cd00012203

AN1916
Application note
VIPower: Offline constant current LED driver using
VIPer12/22A
Introduction
High brightness LEDs are becoming a prominent source of light and often have better
efficiency and reliability when compared to that of conventional light sources. While LEDs
can operate from an energy source as simple as a battery and resistor, most applications
require an efficient energy source not only for the reduction of losses, but also for the lumen
maintenance of the LED itself. Using integrated off line switching regulators like the
VIPer12A and VIPer22A in a constant current configuration, a low cost, high efficient LED
driver for multiple LEDs has been developed.
This document introduces the isolated and non-isolated offline constant current LED driver
based on the VIPerX2A family. All three LED driver configurations operate in the extended
wide range input voltage, from 90 to 264Vac.
VIPer12A and VIPer22A are low cost monolithic smart power devices with integrated PWM
controllers. Their internal control circuit offers benefits such as automatic burst mode in low
load condition, overvoltage protection in hiccup mode, and large voltage range on the VDD
pin. An isolated VIPer12A constant current LED driver has been configured to drive 1 to 4
LEDs while the isolated VIPer22A configuration has been optimized for 2 to 8 LEDs.
VIPer12A constant current LED driver board layout
August 2006
Rev4
1/45
www.st.com
Contents
AN1916
Contents
1
LED parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2
LED Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3
Design consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4
Board description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5
Transformer specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6
Current selectable reference board . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7
PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8
General circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9
Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
10
EMI results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
11
Current regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
12
Ripple current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
13
1.8" Round LED board configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 35
14
Round LED board layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
15
EMI result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
16
Current regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
17
Ripple current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
18
Low cost option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2/45
AN1916
Contents
19
PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
20
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
21
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3/45
List of figures
AN1916
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
4/45
Current vs. LUX and VF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Mechanical characteristics of the transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
VIPer12A current selectable LED driver schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
VIPer22A current selectable LED driver schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
VIPer12A constant current (350mA) LED driver schematic . . . . . . . . . . . . . . . . . . . . . . . . 17
VIPer22A constant current (350mA) LED driver schematic . . . . . . . . . . . . . . . . . . . . . . . . 19
VIPer12A constant current (700mA) LED driver schematic . . . . . . . . . . . . . . . . . . . . . . . . 21
VIPer22A constant current (700mA) LED driver schematic . . . . . . . . . . . . . . . . . . . . . . . . 23
VIPer12A constant current (1.05A) LED driver schematic . . . . . . . . . . . . . . . . . . . . . . . . . 25
VIPer22A constant current (1.05A) LED driver schematic . . . . . . . . . . . . . . . . . . . . . . . . . 27
Board top side (not in scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Board bottom side viewed from top side (not in scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
VIPer12A with 1 LED at output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
VIPer12A with 4 LEDs at output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
VIPer22A with 2 LEDs at output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
VIPer22A with 8 LEDs at output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
VIPer12A EMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
VIPer22A EMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
VIPer12A current regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
VIPer22A current regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Ripple at 264Vac (VIPer12A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Ripple at 264Vac (VIPer22A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Top Side of Board (not in scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Bottom Side of Board (not in scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Top board layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Bottom board layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
VIPer22A round LED EMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
VIPer12A round LED EMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
VIPer22A round LED board current regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
VIPer12A round LED board current regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Ripple Current at 264Vac input (VIPer22A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Ripple Current at 264Vac input (VIPer12A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Non-isolated buck configuration schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
VIPer22A buck board layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
AN1916
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Electrical characteristics at 350mA, junction temperature, TJ = 25 °C . . . . . . . . . . . . . . . . . 6
Flux characteristics at 350mA, junction temperature, TJ = 25 °C. . . . . . . . . . . . . . . . . . . . . 7
1 to 4 LEDs system at 350mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 to 8 LEDs system at 350mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
VIPer12A LED system at 700mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
VIPer12A LED system at 1.05A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
VIPer22A LED system at 700mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
VIPer22A LED system at 1.05A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Number of LEDs that can be driven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
BOM change for VIPer22A 350mA solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Bill of matarials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5/45
LED parameters
1
AN1916
LED parameters
LED voltage drop tolerance varies by +/- 16.6% for the white LED, as shown in Table 1.
Different colors will have different typical voltage drop. For this reason, it is recommended
that the LEDs be connected in series rather than parallel. If the LEDs were connected in
parallel, the current flowing in each LED would depend on each unit's individual voltage drop
(VF) characteristic and not be matched to the other devices, resulting in different brightness
for each LED. Below is the forward voltage drop spec from the Luxeon Star Technical Data
Sheet DS23
Table 1.
Electrical characteristics at 350mA, junction temperature, TJ = 25 °C
Forward Voltage VF(V)
Color
Min
6/45
Typ.
Max
Dynamic
Resistance
(Ω)RD
Temperature Coefficient of
Forward Voltage (mV/°C)
∆VF/∆TJ
White
2.79
3.42
3.99
1.0
-2.0
Green
2.79
3.42
3.99
1.0
-2.0
Cyan
2.79
3.42
3.99
1.0
-2.0
Blue
2.79
3.42
3.99
1.0
-2.0
Royal Blue
2.79
3.42
3.99
1.0
-2.0
Red
2.31
2.85
3.27
2.4
-2.0
Amber
2.31
2.85
3.27
2.4
-2.0
AN1916
2
LED Intensity
LED Intensity
The intensity of the brightness also varies with different color as shown in the Luxeon data
sheet.
Table 2.
Flux characteristics at 350mA, junction temperature, TJ = 25 °C
Color
Minimum Luminous Flux (lm) or
Radiometric Power (MW) φV
Typical Luminous Flux (lm) Or
Radiometric Power (MW) φV
White
13.9
25
Green
13.9
30
Cyan
13.9
30
Blue
3.8
10
Royal Blue
55MW
150MW
Red
13.9
27
Amber
10.7
25
The brightness is directly related to the current driving the LED. A test was conducted in a
closed box with a white LED mounted 12 inches away from the light meter. The results
showed a linear relationship between current and light output as shown in Figure 1.
Figure 1. also shows the relation between current and forward drop of the LED.
7/45
Design consideration
3
AN1916
Design consideration
The main consideration in designing this constant current power supply is the transformer.
Since one to four LEDs can be operated, and each LED is 3.5V nominal, the output can vary
from 3.5V to 14V. The output voltage will be reflected back across the transformer and will in
turn change the Vdd voltage to the control circuit and the peak Vds voltage across the
MOSFET. The transformer must be designed with three limiting factors in mind.
■
Vdd, which has a range of 9V for under voltage to 38V for the over voltage threshold.
■
Wattage, specified at 8W for the VIPer12A and 12W for the VIPer22A
■
Reflected voltage across the drain of the MOSFET which is the turn ratio of (Np ÷ Ns) x
Vout, added to the input voltage and must be below 730V.
Figure 1.
Current vs. LUX and VF
In order to keep the reflected voltage manageable, the transformer is designed for a turn's
ratio of primary to secondary output voltage for the maximum number of LEDs. Using this
criteria, as the number of LEDs is reduced, so is the reflected voltage. If the transformer
were based on one LED then the reflected voltage would quadruple with four LEDs and may
exceed the rating of the VIPer. The turn's ratio between secondary to the Vdd winding is set
for an output voltage of one LED to the minimum Vdd voltage, of 9V. As more LEDs are
added, the Vdd voltage increases proportionally until it reaches the overvoltage shutdown
point of 42V nominal. With this starting point a table can be derived as shown in Table 3. for
the VIPer12 and Table 4. for VIPer22A. The highlighted values indicate parameters that are
approaching the limit for that parameter. The following table shows the results of the
parameters that should be considered for the proper design.
