Download

Rev. 1.2, Apr. 2016
K4A4G045WE
K4A4G085WE
4Gb E-die DDR4 SDRAM
78FBGA with Lead-Free & Halogen-Free
(RoHS compliant)
1.2V
datasheet
SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND
SPECIFICATIONS WITHOUT NOTICE.
Products and specifications discussed herein are for reference purposes only. All information discussed
herein is provided on an "AS IS" basis, without warranties of any kind.
This document and all information discussed herein remain the sole and exclusive property of Samsung
Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property
right is granted by one party to the other party under this document, by implication, estoppel or otherwise.
Samsung products are not intended for use in life support, critical care, medical, safety equipment, or
similar applications where product failure could result in loss of life or personal or physical harm, or any
military or defense application, or any governmental procurement to which special terms or provisions
may apply.
For updates or additional information about Samsung products, contact your nearest Samsung office.
All brand names, trademarks and registered trademarks belong to their respective owners.
(C) 2016 Samsung Electronics Co., Ltd.GG All rights reserved.
-1-
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
Revision History
Revision No.
History
Draft Date
Remark
Editor
1.0
- First SPEC release
4th Jun, 2015
-
J.Y.Lee
1.01
- Correction of typo
11th Aug, 2015
-
J.Y.Lee
1.1
- Added values on page 11 [Table 5]
27th Oct, 2015
-
J.Y.Lee
1.2
- Addition of Industrial temp
11th Apr, 2016
-
J.Y.Lee
-2-
K4A4G045WE
K4A4G085WE
datasheet
Rev. 1.2
DDR4 SDRAM
Table Of Contents
4Gb E-die DDR4 SDRAM
1. Ordering Information .....................................................................................................................................................4
2. Key Features.................................................................................................................................................................4
3. Package pinout/Mechanical Dimension & Addressing..................................................................................................5
3.1 x4 Package Pinout (Top view) : 78ball FBGA Package .......................................................................................... 5
3.2 x8 Package Pinout (Top view) : 78ball FBGA Package .......................................................................................... 6
3.3 FBGA Package Dimension (x4/x8) .......................................................................................................................... 7
4. Input/Output Functional Description..............................................................................................................................8
5. DDR4 SDRAM Addressing ...........................................................................................................................................10
6. Absolute Maximum Ratings ..........................................................................................................................................11
6.1 Absolute Maximum DC Ratings............................................................................................................................... 11
6.2 DRAM Component Operating Temperature Range ................................................................................................ 11
7. AC & DC Operating Conditions.....................................................................................................................................11
8. AC & DC Input Measurement Levels ...........................................................................................................................12
8.1 AC & DC Logic Input Levels for Single-ended Signals ............................................................................................ 12
8.2 VREF Tolerances .................................................................................................................................................... 12
8.3 AC & DC Logic Input Levels for Differential Signals ............................................................................................... 13
8.3.1. Differential Signals Definition ........................................................................................................................... 13
8.3.2. Differential Swing Requirement for Clock (CK_t - CK_c) ................................................................................. 13
8.3.3. Single-ended Requirements for Differential Signals ........................................................................................ 14
8.3.4. Address, Command and Control Overshoot and Undershoot Specifications................................................... 15
8.3.5. Clock Overshoot and Undershoot Specifications ............................................................................................. 16
8.3.6. Data, Strobe and Mask Overshoot and Undershoot Specifications ................................................................. 16
8.4 Slew Rate Definitions .............................................................................................................................................. 17
8.4.1. Slew Rate Definitions for Differential Input Signals (CK) ................................................................................. 17
8.4.2. Slew Rate Definition for Single-ended Input Signals ( CMD/ADD ).................................................................. 18
8.5 Differential Input Cross Point Voltage...................................................................................................................... 19
8.6 CMOS Rail to Rail Input Levels ............................................................................................................................... 20
8.6.1. CMOS Rail to Rail Input Levels for RESET_n ................................................................................................. 20
8.7 AC and DC Logic Input Levels for DQS Signals...................................................................................................... 21
8.7.1. Differential Signal Definition ............................................................................................................................. 21
8.7.2. Differential Swing Requirements for DQS (DQS_t - DQS_c) ........................................................................... 21
8.7.3. Peak Voltage Calculation Method .................................................................................................................... 21
8.7.4. Differential Input Cross Point Voltage .............................................................................................................. 22
8.7.5. Differential Input Slew Rate Definition.............................................................................................................. 23
9. AC and DC Output Measurement Levels......................................................................................................................24
9.1 Output Driver DC Electrical Characteristics............................................................................................................. 24
9.1.1. Alert_n Output Drive Characteristic.................................................................................................................. 26
9.1.2. Output Driver Characteristic of Connectivity Test ( CT ) Mode ........................................................................ 26
9.2 Single-ended AC & DC Output Levels..................................................................................................................... 27
9.3 Differential AC & DC Output Levels......................................................................................................................... 27
9.4 Single-ended Output Slew Rate .............................................................................................................................. 28
9.5 Differential Output Slew Rate .................................................................................................................................. 29
9.6 Single-ended AC & DC Output Levels of Connectivity Test Mode .......................................................................... 30
9.7 Test Load for Connectivity Test Mode Timing ......................................................................................................... 30
10. Speed Bin ...................................................................................................................................................................31
10.1 Speed Bin Table Note ........................................................................................................................................... 34
11. IDD and IDDQ Specification Parameters and Test Conditions ...................................................................................35
11.1 IDD, IPP and IDDQ Measurement Conditions....................................................................................................... 35
11.2 4Gb DDR4 SDRAM E-die IDD Specification Table ............................................................................................... 50
12. Input/Output Capacitance ...........................................................................................................................................52
13. Electrical Characteristics & AC Timing .......................................................................................................................54
13.1 Reference Load for AC Timing and Output Slew Rate .......................................................................................... 54
13.2 tREFI ..................................................................................................................................................................... 54
13.3 Timing Parameters by Speed Grade ..................................................................................................................... 55
-3-
K4A4G045WE
K4A4G085WE
datasheet
Rev. 1.2
DDR4 SDRAM
13.4 The DQ Input Receiver Compliance Mask for Voltage and Timing ....................................................................... 61
13.5 DDR4 Function Matrix ........................................................................................................................................... 65
-4-
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
1. Ordering Information
[ Table 1 ] Samsung 4Gb DDR4 E-die ordering information table
Organization
DDR4-2133 (15-15-15)
DDR4-2400 (17-17-17)2
Package
1Gx4
K4A4G045WE-BCPB
K4A4G045WE-BCRC
78 FBGA
512Mx8
K4A4G085WE-BCPB
K4A4G085WE-BCRC
78 FBGA
512Mx8
K4A4G085WE-BIPB
K4A4G085WE-BIRC
78 FBGA
NOTE :
