Datasheet

Distance area image sensor
S11963-01CR
Measures the distance to an object by TOF
(Time-Of-Flight) method
The distance image sensors are designed to measure the distance to an object by TOF method. When used in combination
with a pulse modulated light source, this sensor outputs phase difference information on the timing that the light is emitted
and received. The sensor output signals are arithmetically processed by an external signal processing circuit or a PC to obtain
distance data.
Features
Applications
High-speed charge transfer structure
Obstacle detection (self-driving, robots, etc.)
Wide dynamic range, low noise by non-destructive readout
Security (intrusion detection, etc.)
Built-in column gain amplifier (gain: 1, 2 or 4 times)
Shape recognition (logistics, robots, etc.)
Operates with minimal detection errors even under fluctuating
(charge drain function)
Motion capture
Real-time distance measurement
Structure
Parameter
Image size
Pixel size
Pixel pitch
Number of pixels
Number of effective pixels
Package
Window material
Note: This product is not hermetically sealed.
Specification
4.8 × 3.6
30 × 30
30
168 × 128
160 × 120
44-pin PWB
AR-coated glass
Unit
mm
μm
μm
pixels
pixels
-
Absolute maximum ratings
Parameter
Symbol
Condition
Value
Vdd(A)
Ta=25 °C
-0.3 to +6
Vdd(D)
Ta=25 °C
-0.3 to +6
Pixel reset
Vr
Output offset
Vref
Analog input terminal
Column gain circuit
Vref2
Ta=25 °C
-0.3 to Vdd(A) + 0.3
voltage
Gain selection
sel0, sel1, sel2
Photosensitive area
Vpg
Frame reset pulse
reset
Frame synchronous trigger pulse
vst
Digital input terminal
Ta=25 °C
-0.3 to Vdd(D) + 0.3
Line synchronous trigger pulse
hst
voltage
Pixel reset pulse
ext_res
Master clock pulse
mclk
VTX1, VTX2, VTX3
Ta=25 °C
-0.3 to Vdd(A) + 0.3
Charge transfer clock pulse voltage
No dew condensation*1
-25 to +85
Operating temperature
Topr
Storage temperature
Tstg
No dew condensation*1
-40 to +100
Reflow soldering conditions*2
Tsol
260 °C max. 2 times (see P.10)
Analog supply voltage
Digital supply voltage
Unit
V
V
V
V
V
°C
°C
-
*1: When there is a temperature difference between a product and the surrounding area in high humidity environment, dew condensation
may occur on the product surface. Dew condensation on the product may cause deterioration in characteristics and reliability.
*2: JEDEC level 3
Note: Exceeding the absolute maximum ratings even momentarily may cause a drop in product quality. Always be sure to use the
product within the absolute maximum ratings.
1
www.hamamatsu.com
Distance area image sensor
S11963-01CR
Recommended terminal voltage (Ta=25 °C)
Parameter
Analog supply voltage
Digital supply voltage
Bias voltage
Frame reset pulse voltage
Frame synchronous trigger pulse
voltage
Line synchronous trigger pulse
voltage
Master clock pulse voltage
Pixel reset pulse voltage
Output signal effective period
pulse voltage
Output signal synchronous pulse
voltage
Non-readout period pulse voltage
Gain selection terminal voltage
Symbol
Vdd(A)
Vdd(D)
Vr
Vref
Vref2
Pixel reset
Output offset
Column gain amplifier
Photosensitive
Vpg
area
High level
reset
Low level
High level
vst
Low level
High level
hst
Low level
High level
mclk
Low level
High level
ext_res
Low level
High level
oe
Low level
High level
dclk
Low level
High level
dis_read
Low level
High level
sel0, sel1, sel2
Low level
Min.
4.75
4.75
3.7
2.3
2.5
Typ.
5
5
3.9
2.5
2.7
Max.
5.25
5.25
4.1
2.7
2.9
Unit
V
V
V
V
V
0.8
1.0
1.2
V
Vdd(D)
Vdd(D)
Vdd(D)
Vdd(D)
Vdd(D)
Vdd(D)
Vdd(D)
Vdd(D)
Vdd(D)
-
× 0.8
× 0.8
× 0.8
× 0.8
× 0.8
× 0.8
× 0.8
× 0.8
× 0.8
-
Vdd(D)
Vdd(D)
Vdd(D)
Vdd(D)
Vdd(D)
Vdd(D)
Vdd(D)
Vdd(D)
Vdd(D)
× 0.2
× 0.2
× 0.2
× 0.2
× 0.2
× 0.2
× 0.2
× 0.2
× 0.2
V
V
V
V
V
V
V
V
V
Electrical characteristics [Ta=25 °C, Vdd(A)=Vdd(D)=5 V]
Parameter
Clock pulse frequency
Video data rate
Current consumption
Symbol
f(mclk)
DR
Ic
Condition
Dark state
Min.