8/45
AN1916
Design consideration
Table 3.
# of LEDs
1
1 to 4 LEDs system at 350mA
Output voltage
at 350mA [1]
Vdd
Output
Wattage
Vds not
V reflected including spike
at 375Vdc
Turns
ratio
Ns/Np
1
3.57
10.05
1.25
30.51282
405.5128
0.117
2
6.99
18.33
2.45
59.74359
434.7436
Nvdd/Ns
3
10.41
26.60
3.64
88.97436
463.9744
2.419
4
13.83
34.87
4.85
118.2051
493.2051
5
17.25
43.15
6.04
147.4359
522.4359
The output voltage includes 0.175V drop in the current sense resistor.
In the case of Table 3., the Vdd would be the limiting factor reaching the over voltage shut
down point. In the case of Table 4., the Vdd would be the limiting factor reaching the
overvoltage shutdown point. The turn ratio of primary to secondary is based on the highest
output voltage for 8 LEDs. The VIPer12A and VIPer22A are ideal for this application
because of the wide range of Vdd. This ranges from 8 to 42V typical. The overvoltage kicks
in at 42V, preventing the addition of LEDs driving the output voltage, the voltage across the
drain to source and the wattage, from being exceeded.
Table 4.
2
2 to 8 LEDs system at 350mA
Output voltage
at 350mA [2]
2
6.99
10.63
2.45
33.12796
408.128
0.211
3
10.41
15.67
3.64
49.33649
424.3365
Nvdd/Ns
4
13.83
20.71
4.84
65.54502
440.545
1.474
5
17.25
25.75
6.04
81.75355
456.7536
6
20.67
30.79
7.23
97.96209
472.9621
7
24.09
35.84
8.43
114.1706
489.1706
8
27.51
40.88
9.63
130.3791
505.3791
9
30.93
45.92
10.83
146.5877
521.5877
Vdd
Output
Wattage
Vds not
V reflected including spike
at 375Vdc
# of LEDs
Turns
ratio
The output voltage includes 0.175V drop in the current sense resistor.
The circuit shown in Figure 5. can drive from 1 to 4 LEDs. The circuit shown in Figure 6. can
drive from 2 to 8 LEDs. Table 3. and Table 4. are based on the nominal voltage drop for a
white LED as stated in the LED datasheet shown earlier. The actual number of LEDs that
can be driven depends on the VF spread of the type of LEDs used and the Vdd range (9V to
38V) when worse case conditions are taken into account. Worse case parameters must be
considered for a robust design. If the design calls for a fixed number of LEDs, then the only
limiting factor is the VIPer's maximum output power capability.
Table 5. to Table 8. will show the same measurements taken with 700mA and 1.05A at the
output for VIPer12A and VIPer22A circuit configurations. Here, the limiting factor is the
maximum output power that can be attained from VIPer12A and VIPer22A with 6W
maximum and 10W maximum output power respectively.
9/45
Design consideration
Table 5.
AN1916
VIPer12A LED system at 700mA
Output
# of LEDs voltage at
700mA
Output
Wattage
V reflected
Vds not including
spike at 375Vdc
1
3.67
13.22
2.61
30.51282
433
2
7.15
23.42
5.10
59.74359
464
Table 6.
1
Table 7.
3.42
Vdd
13.49
Output
Wattage
3.49
V reflected
30.51282
Vds not including
spike at 375Vdc
430
Output
voltage
at 700mA
2
7.18
11.75
5.026
33.12796
433
3
10.48
16.72
7.336
49.33649
447
4
13.48
21.2
9.436
65.54502
461
0.117
Turns ratio
Ns/Np
0.117
Vdd
Output
Wattage
V reflected
Vds not including
spike at 375Vdc
Turns ratio
0.211
VIPer22A LED system at 1.05A
Output
# of LEDs voltage at
1050mA
2
Ns/Np
VIPer22A LED system at 700mA
# of LEDs
Table 8.
Turns ratio
VIPer12A LED system at 1.05A
Output
# of LEDs voltage at
1050mA
10/45
Vdd
6.62
Vdd
11.5
Output
Wattage
6.951
V reflected
33.12796
Vds not including
spike at 375Vdc
433
Turns ratio
0.211
AN1916
4
Board description
Board description
This demonstration board is a redesign of earlier versions of the VIPer12A and VIPer22A
LED driver reference designs. The board has been configured to allow the user to select the
output current of 350mA, 700mA or 1.05A by using the jumpers, J2 and J4, on the board
without having to change any components on the evaluation board. Table 9. below outlines
the range of LEDs that can be driven depending on the version of board and type of LEDs
selected:
Table 9.
Number of LEDs that can be driven
Board Version
1W LED (Iout =350mA) 3W LED (Iout = 700mA) 5W LED (Iout = 1.05A)
VIPer12A
Min 1
Max 4
Min 1
Max 2
Min 1
Max 1
VIPer22A
Min 2
Max 8
Min 2
Max 4
Min 2
Max 2
On the evaluation board, the value of the sense resistor is selected by jumpers J2 and J3.
When both J2 and J3 are open, the sense resistor is set to 0.5Ω making the output current
0.35mA. When either J2 or J3 is shorted, the output sense resistor is fixed to 0.25Ω making
the output current 700mA. With both J2 and J3 shorted, the output current will be set to
1.05A.
11/45
Transformer specifications
5
AN1916
Transformer specifications
The transformer is designed and manufactured by Cramer Coil and Transformer Co. The
electrical characteristics of the transformer are as follows:
●
Primary Inductance: 3.25mH +/-10%
●
Primary Leakage Inductance: 39.9µH typical
●
HIPOT (N1, N3, N4 to N2): 4000VAC, 1Sec
●
Turns Ratio (N1/N4:N2): 1:0.117
●
Turns Ratio (N1/N4:N3): 1:0.283
When the VIPerx2A (U4) is on, energy is stored in the primary winding of transformer (8-10),
T1. This energy is transferred to the auxiliary winding (5-6), and to the output (1-2) when the
VIPerx2A turns off. The auxiliary winding provides the bias voltage for the VIPerx2A at pin 4
(Vdd).
Figure 2.
Mechanical characteristics of the transformer
An alternate source for the transformer is Midcom, Inc. The part number for the transformer
on the VIPer12A LED and VIPer22A LED board are 31929 and 31928 respectively. Further
information and samples could be obtained from http://www.midcom-inc.com.
12/45
AN1916
Current selectable reference board
The evaluation board is designed to display the full functionality of VIPer12A and VIPer22A
as LED drivers to drive 1W, 3W as well as 5W LEDs at wide range input voltage. The
components selected are optimized for 5W LED driver application. The following pages
contain the schematics and bills of materials that reflect the components used on the
boards. Based on this circuit, there are six different configurations with different output
power level that could be derived by making minor components changes to the evaluation
board. The subsequent pages will show the schematics and bills of materials for the circuit
to drive 1W, 3W and 5W LEDs.
