, K4) FAULTB01 FAULTB00 FAULTB10 FAULTB10 (C4, J4) FAULTB01 (D3, K3) FAULTB00 (C3, J3) 10k CONTROL1 RPU4 (E4, L4) CONTROL0 10k CONTROL1 (F1, M1) RPU3 (C2, J2) CONTROL0 (E1, L1) 10k ASEL1 RPU2 (D2, K2) ASEL1 (F2, M2) 10k ASEL0 (F3, M3) RPU1 (E3, L3) ASEL0 VPU (B3, H3) 2987 BD *NOTES: 1. ONLY 1/2 OF THE LTM2987 MODULE SHOWN 2. THE TWO 8-CHANNEL LTC2977 HALVES ARE IDENTICAL AND COMPLETELY ISOLATED 3. PIN NAMES REFER TO (DEVICE A, DEVICE B) 2987f 14 For more information www.linear.com/LTM2987 LTM2987 Operation Overview The LTM2987 contains two independent LTC2977 devices and most of the passive components required to make a complete 16-channel power system manager. The LTM2987 simplifies power system design by integrating the required passive components, reducing the bill-ofmaterials and improving PC board routing efficiency. Each half of the LTM2987 behaves the same as a standalone LTC2977 including independent power supply and ground pins. This feature can be used to increase redundancy in a system while keeping the overall solution size small. Refer to the LTC2977 data sheet for a detailed description of the device operation, the PMBus command set, and applications information. Device Address Since the LTM2987 consists of two independent LTC2977 devices, each half of the LTM2987 must be configured for a unique address. The I2C/SMBus addresses of the LTM2987 are configured in the same manner as for individual LTC2977 devices. The LTM2987 also responds to the LTC2977 global address and the SMBus Alert Response address, regardless of the state of the ASEL pins and the MFR_I2C_BASE_ADDRESS register. Please refer to the Device Address section in the LTC2977 data sheet for more details. MFR_SPECIAL_ID The LTM2987 contains unique MFR_SPECIAL_ID values to differentiate it from the LTC2977. Table 1 lists the MFR_SPECIAL_ID values for the LTM2987. Table 1. LTM2987 MFR_SPECIAL_ID Values LTM2987 DEVICE MFR_SPECIAL_ID Device A 0x8010 Device B 0x8020 2987f For more information www.linear.com/LTM2987 15 LTM2987 Applications Information Overview The LTM2987 is a Power System Manager that is capable of sequencing, margining, trimming, supervising output voltage for OV/UV conditions, providing fault management, and voltage readback for sixteen DC/DC converters. Input voltage and LTM2987 junction temperature readback are also available. Odd numbered channels can be configured to read back current sense resistor voltages. Multiple LTM2987s can be synchronized to operate in unison using the SHARE_CLK, FAULTB and CONTROL pins. The LTM2987 utilizes a PMBus compliant interface and command set. 4.5V < VPWRA < 15V 4.5V < VPWRB < 15V VPWR VIN_SNS VPWR VDD33 VDD33 VDD33 VDD25 VDD25 LTM2987* DEVICE A LTM2987* DEVICE B GND GND *SOME DETAILS OMITTED FOR CLARITY 2987 F01 Figure 1. Powering LTM2987 Directly from an Intermediate Bus Powering the LTM2987 The LTM2987 can be powered two ways. The first method requires that a voltage between 4.5V and 15V be applied to the VPWR pin. See Figure 1. Internal linear regulators convert VPWR down to 3.3V which drives all of the internal circuitry in each device. Do not tie the VDD33(A) and VDD33(B) pins together since each half of the LTM2987 has independent voltage regulators. EXTERNAL 