DATASHEET

IGNS
EW DES
N
R
O
F
NDED
EMENT
COMME
REPL AC
D
t
E
NO T RE
D
N
E
Center a
OMM
S u p p o rt
c
l
N O REC
s
a
/t
ic
m
n
o
h
c
tersil.c
our Te
contact ERSIL or www.in
T
N
1-888-I
HD-4702/883
CMOS Programmable Bit Rate Generator
June 1998
Features
Description
• This Circuit is Processed in Accordance to MIL-STD-883
and is Fully Conformant Under the Provisions of
Paragraph 1. 2. 1.
The HD-4702/883 Bit Rate Generator provides the
necessary clock signals for digital data transmission systems, such as a UART. It generates 13 commonly used bit
rates using an on-chip crystal oscillator or an external input.
For conventional operation generating 16 output clock
pulses per bit period, the input clock frequency must be
2.4576MHz (i.e., 9600 Baud x 16 x 16, since there is an
internal  16 prescaler). A lower input frequency will result in
a proportionally lower output frequency.
• HD-4702/883 Provides 13 Commonly Used Bit Rates
• Uses a 2.4576MHz Crystal/Input for Standard
Frequency Output (16 Times Bit Rate)
• Low Power Dissipation
• Conforms to ElA RS-404
The HD-4702/883 can provide multi-channel operation with
a minimum of external logic by having the clock frequency
CO and the  8 prescaler outputs Q0 , Q1 , Q2 available
externally. All signals have a 50% duty cycle except 1800
Baud, which has less than 0.39% distortion.
• One HD-4702/883 Controls up to Eight Transmission
Channels
• Initialization Circuit Facilitates Diagnostic Fault
Isolation
The four rate select inputs (S0-S3) select which bit rate is at
the output (Z). See Truth Table for Rate Select Inputs for
select code and output bit rate. Two of the 16 select codes
for the HD-4702/883 do not select an internally generated
frequency, but select an input into which the user can feed
either a different frequency, or a static level (High or Low) to
generate “ZERO BAUD”.
• On-Chip Input Pull-Up Circuit
Ordering Information
PART
NUMBER
HD1-4702/883
TEMPERATURE
RANGE (oC)
-55 to 125
PACKAGE
CERDIP
PKG. NO.
F16.3
The bit rates most commonly used in modern data terminals
(110,150, 300,1200, 2400 Baud) require that no more than
one input be grounded for the HD-4702/883, which is easily
achieved with a single 5-position switch.
The HD-4702/883 has an initialization circuit which
generates a master reset for the scan counter. This signal is
derived from a digital differentiator that senses the first high
level on the CP input after the ECP input goes low. When
ECP is high, selecting the crystal input, CP must be low. A
high level on CP would apply a continuous reset. See Clock
Modes and Initialization below.
Pinout
HD-4702/883 (CERDIP)
TOP VIEW
Q0
1
16 VCC
Q1
2
15 IM
Q2
3
14 S0
ECP
4
13 S1
CP
5
12 S2
OX
6
11 S3
IX
7
10 Z
GND
8
9
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a trademark of Intersil Americas Inc.
Copyright © Intersil Americas Inc. 2002. All Rights Reserved
1
CO
FN2955.2
HD-4702/883
Truth Table
TRUTH TABLE FOR RATE SELECT INPUTS
(Using 2.4576MHz Crystal)
S3
S2
S1
S0
L
L
L
L
MUX Input (lM)
L
L
L
H
MUX Input (lM)
L
L
H
L
50 Baud
L
L
H
H
L
H
L
L
H
L
CLOCK MODES AND INITIALIZATION
IX
OUTPUT RATE (Z)
ECP
CP
H
L
OPERATION
Clocked from IX
X
L
Clocked from CP
75 Baud
X
H
L
134.5 Baud
X
L
L
H
200 Baud
H
H
L
600 Baud
L
H
H
H
2400 Baud
H
L
L
L
9600 Baud
H
L
L
H
4800 Baud
= HIGH Level
= LOW Level
= Don’t Care
= Clock Pulse
H
L
H
L
1800 Baud
= First HIGH Level Clock Pulse after ECP goes LOW
H
L
H
H
1200 Baud
H
H
L
L
2400 Baud
H
H
L
H
300 Baud
H
H
H
L
150 Baud
H
H
H
H
110 Baud
H
Continuous Reset
Reset During First CP = High Time
NOTE:
2. Actual output frequency is 16 times the indicated output
rate, assuming a clock frequency of 2.4576MHz.
H
L
X
NOTE:
1. 19200 Baud by connecting Q2 to IM .