R10
1K
VIPer12A current selectable LED driver schematic
R5
750
R7
10K
5
Ve2+
Gnd
4
Vref
Ve1-
3
2
Out1
C6
0.33uF
50V
R15
24K
R16
2.2K
U3
6.2k
5%
1/4W
R3
0
+
0
C4
22uF
50V
6
10
8
5
1
6
8
5
10
W1
2
4.7nF
C5
2
2
D3
4
3
Cram er CVP11-047
1
1
1
2
STTH152
R4
100
5%
1/4W
+
1
TSM103
7
6
Ve2-
Out2
8
Vcc
1/2W
2
0.5
1/2W
R9 2.2K
1
U2
2
R14
1
C7
220uF
25V
1
R12
0.5
1/2W
2
0.5
1/2W
R13
1
J3
Jumper
LED 1
2
3
4
5
6
2
2
1
2
1
LED +
2
J4
535676-5
1
J2
Jumper
R11
1K
C8
0.1uF
2
C10
VIPer12A
3
Source
Tovl Fb
1
2
Drain
DrainVdd
Drain
Drain
U4
4
D2
STTH102
8
7
6
5
3
C1
4.7uF
400V
D1
600V,1A
DF06MGI
+
4
1
Compostar45mH
L1
2
1
.
.
+
C2
10uF
400V
C3
47pF
1kV
0
100
5%
1/2W
2
R2
1
1
R8
10
1/4W
5%
2
4
J1
2
1
C11
0.047uF
6.8
5%
1/4W
1W
FUSE
F1
R1
2
3
Figure 3.
1
6
Current selectable reference board
13/45
Current selectable reference board
Table 10.
AN1916
Bill of materials
Qty Reference
Part Description
Mfg P/N
Mfg
Geometry
Mounting
1
C1
4.7uF 400V Electrolytic TKR2GM4R7D
Compostar
Radial
TH
1
C2
10uF 400V Electrolytic
TKR2GM100D
Compostar
Radial
TH
1
C3
47pF 1kV Ceramic
ECC-D3A470JGE
Panasonic
1
C4
22uF 50V Electrolytic
EEU-FC1H220
Panasonic
1
C5
4.7nF 250V Ceramic
ECK-DNA472ME
Panasonic
TH
1
C6
0.33uF 50V Ceramic
ECU-S1H334KBB
Panasonic
TH
1
C7
220uF 25V Electrolytic
EEU-FC1E221
Panasonic
1
C8
1
TH
Radial
TH
Radial
TH
0.1uF 50V Ceramic
1206
SMD
C10
22Ga solid bus wire
Axial
TH
1
C11
0.047uF 250V boxcap
ECQ-U2A473MG
Panasonic
Radial
TH
1
D1
DIPBridge 600V 1A
DB105
Micro Commercial
1
D2
STTH102 diode
STTH102
STMicroelectronics
Axial DO-41 TH
1
D3
STTH152 diode
STTH152
STMicroelectronics
Axial DO-15 TH
1
F1
Fuse TR5 0.5A
3720500041
Wickman
Radial
1
J1
Phoenix 2 Pin
Connector
MKDSN1.5/2
Phoenix Contact
TH
2
J2, J3
Current Select Jumper
22-28-8020
Molex
TH
1
J4
Stackable Receptacle
535676-5
Tyco
1
L1
45mH common mode
choke
FUU10S-V24503Q22650
Compostar
1
R1
6.8Ω 5% 1/4W
Carbon Composition
1
R2
1
TH
6 Pin
TH
TH
TH
Axial
TH
100Ω 5% 0.5W
Axial
TH
R3
6.2Ω 5% 0.25W
Axial
TH
1
R4
100Ω 5% 0.25W
Axial
TH
1
R5
750Ω 5% 0.25W
1206
SMD
1
R7
10kΩ 5% 0.25W
Axial
TH
1
R8
10Ω 5% 0.25W
Axial
TH
1
R9
2.2kΩ 5% 0.5W
Axial
TH
1
R10
1kΩ 5% 0.25W
Axial
TH
1
R11
1kΩ 5% 0.25W
1206
SMD
3
R12, R13,
R14
0.5Ω 5% 0.5W
Axial
TH
1
R15
24kΩ 5% 0.25W
1206
SMD
1
R16
2.2kΩ 5% 0.25W
1206
SMD
1
T1
Cramer Transformer
14/45
CVP11-047
Cramer Coil
TH
J1
2
1
C11
0.047uF
6.8
5%
1W
2
C1
10uF
D1
400V
DF06MGI
600V,
1A
1
+
.
L1
Compostar45mH
4
4
3
R1
5Ohms
3
2
1
FUSE
+
C2
10uF
400V
C3
47pF
1kV
0
100
5%
1/2W
R2
C10
C12
N.U
1
2
8
7
6
5
VIPer22A
Source
Tovl Fb
Drain
DrainVdd
Drain
Drain
U4
3
4
D2
STTH102
R8
51
1/4W
5%
1
2
1
2
.
F1
2
1
0
+
C4
22uF
50V
0
6
8
5
1
D4
PKC-136
10
6
8
5
6.2k
5%
1/4W
R3
W1
2
2
C6
0.33uF
50V
4.7nF
C5
2
Cram er CVP11-046
1
1
10
D3
R4
100
5%
1/4W
+
R15
U3 24k
1/4W
STTH152
R16
2.2k
1/4W
4
3
4
3
2
1
R13
1
Ve2+
Ve2-
Out2
5
6
7
8
J3
Jumper
J2
Jumper
LED -
R5
750
C8
0.1uF
R11
1K
1/4W
%
R10
1K
Mfg
R7
10K
2
Vcc
2.2K
1/2W
TSM103
Gnd
Vref
Ve1-
2
2
R9
0.5
1/2W
R14
0.5
1/2W
Out1
U2
1
1
C7
220uF 1 R12 2
50V
0.5
1/2W
LED +
J4
535676-5
Figure 4.
1
1
8 Pin DIP
TH
Dual OpAmp & Voltage
TSM103ID
Ref.
STMicroelectronics
SO8
SMD
U4
Optocoupler
Fairchild/LiteOn
4 Pin DIP
TH
W1
22 Ga solid bus wire
Axial
TH
H11A817A/LTV817A
1
1
2
U3
2
1
STMicroelectronics
VIPer12ADIP
1
VIPer12A
1
2
3
4
5
6
U2
2
1
1
Mfg P/N
2
Part Description
2
1
Qty Reference
2
Table 10.
1
AN1916
Current selectable reference board
Bill of materials
Geometry
Mounting
VIPer22A current selectable LED driver schematic
15/45
Current selectable reference board
Table 11.
AN1916
Bill of materials
Qty Reference
Part Description
Mfg P/N
Mfg
Geometry
Radial
Mounting
2
C1, C2
10uF 400V Electrolytic
TKR2GM100D
Compostar
TH
1
C3
47pF 1kV Ceramic
ECC-D3A470JGE
Panasonic
1
C4
22uF 50V Electrolytic
EEU-FC1H220
Panasonic
1
C5
4.7nF 250V Ceramic
ECK-DNA472ME
Panasonic
TH
1
C6
0.33uF 50V Ceramic
ECU-S1H334KBB
Panasonic
TH
1
C7
220uF 50V Electrolytic
EEU-FC1H221
Panasonic
1
C8
1
TH
Radial
TH
Radial
TH
0.1uF 50V Ceramic
1206
SMD
C10
22Ga solid bus wire
Axial
TH
1
C11
0.047uF 250V boxcap
ECQ-U2A473MG
Panasonic
Radial
TH
1
D1
DIPBridge 600V 1A
DB105
Micro Commercial
1
D2
STTH102 diode
STTH102
STMicroelectronics Axial DO-41 TH
1
D3
STTH152 diode
STTH152
STMicroelectronics Axial DO-15 TH
1
D4
Peak Clamp
PKC136
STMicroelectronics Axial DO-15 TH
1
F1
Fuse TR5 0.5A
3720500041
Wickman
1
J1
Phoenix 2 Pin Connector MKDSN1.5/2
Phoenix Contact
TH
2
J2, J3
Current Select Jumper
22-28-8020
Molex
TH
1
J4
Stackable Receptacle
535676-5
Tyco
1
L1
45mH common mode
choke
FUU10S-V24503Q22650
Compostar
1
R1
5Ω 5% 1W wire wound
Axial
TH
1
R2
100Ω 5% 0.5W
Axial
TH
1
R3
6.2kΩ 5% 0.25W
Axial
TH
1
R4
100Ω 5% 0.25W
Axial
TH
1
R5
750Ω 5% 0.25W
1206
SMD
1
R7
10kΩ 5% 0.25W
Axial
TH
1
R8
51Ω 5% 0.25W
Axial
TH
1
R9
2.2kΩ 5% 0.5W
Axial
TH
1
R10
1kΩ 5% 0.25W
Axial
TH
1
R11
1kΩ 5% 0.25W
1206
SMD
3
R12, R13,
R14
0.5Ω 5% 0.5W
Axial
TH
1
R15
24kΩ 5% 0.25W
1206
SMD
1
R16
2.2kΩ 5% 0.25W
1206
SMD
1
T1
Cramer Transformer
CVP11-046
Cramer Coil
TH
1
U2
VIPer22A
VIPer22ADIP
STMicroelectronics 8 Pin DIP
TH
16/45
TH
Radial
6 Pin
TH
TH
TH
2
1
C11
0.047uF
X cap
2
D1
600V,1A
DF06MGI
C1
4.7uF
400V
1
+
L1
Compostar45mH
.
