SiHP17N60D www.vishay.com Vishay Siliconix D Series Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) at TJ max. • Optimal Design - Low Area Specific On-Resistance - Low Input Capacitance (Ciss) 650 RDS(on) max. at 25 °C () VGS = 10 V 0.340 Qg (Max.) (nC) 90 Qgs (nC) 14 Qgd (nC) - Reduced Capacitive Switching Losses - High Body Diode Ruggedness - Avalanche Energy Rated (UIS) • Optimal Efficiency and Operation - Low Cost - Simple Gate Drive Circuitry - Low Figure-of-Merit (FOM): Ron x Qg 22 Configuration Single D TO-220AB - Fast Switching • Material categorization: For definitions of compliance please see www.vishay.com/doc?99912 G G D APPLICATIONS S • Consumer Electronics - Displays (LCD or Plasma TV) • Lighting • Industrial - Welding - Induction Heating - Motor Drives - Battery Chargers S N-Channel MOSFET • SMPS ORDERING INFORMATION Package TO-220AB Lead (Pb)-free SiHP17N60D-E3 Lead (Pb)-free and Halogen-free SiHP17N60D-GE3 ABSOLUTE MAXIMUM RATINGS (TC = 25 °C, unless otherwise noted) PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 600 Gate-Source Voltage VGS ± 30 Continuous Drain Current (TJ = 150 °C) VGS at 10 V TC = 25 °C TC = 100 °C Pulsed Drain Currenta ID UNIT V 17 10.7 A IDM 48 2.22 W/°C Single Pulse Avalanche Energyb EAS 165.6 mJ Maximum Power Dissipation PD 277.8 W TJ, Tstg - 55 to + 150 °C Linear Derating Factor Operating Junction and Storage Temperature Range Drain-Source Voltage Slope TJ = 125 °C Reverse Diode dV/dtd Soldering Recommendations (Peak Temperature)c for 10 s dV/dt 24 0.2 300 V/ns °C Notes a. Repetitive rating; pulse width limited by maximum junction temperature. b. VDD = 50 V, starting TJ = 25 °C, L = 2.3 mH, Rg = 25 , IAS = 12 A. c. 1.6 mm from case. d. ISD ID, starting TJ = 25 °C. S12-0813-Rev. B, 30-Apr-12 Document Number: 91464 1 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 SiHP17N60D www.vishay.com Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER Maximum Junction-to-Ambient Maximum Junction-to-Case (Drain) SYMBOL TYP. MAX. UNIT RthJA RthJC - 62 0.45 °C/W SPECIFICATIONS (TJ = 25 °C, unless otherwise noted) PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage (N) VDS VGS = 0 V, ID = 250 μA 600 - - V VDS/TJ Reference to 25 °C, ID = 1 mA - 0.7 - V/°C VGS(th) VDS = VGS, ID = 250 μA 3 - 5 V Gate-Source Leakage IGSS VGS = ± 30 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 600 V, VGS = 0 V - - 1 VDS = 480 V, VGS = 0 V, TJ = 125 °C - - 100 Drain-Source On-State Resistance Forward Transconductancea RDS(on) gfs VGS = 10 V ID = 8 A VDS = 50 V, ID = 8 A μA - 0.275 0.340 - 6.2 - S Dynamic Input Capacitance Ciss VGS = 0 V, - 1780 - Output Capacitance Coss VDS = 100 V, - 140 - Reverse Transfer Capacitance Crss f = 1 MHz - 15 - - 45 90 - 14 - Total Gate Charge Qg Gate-Source Charge Qgs Gate-Drain Charge Qgd - 22 - Turn-On Delay Time td(on) - 22 45 tr VDD = 300 V, ID = 8 A Rg = 9.1 , VGS = 10 V - 56 85 - 37 75 - 30 60 f = 1 MHz, open drain - 1.6 - - - 17 - - 48 Rise Time Turn-Off Delay Time td(off) Fall Time tf Internal Gate Resistance Rg VGS = 10 V ID = 8 A, VDS = 480 V pF nC ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Current ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Reverse Recovery Current IRRM MOSFET symbol showing the integral reverse p - n junction diode D A G TJ = 25 °C, IS = 8 A, VGS = 0 V TJ = 25 °C, IF = IS, dI/dt = 100 A/μs, VR = 20 V S - - 1.5 V - 633 950 ns - 7 15 μC - 21 42 A Note a. Repetitive rating; pulse width limited by maximum junction temperature. S12-0813-Rev. B, 30-Apr-12 Document Number: 91464 2 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 SiHP17N60D www.vishay.com Vishay Siliconix TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted) 3.0 50 TOP 15V 14V 13V 12V 11V 10V 9.0V 8.0V 7.0V 6.0V BOTYTOM 5.0 30 TJ = 25ɗ 20 10 ID = 10 A 2.5 RDS(on) - On-Resistance (Normalized) ID - Drain Current (A) 40 VGS = 10 V 2.0 1.5 1.0 0.5 7V 0.0 0 0 5 10 15 20 25 VDS - Drain-to-Source Voltage (V) - 60 - 40 - 20 30 0 20 40 60 80 100 120 140 160 TJ - Junction Temperature (°C) Fig. 4 - Normalized On-Resistance vs. Temperature Fig. 1 - Typical Output Characteristics, TC = 150 °C 30 10000 TOP 15V 14V 13V 12V 11V 10V 9.0V 8.0V 7.0V 6.0V BOTYTOM 5.0V 18 TJ = 150ɗ C - Capacitance (pF) ID - Drain Current (A) 24 7V 12 Ciss 1000 Coss Crss 100 6 10 0 0 5 10 15 20 25 VDS - Drain-to-Source Voltage (V) 0 30 Fig. 2 - Typical Output Characteristics, TC = 150 °C 600 Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage 20 60 18 50 VGS - Gate-to-Source Voltage (V) I D,Drain- to-Source Current (A) 200 400 VDS - Drain-to-Source Voltage (V) 40 30 20 TJ = 150 °C 10 VDS = 300 V ID = 12 A 16 VDS =120 V 14 VDS = 480 V 12 10 8 6 4 2 TJ = 25 °C 0 0 0 5 10 15 20 VGS, Gate-to-Source Voltage (V) Fig. 3 - Typical Transfer Characteristics S12-0813-Rev. B, 30-Apr-12 25 0.0 20.0 40.0 60.0 Qg - Total Gate Charge (nC) 80.0 Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage Document Number: 91464 3 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 SiHP17N60D www.vishay.com Vishay Siliconix 20.00 100 IS - Source Current (A) TJ = 150 °C 15.00 ID,Drain Current (A) 10 TJ = 25 °C 1 10.00 5.00 0.00 0.1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 VSD - Source-to-Drain Voltage (V) 1.4 25 1.6 VDS , Drain -to -Source Breakdown Voltage (V) ID - Drain Current (A) 125 150 725 OPERATION IN THIS AREA Limited by RDS(on) 100 μs Limited by RDS(on) 1 ms 1 10 ms 0.1 100 Fig. 9 - Maximum Drain Current vs. Case Temperature I DM Limited 10 75 TJ - Temperature (°C) Fig. 7 - Typical Source-Drain Diode Forward Voltage 100 50 700 675 650 625 600 575 TC= 25 °C TJ= 150 °C Single Pulse BVDSS Limited 550 1 10 100 1000 -60 -40 -20 VDS - Drain-to-Source Voltage (V) * VGS > minimum VGS at which RDS(on) is specified Fig. 8 - Maximum Safe Operating Area 0 20 40 60 80 100 120 140 160 TJ,Temperature (°C) Fig. 10 - Typical Drain-to-Source Voltage vs. Temperature Normalized Effective Transient Thermal Impedance 1 Duty Cycle = 0.5 0.2 0.1 0.1 0.05 0.02 Single Pulse 0.01 0.0001 0.001 0.01 0.1 1 Square Wave Pulse Duration (s) Fig. 11 - Normalized Thermal Transient Impedance, Junction-to-Case S12-0813-Rev. B, 30-Apr-12 Document Number: 91464 4 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 SiHP17N60D www.vishay.com Vishay Siliconix RD VDS QG 10 V VGS D.U.T. RG QGS + - VDD QGD VG 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % Charge Fig. 12 - Switching Time Test Circuit Fig. 16 - Basic Gate Charge Waveform Current regulator Same type as D.U.T. VDS 90 % 50 kΩ 12 V 0.2 µF 0.3 µF + 10 % VGS D.U.T. td(on) td(off) tf tr - VDS VGS 3 mA Fig. 13 - Switching Time Waveforms IG ID Current sampling resistors Fig. 17 - Gate Charge Test Circuit L Vary tp to obtain required IAS VDS D.U.T RG + - IAS V DD 10 V 0.01 Ω tp Fig. 14 - Unclamped Inductive Test Circuit VDS tp VDD VDS IAS Fig. 15 - Unclamped Inductive Waveforms S12-0813-Rev. B, 30-Apr-12 Document Number: 91464 5 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 SiHP17N60D www.vishay.com Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T. Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - Rg • • • • + dV/dt controlled by Rg Driver same type as D.U.T. ISD controlled by duty factor “D” D.U.T. - device under test + - VDD Driver gate drive P.W. Period D= P.W. Period VGS = 10 Va D.U.T. lSD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage Inductor current VDD Body diode forward drop Ripple ≤ 5 % ISD Note a. VGS = 5 V for logic level devices Fig. 18 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91464. S12-0813-Rev. B, 30-Apr-12 Document Number: 91464 6 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Package Information www.vishay.com Vishay Siliconix TO-220-1 A E DIM. Q H(1) D 3 2 L(1) 1 M* L b(1) INCHES MIN. MAX. MIN. MAX. A 4.24 4.65 0.167 0.183 b 0.69 1.02 0.027 0.040 b(1) 1.14 1.78 0.045 0.070 F ØP MILLIMETERS c 0.36 0.61 0.014 0.024 D 14.33 15.85 0.564 0.624 E 9.96 10.52 0.392 0.414 e 2.41 2.67 0.095 0.105 e(1) 4.88 5.28 0.192 0.208 F 1.14 1.40 0.045 0.055 H(1) 6.10 6.71 0.240 0.264 0.115 J(1) 2.41 2.92 0.095 L 13.36 14.40 0.526 0.567 L(1) 3.33 4.04 0.131 0.159 ØP 3.53 3.94 0.139 0.155 Q 2.54 3.00 0.100 0.118 ECN: X15-0364-Rev. C, 14-Dec-15 DWG: 6031 Note • M* = 0.052 inches to 0.064 inches (dimension including protrusion), heatsink hole for HVM C b e J(1) e(1) Package Picture ASE Revison: 14-Dec-15 Xi’an Document Number: 66542 1 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Legal Disclaimer Notice www.vishay.com Vishay Disclaimer ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. Material Category Policy Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant. Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU. Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards. Revision: 02-Oct-12 1 Document Number: 91000