1. Speed bin is in order of CL-tRCD-tRP.
2. Backward compatible to DDR4-2133(15-15-15)
3. 13th digit stands for below.
"C" : Commercial temp/Normal power
"I" : Industrial temp/Normal power
2. Key Features
[ Table 2 ] 4Gb DDR4 E-die Speed bins
Speed
DDR4-1600
DDR4-1866
DDR4-2133
DDR4-2400
11-11-11
13-13-13
15-15-15
17-17-17
Unit
tCK(min)
1.25
1.071
0.938
0.833
ns
CAS Latency
11
13
15
17
nCK
tRCD(min)
13.75
13.92
14.06
14.16
ns
tRP(min)
13.75
13.92
14.06
14.16
ns
tRAS(min)
35
34
33
32
ns
tRC(min)
48.75
47.92
47.06
46.16
ns
• JEDEC standard 1.2V (1.14V~1.26V)
• VDDQ = 1.2V (1.14V~1.26V)
• 800 MHz fCK for 1600Mb/sec/pin,933 MHz fCK for 1866Mb/sec/pin,
1067MHz fCK for 2133Mb/sec/pin, 1200MHz fCK for2400Mb/sec/pin
• 16 Banks (4 Bank Groups)
• Programmable CAS Latency(posted CAS):
10,11,12,13,14,15,16,17,18
• Programmable Additive Latency: 0, CL-2 or CL-1 clock
• Programmable CAS Write Latency (CWL) = 9,11 (DDR4-1600) ,
10,12 (DDR4-1866) ,11,14 (DDR4-2133) and 12,16 (DDR4-2400)
• 8-bit pre-fetch
• Burst Length: 8, 4 with tCCD = 4 which does not allow seamless read
or write [either On the fly using A12 or MRS]
• Bi-directional Differential Data-Strobe
• Internal(self) calibration : Internal self calibration through ZQ pin
(RZQ : 240 ohm ± 1%)
• On Die Termination using ODT pin
• Average Refresh Period 7.8us at lower than TCASE 85C, 3.9us at
85C < TCASE < 95 C
•
Support Industrial Temp ( -4095C )
- tREFI 7.8us at -40 °C ≤ TCASE ≤ 85°C
- tREFI 3.9us at 85 °C < TCASE ≤ 95°C
•
•
•
•
•
•
•
•
•
•
•
•
Asynchronous Reset
Package : 78 balls FBGA - x4/x8
All of Lead-Free products are compliant for RoHS
All of products are Halogen-free
CRC(Cyclic Redundancy Check) for Read/Write data security
Command address parity check
DBI(Data Bus Inversion)
Gear down mode
POD (Pseudo Open Drain) interface for data input/output
Internal VREF for data inputs
External VPP for DRAM Activating Power
PPR and sPPR is supported
The 4Gb DDR4 SDRAM E-die is organized as a 64Mbit x 4 I/Os x 16banks
or 32Mbit x8 I/Os x 16banks device. This synchronous device achieves
high speed double-data-rate transfer rates of up to 2400Mb/sec/pin (DDR42400) for general applications.
The chip is designed to comply with the following key DDR4 SDRAM features such as posted CAS, Programmable CWL, Internal (Self) Calibration,
On Die Termination using ODT pin and Asynchronous Reset .
All of the control and address inputs are synchronized with a pair of externally supplied differential clocks. Inputs are latched at the crosspoint of differential clocks (CK rising and CK falling). All I/Os are synchronized with a
pair of bidirectional strobes (DQS and DQS) in a source synchronous fashion. The address bus is used to convey row, column, and bank address
information in a RAS/CAS multiplexing style. The DDR4 device operates
with a single 1.2V (1.14V~1.26V) power supply and 1.2V (1.14V~1.26V) .
The 4Gb DDR4 E-die device is available in 78ball FBGAs(x4/x8).