3
4
J1
6.8
5%
1/4W
1W
2
1
4
3
FUSE
+
C2
10uF
400V
C3
47pF
1kV
0
100
5%
1/2W
R2
1
2
8
7
6
5
Fb
Vdd
3
4
0
+
C4
22uF
50V
0
6
1
51T
8
5
6
8
5
6.2k
5%
1/4W
R3
W1
2
1
2
C6
0.33uF
50V
Y cap
4.7nF
C5
2
21T
1
Cram er CVP11-047
10
180T
10
R4
100
5%
1/4W
R16
2.2K
1/4W
R15
24K
1/4W
+
4
3
2
1
C7
220uF
25V
U2
Ve2-
8
5
6
7
R5
750
C8
0.1uF
R11
1K
R10
1K
1/4W
Mfg
R7
10K
Vcc
Out2
1
2
J2
R6
0.5
1/2W
2.2K
1/2W
Ve2+
TSM103
Gnd
Vref
Ve1-
Out1
R9
0.35A (3.5V - 14V)
U3
H11A817A
STTH102
D3
Mfg P/N
VIPer12A
Source
Source
Drain
Drain
Drain
Drain
U4
STTH102
D2
R8
10
1/4W
5%
1
2
R1
4
.
F1
1
3
Part Description
2
1
Figure 5.
2
Qty Reference
2
Table 11.
1
AN1916
Current selectable reference board
Bill of materials
Geometry
Mounting
1
U3
Dual OpAmp & Voltage
Ref.
TSM103ID
STMicroelectronics SO8
SMD
1
U4
Optocoupler
H11A817A/LTV817A
Fairchild/LiteOn
4 Pin DIP
TH
1
W1
22 Ga solid bus wire
Axial
TH
VIPer12A constant current (350mA) LED driver schematic
17/45
Current selectable reference board
Table 12.
AN1916
Bill of material
Qty Reference
Part Description
Mfg P/N
Mfg
Geometry
Mounting
1
C1
4.7uF 400V Electrolytic
TKR2GM4R7D
Compostar
Radial
TH
1
C2
10uF 400V Electrolytic
TKR2GM100D
Compostar
Radial
TH
1
C3
47pF 1kV Ceramic
ECC-D3A470JGE
Panasonic
1
C4
22uF 50V Electrolytic
EEU-FC1H220
Panasonic
1
C5
4.7nF 250V Ceramic
ECK-DNA472ME
Panasonic
TH
1
C6
0.33uF 50V Ceramic
ECU-S1H334KBB
Panasonic
TH
1
C7
220uF 25V Electrolytic
EEU-FC1E221
Panasonic
1
C8
0.1uF 50V Ceramic
ECU-S1H104BB
Panasonic
TH
1
C11
0.047uF 250V boxcap
ECQ-U2A473MG
Panasonic
TH
1
D1
DipBridge 600V 1A
DB105
Micro Commercial
1
D2
STTH102 Diode
STTH102
STMicroelectronics Axial DO-41 TH
1
D3
STTH102 Diode
STTH102
STMicroelectronics Axial DO-41 TH
1
F1
Fuse TR5 0.5A
3720500041
Wickman
2
J1, J2
Phoenix 2 PIN Connector
MKDSN1.5/2
Phoenix Contact
TH
1
L1
45mH common mode
choke
FUU10S-V24503Q22650
Compostar
TH
1
R1
6.8Ω 5% 1/4W
Carbon Composition
1
R2
1
TH
Radial
Radial
Radial
Radial
TH
TH
TH
TH
Axial
TH
100Ω 5% 0.5W
Axial
TH
R3
6.2kΩ 5% 0.25W
Axial
TH
1
R4
100Ω 5% 0.25W
Axial
TH
1
R5
750Ω 5% 0.25W
Axial
TH
1
R6
0.5Ω 5% 0.5W
Axial
TH
1
R7
10kΩ 5% 0.25W
Axial
TH
1
R8
10Ω 5% 0.25W
Axial
TH
1
R9
2.2kΩ 5% 0.5W
Axial
TH
2
R10, R11
1kΩ 5% 0.25W
Axial
TH
1
R15
24kΩ 5% 0.25W
Axial
TH
1
R16
2.2kΩ 5% 0.25W
Axial
TH
1
T1
Cramer Transformer
CVP11-047
Cramer Coil
TH
1
U2
Dual OpAmp&Voltage Ref.
TSM103ID
STMicroelectronics SO8
SMD
1
U3
Optocoupler
H11A817A/LTV817A Fairchild/LiteOn
1
U4
VIPer12A
VIPer12A DIP
1
W1
22 Ga Solid Bus Wire
18/45
4 Pin DIP
TH
STMicroelectronics 8 PIN DIP
TH
TH
2
1
C11
0.047uF
X cap
2
D1
600V,1A
DF06MGI
C1
10uF
400V
1
+
3
2
1
4
L1
Compostar45mH
.
+
C2
10uF
400V
C3
47pF
1kV
0
100
5%
1/2W
R2
1
2
8
7
6
5
Fb
Vdd
3
4
STTH102
D2
R8
51
1/4W
5%
0
+
D4
PKC-136
VIPer22A
Source
Source
Drain
Drain
Drain
Drain
U4
1
2
J1
6.8
5%
1W
5Ohms
1
2
4
3
FUSE
C4
22uF
50V
0
6
1
56T
8
5
6
8
5
6.2k
5%
1/4W
R3
W1
2
1
2
C6
0.33uF
50V
Y cap
4.7nF
C5
2
38T
1
Cram er CVP11-046
10
180T
10
R4
100
5%
1/4W
STTH102
D3
R16
2.2k
R15
24k
4
3
R1
1
2
4
3
2
1
1/2W
R9
2.2K
1
R7
10K
Ve2-
Out2
Vcc
2
Ve2+
TSM103
Gnd
Vref
Ve1-
Out1
U2
C7
220uF
50V
U3
H11A817A
+
0.35A (7V - 27.5V)
1
2
.
F1
5
6
7
8
R6
0.5
1/2W
1
2
J2
R5
750
2
C8
0.1uF
R11
1K
R10
1K
1/4W
Figure 6.
1
AN1916
Current selectable reference board
VIPer22A constant current (350mA) LED driver schematic
19/45
Current selectable reference board
Table 13.