1M
-
Typ.
f(mclk)
15
Max.
10 M
30
Unit
Hz
Hz
mA
Electrical and optical characteristics
[Ta=25 °C, Vdd(A)=Vdd(D)=5 V, Vref2=2.7 V, Vref=2.5 V, Vr=3.9 V, MCLK=10 MHz, Gain: 1 time]
Parameter
Spectral response range
Peak sensitivity wavelength
Photosensitivity*3
Dark output
Random noise
Dark output voltage*4
Saturation output voltage
Sensitivity ratio*5
Photoresponse nonuniformity*6
Number of defective pixels
Symbol
Min.
Typ.
Max.
Unit
λ
400 to 1100
nm
800
λp
nm
S
3.0 × 1012
6.0 × 1012
1.2 × 1013
V/W·s
Vd
1
10
V/s
RN
0.5
1
mV rms
Vor
2.6
4.3
V
Vsat
1.3
2.7
V
SR
0.7
1.43
PRNU
±10
%
19
*3: Monochromatic wavelength source (λ=805 nm)
*4: Output voltage right after reset in dark state
*5: Sensitivity ratio of Vout1 (VTX1=3 V, VTX2=VTX3=0 V) and Vout2 (VTX2=3 V, VTX1=VTX3=0 V)
*6: Photoresponse nonuniformity (PRNU) is the output nonuniformity that occurs when the entire photosensitive area is uniformly
illuminated by white light which is approx. 50% of the saturation level. PRNU is measured using the pixels excluding the pixels of
the 4 outermost lines and defective pixels, and is defined as follows:
PRNU= ΔX/X × 100 (%)
X: average output of all pixels, ΔX: standard deviation of pixel output
2
Distance area image sensor
S11963-01CR
Spectral response
(Typ. Ta=25 °C)
1.0
0.9
Relative sensitivity
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
200 300 400 500 600 700 800 900 1000 1100 1200
Wavelength (nm)
KMPDB0375EB
Block diagram
CLTX
GND
3
Vdd(A) GND Vdd_tx
2
1
44
CLTX
CLTX
VTX1 VTX2 VTX3 GND GND GND GND Vdd_tx
43
42
41
40 39 38 37 36
35 sel2
Vertical shift register
34 sel1
33 sel0
32 Vdd(A)
Photodiode array
168 × 128 pixels
(number of effective pixels:
160 × 120 pixels)
31 GND
30 Vpg
29 Vref2
28 Vr
dis_read
ext_res
reset
vst
hst
mclk
4
5
6
7
9
10
27 Vref
Column gain amplifier circuit
26 Vout1
Timing
generator
25 Vout2
Horizontal shift register
8 11
oe dclk
Buffer
amplifier
24 Vdd(A)
23 GND
12
13
16
17
18
19
20
GND Vdd(D) GND GND GND GND Vdd(D)
KMPDC0443ED
Basic connection example
Buffer amplifier
Vout 1
Vout 2
Buffer amplifier
KMPDC0486EA
3
Distance area image sensor
S11963-01CR
Timing chart
Frame timing
thp(ext_res) t2
ext_res
t1
t3
t17
(integration time) t18 (integration signal readout time)
t16 (reset level readout time)
reset
t4 t5t6 t7
vst
t8 t9 t10 t11
hst
2
N
128
129
1
128
129
t12 t13t14 t15
1 (1H)
2 (1H)
N (1H)
128 (1H)
1 (1H)
128 (1H)
mclk
t19
VTX1, 2, 3
VTX enable
t20
dis_read
Pulsed light
tpi(VTX)
VTX1
VTX2
thp(VTX1)
thp(VTX2)
tlp(VTX1)
tlp(VTX2)
thp(VTX3)
VTX3
tlp(VTX3)
VTX enable
KMPDC0444EB
KMPDC0444BA
tr(reset)
tf(reset)
tr(hst)
tf(hst)
mclk
tr(vst)
tf(dclk)
hst
reset
tf(vst)
tr(mclk)
tf(mclk)
tr(dclk)
dclk
td(dclk)
td(vout)
vst
mclk
Vout1
Vout2
0.1 V
tr(Vout)
tf(Vout)
mclk
tr(oe)
tf(oe)
oe
td(oe)
tr(ext_res)
tf(ext_res)
ext_res
KMPDC0445EA
4
Distance area image sensor
S11963-01CR
Calculation method of frame rate
Frame rate=1/(Time per frame)
=1/(Integration time + Readout time)
Integration time:
It is necessary to be changed by the required distance accuracy and usage environment factors such as fluctuating background light.