3.3V The method used to power each device in the LTM2987 is independent of the other device. Either method may be used in any combination. Application Circuits Undedicated Pull-Up Resistors VIN_SNS VDD33 Alternatively, power from an external 3.3V supply may be applied directly to the VDD33 pins using a voltage between 3.13V and 3.47V. Tie VPWR to the VDD33 pins. See Figure 2. In this case, VDD33(A) and VDD33(B) may be tied together. All functionality is available when using this alternate power method. The higher voltages needed for the VOUT_EN[0:3] pins and bias for the VSENSE pins are charge pumped from VDD33. Each half of the LTM2987 module has four undedicated 10k pull-up resistors as shown in Figure 3. The common pull-up voltage is applied to the VPU pin, and the individual pull-up resistors are on RPU1, RPU2, RPU3 and RPU4. These pull-up resistors can be used for the open-drain pins such as SDA, SCL, ALERTB or FAULTBzn in which case the common pull-up voltage VPU should be connected to a 3.3V supply. To simplify the layout, the pin VPU is adjacent to the VDD33 pin. Anti-Aliasing Filter Considerations Since most of the passive components required for operation are integrated into the LTM2987, no external filter components are required. 1/2 LTM2987 VPU EXTERNAL 3.3V RPU1 10k RPU2 10k VPWR VPWR RPU3 10k VDD33 VDD33 RPU4 10k VDD33 VDD33 VDD25 VDD25 LTM2987* DEVICE A LTM2987* DEVICE B GND GND 2987 F03 Figure 3. Undedicated Pull-Up Resistors *SOME DETAILS OMITTED FOR CLARITY 2987 F02 Figure 2. Powering LTM2987 from External 3.3V Supply 2987f 16 For more information www.linear.com/LTM2987 LTM2987 Applications Information VIN Sense Output Enables Voltages other than VIN can be monitored and supervised using the VIN_SNS pins. Each VIN_SNS pin has a calibrated internal divider allowing it to directly sense voltages up to 15V. Use appropriate pull-up resistors on all VOUT_ENn pins. n Verify that the absolute maximum ratings of the VOUT_ENn pins are not exceeded. n VIN Sense Unused ADC Sense Inputs Connect all unused ADC sense inputs (VSENSEPn or VSENSEMn) to GND. In a system where the inputs are connected to removable cards and may be left floating in certain situations, connect the inputs to GND using 100k resistors, as shown in Figure 4. VSENSEP 100k No external resistive divider is required to sense VIN; VIN_SNS already has an internal calibrated divider. n Logic Signals Verify the absolute maximum ratings of the digital pins (SCL, SDA, ALERTB, FAULTBzn, CONTROLn, SHARE_CLK, WDI, ASELn, PWRGD) are not exceeded. n Connect all SHARE_CLK pins in the system together and pull up to 3.3V with a 5.49k resistor. n LTM2987 VSENSEM 100k Do not leave CONTROLn pins floating. Pull up to 3.3V with a 10k resistor. n 2987 F04 Figure 4. Connecting Unused Inputs to GND Tie WDI/RESETB to VDD33 with a 10k resistor. Do not connect a capacitor to the WDI/RESETB pin. n PCB Assembly and Layout Suggestions n Bypass Capacitor Placement Unused Inputs Tie WP to either VDD33 or GND. Do not leave floating. All required bypass capacitors are integrated into the LTM2987. No additional bypass capacitance is required. The PCB layout should adhere to good layout guidelines. A multilayer PCB that dedicates a layer to power and ground