Distance area image sensor S11963-01CR Measures the distance to an object by TOF (Time-Of-Flight) method The distance image sensors are designed to measure the distance to an object by TOF method. When used in combination with a pulse modulated light source, this sensor outputs phase difference information on the timing that the light is emitted and received. The sensor output signals are arithmetically processed by an external signal processing circuit or a PC to obtain distance data. Features Applications High-speed charge transfer structure Obstacle detection (self-driving, robots, etc.) Wide dynamic range, low noise by non-destructive readout Security (intrusion detection, etc.) Built-in column gain amplifier (gain: 1, 2 or 4 times) Shape recognition (logistics, robots, etc.) Operates with minimal detection errors even under fluctuating (charge drain function) Motion capture Real-time distance measurement Structure Parameter Image size Pixel size Pixel pitch Number of pixels Number of effective pixels Package Window material Note: This product is not hermetically sealed. Specification 4.8 × 3.6 30 × 30 30 168 × 128 160 × 120 44-pin PWB AR-coated glass Unit mm μm μm pixels pixels - Absolute maximum ratings Parameter Symbol Condition Value Vdd(A) Ta=25 °C -0.3 to +6 Vdd(D) Ta=25 °C -0.3 to +6 Pixel reset Vr Output offset Vref Analog input terminal Column gain circuit Vref2 Ta=25 °C -0.3 to Vdd(A) + 0.3 voltage Gain selection sel0, sel1, sel2 Photosensitive area Vpg Frame reset pulse reset Frame synchronous trigger pulse vst Digital input terminal Ta=25 °C -0.3 to Vdd(D) + 0.3 Line synchronous trigger pulse hst voltage Pixel reset pulse ext_res Master clock pulse mclk VTX1, VTX2, VTX3 Ta=25 °C -0.3 to Vdd(A) + 0.3 Charge transfer clock pulse voltage No dew condensation*1 -25 to +85 Operating temperature Topr Storage temperature Tstg No dew condensation*1 -40 to +100 Reflow soldering conditions*2 Tsol 260 °C max. 2 times (see P.10) Analog supply voltage Digital supply voltage Unit V V V V V °C °C - *1: When there is a temperature difference between a product and the surrounding area in high humidity environment, dew condensation may occur on the product surface. Dew condensation on the product may cause deterioration in characteristics and reliability. *2: JEDEC level 3 Note: Exceeding the absolute maximum ratings even momentarily may cause a drop in product quality. Always be sure to use the product within the absolute maximum ratings. 1 www.hamamatsu.com Distance area image sensor S11963-01CR Recommended terminal voltage (Ta=25 °C) Parameter Analog supply voltage Digital supply voltage Bias voltage Frame reset pulse voltage Frame synchronous trigger pulse voltage Line synchronous trigger pulse voltage Master clock pulse voltage Pixel reset pulse voltage Output signal effective period pulse voltage Output signal synchronous pulse voltage Non-readout period pulse voltage Gain selection terminal voltage Symbol Vdd(A) Vdd(D) Vr Vref Vref2 Pixel reset Output offset Column gain amplifier Photosensitive Vpg area High level reset Low level High level vst Low level High level hst Low level High level mclk Low level High level ext_res Low level High level oe Low level High level dclk Low level High level dis_read Low level High level sel0, sel1, sel2 Low level Min. 4.75 4.75 3.7 2.3 2.5 Typ. 5 5 3.9 2.5 2.7 Max. 5.25 5.25 4.1 2.7 2.9 Unit V V V V V 0.8 1.0 1.2 V