Readout time=
1
× Horizontal timing clock × Number of vertical pixels
Clock pulse frequency
=Time per clock (Readout time per pixel) × Horizontal timing clocks × Number of vertical pixels
Calculation example of readout time (clock pulse frequency: 5 MHz, horizontal timing clocks: 208, number of vertical pixels: 128)
1
× 208 × 128
Readout time=
5 × 106 [Hz]
=200 [ns] × 208 × 128
=5.324 [ms]
When operating in non-destructive readout mode:
Time per frame = Integration time + (Readout time × Non-destructive readout count)
It is possible to read out only the signal level without reading out the rest level signal. However, noise will increase because the pixel reset
noise cannot be removed. Sensitivity variations in the photosensitive area will also increase because the fixed pattern noise in each pixel
cannot be removed either.
Horizontal timing
Frame timing 1 (1H)
208 (=40 + 168) × mclk
40 mclk
t20
hst
mclk
oe
dclk
1
2
3
4
168
Vout1
Vout2
KMPDC0447EA
5
Distance area image sensor
S11963-01CR
Parameter
Symbol
Master clock pulse duty ratio
Master clock pulse rise and fall times
tr(mclk), tf(mclk)
Frame reset pulse rise and fall times
tr(reset), tf(reset)
Frame synchronous trigger pulse rise and fall times
tr(vst), tf(vst)
Line synchronous trigger pulse rise and fall times
tr(hst), tf(hst)
Pixel reset pulse high period
thp(ext_res)
Pixel reset pulse rise and fall times
tr(ext_res), tf(ext_res)
Time from falling edge of master clock pulse to rising
t1
edge of pixel reset pulse
Time from rising edge of pixel reset pulse to falling edge
t2
of frame reset pulse
Time from falling edge of pixel reset pulse to falling
t3
edge of master clock pulse
Time from falling edge of master clock pulse to rising
t4
edge of frame reset pulse
Time from rising edge of frame reset pulse to falling
t5
edge of master clock pulse
Time from falling edge of master clock pulse to falling
t6
edge of frame reset pulse
Time from falling edge of frame reset pulse to falling
t7
edge of master clock pulse
Time from falling edge of master clock pulse to rising
t8
edge of frame synchronous trigger pulse
Time from rising edge of frame synchronous trigger
t9
pulse to falling edge of master clock pulse
Time from falling edge of master clock pulse to falling
t10
edge of frame synchronous trigger pulse
Time from falling edge of frame synchronous trigger
t11
pulse to falling edge of master clock pulse
Time from rising edge of master clock pulse to rising
t12
edge of line synchronous trigger pulse
Time from rising edge of line synchronous trigger pulse
t13
to rising edge of master clock pulse
Time from rising edge of master clock pulse to falling
t14
edge of line synchronous trigger pulse
Time from falling edge of line synchronous trigger
t15
pulse to rising edge of master clock pulse
Reset level readout time
t16
Integration time
t17
Integration signal readout time
t18
Time from falling edge of line synchronous pulse (last
pulse) to “VTX enable period=on”
Time from “VTX enable period=off” to falling edge of
frame reset pulse
Time from rising edge of master clock pulse (after reading from
all pixels) to rising edge of master clock pulse (hst: High period)
Time from falling edge of master clock pulse to rising
edge of output signal synchronous pulse*7
Rise time of output signal synchronous pulse output
voltage (10 to 90%)*7
Fall time of output signal synchronous pulse output
voltage (10 to 90%)*7
Min.
45
0
0
0
0
10
0
Typ.
50
-
Max.