NOTE : 1. This data sheet is an abstract of full DDR4 specification and does not cover the common features which are described in “DDR4 SDRAM Device Operation & Timing
Diagram”.
2. The functionality described and the timing specifications included in this data sheet are for the DLL Enabled mode of operation.
-4-
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
3. Package pinout/Mechanical Dimension & Addressing
3.1 x4 Package Pinout (Top view) : 78ball FBGA Package
1
2
3
4
5
6
7
8
9
A
VDD
VSSQ
NC
NC
VSSQ
VSS
A
B
VPP
VDDQ
DQS_c
DQ1
VDDQ
ZQ
B
C
VDDQ
DQ0
DQS_t
VDD
VSS
VDDQ
C
D
VSSQ
NC
DQ2
DQ3
NC
VSSQ
D
E
VSS
VDDQ
NC
NC
VDDQ
VSS
E
F
VDD
NC
ODT
CK_t
CK_c
VDD
F
G
VSS
NC
CKE
CS_n
NC
NC
G
H
VDD
WE_n
A14
ACT_n
RAS_n
VSS
H
J
VREFCA
BG0
A10
AP
CAS_n
A15
A12
BC_n
BG1
VDD
J
K
VSS
BA0
A4
A3
BA1
VSS
K
L
RESET_n
A6
A0
A1
A5
ALERT_n
L
M
VDD
A8
A2
A9
A7
VPP
M
N
VSS
A11
PAR
NC
A13
VDD
N
1
Ball Locations (x4)
A
B
C
Populated ball
Ball not populated
D
E
F
G
H
Top view
(See the balls through the package)
J
K
L
M
N
-5-
2
3
4
5
6
7
8
9
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
3.2 x8 Package Pinout (Top view) : 78ball FBGA Package
1
2
3
7
8
9
VDD
VSSQ
TDQS_c
DM_n,
DBI_n,
TDQS_t
VSSQ
VSS
A
B
VPP
VDDQ
C
VDDQ
DQ0
DQS_c
DQ1
VDDQ
ZQ
B
DQS_t
VDD
VSS
VDDQ
D
VSSQ
C
DQ4
DQ2
DQ3
DQ5
VSSQ
D
E
VSS
VDDQ
DQ6
DQ7
VDDQ
VSS
E
F
VDD
NC
ODT
CK_t
CK_c
VDD
F
G
VSS
NC
CKE
CS_n
NC
NC
G
H
VDD
WE_n
A14
ACT_n
CAS_n
RAS_n
VSS
H
J
VREFCA
BG0
A10
AP
A12
BC_n
BG1
VDD
J
K
VSS
BA0
A4
A3
BA1
VSS
K
L
RESET_n
A6
A0
A1
A5
ALERT_n
L
M
VDD
A8
A2
A9
A7
VPP
M
N
VSS
A11
PAR
NC
A13
VDD
N
A
4
5
6
1
Ball Locations (x8)
A
B
C
Populated ball
Ball not populated
D
E
F
G
H
Top view
(See the balls through the package)
J
K
L
M
N
-6-
2
3
4
5
6
7
8
9
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
3.3 FBGA Package Dimension (x4/x8)
0.80 x 8 6.40
0.80
(Datum A)
1.60
Units : Millimeters
A
#A1 INDEX MARK
3.20
B
0.80
0.80
(Datum B)
4.80
A
B
C
D
E
F
G
H
J
K
L
M
N
0.80 x12 = 9.60
9 8 7 6 5 4 3 2 1
11.00  0.10
7.50 0.10
78 - 0.48 Solder ball
(Post Reflow 0.50  0.05)
0.2 M A B
0.10MAX
BOTTOM VIEW
7.50 0.10
11.00  0.10
#A1
0.37 0.05
1.10 0.10
TOP VIEW
-7-
datasheet
K4A4G045WE
K4A4G085WE
Rev. 1.2
DDR4 SDRAM
4. Input/Output Functional Description
[ Table 3 ] Input/Output function description
Symbol
Type
CK_t, CK_c
Input
CKE, (CKE1)
Input
CS_n, (CS1_n)
Input
C0,C1,C2
Input
ODT, (ODT1)
Input
ACT_n
Input
RAS_n/A16. CAS_n/
A15. WE_n/A14
Input
DM_n/DBI_n/TDQS_t,
(DMU_n/DBIU_n),
(DML_n/DBIL_n)
Input/Output
BG0 - BG1
Input
BA0 - BA1
Input
A0 - A17
Input
A10 / AP
Input
A12 / BC_n
Input
RESET_n
Input
DQ
Input / Output
DQS_t, DQS_c,
DQSU_t, DQSU_c,
DQSL_t, DQSL_c
Input / Output
Function
Clock: CK_t and CK_c are differential clock inputs. All address and control input signals are sampled on
the crossing of the positive edge of CK_t and negative edge of CK_c.
Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input
buffers and output drivers. Taking CKE Low provides Precharge Power-Down and Self-Refresh operation
(all banks idle), or Active Power-Down (row Active in any bank). CKE is synchronous for Self-Refresh exit.
After VREFCA and Internal DQ Vref have become stable during the power on and initialization sequence,
they must be maintained during all operations (including Self-Refresh). CKE must be maintained high
throughout read and write accesses. Input buffers, excluding CK_t,CK_cSGODT and CKE are disabled
during power-down. Input buffers, excluding CKE, are disabled during Self-Refresh.