is recommended. Low resistance and low inductance power and ground connections are important to minimize power supply noise and ensure proper device operation. DAC Outputs Design Checklist Power Supplies I2C Connect all unused VSENSEPn, VSENSEMn and DACMn pins to GND. Do not float unused inputs. n Select appropriate resistor for desired margin range. Refer to the resistor selection tool in LTpowerPlay for assistance. n If powered from VPWR, do not connect the VDD33(A) and VDD33(B) pins together. Each VDD33 pin has an independent, internal regulator. n Each half of the LTM2987 must be configured for a unique address. Unique hardware ASELn values are recommended for simplest in system programming. n The address select pins (ASELn) are tri-level; Check Table 1 of the LTC2977 data sheet. n For a more complete list of design considerations and a schematic checklist, see the LTpowerPlay help menu. Check addresses for collision with other devices on the bus and any global addresses. n 2987f For more information www.linear.com/LTM2987 17 LTM2987 Package Description LTM2987 Component BGA Pinout (Top View) Device B Device A 1 2 3 4 5 6 7 8 9 10 11 12 A WP VDD25 VDD33 VDD33 VIN_SNS VSENSEM7 VSENSEP7 VOUT_EN6 VDACM6 VDACP6 VSENSEM6 VSENSEP6 B PWRGD SHARE_CLK VPU WDI VPWR VDACM7 VDACP7 VOUT_EN5 VDACM5 VDACP5 VSENSEM5 VSENSEP5 C SDA RPU3 FAULTB00 FAULTB10 DNC GND VOUT_EN7 VOUT_EN4 VDACM4 VDACP4 VSENSEM4 VSENSEP4 D SCL RPU2 FAULTB01 FAULTB11 GND GND VOUT_EN0 VOUT_EN3 VDACM3 VDACP3 VSENSEM3 VSENSEP3 E CONTROL0 ALERTB RPU1 VIN_EN VDACM0 VDACP0 VOUT_EN2 VDACM2 VDACP2 VSENSEM2 VSENSEP2 RPU4 F CONTROL1 ASEL1 ASEL0 REFM REFP VSENSEM0 VSENSEP0 VOUT_EN1 VDACM1 VDACP1 VSENSEM1 VSENSEP1 G WP VDD25 VDD33 VDD33 VIN_SNS VSENSEM7 VSENSEP7 VOUT_EN6 VDACM6 VDACP6 VSENSEM6 VSENSEP6 H PWRGD SHARE_CLK VPU WDI VPWR VDACM7 VDACP7 VOUT_EN5 VDACM5 VDACP5 VSENSEM5 VSENSEP5 J SDA RPU3 FAULTB00 FAULTB10 DNC GND VOUT_EN7 VOUT_EN4 VDACM4 VDACP4 VSENSEM4 VSENSEP4 K SCL RPU2 FAULTB01 FAULTB11 GND GND VOUT_EN0 VOUT_EN3 VDACM3 VDACP3 VSENSEM3 VSENSEP3 L CONTROL0 ALERTB RPU1 RPU4 VIN_EN VDACM0 VDACP0 VOUT_EN2 VDACM2 VDACP2 VSENSEM2 VSENSEP2 M CONTROL1 ASEL1 ASEL0 REFM REFP VSENSEM0 VSENSEP0 VOUT_EN1 VDACM1 VDACP1 VSENSEM1 VSENSEP1 2987f 18 For more information www.linear.com/LTM2987 aaa Z 0.630 ±0.025 Ø 144x 3.1750 3.1750 SUGGESTED PCB LAYOUT TOP VIEW 1.9050 PACKAGE TOP VIEW E 0.6350 0.0000 0.6350 4 1.9050 5.7150 4.4450 4.4450 5.7150 6.9850 Y For more information www.linear.com/LTM2987 6.9850 5.7150 4.4450 3.1750 1.9050 0.6350 0.0000 0.6350 1.9050 3.1750 4.4450 5.7150 6.9850 X D 2.45 – 2.55 aaa Z SYMBOL A A1 A2 b b1 D E e F G aaa bbb ccc ddd eee NOM 3.42 0.60 2.82 0.75 0.63 15.0 15.0 1.27 13.97 13.97 DIMENSIONS 0.15 0.10 0.20 0.30 0.15 MAX 3.62 0.70 2.92 0.90 0.66 NOTES DETAIL B PACKAGE SIDE VIEW TOTAL NUMBER OF BALLS: 144 MIN 3.22 0.50 2.72 0.60 0.60 b1 0.27 – 0.37 SUBSTRATE ddd M Z X Y eee M Z DETAIL A Øb (144 PLACES) DETAIL B MOLD CAP ccc Z A1 A2 A (Reference LTC DWG # 05-08-1946 Rev A) // bbb Z PIN “A1” CORNER 6.9850 BGA Package 144-Lead (15mm × 15mm × 3.42mm) Z e b 11 10 9 7 G 6 e 5 PACKAGE BOTTOM VIEW 8 4 3 2 1 DETAILS OF PIN #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE PIN #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE BALL DESIGNATION PER JESD MS-028 AND JEP95 7 TRAY PIN 1 BEVEL ! PACKAGE IN TRAY LOADING ORIENTATION LTMXXXXXX µModule M L K J H G F E D C B A 7 SEE NOTES PIN 1 BGA 144 1113 REV A PACKAGE ROW AND COLUMN LABELING MAY VARY AMONG µModule PRODUCTS. REVIEW EACH PACKAGE LAYOUT CAREFULLY 6. SOLDER BALL COMPOSITION IS 96.5% Sn/3.0% Ag/0.5% Cu 5. PRIMARY DATUM -Z- IS SEATING PLANE 4 3 2. ALL DIMENSIONS ARE IN MILLIMETERS NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994 COMPONENT PIN “A1” 3 SEE NOTES F b 12 DETAIL A Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. LTM2987 Package Description Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings. 2987f 19 LTM2987 Typical Application 12V VFB ASEL0 LOAD VDACP1 VSENSEP1 VSENSEP1 VSENSEM1 VSENSEM1 VDACM1 VDACM1 VDACP2 VSENSEP2 VSENSEP2 VSENSEM2 LTM2987 DEVICE A VDACM2 LTM2987 DEVICE B VSENSEM2 VDACM2 VOUT_EN2 VDACP3 VSENSEP3 VSENSEP3 VSENSEM3 VSENSEM3 VDACM3 VDACM3 VOUT_EN3 VDACP4 VSENSEP4 VSENSEP4 VSENSEM4 VSENSEM4 VDACM4 VDACM4 VOUT_EN4 VDACP5 VSENSEP5 VSENSEP5 VSENSEM5 VSENSEM5 VDACM5 VDACM5 VOUT_EN5 DC/DC CONVERTER VOUT_EN5 VDACP6 VDACP6 VSENSEP6 VSENSEP6 VSENSEM6 VSENSEM6 VDACM6 VDACM6 DC/DC CONVERTER VOUT_EN6 VOUT_EN6 VDACP7 VDACP7 3.3V DC/DC CONVERTER RPU4 RPU3 RPU2 VOUT_EN7 RPU1 PWRGD CONTROL1 CONTROL0 ALERTB SCL VDACM7 SDA SHARE_CLK FAULTB11 FAULTB10 FAULTB01 FAULTB00 PWRGD CONTROL1 CONTROL0 ALERTB FAULTB11 FAULTB10 FAULTB01 RPU4 RPU3 RPU2 FAULTB00 VDACM7 VOUT_EN7 SCL VSENSEM7 SDA VSENSEP7 VSENSEM7 SHARE_CLK VSENSEP7 RPU1 DC/DC CONVERTER VOUT_EN4 VDACP5 DC/DC CONVERTER DC/DC CONVERTER VOUT_EN3 VDACP4 DC/DC CONVERTER DC/DC CONVERTER VOUT_EN2 VDACP3 DC/DC CONVERTER DC/DC CONVERTER VOUT_EN1 VDACP2 DC/DC CONVERTER SGND RUN/SS GND VOUT_EN0 VOUT_EN1 DC/DC CONVERTER VFB LOAD VDACM0 VDACP1 DC/DC CONVERTER VIN DC/DC CONVERTER VSENSEM0 VDACM0 VOUT_EN0 DC/DC CONVERTER VOUT VDACP0 VSENSEP0 VSENSEM0 RUN/SS SGND GND VIN_SNS VPWR ASEL1 VDD33 VDD33 WP VDD25 GND REFP REFM VPU DNC VIN_EN ASEL0 VIN_SNS VPWR ASEL1 VDD33 VDD33 3.3V REGULATOR WDI/RESETB VSENSEP0 DC/DC CONVERTER WDI/RESETB VDD25 WP GND REFP VDACP0 REFM VOUT VPU 3.3V DNC VIN IN OUT INTERMEDIATE BUS CONVERTER EN VIN_EN 48V 2987 F05 5.49k TO/FROM OTHER LTC POWER SYSTEM MANAGERS AND MICROCONTROLLER Figure 5. LTM2987 16-Channel Application Circuit with External 3.3V Chip Power RELATED PARTS PART NUMBER DESCRIPTION COMMENTS LTC2970 Dual I2C Power Supply Monitor and Margining Controller 5V to 15V, 0.5% TUE 14-Bit ADC, 8-Bit DAC, Temperature Sensor LTC2974 4-Channel PMBus Power System Manager 0.25% TUE 16-Bit ADC, Voltage/Current/Temperature Monitoring and Supervision LTC2977 8-Channel PMBus Power System Manager 0.25% TUE 16-Bit ADC, Voltage/Temperature Monitoring and Supervision LTC3880 Dual Output PolyPhase Step-Down DC/DC Controller 0.5% TUE 16-Bit ADC, Voltage/Current/Temperature Monitoring and Supervision LTC3883 Single Output PolyPhase Step-Down DC/DC Controller 0.5% TUE 16-Bit ADC, Voltage/Current/Temperature Monitoring and Supervision 2987f 20 Linear Technology Corporation 1630 McCarthy Blvd., Milpitas, CA 95035-7417 For more information www.linear.com/LTM2987 (408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com/LTM2987 LT 0414 • PRINTED IN USA LINEAR TECHNOLOGY CORPORATION 2014