55
20
20
20
20
20
Unit
%
ns
ns
ns
ns
μs
ns
1/4 × 1/f(mclk)
-
-
s
0
-
-
s
1/4 × 1/f(mclk)
-
-
s
1/4 × 1/f(mclk)
-
1/2 × 1/f(mclk)
s
1/4 × 1/f(mclk)
-
1/2 × 1/f(mclk)
s
1/4 × 1/f(mclk)
-
1/2 × 1/f(mclk)
s
1/4 × 1/f(mclk)
-
1/2 × 1/f(mclk)
s
1/4 × 1/f(mclk)
-
1/2 × 1/f(mclk)
s
1/4 × 1/f(mclk)
-
1/2 × 1/f(mclk)
s
1/4 × 1/f(mclk)
-
1/2 × 1/f(mclk)
s
1/4 × 1/f(mclk)
-
1/2 × 1/f(mclk)
s
1/4 × 1/f(mclk)
-
1/2 × 1/f(mclk)
s
1/4 × 1/f(mclk)
-
1/2 × 1/f(mclk)
s
1/4 × 1/f(mclk)
-
1/2 × 1/f(mclk)
s
1/4 × 1/f(mclk)
-
1/2 × 1/f(mclk)
s
-
-
s
10
-
ms
-
-
s
{208/f(mclk) + t20} ×
128 + thp(ext_res) + t3
{208/f(mclk) + t20} ×
128 + {1/2 × 1/f(mclk)}
t19
0
s
t20
0
s
t21
10/f(mclk)
s
td(dclk)
0
25
50
ns
tf(dclk)
-
20
40
ns
tf(dclk)
-
20
40
ns
6
Distance area image sensor
Parameter
Time from rising edge of master clock pulse to rising
edge of output signal effective period pulse*7
Output signal effective period pulse rise time
(10 to 90%)*7
Output signal effective period pulse fall time
(10 to 90%)*7
Settling time of output signal 1, 2 (10 to 90%)*7 *8
Time from rising edge of master clock pulse to output
signal 1, 2 (output 50%)*7
Charge transfer clock pulse interval
Charge transfer clock pulse (VTX1) high period
S11963-01CR
Symbol
Min.
Typ.
Max.
Unit
td(oe)
0
25
50
ns
tr(oe)
-
20
40
ns
tf(oe)
-
20
40
ns
tr(Vout), tf(Vout)
-
35
70
ns
td(Vout)
-
40
80
ns
tpi(VTX)
thp(VTX1)
60
30
-
ns
ns
Charge transfer clock pulse (VTX1) low period
tlp(VTX1)
-
-
ns
Charge transfer clock pulse (VTX2) high period
thp(VTX2)
30
-
ns
Charge transfer clock pulse (VTX2) low period
tlp(VTX2)
-
-
ns
Charge transfer clock pulse (VTX3) high period
thp(VTX3)
0
-
ns
Charge transfer clock pulse (VTX3) low period
tlp(VTX3)
-
-
ns
-
tpi(VTX) thp(VTX2) thp(VTX3)
tpi(VTX) thp(VTX1) thp(VTX3)
tpi(VTX)thp(VTX1)thp(VTX2)
3
3
3
0
-
ns
ns
-
25
50
ns
-
20
20
40
40
ns
ns
Min.
-
Typ.
40
Max.
-
Unit
pF
Charge transfer clock pulse voltage rise time
tr(VTX)
Charge transfer clock pulse voltage fall time
tf(VTX)
High level
Charge transfer clock pulse voltage
VTX1, VTX2, VTX3
Low level
Time from rising edge of line synchronous trigger
td(dis_read)
pulse to rising edge of non-readout period pulse*7
7
Non-readout period pulse rise time (10 to 90%)*
tr(dis_read)
Non-readout period pulse fall time (10 to 90%)*7
tf(dis_read)
V
*7: CL=3 pF
*8: Output voltage=0.1 V
Input terminal capacitance (Ta=25 °C, Vdd=5 V)
Parameter
Charge transfer clock pulse internal load capacitance
Symbol
CLTX
7
Distance area image sensor
S11963-01CR
Dimensional outline (unit: mm)
Recommended land pattern (unit: mm)
11.75
P0.8 × 10=8.0
0.7
8.7
P0.8 × 10=8.0
0.4
0.4
Hole
(2 ×) ϕ0.2
7.7
9.4
11.25
Photosensitive
area
4.8 × 3.6
10.45
Photosensitive
surface
Glass
1.0
2.0
KMPDC0446EA
11.25
P0.8 × 10=8.0
12
22
23
P0.8 × 10=8.0
8.7
11
1
33
44
34
Electrode
(44 ×)ȁ 0.4
Tolerance unless otherwise noted: ±0.2, ±2°
KMPDA0300ED
8
Distance area image sensor
S11963-01CR
Pin connections
Pin no.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
Symbol
GND
Vdd(A)
GND
dis_read
ext_res
reset
vst
oe
hst
mclk
dclk
GND
Vdd(D)
NC
NC
GND
GND
GND
GND
Vdd(D)
NC
NC
GND
Vdd(A)
Vout2
Vout1
Vref
Vr
Vref2
Vpg
GND
Vdd(A)
sel0
sel1
sel2
Vdd_tx
GND
GND
GND
GND
VTX3
VTX2
VTX1
Vdd_tx
I/O
I
I
I
O
I
I
I
O
I
I
O
I
I
I
I
I
I
I
I
I
O
O
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Description
Ground
Analog supply voltage
Ground
Non-readout period pulse
Pixel reset pulse
Frame reset pulse
Frame synchronous trigger pulse
Output signal effective period pulse