Chip Select: All commands are masked when CS_n is registered HIGH. CS_n provides for external Rank
selection on systems with multiple Ranks. CS_n is considered part of the command code.
Chip ID : Chip ID is only used for 3DS for 2,4,8high stack via TSV to select each slice of stacked
component. Chip ID is considered part of the command code
On Die Termination: ODT (registered HIGH) enables RTT_NOM termination resistance internal to the
DDR4 SDRAM. When enabled, ODT is only applied to each DQ, DQS_t, DQS_c and DM_n/DBI_n/
TDQS_t, NU/TDQS_c (When TDQS is enabled via Mode Register A11=1 in MR1) signal for x8
conurations. For x16 conuration ODT is applied to each DQ, DQSU_t, DQSU_c, DQSL_t, DQSL_c,
DMU_n, and DML_n signal. The ODT pin will be ignored if MR1 is programmed to disable RTT_NOM.
Activation Command Input : ACT_n defines the Activation command being entered along with CS_n. The
input into RAS_n/A16, CAS_n/A15 and WE_n/A14 will be considered as Row Address A16, A15 and A14
Command Inputs: RAS_n/A16, CAS_n/A15 and WE_n/A14 (along with CS_n) define the command being
entered. Those pins have multi function. ForG example, for activation with ACT_n Low, those are
Addressing like A16,A15 and A14 but for non-activation command with ACT_n High, those are Command
pins for Read, Write and other command defined in command truth table
Input Data Mask and Data Bus Inversion: DM_n is an input mask signal for write data. Input data is
masked when DM_n is sampled LOW coincident with that input data during a Write access. DM_n is
sampled on both edges of DQS. DM is muxed with DBI function by Mode Register A10,A11,A12 setting in
MR5. For x8 device, the function of DM or TDQS is enabled by Mode Register A11 setting in MR1. DBI_n
is an input/output identifing whether to store/output the true or inverted data. If DBI_n is LOW, the data will
be stored/output after inversion inside the DDR4 SDRAM and not inverted if DBI_n is HIGH. TDQS is only
supported in X8
Bank Group Inputs : BG0 - BG1 define to which bank group an Active, Read, Write or Precharge command
is being applied. BG0 also determines which mode register is to be accessed during a MRS cycle. X4/8
have BG0 and BG1 but X16 has only BG0
Bank Address Inputs: BA0 - BA1 define to which bank an Active, Read, Write or Precharge command is
being applied. Bank address also determines which mode register is to be accessed during a MRS cycle.
Address Inputs: Provide the row address for ACTIVATE Commands and the column address for Read/
Write commands to select one location out of the memory array in the respective bank. (A10/AP, A12/
BC_n, RAS_n/A16, CAS_n/A15 and WE_n/A14 have additional functions, see other rows.The address
inputs also provide the op-code during Mode Register Set commands.A17 is only defined for the x4
conuration.
Auto-precharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge
should be performed to the accessed bank after the Read/Write operation. (HIGH: Autoprecharge; LOW:
no Autoprecharge).A10 is sampled during a Precharge command to determine whether the Precharge
applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is
selected by bank addresses.
Burst Chop: A12 / BC_n is sampled during Read and Write commands to determine if burst chop (on-thefly) will be performed. (HIGH, no burst chop; LOW: burst chopped). See command truth table for details.
Active Low Asynchronous Reset: Reset is active when RESET_n is LOW, and inactive when RESET_n is
HIGH. RESET_n must be HIGH during normal operation. RESET_n is a CMOS rail to rail signal with DC
high and low at 80% and 20% of VDD,
Data Input/ Output: Bi-directional data bus. If CRC is enabled via Mode register then CRC code is added at
the end of Data Burst. Any DQ from DQ0~DQ3 may indicate the internal Vref level during test via Mode
Register Setting MR4 A4=High. During this mode, RTT value should be set to Hi-Z. Refer to vendor
specific datasheets to determine which DQ is used.
Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered in write
data. For the x16, DQSL corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on
DQU0-DQU7. The data strobe DQS_t, DQSL_t and DQSU_t are paired with differential signals DQS_c,
DQSL_c, and DQSU_c, respectively, to provide differential pair signaling to the system during reads and
writes. DDR4 SDRAM supports differential data strobe only and does not support single-ended.
-8-
datasheet
K4A4G045WE
K4A4G085WE
Symbol
Type
TDQS_t, TDQS_c
Output
PAR
Input
ALERT_n
Input/Output
TEN
Input
Rev. 1.2
DDR4 SDRAM
Function
Termination Data Strobe: TDQS_t/TDQS_c is applicable for x8 DRAMs only. When enabled via Mode
Register A11 = 1 in MR1, the DRAM will enable the same termination resistance function on TDQS_t/
TDQS_c that is applied to DQS_t/DQS_c. When disabled via mode register A11 = 0 in MR1, DM/DBI/
TDQS will provide the data mask function or Data Bus Inversion depending on MR5; A11,12,10and
TDQS_c is not used. x4/x16 DRAMs must disable the TDQS function via mode register A11 = 0 in MR1.