AN1916
Bill of materials
Qty Reference
Part Description
Mfg P/N
Mfg
Geometry
Radial
Mounting
2
C1, C2
10uF 400V Electrolytic
TKR2GM100D
Compostar
TH
1
C3
47pF 1Kv Ceramic
ECC-D3A470JGE
Panasonic
1
C4
22uF 50V Electrolytic
EEU-FC1H220
Panasonic
1
C5
4.7nF 250V Ceramic
ECK-DNA472ME
Panasonic
TH
1
C6
0.33uF 50V Ceramic
ECU-S1H334KBB
Panasonic
TH
1
C7
220uF 50V Electrolytic
EEU-FC1H221
Panasonic
1
C8
0.1uF 50V Ceramic
ECU-S1H104BB
Panasonic
TH
1
C11
0.047uF 250V boxcap
ECQ-U2A473MG
Panasonic
TH
1
D1
DipBridge 600V 1A
DB105
Micro Commercial
TH
2
D2, D3
STTH102 diode
STTH102
STMicroelectronics Axial DO-41 TH
1
D4
Peak Clamp
PKC136
STMicroelectronics Axial DO-15 TH
1
F1
Fuse TR5 0.5A
3720500041
Wickman
2
J1, J2
Phoenix 2 Pin Conn
MKDSN1.5/2
Phoenix Contact
TH
1
L1
45mH common mode
choke
FUU10S-V24503Q22650
Compostar
TH
1
R1
5Ω 5% 1W
Wirewound
1
R2
1
TH
Radial
Radial
Radial
TH
TH
TH
Axial
TH
100Ω 5% 0.5W
Axial
TH
R3
6.2kΩ 5% 0.25W
Axial
TH
1
R4
100Ω 5% 0.25W
Axial
TH
1
R5
750Ω 5% 0.25W
Axial
TH
1
R6
0.5Ω 5% 0.5W
Axial
TH
1
R7
10kΩ 5% 0.25W
Axial
TH
1
R8
51Ω 5% 0.25W
Axial
TH
1
R9
2.2k 5% 0.5W
Axial
TH
2
R10, R11
1KΩ 5% 0.25W
Axial
TH
1
R15
24kΩ 5% 0.25W
Axial
TH
1
R16
2.2kΩ 5% 0.25W
Axial
TH
1
T1
Cramer Transformer
CVP11-046
Compostar
TH
1
U2
Dual OpAmp & Voltage
Ref.
TSM103ID
STMicroelectronics SO8
SMD
1
U3
Optocoupler
H11A817A/LTV817A Fairchild/LiteOn
1
U4
VIPer22A
VIPer22ADIP
1
W1
22 Ga solid bus wire
3
20/45
4 Pin DIP
TH
STMicroelectronics 8 Pin DIP
TH
Axial
TH
The following components are changed for the VIPer22A constant current (350mA) LED
driver configuration from the VIPer12A constant current (350mA) LED driver configuration.
2
1
C11
0.047uF
X cap
2
D1
600V,1A
DF06MGI
C1
4.7uF
400V
1
+
L1
Compostar45mH
.
3
4
J1
6.8
5%
1/4W
1W
2
1
4
3
R1
+
C2
10uF
400V
C3
47pF
1kV
0
100
5%
1/2W
R2
1
2
8
7
6
5
U4
Fb
Vdd
VIPer12A
Source
Source
Drain
Drain
Drain
Drain
3
4
STTH102
D2
R8
10
1/4W
5%
1
2
FUSE
0
+
C4
22uF
50V
0
6
1
51T
8
5
6
8
5
6.2k
5%
1/4W
R3
W1
2
1
2
C6
0.33uF
50V
Y cap
4.7nF
C5
2
21T
1
Cram er CVP11-047
10
180T
10
4
3
2
1
C7
220uF
25V
U2
Ve2+
R7
10K
Ve2-
Out2
Vcc
2
LED -
R9 1/2W
2.2K
1
LED +
TSM103
Gnd
Vref
Ve1-
Out1
0.7A
5
6
7
8
R6
0.25
1/2W
1
2
J2
R5
750
C8
0.1uF
R11
1K
R10
1K
1/4W
Reference
R16
2.2k
1/4W
R15
24k
1/4W
+
U3
H11A817A
R4
100
5%
1/4W
STTH102
D3
4
3
.
F1
1
2
1
Quantity
2
Figure 7.
2
Table 14.
1
AN1916
Current selectable reference board
BOM change for VIPer22A 350mA solution
Description
1
C1
10uF/400V electrolytic
1
C7
220uF/50V electrolytic
1
R8
51Ω 5% 0.25W
1
D4
STMicroelectronics PKC-136
1
T1
Cramer Coil transformer CVP11-046
1
U4
STMicroelectronics VIPer22A
VIPer12A constant current (700mA) LED driver schematic
21/45
Current selectable reference board
Table 15.
AN1916
Bill of materials
Qty Reference
Part Description
Mfg P/N
Mfg
Geometry
Mounting
1
C1
4.7uF 400V Electrolytic
TKR2GM4R7D
Compostar
Radial
TH
1
C2
10uF 400V Electrolytic
TKR2GM100D
Compostar
Radial
TH
1
C3
47pF 1kV Ceramic
ECC-D3A470JGE
Panasonic
1
C4
22uF 50V Electrolytic
EEU-FC1H220
Panasonic
1
C5
4.7nF 250V Ceramic
ECK-DNA472ME
Panasonic
TH
1
C6
0.33uF 50V Ceramic
ECU-S1H334KBB
Panasonic
TH
1
C7
220uF 50V Electrolytic
EEU-FH1E221
Panasonic
1
C8
0.1uF 50V Ceramic
ECU-S1H104BB
Panasonic
TH
1
C11
0.047uF 250V boxcap
ECQ-U2A473MG
Panasonic
TH
1
D1
DipBridge 600V 1A
DB105
Micro Commercial
1
D2
STTH102 Diode
STTH102
STMicroelectronics Axial DO-41 TH
1
D3
STTH102 Diode
STTH102
STMicroelectronics Axial DO-41 TH
1
F1
Fuse TR5 0.5A
3720500041
Wickman
2
J1, J2
Phoenix 2 PIN Connector MKDSN1.5/2
Phoenix Contact
TH
1
L1
45mH common mode
choke
FUU10S-V24503Q22650
Compostar
TH
1
R1
6.8Ω 5% 1/4W
Carbon Composition
1
R2
1
TH
Radial
Radial
Radial
Radial
TH
TH
TH
TH
Axial
TH
100Ω 5% 0.5W
Axial
TH
R3
6.2kΩ 5% 0.25W
Axial
TH
1
R4
100Ω 5% 0.25W
Radial
TH
1
R5
750Ω 5% 0.25W
Radial
TH
1
R6
0.25Ω 5% 0.5W
Radial
TH
1
R7
10kΩ 5% 0.25W
Axial
TH
1
R8
10Ω 5% 0.25W
Axial
TH
1
R9
2.2kΩ 5% 0.5W
Axial
TH
2
R10, R11
1kΩ 5% 0.25W
Axial
TH
1
R15
24kΩ 5% 0.25W
Axial
TH
1
R16
2.2kΩ 5% 0.25W
Axial
TH
1
T1
Cramer Transformer
CVP11-047
Cramer Coil
TH
1
U2
Dual OpAmp&Voltage
Ref.