Vdd(D) Vdd(D) Vdd(D) Vdd(D) Vdd(D) Vdd(D) Vdd(D) Vdd(D) Vdd(D) - × 0.8 × 0.8 × 0.8 × 0.8 × 0.8 × 0.8 × 0.8 × 0.8 × 0.8 - Vdd(D) Vdd(D) Vdd(D) Vdd(D) Vdd(D) Vdd(D) Vdd(D) Vdd(D) Vdd(D) × 0.2 × 0.2 × 0.2 × 0.2 × 0.2 × 0.2 × 0.2 × 0.2 × 0.2 V V V V V V V V V Electrical characteristics [Ta=25 °C, Vdd(A)=Vdd(D)=5 V] Parameter Clock pulse frequency Video data rate Current consumption Symbol f(mclk) DR Ic Condition Dark state Min. 1M - Typ. f(mclk) 15 Max. 10 M 30 Unit Hz Hz mA Electrical and optical characteristics [Ta=25 °C, Vdd(A)=Vdd(D)=5 V, Vref2=2.7 V, Vref=2.5 V, Vr=3.9 V, MCLK=10 MHz, Gain: 1 time] Parameter Spectral response range Peak sensitivity wavelength Photosensitivity*3 Dark output Random noise Dark output voltage*4 Saturation output voltage Sensitivity ratio*5 Photoresponse nonuniformity*6 Number of defective pixels Symbol Min. Typ. Max. Unit λ 400 to 1100 nm 800 λp nm S 3.0 × 1012 6.0 × 1012 1.2 × 1013 V/W·s Vd 1 10 V/s RN 0.5 1 mV rms Vor 2.6 4.3 V Vsat 1.3 2.7 V SR 0.7 1.43 PRNU ±10 % 19 *3: Monochromatic wavelength source (λ=805 nm) *4: Output voltage right after reset in dark state *5: Sensitivity ratio of Vout1 (VTX1=3 V, VTX2=VTX3=0 V) and Vout2 (VTX2=3 V, VTX1=VTX3=0 V) *6: Photoresponse nonuniformity (PRNU) is the output nonuniformity that occurs when the entire photosensitive area is uniformly illuminated by white light which is approx. 50% of the saturation level. PRNU is measured using the pixels excluding the pixels of the 4 outermost lines and defective pixels, and is defined as follows: PRNU= ΔX/X × 100 (%) X: average output of all pixels, ΔX: standard deviation of pixel output 2 Distance area image sensor S11963-01CR Spectral response (Typ. Ta=25 °C) 1.0 0.9 Relative sensitivity 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 200 300 400 500 600 700 800 900 1000 1100 1200 Wavelength (nm) KMPDB0375EB Block diagram CLTX GND 3 Vdd(A) GND Vdd_tx 2 1 44 CLTX CLTX VTX1 VTX2 VTX3 GND GND GND GND Vdd_tx 43 42 41 40 39 38 37 36 35 sel2 Vertical shift register 34 sel1 33 sel0 32 Vdd(A) Photodiode array 168 × 128 pixels (number of effective pixels: 160 × 120 pixels) 31 GND 30 Vpg 29 Vref2 28 Vr dis_read ext_res reset vst hst mclk 4 5 6 7 9 10 27 Vref Column gain amplifier circuit 26 Vout1 Timing generator 25 Vout2 Horizontal shift register 8 11 oe dclk Buffer amplifier 24 Vdd(A) 23 GND 12 13 16 17 18 19 20 GND Vdd(D) GND GND GND GND Vdd(D) KMPDC0443ED Basic connection example Buffer amplifier Vout 1 Vout 2 Buffer amplifier KMPDC0486EA 3 Distance area image sensor S11963-01CR Timing chart Frame timing thp(ext_res) t2 ext_res t1 t3 t17 (integration time) t18 (integration signal readout time) t16 (reset level readout time) reset t4 t5t6 t7 vst t8 t9 t10 t11 hst 2 N 128 129 1 128 129 t12 t13t14 t15 1 (1H) 2 (1H) N (1H) 128 (1H) 1 (1H) 128 (1H) mclk t19 VTX1, 2, 3 VTX enable t20 dis_read Pulsed light tpi(VTX) VTX1 VTX2 thp(VTX1) thp(VTX2) tlp(VTX1) tlp(VTX2) thp(VTX3) VTX3 tlp(VTX3) VTX enable KMPDC0444EB KMPDC0444BA tr(reset) tf(reset) tr(hst) tf(hst) mclk tr(vst) tf(dclk) hst reset tf(vst) tr(mclk) tf(mclk) tr(dclk) dclk td(dclk) td(vout) vst mclk Vout1 Vout2 0.1 V tr(Vout) tf(Vout) mclk tr(oe) tf(oe) oe td(oe) tr(ext_res) tf(ext_res) ext_res KMPDC0445EA 4 Distance area image sensor S11963-01CR Calculation method of frame rate Frame rate=1/(Time per frame) =1/(Integration time + Readout time) Integration time: It is necessary to be changed by the required