Command and Address Parity Input : DDR4 Supports Even Parity check in DRAM with MR setting. Once
it’s enabled via Register in MR5, then DRAM calculates Parity with ACT_n,RAS_n/A16,CAS_n/A15,WE_n/
A14,BG0-BG1,BA0-BA1,A17-A0, and C0-C2 (3DS devices). Input parity should maintain at the rising edge
of the clock and at the same time with command & address with CS_n LOW
Alert : It has multi functions such as CRC error flag , Command and Address Parity error flag as Output
signal. If there is error in CRC, then Alert_n goes LOW for the period time interval and goes back HIGH. If
there is error in Command Address Parity Check, then Alert_n goes LOW for relatively long period until on
going DRAM internal recovery transaction to complete. During Connectivity Test mode, this pin works as
input. Using this signal or not is dependent on system. In case of not connected as Signal, ALERT_n Pin
must be bounded to VDD on board.
Connectivity Test Mode Enable : Required on X16 devices and optional input on x4/x8 with densities equal
to or greater than 8Gb.HIGH in this pin will enable Connectivity Test Mode operation along with other pins.
It is a CMOS rail to rail signal with AC high and low at 80% and 20% of VDD. Using this signal or not is
dependent on System. This pin may be DRAM internally pulled low through a weak pull-down resistor to
VSS.
No Connect: No internal electrical connection is present.
NC
VDDQ
Supply
DQ Power Supply: 1.2 V +/- 0.06 V
VSSQ
Supply
DQ Ground
VDD
Supply
Power Supply: 1.2 V +/- 0.06 V
VSS
Supply
Ground
VPP
Supply
DRAM Activating Power Supply: 2.5V ( 2.375V min , 2.75V max)
VREFCA
Supply
Reference voltage for CA
ZQ
Supply
Reference Pin for ZQ calibration
NOTE Input only pins (BG0-BG1,BA0-BA1, A0-A17, ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, CS_n, CKE, ODT, and RESET_n) do not supply termination.
-9-
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
5. DDR4 SDRAM Addressing
2 Gb Addressing Table
Configuration
Bank Address
512 Mb x4
256 Mb x8
128 Mb x16
# of Bank Groups
4
4
2
BG Address
BG0~BG1
BG0~BG1
BG0
Bank Address in a BG
BA0~BA1
BA0~BA1
BA0~BA1
Row Address
A0~A14
A0~A13
A0~A13
Column Address
A0~A9
A0~A9
A0~A9
Page size
512B
1KB
2KB
4 Gb Addressing Table
Configuration
Bank Address
1 Gb x4
512 Mb x8
256 Mb x16
# of Bank Groups
4
4
2
BG Address
BG0~BG1
BG0~BG1
BG0
Bank Address in a BG
BA0~BA1
BA0~BA1
BA0~BA1
Row Address
A0~A15
A0~A14
A0~A14
Column Address
A0~A9
A0~A9
A0~A9
Page size
512B
1KB
2KB
8 Gb Addressing Table
Configuration
Bank Address
2 Gb x4
1 Gb x8
512 Mb x16
# of Bank Groups
4
4
2
BG Address
BG0~BG1
BG0~BG1
BG0
Bank Address in a BG
BA0~BA1
BA0~BA1
BA0~BA1
Row Address
A0~A16
A0~A15
A0~A15
Column Address
A0~A9
A0~A9
A0~A9
Page size
512B
1KB
2KB
4 Gb x4
2 Gb x8
1 Gb x16
16 Gb Addressing Table
Configuration
Bank Address
# of Bank Groups
4
4
2
BG Address
BG0~BG1
BG0~BG1
BG0
Bank Address in a BG
BA0~BA1
BA0~BA1
BA0~BA1
Row Address
A0~A17
A0~A16
A0~A16
Column Address
A0~A9
A0~A9
A0~A9
Page size
512B
1KB
2KB
16 Gb Addressing Table(SR x16 DDP)
Configuration
Bank Address
1 Gb x16
# of Bank Groups
4
BG Address
BG0~BG1
Bank Address in a BG
BA0~BA1
Row Address
A0~A15
Column Address
A0~A9
Page size
2KB
NOTE 1 : Page size is the number of bytes of data delivered from the array to the internal sense amplifiers when an ACTIVE command is registered.
Page size is per bank, calculated as follows:
page size = 2 COLBITS * ORG8
where, COLBITS = the number of column address bits, ORG = the number of I/O (DQ) bits
- 10 -
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
6. Absolute Maximum Ratings
6.1 Absolute Maximum DC Ratings
[ Table 4 ] Absolute Maximum DC Ratings
Symbol
VDD
VDDQ
VPP
VIN, VOUT
TSTG
Parameter
Rating
Units
NOTE
Voltage on VDD pin relative to Vss
-0.3 ~ 1.5
V
1,3
Voltage on VDDQ pin relative to Vss
-0.3 ~ 1.5
V
1,3
Voltage on VPP pin relative to Vss
-0.3 ~ 3.0
V
4
Voltage on any pin except VREFCA relative to Vss
-0.3 ~ 1.5
V
1,3,5
Storage Temperature
-55 to +100
°C
1,2
NOTE :
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions
for extended periods may affect reliability
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.