Line synchronous trigger pulse
Master clock pulse
Output signal synchronous pulse
Ground
Digital supply voltage
No connection
No connection
Ground
Ground
Ground
Ground
Digital supply voltage
No connection
No connection
Ground
Analog supply voltage
Output signal 2
Output signal 1
Bias voltage (output offset)
Bias voltage (pixel reset)
Bias voltage (column gain circuit)
Bias voltage (photosensitive area)
Ground
Analog supply voltage
Gain selection
Gain selection
Gain selection
Supply voltage for internal driver circuit of charge transfer clock pulse
Ground
Ground
Ground
Ground
Charge transfer clock pulse 3
Charge transfer clock pulse 2
Charge transfer clock pulse 1
Supply voltage for internal driver circuit of charge transfer clock pulse
Note: Leave “NC” terminals open and do not connect them to GND.
Connect impedance convering buffer amplifiers to Vout1/Vout2 so as to minimize the current flow.
Gain setting
Gain
1
2
4
sel0
H
H
L
sel1
H
L
H
sel2
H
L
L
9
Distance area image sensor
S11963-01CR
Measured example of temperature profile with hot-air reflow oven for product testing
300 °C
260 °C max.
Temperature
230 °C
190 °C
170 °C
Preheat
Preheat
60
60 to
to 120
120 ss
Soldering
Soldering
40 s max.
Time
KMPDB0381EA
∙ This product supports lead-free soldering. After unpacking, store it in an environment at a temperature of 30 °C or less and a
humidity of 60% or less, and perform soldering within 168 hours.
∙ The effect that the product receives during reflow soldering varies depending on the circuit board and reflow oven that are used.
Before actual reflow soldering, check for any problems by testing out the reflow soldering methods in advance.
Related information
www.hamamatsu.com/sp/ssd/doc_en.html
Precautions
∙ Disclaimer
∙ Surface mount type products
∙ Image sensors
Information described in this material is current as of February, 2016.
Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the
information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always
contact us for the delivery specification sheet to check the latest specifications.
The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that
one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use.
Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.
www.hamamatsu.com
HAMAMATSU PHOTONICS K.K., Solid State Division
1126-1 Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81) 53-434-3311, Fax: (81) 53-434-5184
U.S.A.: Hamamatsu Corporation: 360 Foothill Road, Bridgewater, N.J. 08807, U.S.A., Telephone: (1) 908-231-0960, Fax: (1) 908-231-1218
Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49) 8152-375-0, Fax: (49) 8152-265-8
France: Hamamatsu Photonics France S.A.R.L.: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: 33-(1) 69 53 71 00, Fax: 33-(1) 69 53 71 10
United Kingdom: Hamamatsu Photonics UK Limited: 2 Howard Court, 10 Tewin Road, Welwyn Garden City, Hertfordshire AL7 1BW, United Kingdom, Telephone: (44) 1707-294888, Fax: (44) 1707-325777
North Europe: Hamamatsu Photonics Norden AB: Torshamnsgatan 35 16440 Kista, Sweden, Telephone: (46) 8-509-031-00, Fax: (46) 8-509-031-01
Italy: Hamamatsu Photonics Italia S.r.l.: Strada della Moia, 1 int. 6, 20020 Arese (Milano), Italy, Telephone: (39) 02-93581733, Fax: (39) 02-93581741
China: Hamamatsu Photonics (China) Co., Ltd.: B1201, Jiaming Center, No.27 Dongsanhuan Beilu, Chaoyang District, Beijing 100020, China, Telephone: (86) 10-6586-6006, Fax: (86) 10-6586-2866
Cat. No. KMPD1142E08 Feb. 2016 DN
10