2
HD-4702/883
Absolute Maximum Ratings
Thermal Information
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +8.0V
Input, Output or I/O Voltage . . . . . . . . . . . GND -0.5V to VCC +0.5V
ESD Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Class 1
Typical Derating Factor. . . . . . . . . . . . 1mA/MHz Increase in ICCOP
Thermal Resistance, (Typical, Note 3)
JA (oC/W) JC (oC/W)
CERDIP Package . . . . . . . . . . . . . .
78
23
Maximum Storage Temperature Range . . . . . . . . . .-65oC to 150oC
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . 175oC
Maximum Lead Temperature (Soldering, 10s) . . . . . . . . . . . . 300oC
Operating Conditions
Die Characteristics
Operating Voltage Range . . . . . . . . . . . . . . . . . . . . . +4.5V to +5.5V
Operating Temperature Range . . . . . . . . . . . . . . . . . -55oC to 125oC
Gate Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720 Gates
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
3. JA is measured with the component mounted on an evaluation PC board in free air.
TABLE 1. DC ELECTRICAL PERFORMANCE SPECIFICATIONS
Device Guaranteed and 100% Tested
DC PARAMETER
SYMBOL
CONDITIONS
GROUP A
SUBGROUPS
TEMPERATURE
(oC)
Input High Voltage
VIH
VCC = 4.5V
1, 2, 3
-55 TA125
Input Low Voltage
VIL
VCC = 4.5V
1, 2, 3
-55 TA 125
MIN
MAX
UNITS
VCC 70%
-
V
VCC 30%
V
-
Output High Voltage
VOH1
IOH  -1A, VCC = 4.5V,
(Note 4)
1, 2, 3
-55 TA 125
VCC -0.1
-
V
Output Low Voltage
VOL1
IOL  +1A, VCC = 4 5V,
(Note 4)
1, 2, 3
-55 TA 125
-
0.1
V
Input High Current
IIH
VIN = VCC . All Other Pins = 0V,
VCC = 5.5V
1, 2, 3
-55 TA 125
-1
+1
A
Input Low Current
(IX Input)
IILX
VIN = 0V, All Other Pins = VCC ,
VCC = 5.5V
1, 2, 3
-55 TA 125
-1
+1
A
Input Low Current
(All Other Inputs)
IlL
VIN = 0V All Other Pins = VCC ,
VCC = 5.5V (Note 5)
1, 2, 3
-55 TA 125
-
-100
A
Output High Current
(OX)
IOHX
VOUT = VCC -0.5, VCC = 4.5V
Input at 0V or VCC per Logic
Function or Truth Table
1, 2, 3
-55 TA 125
-0.1
-
mA
Output High Current
(All Other Outputs)
IOH1
VOUT = 2.5V, VCC = 4.5V
Input at 0V or VCC per Logic
Function or Truth Table
1, 2, 3
-55 TA 125
-1.0
-
mA
Output High Current
(All Other Outputs)
IOH2
VOUT = VCC -0.5, VCC = 4.5V
Input at 0V or VCC per Logic
Function or Truth Table
1, 2, 3
-55 TA 125
-0.3
-
mA
Output Low Current
(OX)
IOLX
VOUT = 0.4V, VCC = 4.5V
Input at 0V or VCC per Logic
Function or Truth Table
1, 2, 3
-55 TA 125
0.1
-
mA
Output Low Current
(All Other Outputs)
IOL
VOUT = 0.4V, VCC = 4.5V
Input at 0V or VCC per Logic
Function or Truth Table
1, 2, 3
-55 TA 125
1.6
-
mA
3
HD-4702/883
TABLE 1. DC ELECTRICAL PERFORMANCE SPECIFICATIONS (Continued)
Device Guaranteed and 100% Tested
DC PARAMETER
SYMBOL
Supply Current
(Static)
GROUP A
SUBGROUPS
CONDITIONS
ICC
TEMPERATURE
(oC)
MIN
MAX
UNITS
ECP = VCC , CP = 0V,
VCC = 5.5V
All Other Inputs = GND,
(Note 5)
1, 2, 3
-55 TA 125
-
1500
A
ECP = VCC , CP = 0V,
VCC = 5.5V
All Other Inputs = VCC
(Note 5)
1, 2, 3
-55 TA 125
-
1000
A
NOTES:
4. Interchanging of force and sense conditions is permitted.
5. Input Current and Quiescent Power Supply Current are relatively higher for this device because of active pull-up circuits on all inputs
except IX .
TABLE 2. AC ELECTRICAL PERFORMANCE SPECIFICATIONS
Device Guaranteed and 100% Tested.