3. VDD and VDDQ must be within 300 mV of each other at all times;and VREFCA must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500 mV; VREFCA
may be equal to or less than 300 mV
4. VPP must be equal or greater than VDD/VDDQ at all times.
5. Overshoot area above 1.5 V is specified in section 8.3.4, 8.3.5 and section 8.3.6.
6.2 DRAM Component Operating Temperature Range
[ Table 5 ] Temperature Range
Symbol
TOPER
Parameter
Operating Temperature Range
rating
Unit
NOTE
Normal
0 to 95
C
1, 2, 4
Industrial
-40 to 95
C
1, 3, 4
NOTE :
1. Operating Temperature TOPER is the case surface temperature on the center/top side of the DRAM.
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0-85C under all operating conditions
3. The Industrial Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between -40-95C under all operating conditions
4. Some applications require operation of the Extended Temperature Range between 85C and 95C case temperature. Full specifications are guaranteed in this range, but the
following additional conditions apply:
a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us.
b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to use the Manual Self-Refresh mode with Extended Temperature Range
capability (MR2 A6 = 0b and MR2 A7 = 1b).
7. AC & DC Operating Conditions
[ Table 6 ] Recommended DC Operating Conditions
Symbol
Parameter
Rating
Min.
Typ.
Max.
Unit
NOTE
VDD
Supply Voltage
1.14
1.2
1.26
V
1,2,3
VDDQ
Supply Voltage for Output
1.14
1.2
1.26
V
1,2,3
VPP
Peak-to-Peak Voltage
2.375
2.5
2.75
V
3
NOTE :
1. Under all conditions VDDQ must be less than or equal to VDD.
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.
3. DC bandwidth is limited to 20MHz.
- 11 -
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
8. AC & DC Input Measurement Levels
8.1 AC & DC Logic Input Levels for Single-ended Signals
[ Table 7 ] Single-ended AC & DC input Levels for Command and Address
Symbol
Parameter
VIH.CA(DC75)
DC input logic high
DDR4-1600/1866/2133/2400
Unit
Min.
Max.
VREFCA+ 0.075
VDD
V
NOTE
VIL.CA(DC75)
DC input logic low
VSS
VREFCA-0.075
V
VIH.CA(AC100)
AC input logic high
VREF + 0.1
Note 2
V
1
VIL.CA(AC100)
AC input logic low
Note 2
VREF - 0.1
V
1
VREFCA(DC)
Reference Voltage for ADD, CMD inputs
0.49*VDD
0.51*VDD
V
2,3
NOTE :
1. See “Overshoot and Undershoot Specifications” .
2. The AC peak noise on VREFCA may not allow VREFCA to deviate from VREFCA(DC) by more than ± 1% VDD (for reference : approx. ± 12mV)
3. For reference : approx. VDD/2 ± 12mV
8.2 VREF Tolerances
The dc-tolerance limits and ac-noise limits for the reference voltages VREFCA is illustrated in 1. It shows a valid reference voltage VREF(t) as a function of
time. (VREF stands for VREFCA and VREFDQ likewise).
VREF(DC) is the linear average of VREF(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirement in Table 7 on
page 12. Furthermore VREF(t) may temporarily deviate from VREF(DC) by no more than ± 1% VDD.
voltage
VDD
VSS
time
Figure 1. Illustration of VREF(DC) tolerance and VREF ac-noise limits
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VREF.
"VREF" shall be understood as VREF(DC), as defined in 1 .
This clarifies, that dc-variations of VREF affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to
which setup and hold is measured. System timing and voltage budgets need to account for VREF(DC) deviations from the optimum position within the
data-eye of the input signals.
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VREF ac-noise. Timing
and voltage effects due to ac-noise on VREF up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings.
- 12 -
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
8.3 AC & DC Logic Input Levels for Differential Signals
8.3.1 Differential Signals Definition
tDVAC
Differential Input Voltage (i.e. DQS-DQS, CK-CK)
VIH.DIFF.AC.MIN
VIH.DIFF.MIN
0.0
half cycle
VIL.DIFF.MAX
VIL.DIFF.AC.MAX
tDVAC
time
Figure 2. Definition of differential ac-swing and "time above ac level" tDVAC
NOTE :
1. Differential signal rising edge from VIL.DIFF.MAX to VIH.DIFF.MIN must be monotonic slope.
2. Differential signal falling edge from VIH.DIFF.MIN to VIL.DIFF.MAX must be monotonic slope.
8.3.2 Differential Swing Requirement for Clock (CK_t - CK_c)
[ Table 8 ] Differential AC & DC Input Levels
Symbol
Parameter
VIHdiff
differential input high
DDR4 -1600/1866/2133
DDR4 -2400
unit
NOTE
NOTE 3
V
1
min
max
min
max
+0.150
NOTE 3
TBD
VILdiff
differential input low
NOTE 3
-0.150
NOTE 3
TBD
V
1
VIHdiff(AC)
differential input high ac
2 x (VIH(AC) - VREF)
NOTE 3
2 x (VIH(AC) - VREF)
NOTE 3
V
2
VILdiff(AC)
differential input low ac
NOTE 3
2 x (VIL(AC) - VREF)
NOTE 3
2 x (VIL(AC) - VREF)
V
2
NOTE:
1. Used to define a differential signal slew-rate.
2. for CK_t - CK_c use VIHCA/VILCA(AC) of ADD/CMD and VREFCA;
3. These values are not defined; however, the differential signals CK_t - CK_c, need to be within the respective limits (VIHCA(DC) max, VILCA(DC)min) for single-ended signals
as well as the limitations for overshoot and undershoot.