TSM103ID
STMicroelectronics SO8
SMD
1
U3
Optocoupler
H11A817A/LTV817A
Fairchild/LiteOn
4 Pin DIP
TH
1
U4
VIPer12A
VIPer12A DIP
STMicroelectronics 8 Pin DIP
TH
1
W1
22 Ga Solid Bus Wire
22/45
TH
2
1
C11
0.047uF
X cap
2
D1
600V,1A
DF06MGI
C1
10uF
400V
1
+
3
4
L1
Compostar45mH
.
2
1
J1
6.8
5%
1W
5Ohms
+
C2
10uF
400V
C3
47pF
1kV
0
100
5%
1/2W
R2
1
2
8
7
6
5
Fb
Vdd
3
4
STTH102
D2
R8
51
1/4W
5%
0
+
D4
PKC-136
VIPer22A
Source
Source
Drain
Drain
Drain
Drain
U4
1
2
4
3
FUSE
1
2
R1
C4
22uF
50V
0
6
1
56T
8
5
6
8
5
6.2k
5%
1/4W
R3
W1
2
1
2
C6
0.33uF
50V
Y cap
4.7nF
C5
2
38T
1
Cram er CVP11-046
10
180T
10
R4
100
5%
1/4W
STTH102
D3
R16
2.2k
R15
24k
4
3
.
F1
1
2
4
3
2
1
1/2W
Ve2+
R7
10K
Ve2-
Out2
Vcc
2
LED-
R9
2.2K
1
LED+
TSM103
Gnd
Vref
Ve1-
Out1
U2
C7
220uF
50V
U3
H11A817A
+
0.7A
1
2
5
6
7
8
R6
0.25
1/2W
1
2
J2
R5
750
C8
0.1uF
R11
1K
R10
1K
1/4W
Figure 8.
2
1
AN1916
Current selectable reference board
VIPer22A constant current (700mA) LED driver schematic
23/45
Current selectable reference board
Table 16.
AN1916
Bill of matarials
Qty Reference
Part description
Mfg P/N
Mfg
Geometry
Radial
Mounting
2
C1, C2
10uF 400V Electrolytic
TKR2GM100D
Compostar
TH
1
C3
47pF 1Kv Ceramic
ECC-D3A470JGE
Panasonic
1
C4
22uF 50V Electrolytic
EEU-FC1H220
Panasonic
1
C5
4.7nF 250V Ceramic
ECK-DNA472ME
Panasonic
TH
1
C6
0.33uF 50V Ceramic
ECU-S1H334KBB
Panasonic
TH
1
C7
220uF 50V Electrolytic
EEU-FC1H221
Panasonic
1
C8
0.1uF 50V Ceramic
ECU-S1H104BB
Panasonic
TH
1
C11
0.047uF 250V boxcap
ECQ-U2A473MG
Panasonic
TH
1
D1
DipBridge 600V 1A
DB105
Micro Commercial
TH
2
D2, D3
STTH102 diode
STTH102
STMicroelectronics Axial DO-41 TH
1
D4
Peak Clamp
PKC136
STMicroelectronics Axial DO-15 TH
1
F1
Fuse TR5 0.5A
3720500041
Wickman
2
J1, J2
Phoenix 2 Pin Conn
MKDSN1.5/2
Phoenix Contact
TH
1
L1
45mH common mode
choke
FUU10S-V24503Q22650
Compostar
TH
1
R1
5Ω 5% 1W
Wirewound
1
R2
1
TH
Radial
Radial
Radial
TH
TH
TH
Axial
TH
100Ω 5% 0.5W
Axial
TH
R3
6.2kΩ 5% 0.25W
Axial
TH
1
R4
100Ω 5% 0.25W
Axial
TH
1
R5
750Ω 5% 0.25W
Axial
TH
1
R6
0.25Ω 5% 0.5W
Axial
TH
1
R7
10kΩ 5% 0.25W
Axial
TH
1
R8
51Ω 5% 0.25W
Axial
TH
1
R9
2.2kΩ 5% 0.5W
Axial
TH
1
R10, R11
1KΩ 5% 0.25W
Axial
TH
1
R15
24kΩ 5% 0.25W
Axial
TH
2
R16
2.2kΩ 5% 0.25W
Axial
TH
1
T1
Cramer Transformer
CVP11-046
Cramer Coil
TH
1
U2
Dual OpAmp & Voltage
Ref.
TSM103ID
STMicroelectronics SO8
SMD
1
U3
Optocoupler
H11A817A/LTV817A
Fairchild/LiteOn
4 Pin DIP
TH
1
U4
VIPer22A
VIPer22ADIP
STMicroelectronics 8 Pin DIP
TH
1
W1
22 Ga solid bus wire
24/45
Axial
TH
2
1
C11
0.047uF
X cap
2
D1
600V,1A
DF06MGI
C1
4.7uF
400V
1
+
3
4
L1
Compostar45mH
.
2
1
J1
6.8
5%
1/4W
1W
+
C2
10uF
400V
C3
47pF
1kV
0
100
5%
1/2W
R2
1
2
8
7
6
5
Fb
Vdd
VIPer12A
Source
Source
Drain
Drain
Drain
Drain
U4
3
4
STTH102
D2
R8
10
1/4W
5%
1
2
4
3
FUSE
0
+
C4
22uF
50V
0
6
1
51T
8
5
6
8
5
6.2k
5%
1/4W
R3
W1
2
1
2
C6
0.33uF
50V
Y cap
4.7nF
C5
2
21T
1
Cram er CVP11-047
10
180T
10
R4
100
5%
1/4W
R16
2.2k
1/4W
R15
24k
1/4W
+
4
3
2
1
U2
Ve2+
R7
10K
Ve2-
Out2
Vcc
2
LED -
R9 1/2W
2.2K
1
LED +
TSM103
Gnd
Vref
Ve1-
Out1
1.05A
C7
220uF
25V
U3
H11A817A
STTH152
D3
4
3
R1
1
2
1
2
.
F1
5
6
7
8
R6
0.167
1/2W
1
2
J2
R5
750
2
C8
0.1uF
R11
1K
R10
1K
1/4W
Figure 9.
1
AN1916
Current selectable reference board
VIPer12A constant current (1.05A) LED driver schematic
25/45
Current selectable reference board
Table 17.
AN1916
Bill of materials
Qty Reference
Part Description
Mfg P/N
Mfg
Geometry
Mounting
1
C1
4.7uF 400V
Electrolytic
TKR2GM4R7D
Compostar
Radial
TH
1
C2
10uF 400V
Electrolytic
TKR2GM100D
Compostar
Radial
TH
1
C3
47pF 1kV Ceramic
ECC-D3A470JGE
Panasonic
1
C4
22uF 50V Electrolytic EEU-FC1H220
Panasonic
1
C5
4.7nF 250V Ceramic
ECK-DNA472ME
Panasonic
TH
1
C6
0.33uF 50V Ceramic
ECU-S1H334KBB
Panasonic
TH
1
C7
220uF 50V
Electrolytic
EEU-FH1E221
Panasonic
1
C8
0.1uF 50V Ceramic
ECU-S1H104BB
Panasonic
TH
1
C11
0.047uF 250V
boxcap
ECQ-U2A473MG
Panasonic
TH
1
D1
DipBridge 600V 1A
DB105
Micro Commercial
1
D2
STTH102 Diode
STTH102
STMicroelectronics Axial DO-41 TH
1
D3
STTH152 Diode
STTH152
STMicroelectronics Axial DO-41 TH
1
F1
Fuse TR5 0.5A
3720500041
Wickman
2
J1, J2
Phoenix 2 PIN
Connector
MKDSN1.5/2
Phoenix Contact
1
L1
45mH common mode
FUU10S-V24503-Q22650 Compostar
choke
1
R1
6.8Ω 5% 1/4W
1
R2
1
Radial
Radial
Radial
Radial
TH
TH
TH
TH
TH
TH
Axial
TH
100Ω 5% 0.5W
Axial
TH
R3
6.2kΩ 5% 0.25W
Axial
TH
1
R4
100Ω 5% 0.25W
Axial
TH
1
R5
750Ω 5% 0.25W
Axial
TH
1
R6
0.167Ω 5% 0.5W
Axial
TH
1
R7
10kΩ 5% 0.25W
Axial
TH
1
R8
10Ω 5% 0.25W
Axial
TH
1
R9
2.2kΩ 5% 0.5W
Axial
TH
2
R10, R11
1kΩ 5% 0.25W
Axial
TH
1
R15
24kΩ 5% 0.25W
Axial
TH
1
R16
2.2kΩ 5% 0.25W
Axial
TH
1
T1
Cramer Transformer
1
U2
Dual OpAmp&Voltage
TSM103ID
Ref.