AC PARAMETER
SYMBOL
CONDITIONS
GROUP A
SUBGROUPS
TEMPERATURE
(oC)
MIN
MAX
UNITS
Propagation Delay, IX to CO
tPLH
9, 10, 11
-55TA125
-
350
ns
Propagation Delay, IX to CO
tPHL
9, 10, 11
-55TA125
-
275
ns
Propagation Delay, CP to CO
tPLH
9, 10, 11
-55TA125
-
260
ns
Propagation Delay, CP to CO
tPHL
9, 10, 11
-55TA125
-
220
ns
Propagation Delay, CO to Qn
tPLH
9, 10, 11
-55TA125
-
(Note 7)
ns
Propagation Delay, CO to Qn
tPHL
9, 10, 11
-55TA125
-
(Note 7)
ns
Propagation Delay, CO to Z
tPLH
9, 10, 11
-55TA125
-
85
ns
Propagation Delay, CO to Z
tPHL
9, 10, 11
-55TA125
-
75
ns
Output Transition Time (Except OX)
tTLH
9, 10, 11
-55TA125
160
ns
Output Transition Time (Except OX)
tTHL
9, 10, 11
-55TA125
-
75
ns
9, 10, 11
-55TA125
350
-
ns
VCC = 4.5V
CL 7pF on OX
CL = 50pF
(Note 6)
Set-UpTime Select to CO
tS
Hold Time, Select to CO
tH
9, 10, 11
-55TA125
0
-
ns
Set-UpTime, IM to CO
tS
9, 10, 11
-55TA125
350
-
ns
Hold Time, IM to CO
tH
9, 10, 11
-55TA125
0
-
ns
Minimum Clock Pulse Width, Low
(Notes 8, 9)
tWCP(L)
9, 10, 11
-55TA125
120
Minimum Clock Pulse Width, High
(Notes 8, 9)
tWCP(H)
9, 10, 11
-55TA125
120
-
ns
Minimum IX Pulse Width, Low (Note 9)
tWCP(L)
9, 10, 11
-55TA125
160
-
ns
Minimum IX Pulse Width, High (Note 9)
tWCP(H)
9, 10, 11
-55TA125
160
-
ns
ns
NOTES:
6. Propagation Delays (tPLH and tPHL) and Output Transition Times (tTLH and tTHL) will change with Output Load Capacitance (CL).
Set-Up Times (tS), Hold Times (tH), and Minimum Pulse Widths (tW) do not vary with load capacitance.
7. For multichannel operation, Propagation Delay (CO to Qn), plus Set-Up Time, Select to CO , is guaranteed to be 367ns.
8. The first High Level Clock Pulse alter ECP goes Low must be at least 350ns long to guarantee reset of all Counters.
9. It is recommended that input rise and fall times to the clock inputs (CP , IX) be less than 15ns.
4
HD-4702/883
TABLE 3. ELECTRICAL PERFORMANCE SPECIFICATIONS
AC PARAMETER
SYMBOL
Input Capacitance
CIN
Output Capacitance
CO
CONDITIONS
NOTES TEMPERATURE (oC)
All Measurements
are referenced to
device ground,
f = 1MHz.
MIN
MAX
UNITS
10
TA = 25
-
7.0
pF
10
TA = 25
-
15.0
pF
Propagation Delay IX to CO
tPLH
10, 12
-55TA125
-
300
ns
Propagation Delay IX to CO
tPHL
10, 12
-55TA125
-
250
ns
Propagation Delay CP to CO
tPLH
10, 12
-55TA125
-
215
ns
Propagation Delay CP to CO
tPHL
10, 12
-55TA125
-
195
ns
Propagation Delay CO to Qn
tPLH
10, 12
-55TA125
-
(Note 11)
ns
Propagation Delay CO to Qn
tPHL
10, 12
-55TA125
-
(Note 11)
ns
Propagation Delay CO to Z
tPLH
10, 12
-55TA125
-
75
ns
Propagation Delay CO to Z
tPHL
10, 12
-55TA125
-
65
ns
Output Transition Time (Except OX)
tTLH
10, 12
-55TA125
-
80
ns
Output Transition Time (Except OX)
tTHL
10, 12
-55TA125
-
40
ns
VCC = 4.5V
CL 7pF on OX
CL = 15pF
NOTES:
10. The parameters listed in Table 3 are controlled via design or process parameters and are not directly tested. These parameters are
characterized upon initial design and after major process and/or design changes.
11. For multichannel operation, Propagation Delay (CO to Qn) plus Set-Up Time, Select to CO , is guaranteed to be 367ns.
12. Propagation Delays (tPLH and tPHL) and Output Transition Times (tTLH and tTHL) will change with Output Load Capacitance (CL).
Set-Up Times (tS), Hold Times (tH), and Minimum Pulse Widths (tW) do not vary with load capacitance.