distance accuracy and usage environment factors such as fluctuating background light. Readout time= 1 × Horizontal timing clock × Number of vertical pixels Clock pulse frequency =Time per clock (Readout time per pixel) × Horizontal timing clocks × Number of vertical pixels Calculation example of readout time (clock pulse frequency: 5 MHz, horizontal timing clocks: 208, number of vertical pixels: 128) 1 × 208 × 128 Readout time= 5 × 106 [Hz] =200 [ns] × 208 × 128 =5.324 [ms] When operating in non-destructive readout mode: Time per frame = Integration time + (Readout time × Non-destructive readout count) It is possible to read out only the signal level without reading out the rest level signal. However, noise will increase because the pixel reset noise cannot be removed. Sensitivity variations in the photosensitive area will also increase because the fixed pattern noise in each pixel cannot be removed either. Horizontal timing Frame timing 1 (1H) 208 (=40 + 168) × mclk 40 mclk t20 hst mclk oe dclk 1 2 3 4 168 Vout1 Vout2 KMPDC0447EA 5 Distance area image sensor S11963-01CR Parameter Symbol Master clock pulse duty ratio Master clock pulse rise and fall times tr(mclk), tf(mclk) Frame reset pulse rise and fall times tr(reset), tf(reset) Frame synchronous trigger pulse rise and fall times tr(vst), tf(vst) Line synchronous trigger pulse rise and fall times tr(hst), tf(hst) Pixel reset pulse high period thp(ext_res) Pixel reset pulse rise and fall times tr(ext_res), tf(ext_res) Time from falling edge of master clock pulse to rising t1 edge of pixel reset pulse Time from rising edge of pixel reset pulse to falling edge t2 of frame reset pulse Time from falling edge of pixel reset pulse to falling t3 edge of master clock pulse Time from falling edge of master clock pulse to rising t4 edge of frame reset pulse Time from rising edge of frame reset pulse to falling t5 edge of master clock pulse Time from falling edge of master clock pulse to falling t6 edge of frame reset pulse Time from falling edge of frame reset pulse to falling t7 edge of master clock pulse Time from falling edge of master clock pulse to rising t8 edge of frame synchronous trigger pulse Time from rising edge of frame synchronous trigger t9 pulse to falling edge of master clock pulse Time from falling edge of master clock pulse to falling t10 edge of frame synchronous trigger pulse Time from falling edge of frame synchronous trigger t11 pulse to falling edge of master clock pulse Time from rising edge of master clock pulse to rising t12 edge of line synchronous trigger pulse Time from rising edge of line synchronous trigger pulse t13 to rising edge of master clock pulse Time from rising edge of master clock pulse to falling t14 edge of line synchronous trigger pulse Time from falling edge of line synchronous trigger t15 pulse to rising edge of master clock pulse Reset level readout time t16 Integration time t17 Integration signal readout time t18 Time from falling edge of line synchronous pulse (last pulse) to “VTX enable period=on” Time from “VTX enable period=off” to falling edge of frame reset pulse Time from rising edge of master clock pulse (after reading from all pixels) to rising edge of master clock pulse (hst: High period) Time from falling edge of master clock pulse to rising edge of output signal synchronous pulse*7 Rise time of output signal synchronous pulse output voltage (10 to 90%)*7 Fall