26/45
Carbon Composition
TH
CVP11-047
Cramer Coil
TH
STMicroelectronics SO8
SMD
2
1
C11
0.047uF
X cap
2
D1
600V,1A
DF06MGI
C1
10uF
400V
1
+
3
4
L1
Compostar45mH
.
2
1
J1
6.8
5%
1W
+
C2
10uF
400V
C3
47pF
1kV
0
100
5%
1/2W
R2
1
2
8
7
6
5
Fb
Vdd
3
4
STTH102
D2
R8
51
1/4W
5%
0
+
D4
PKC-136
C4
22uF
50V
0
6
1
56T
8
5
6
8
5
6.2k
5%
1/4W
R3
W1
2
1
2
C6
0.33uF
50V
Y cap
4.7nF
C5
2
38T
1
Cram er CVP11-046
10
180T
10
R4
100
5%
1/4W
STTH152
D3
R16
2.2k
R15
24k
4
3
2
1
1/2W
Ve2+
5
6
7
8
R6
0.167
1/2W
1
2
J2
R5
750
C8
0.1uF
R11
1K
R10
1K
1/4W
Mfg
R7
10K
Ve2-
Out2
Vcc
2
LED-
R9
2.2K
1
LED+
TSM103
Gnd
Vref
Ve1-
Out1
U2
C7
220uF
50V
U3
H11A817A
+
1.05A
Mfg P/N
VIPer22A
Source
Source
Drain
Drain
Drain
Drain
U4
1
2
4
3
FUSE
1
2
1
R1
5Ohms
4
3
.
F1
1
2
Part Description
2
Qty Reference
2
Table 17.
1
AN1916
Current selectable reference board
Bill of materials
Geometry
Mounting
1
U3
Optocoupler
H11A817A/LTV817A
Fairchild/LiteOn
4 Pin DIP
TH
1
U4
VIPer12A
VIPer12A DIP
STMicroelectronics 8 Pin DIP
TH
1
W1
22 Ga Solid Bus Wire
TH
Figure 10. VIPer22A constant current (1.05A) LED driver schematic
27/45
Current selectable reference board
Table 18.
AN1916
Bill of materials
Qty Reference
Part Description
Mfg P/N
Mfg
Geometry
Mounting
2
C1, C2
10uF 400V
Electrolytic
TKR2GM100D
Compostar
1
C3
47pF 1Kv Ceramic
ECC-D3A470JGE
Panasonic
1
C4
22uF 50V Electrolytic
EEU-FC1H220
Panasonic
1
C5
4.7nF 250V Ceramic
ECK-DNA472ME
Panasonic
TH
1
C6
0.33uF 50V Ceramic
ECU-S1H334KBB
Panasonic
TH
1
C7
220uF 50V
Electrolytic
EEU-FC1H221
Panasonic
1
C8
0.1uF 50V Ceramic
ECU-S1H104BB
Panasonic
TH
1
C11
0.047uF 250V boxcap ECQ-U2A473MG
Panasonic
TH
1
D1
DipBridge 600V 1A
DB105
Micro Commercial
TH
1
D2
STTH102 diode
STTH102
STMicroelectronics Axial DO-41
TH
1
D3
STTH152 diode
STTH152
STMicroelectronics Axial DO-41
TH
1
D4
Peak Clamp
PKC136
STMicroelectronics Axial DO-15
TH
1
F1
Fuse TR5 0.5A
3720500041
Wickman
TH
2
J1, J2
Phoenix 2 Pin Conn
MKDSN1.5/2
Phoenix Contact
TH
1
L1
45mH common mode
choke
FUU10S-V24503Q22650
Compostar
TH
1
R1
5Ω 5% 1W
Wirewound
1
R2
1
Radial
TH
TH
Radial
Radial
Radial
TH
TH
Axial
TH
100Ω 5% 0.5W
Axial
TH
R3
6.2kΩ 5% 0.25W
Axial
TH
1
R4
100Ω 5% 0.25W
Axial
TH
1
R5
750Ω 5% 0.25W
Axial
TH
1
R6
0.167Ω 5% 0.5W
Axial
TH
1
R7
10kΩ 5% 0.25W
Axial
TH
1
R8
51Ω 5% 0.25W
Axial
TH
1
R9
2.2kΩ 5% 0.5W
Axial
TH
2
R10, R11
1KΩ 5% 0.25W
Axial
TH
1
R15
24kΩ 5% 0.25W
Axial
TH
1
R16
2.2kΩ 5% 0.25W
Axial
TH
1
T1
Cramer Transformer
CVP11-046
Cramer Coil
TH
1
U2
Dual OpAmp &
Voltage Ref.
TSM103ID
STMicroelectronics SO8
SMD
1
U3
Optocoupler
H11A817A/LTV817A
Fairchild/LiteOn
4 Pin DIP
TH
1
U4
VIPer22A
VIPer22ADIP
STMicroelectronics 8 Pin DIP
TH
1
W1
22 Ga solid bus wire
28/45
Axial
TH
AN1916
7
PCB layout
PCB layout
Figure 11. Board top side (not in scale)
Figure 12. Board bottom side viewed from top side (not in scale)
29/45
General circuit description
8
AN1916
General circuit description
The design operates from 90 to 264Vac input. The AC input is rectified and filtered by the
bridge BR1 to generate the high voltage DC bus that is applied to the primary winding of the
transformer, CVP11-04X. C1, L1, C2, and C11 provide EMI filtering for the circuit.
A snubber circuit that consists of R2 and C3 reduces the leakage spike and voltage ringing
on the drain pin of VIPerX2A, thereby provides additional EMI filtering. A transil, PKC-136,
is used to clamp the drain voltage at a safe level for the VIPer22A constant current LED
driver configuration because of the extra power level.
The current is controlled by monitoring the voltage drop across the sense resistor, R6. The
non-inverting input of the operational amplifier inside TSM103 is set to 175mV through the
resistors divider, R5 and R7. This operational amplifier will then regulate the inverting input
to 175mV by adjusting its output by changing the current going through the optocoupler,
H11A817A (U3). The gain of the transistor inside the optocoupler then controls the feedback
loop of VIPerX2A.
The LED drive current is given by the equation:
Iout=0.175V/R6
C6, C8, and R11 are utilized to ensure the stability of the circuit. C7 reduces the ripple
current. As a safety measure, a resistor divider consisting of R15 and R16 is added to
clamp the output voltage fed back into TSM103 so that it does not exceed the maximum
voltage rating of U2, TSM103 for a no load condition at the output.
30/45
AN1916
9
Waveforms
Waveforms
Figure 13. shows VDD, Vout, and VDS at 375Vdc with one LED at the output for the
VIPer12A constant current LED driver configuration while Figure 14. shows likewise with
four LEDs at the output.