- 13 -
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
[ Table 9 ] Allowed Time Before Ringback (tDVAC) for CK_t - CK_c
tDVAC [ps] @ |VIH/Ldiff(AC)| = 200mV
Slew Rate [V/ns]
min
max
> 4.0
120
-
4.0
115
-
3.0
110
-
2.0
105
-
1.8
100
-
1.6
95
-
1.4
90
-
1.2
85
-
1.0
80
-
< 1.0
80
-
8.3.3 Single-ended Requirements for Differential Signals
Each individual component of a differential signal (CK_t, CK_c) has also to comply with certain requirements for single-ended signals.
CK_t and CK _c have to approximately reach VSEHmin / VSELmax [approximately equal to the ac-levels { VIH.CA(AC) / VIL.CA(AC)} for ADD/CMD signals]
in every half-cycle.
Note that the applicable ac-levels for ADD/CMD might be different per speed-bin etc. E.g. if Different value than VIH.CA(AC100)/VIL.CA(AC100) is used for
ADD/CMD signals, then these ac-levels apply also for the single-ended signals CK_t and CK _c .
VDD or VDDQ
VSEH min
VSEH
VDD/2 or VDDQ/2
CK
VSEL max
VSEL
VSS or VSSQ
time
Figure 3. Single-ended requirement for differential signals
Note that while ADD/CMD signal requirements are with respect to VREFCA, the single-ended components of differential signals have a requirement with
respect to VDD/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For single-ended
components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common mode
characteristics of these signals.
- 14 -
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
[ Table 10 ] Single-ended Levels for CK_t, CK_c
Symbol
Parameter
Single-ended high-level for
VSEH
CK_t , CK_c
Single-ended low-level for
VSEL
CK_t , CK_c
DDR4-1600/1866/2133
Min
Max
DDR4-2400
Min
Max
Unit
NOTE
(VDD/2)+0.100
NOTE3
TBD
NOTE3
V
1, 2
NOTE3
(VDD/2)-0.100
NOTE3
TBD
V
1, 2
NOTE :
1. For CK_t - CK_c use VIH.CA/VIL.CA(AC) of ADD/CMD;
2. VIH(AC)/VIL(AC) for ADD/CMD is based on VREFCA;
3. These values are not defined, however the single-ended signals CK_t - CK_c need to be within the respective limits (VIH.CA(DC) max, VIL.CA(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot.
8.3.4 Address, Command and Control Overshoot and Undershoot Specifications
[ Table 11 ] AC Overshoot/Undershoot Specification for Address, Command and Control Pins
Specification
Parameter
Unit
DDR4-1600
DDR4-1866
DDR4-2133
DDR4-2400
Maximum peak amplitude above VDD Absolute Max allowed for overshoot area
0.06
0.06
0.06
0.06
V
Delta value between VDD Absolute Max and VDD Max allowed for overshoot area
0.24
0.24
0.24
0.24
V
Maximum peak amplitude allowed for undershoot area
0.3
0.3
0.3
0.3
V-ns
Maximum overshoot area per 1tCK Above Absolute Max
0.0083
0.0071
0.0062
0.0055
V-ns
Maximum overshoot area per 1tCK Between Absolute Max and VDD Max
0.2550
0.2185
0.1914
0.1699
V-ns
Maximum undershoot area per 1tCK Below VSS
0.2644
0.2265
0.1984
0.1762
V-ns
(A0-A13,BG0-BG1,BA0-BA1,ACT_n,RAS_n,CAS_n/A15,WE_n/A14,CS_n,CKE,ODT,C2-C0)
Overshoot Area above VDD Absolute Max
VDD Absolute Max
Volts
(V)
VDD
Overshoot Area Between
VDD Absolute Max and VDD Max
1 tCK
VSS
Undershoot Area below VSS
Figure 4. Address, Command and Control Overshoot and Undershoot Definition
- 15 -
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
8.3.5 Clock Overshoot and Undershoot Specifications
[ Table 12 ] AC Overshoot/Undershoot Specification for Clock
Specification
Parameter
Unit
DDR4-1600
DDR4-1866
DDR4-2133
DDR4-2400
Maximum peak amplitude above VDD Absolute Max allowed for overshoot area
0.06
0.06
0.06
0.06
V
Delta value between VDD Absolute Max and VDD Max allowed for overshoot area
0.24
0.24
0.24
0.24
V
Maximum peak amplitude allowed for undershoot area
0.3
0.3
0.3
0.3
V
Maximum overshoot area per 1UI Above Absolute Max
0.0038
0.0032
0.0028
0.0025
V-ns
Maximum overshoot area per 1UI Between Absolute Max and VDD Max
0.1125
0.0964
0.0844
0.0750
V-ns
Maximum undershoot area per 1UI Below VSS
0.1144
0.0980
0.0858
0.0762
V-ns
(CK_t, CK_c)
Overshoot Area above VDD Absolute Max
VDD Absolute Max
Volts
(V)
Overshoot Area Between
VDD Absolute Max and VDD Max
VDD
1UI
VSS
Undershoot Area below VSS
Figure 5. Clock Overshoot and Undershoot Definition
8.3.6 Data, Strobe and Mask Overshoot and Undershoot Specifications
[ Table 13 ] AC Overshoot/Undershoot Specification for Data, Strobe and Mask
Specification
Parameter