time of output signal synchronous pulse output voltage (10 to 90%)*7 Min. 45 0 0 0 0 10 0 Typ. 50 - Max. 55 20 20 20 20 20 Unit % ns ns ns ns μs ns 1/4 × 1/f(mclk) - - s 0 - - s 1/4 × 1/f(mclk) - - s 1/4 × 1/f(mclk) - 1/2 × 1/f(mclk) s 1/4 × 1/f(mclk) - 1/2 × 1/f(mclk) s 1/4 × 1/f(mclk) - 1/2 × 1/f(mclk) s 1/4 × 1/f(mclk) - 1/2 × 1/f(mclk) s 1/4 × 1/f(mclk) - 1/2 × 1/f(mclk) s 1/4 × 1/f(mclk) - 1/2 × 1/f(mclk) s 1/4 × 1/f(mclk) - 1/2 × 1/f(mclk) s 1/4 × 1/f(mclk) - 1/2 × 1/f(mclk) s 1/4 × 1/f(mclk) - 1/2 × 1/f(mclk) s 1/4 × 1/f(mclk) - 1/2 × 1/f(mclk) s 1/4 × 1/f(mclk) - 1/2 × 1/f(mclk) s 1/4 × 1/f(mclk) - 1/2 × 1/f(mclk) s - - s 10 - ms - - s {208/f(mclk) + t20} × 128 + thp(ext_res) + t3 {208/f(mclk) + t20} × 128 + {1/2 × 1/f(mclk)} t19 0 s t20 0 s t21 10/f(mclk) s td(dclk) 0 25 50 ns tf(dclk) - 20 40 ns tf(dclk) - 20 40 ns 6 Distance area image sensor Parameter Time from rising edge of master clock pulse to rising edge of output signal effective period pulse*7 Output signal effective period pulse rise time (10 to 90%)*7 Output signal effective period pulse fall time (10 to 90%)*7 Settling time of output signal 1, 2 (10 to 90%)*7 *8 Time from rising edge of master clock pulse to output signal 1, 2 (output 50%)*7 Charge transfer clock pulse interval Charge transfer clock pulse (VTX1) high period S11963-01CR Symbol Min. Typ. Max. Unit td(oe) 0 25 50 ns tr(oe) - 20 40 ns tf(oe) - 20 40 ns tr(Vout), tf(Vout) - 35 70 ns td(Vout) - 40 80 ns tpi(VTX) thp(VTX1) 60 30 - ns ns Charge transfer clock pulse (VTX1) low period tlp(VTX1) - - ns Charge transfer clock pulse (VTX2) high period thp(VTX2) 30 - ns Charge transfer clock pulse (VTX2) low period tlp(VTX2) - - ns Charge transfer clock pulse (VTX3) high period thp(VTX3) 0 - ns Charge transfer clock pulse (VTX3) low period tlp(VTX3) - - ns - tpi(VTX) thp(VTX2) thp(VTX3) tpi(VTX) thp(VTX1) thp(VTX3) tpi(VTX)thp(VTX1)thp(VTX2) 3 3 3 0 - ns ns - 25 50 ns - 20 20 40 40 ns ns Min. - Typ. 40 Max. - Unit pF Charge transfer clock pulse voltage rise time tr(VTX) Charge transfer clock pulse voltage fall time tf(VTX) High level Charge transfer clock pulse voltage VTX1, VTX2, VTX3 Low level Time from rising edge of line synchronous trigger td(dis_read) pulse to rising edge of non-readout period pulse*7 7 Non-readout period pulse rise time (10 to 90%)* tr(dis_read) Non-readout period pulse fall time (10 to 90%)*7 tf(dis_read) V *7: CL=3 pF *8: Output voltage=0.1 V Input terminal capacitance (Ta=25 °C, Vdd=5 V) Parameter Charge transfer clock pulse internal load capacitance Symbol CLTX 7 Distance area image sensor S11963-01CR Dimensional outline (unit: mm) Recommended land pattern (unit: mm) 11.75 P0.8 × 10=8.0 0.7 8.7 P0.8 × 10=8.0 0.4 0.4 Hole (2 ×) ϕ0.2 7.7 9.4 11.25 Photosensitive area 4.8 × 3.6 10.45 Photosensitive surface Glass 1.0 2.0 KMPDC0446EA 11.25 P0.8 × 10=8.0 12 22 23 P0.8 × 10=8.0 8.7 11 1 33 44 34 Electrode (44 ×)ȁ 0.4 Tolerance unless otherwise noted: ±0.2, ±2° KMPDA0300ED 8 Distance area image sensor S11963-01CR Pin connections Pin no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 Symbol GND Vdd(A) GND dis_read ext_res reset vst oe hst mclk dclk GND Vdd(D) NC NC GND GND GND GND Vdd(D) NC NC GND Vdd(A) Vout2 Vout1 Vref Vr Vref2 Vpg GND Vdd(A) sel0 sel1 sel2 Vdd_tx GND GND GND GND VTX3 VTX2 VTX1 Vdd_tx I/O I I I O I I I O I I O I I I I I I I I I O O I I I I I I I I I I I I I I I I I I Description Ground Analog supply