TABLE 4. APPLICABLE SUBGROUPS
CONFORMANCE GROUPS
METHOD
SUBGROUPS
Initial Test
100%/5004
-
Interim Test
100%/5004
1, 7, 9
PDA
100%
1
Final Test
100%
2, 3, 8A, 8B, 10, 11
Group A
-
1, 2, 3, 7, 8A, 8B, 9, 10, 11
Groups C and D
Samples/5005
1, 7, 9
5
HD-4702/883
Burn-In Circuit
HD-4702/883 CERDIP
VCC
C1
VCC/2
VCC/2
VCC/2
GND
F0
VCC/2
GND
GND
R1
R1
R1
R1
R1
R1
R1
1
16
2
15
3
14
4
13
5
12
6
11
7
10
8
9
NOTES:
13. F0 = 100kHz 10%, F1 = F0/2, F2 = F1/2., ...
14. R1 = 10k, 1/4W, 10%.
15. VCC = 5.5V 0.5V, GND = 0V.
16. C1 = 0.01F Min.
6
R1
R1
R1
R1
R1
R1
R1
F4
F12
F13
F14
F15
VCC/2
VCC/2
HD-4702/883
Die Characteristics
DIE DIMENSIONS:
GLASSIVATION:
100 mils x 97 mils x 19 mils
Type: SiO2
Thickness: 7kÅ - 9kÅ
METALLIZATION:
WORST CASE CURRENT DENSITY:
Type: Si - AI
7.1 x 104A/cm2
Thickness: 10kÅ - 12kÅ
Metallization Mask Layout
HD-4702/883
Q0
VCC
IM
Q1
S0
S1
Q2
ECP
S2
CP
S3
OX
IX
GND
CO
7
Z
HD-4702/883
Ceramic Dual-In-Line Frit Seal Packages (CERDIP)
F16.3 MIL-STD-1835 GDIP1-T16 (D-2, CONFIGURATION A)
16 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE
LEAD FINISH
c1
-D-
-A-
BASE
METAL
INCHES
(c)
SYMBOL
E
M
-Bbbb S
C A-B S
Q
-C-
SEATING
PLANE
S1
b2
ccc M
-
0.200
-
5.08
-
0.014
0.026
0.36
0.66
2
b1
0.014
0.023
0.36
0.58
3
b2
0.045
0.065
1.14
1.65
-
b3
0.023
0.045
0.58
1.14
4
c
0.008
0.018
0.20
0.46
2
c1
0.008
0.015
0.20
0.38
3
D
-
0.840
-
21.34
5
E
0.220
0.310
5.59
7.87
5
eA
e
b
C A-B S
eA/2
c
e
aaa M C A - B S D S
D S
NOTES
b

A A
MAX
A
A
L
MIN
M
(b)
D
BASE
PLANE
MILLIMETERS
MAX
b1
SECTION A-A
D S
MIN
NOTES:
1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded
area shown. The manufacturer’s identification shall not be used
as a pin one identification mark.
0.100 BSC
2.54 BSC
-
eA
0.300 BSC
7.62 BSC
-
eA/2
0.150 BSC
3.81 BSC
-
L
0.125
0.200
3.18
5.08
-
Q
0.015
0.060
0.38
1.52
6
S1
0.005
-
0.13
-
7
105o
90o
105o
-
2. The maximum limits of lead dimensions b and c or M shall be
measured at the centroid of the finished lead surfaces, when
solder dip or tin plate lead finish is applied.

90o
aaa
-
0.015
-
0.38
-
3. Dimensions b1 and c1 apply to lead base metal only. Dimension
M applies to lead plating and finish thickness.
bbb
-
0.030
-
0.76
-
ccc
-
0.010
-
0.25
-
M
-
0.0015
-
0.038
2, 3
4. Corner leads (1, N, N/2, and N/2+1) may be configured with a
partial lead paddle. For this configuration dimension b3 replaces
dimension b2.
N
16
16
8
Rev. 0 4/94
5. This dimension allows for off-center lid, meniscus, and glass
overrun.
6. Dimension Q shall be measured from the seating plane to the
base plane.
7. Measure dimension S1 at all four corners.
8. N is the maximum number of terminal positions.
9. Dimensioning and tolerancing per ANSI Y14.5M - 1982.
10. Controlling dimension: INCH.
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9001 quality systems.
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
7585 Irvine Center Drive
Suite 100
Irvine, CA 92618
TEL: (949) 341-7000
FAX: (949) 341-7123
Intersil Corporation
2401 Palm Bay Rd.
Palm Bay, FL 32905
TEL: (321) 724-7000
FAX: (321) 724-7946
EUROPE
Intersil Europe Sarl
Ave. William Graisse, 3
1006 Lausanne
Switzerland
TEL: +41 21 6140560
FAX: +41 21 6140579
8
ASIA
Intersil Corporation
Unit 1804 18/F Guangdong Water Building
83 Austin Road
TST, Kowloon Hong Kong
TEL: +852 2723 6339
FAX: +852 2730 1433