Figure 13. VIPer12A with 1 LED at output
Figure 14. VIPer12A with 4 LEDs at output
The drain to source voltage, VDD, and Vout waveforms are shown in Figure 15. and Figure
16., taken at 375Vdc for two and eight LEDs at the output respectively. It can be seen at
worse case condition, the voltages across the device are not exceeded.
Figure 15. VIPer22A with 2 LEDs at output
Figure 16. VIPer22A with 8 LEDs at output
31/45
EMI results
10
AN1916
EMI results
Both VIPer12A and VIPer22A constant current LED driver configurations were designed to
pass EN55022 Class B EMI at 120Vac input. Peak EMI is met with a comfortable margin.
Figure 17. VIPer12A EMI
32/45
Figure 18. VIPer22A EMI
AN1916
Current regulation
The VIPer12A and the VIPer22A have excellent regulation as shown in Figure 19. and
Figure 20.
Figure 19. VIPer12A current regulation
Output current
1 to 4 LEDs VSOutput current
400
390
380
370
360
350
340
330
320
310
300
1
2
3
4
LEDs
Figure 20. VIPer22A current regulation
2 to 8 LEDs VS Output current
360
Output current
11
Current regulation
350
340
330
320
310
300
2
3
4
5
6
7
8
LEDs
33/45
Ripple current
12
AN1916
Ripple current
The ripple current measured at 90Vac with one LED at the output is 59mVpp and it is
57mVpp at 264Vac input for the VIPer12A constant current LED driver configuration. With
four LEDs at the output the measured ripple current is 46mVpp at 264Vac input.
Figure 22. shows the ripple current measurements for the VIPer22A constant current LED
driver configuration. Here, the measured ripple is 26mVpp at 264Vac input with 2 LEDs at
the output while the ripple is 19.5mVpp for 8 LEDs at the output.
Figure 21. Ripple at 264Vac (VIPer12A)
34/45
Figure 22. Ripple at 264Vac (VIPer22A)
AN1916
13
1.8" Round LED board configuration
1.8" Round LED board configuration
Another version is available of the rectangular VIPer12A LED driver and VIPer22A LED
driver boards that fits inside a round 1.8" in diameter light fixture. The following sections will
describe the layout and performance of this board.
35/45
Round LED board layout
14
Round LED board layout
Figure 23. Top Side of Board (not in scale)
Figure 25. Top board layout
Figure 26. Bottom board layout
36/45
AN1916
Figure 24. Bottom Side of Board (not in scale)
AN1916
15
EMI result
EMI result
The VIPer22A LED driver round board passes EN55022 Class B EMI at 120Vac input as
shown in Figure 27. below. Figure 28. shows the EMI results at 120Vac input for VIPer12A
round LED driver board.
Figure 27. VIPer22A round LED EMI
Figure 28. VIPer12A round LED EMI
37/45
Current regulation
16
AN1916
Current regulation
The current regulation measured is ±0.15% at 120Vac input with 2 to 8 LEDs at the output
for the VIPer22A round LED driver board.
Figure 29. VIPer22A round LED board current regulation
Iout (A)
Current Regulation
0.4
0.38
0.36
0.34
0.32
0.3
0.28
0.26
0.24
Iout
1
3
5
7
9
#of LEDs
Figure 30. VIPer12A round LED board current regulation
Iout (A)
Current Regulation
0.38
0.37
0.36
0.35
0.34
0.33
0.32
0.31
0.3
Iout
0
1
2
3
Number of LEDs
38/45
4
5
AN1916
17
Ripple current
Ripple current
Figure 31. below shows the ripple current measured with 2 LEDs and 8 LEDs at the output
for 264Vac input for the VIPer22A round LED driver board. With 2 LEDs at the output, the
measured ripple current is 51mApp while the ripple is 43mApp for 8 LEDs at the output.
With 1 LED at the output for the VIPer12A round LED driver board, the measured ripple
current is 65mApp and 45mApp for 4 LEDs at the output.
Figure 31. Ripple Current at 264Vac input
(VIPer22A)
Figure 32. Ripple Current at 264Vac input
(VIPer12A)
39/45
Low cost option
18
AN1916
Low cost option
A lower cost alternative to the isolated VIPer12A power supply is to use the VIPer22A in a
non-isolated Buck configuration as shown in Figure 33. The circuit uses fewer and less
expensive parts for systems that do not require safety isolation.
Figure 33. Non-isolated buck configuration schematic
D6
1N400 5
D1
1N4007
Fusable res istor
90 TO 264 vAC
L0
Source
3
SourceFb
R0
10
1/2W
D8
1 N4005
C3
1uF
25V
2 LED, R3=jumper
1 LED, R3= 1Ohms 2W
Cx
.022
50V
L1
1
10V @ 320mA
1m H
1m H
R1 1K
C1
4.7uF
400V
W1
C4
0.4 7
25V
1
2
U1
VIPer 2 2
8
7
6
5
C7
0.1u
250V
Drain
4
Drain Vdd
Drain
Drain
DZ
10V
1N5240
D5
STTA106
C2
4.7uF
400V
C6
33uF
63V
2
R2
R3
10
2W
10
2W
DZ1
16V
1n5246
0
C1, L0, and C2 form an EMI filter to meet emission standards. D6, C3 maintain voltage for
Vdd. L1 and C6 form the output filter to average the DC output. The output is voltage
regulated at 10V by the zener diode DZ1. R2 drops the voltage and sets the current to
approximately 330mA. A different value resistor can be used to set the current to a value up
to 370mA which is the limiting factor of L1, the output inductor. This unit will drive 2 LEDs or
1 LED by cutting one jumper before use. To drive 1 LED only, the jumper can be cut, placing
a second resistor in series with the output to drop additional voltage. This is not as efficient
as the previous design but simpler and less expensive.
The output is set to 10V because that is the minimum output voltage that will drive the
VIPer22A with these minimum parts. With the addition of an inductor, 2 of 1N4005 and a
small capacitor, a lower voltage can be designed to increase the efficiency.
Table 19.
Bill of materials
Quantity
40/45
Reference
Description
1
Cx
0.022uF/50V 1206SM
2
C1, C2
4.7uF/400V electrolytic
1
C3
1uF/25V electrolytic
1
C4
0.47uF/25V 1206SM
1
C6
33uF/63V low ESR
1
C7
0.1uF/630V poly
1
DZ
1N5240 (10V)
AN1916
Low cost option
Table 19.
Bill of materials
Quantity
Reference
Description
1
DZ1
1N5246 (16V)
1
D1
1N4007
1
D5
STMicroelectronics STTA106
2
D6, D8
1N4005
1
L0
1mH 160mA JW Miller 5300-37
1
L1
1mH 400mA Compostar Q3277
1
R0
10Ω 1/2W fusable resistor
1
R1
1kΩ 1/4W
2
R2, R3
10Ω 2W
1
U1
STMicroelectronics VIPer22A
1
W1
Jumper wire
41/45
PCB layout
19
AN1916
PCB layout
Below is a reference design of the VIPer22A-Buck LED driver above. The board measures
67mm x 26mm.
Figure 34. VIPer22A buck board layout
42/45
AN1916
20
Conclusion
Conclusion
We have shown two isolated and one non-isolated off line power supplies to efficiently drive
LEDs in series.
43/45
Revision history
21
AN1916
Revision history
Table 20.
44/45
Document revision history
Date
Revision
Changes
10-Sep-2004
1
Initial release
18-Jan-2006
2
Various changes
03-May-2006
3
- New template
- Various changes
10-Aug-2006
4
- New template
- Component list value modified
- Schematic diagram modified
AN1916
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2006 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
45/45