voltage Ground Non-readout period pulse Pixel reset pulse Frame reset pulse Frame synchronous trigger pulse Output signal effective period pulse Line synchronous trigger pulse Master clock pulse Output signal synchronous pulse Ground Digital supply voltage No connection No connection Ground Ground Ground Ground Digital supply voltage No connection No connection Ground Analog supply voltage Output signal 2 Output signal 1 Bias voltage (output offset) Bias voltage (pixel reset) Bias voltage (column gain circuit) Bias voltage (photosensitive area) Ground Analog supply voltage Gain selection Gain selection Gain selection Supply voltage for internal driver circuit of charge transfer clock pulse Ground Ground Ground Ground Charge transfer clock pulse 3 Charge transfer clock pulse 2 Charge transfer clock pulse 1 Supply voltage for internal driver circuit of charge transfer clock pulse Note: Leave “NC” terminals open and do not connect them to GND. Connect impedance convering buffer amplifiers to Vout1/Vout2 so as to minimize the current flow. Gain setting Gain 1 2 4 sel0 H H L sel1 H L H sel2 H L L 9 Distance area image sensor S11963-01CR Measured example of temperature profile with hot-air reflow oven for product testing 300 °C 260 °C max. Temperature 230 °C 190 °C 170 °C Preheat Preheat 60 60 to to 120 120 ss Soldering Soldering 40 s max. Time KMPDB0381EA ∙ This product supports lead-free soldering. After unpacking, store it in an environment at a temperature of 30 °C or less and a humidity of 60% or less, and perform soldering within 168 hours. ∙ The effect that the product receives during reflow soldering varies depending on the circuit board and reflow oven that are used. Before actual reflow soldering, check for any problems by testing out the reflow soldering methods in advance. Related information www.hamamatsu.com/sp/ssd/doc_en.html Precautions ∙ Disclaimer ∙ Surface mount type products ∙ Image sensors Information described in this material is current as of February, 2016. Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications. The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use. Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission. www.hamamatsu.com HAMAMATSU PHOTONICS K.K., Solid State Division 1126-1 Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81) 53-434-3311, Fax: (81) 53-434-5184 U.S.A.: Hamamatsu Corporation: 360 Foothill Road, Bridgewater, N.J. 08807, U.S.A., Telephone: (1) 908-231-0960, Fax: (1) 908-231-1218 Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49) 8152-375-0, Fax: (49) 8152-265-8 France: Hamamatsu Photonics France S.A.R.L.: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: 33-(1) 69 53 71 00, Fax: 33-(1) 69 53 71 10 United Kingdom: Hamamatsu Photonics UK Limited: 2 Howard Court, 10 Tewin Road, Welwyn Garden City, Hertfordshire AL7 1BW, United Kingdom, Telephone: (44) 1707-294888, Fax: (44) 1707-325777 North Europe: Hamamatsu Photonics Norden AB: Torshamnsgatan 35 16440 Kista, Sweden, Telephone: (46) 8-509-031-00, Fax: (46) 8-509-031-01 Italy: Hamamatsu Photonics Italia S.r.l.: Strada della Moia, 1 int. 6, 20020 Arese (Milano), Italy, Telephone: (39) 02-93581733, Fax: (39) 02-93581741 China: Hamamatsu Photonics (China) Co., Ltd.: B1201, Jiaming Center, No.27 Dongsanhuan Beilu, Chaoyang District, Beijing 100020, China, Telephone: (86) 10-6586-6006, Fax: (86) 10-6586-2866 Cat. No. KMPD1142E08 Feb. 2016 DN 10