Unit
DDR4-1600
DDR4-1866
DDR4-2133
DDR4-2400
Maximum peak amplitude above Max absolute level of Vin, Vout
0.16
0.16
0.16
0.16
V
Overshoot area Between Max Absolute level of Vin, Vout and VDDQ Max
0.24
0.24
0.24
0.24
V
Undershoot area Between Min absolute level of Vin, Vout and VSSQ
0.30
0.30
0.30
0.30
V
Maximum peak amplitude below Min absolute level of Vin, Vout
0.10
0.10
0.10
0.10
V
Maximum overshoot area per 1UI Above Max absolute level of Vin, Vout
0.0150
0.0129
0.0113
0.0100
V-ns
Maximum overshoot area per 1UI Between Max absolute level of Vin,Vout and VDDQ
Max
0.1050
0.0900
0.0788
0.0700
V-ns
Maximum undershoot area per 1UI Between Min absolute level of Vin,Vout and VSSQ
0.1050
0.0900
0.0788
0.0700
V-ns
Maximum undershoot area per 1UI Below Min absolute level of Vin,Vout
0.0150
0.0129
0.0113
0.0100
V-ns
(DQ, DQS_t, DQS_c, DM_n, DBI_n, TDQS_t, TDQS_c)
Overshoot area above Max absolute level of Vin,Vout
Max absolute level of Vin, Vout
Volts
(V)
VDDQ
Overshoot Area Between
Max absolute level of Vin,Vout and VDDQ Max
1UI
VSSQ
Undershoot area between
Min absolute level of Vin,Vout and VSSQ
Min absolute level of Vin, Vout
Undershoot area below Min absolute level of Vin,Vout
Figure 6. Data, Strobe and Mask Overshoot and Undershoot Definition
- 16 -
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
8.4 Slew Rate Definitions
8.4.1 Slew Rate Definitions for Differential Input Signals (CK)
Input slew rate for differential signals (CK_t, CK_c) are defined and measured as shown in Table 14 and Figure 7.
[ Table 14 ] Differential Input Slew Rate Definition
Measured
Description
From
Differential input slew rate for rising edge(CK_t - CK_c)
V
Differential input slew rate for falling edge(CK_t - CK_c)
V
IHdiffmin
ILdiffmax
Defined by
To
V
IHdiffmin
VIHdiffmin - VILdiffmax DeltaTRdiff
V
VIHdiffmin - VILdiffmax DeltaTFdiff
ILdiffmax
NOTE :
The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds.
Differential Input Voltage(i,e, CK_t - CK_c)
Delta TRdiff
V
IHdiffmin
0
V
Delta TFdiff
Figure 7. Differential Input Slew Rate definition for CK, CK
- 17 -
ILdiffmax
K4A4G045WE
K4A4G085WE
Rev. 1.2
datasheet
DDR4 SDRAM
8.4.2 Slew Rate Definition for Single-ended Input Signals ( CMD/ADD )
Delta TRsingle
V
IHCA(AC) Min
V
IHCA(DC) Min
VREFCA(DC)
V
ILCA(DC) Max
V
ILCA(AC) Max
Delta TFsingle
NOTE :
1. Single-ended input slew rate for rising edge = { VIHCA(AC)Min - VILCA(DC)Max } / Delta TR single
2. Single-ended input slew rate for falling edge = { VIHCA(DC)Min - VILCA(AC)Max } / Delta TF single
3. Single-ended signal rising edge from VILCA(DC)Max to VIHCA(DC)Min must be monotonic slope.
4. Single-ended signal falling edge from VIHCA(DC)Min to VILCA(DC)Max must be monotonic slope.
Figure 8. Single-ended Input Slew Rate definition for CMD and ADD
- 18 -
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
8.5 Differential Input Cross Point Voltage
To guarantee tight setup and hold times as well as output skew parameters with respect to clock, each cross point voltage of differential input signals
(CK_t, CK_c) must meet the requirements in Table. The differential input cross point voltage VIX is measured from the actual cross point of true and
complement signals to the midlevel between of VDD and VSS.
VDD
CK_t
Vix
VDD/2
Vix
CK_c
VSEL
VSEH
VSS
Figure 9. Vix Definition (CK)
[ Table 15 ] Cross Point Voltage for Differential Input Signals (CK)
Symbol
DDR4-1600/1866/2133
Parameter
min
max
-
Area of VSEH, VSEL
VSEL =< VDD/2 145mV
VDD/2 - 145mV =<
VSEL =< VDD/2 100mV
VlX(CK)
Differential Input Cross Point Voltage relative to
VDD/2 for CK_t, CK_c
-120mV
-(VDD/2 - VSEL) +
25mV
Symbol
Parameter
VDD/2 + 100mV =<
VSEH =< VDD/2 +
145mV
VDD/2 + 145mV =<
VSEH
(VSEH - VDD/2) 25mV
120mV
DDR4-2400
min
max
-
Area of VSEH, VSEL
TBD
TBD
TBD
TBD
VlX(CK)
Differential Input Cross Point Voltage relative to
VDD/2 for CK_t, CK_c
TBD
TBD
TBD
TBD
- 19 -
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
8.6 CMOS Rail to Rail Input Levels
8.6.1 CMOS Rail to Rail Input Levels for RESET_n
[ Table 16 ] CMOS Rail to Rail Input Levels for RESET_n
Parameter
Symbol
Min
Max
Unit
NOTE
AC Input High Voltage
VIH(AC)_RESET
0.8*VDD
VDD
V
6
DC Input High Voltage
VIH(DC)_RESET
0.7*VDD
VDD
V
2
DC Input Low Voltage
VIL(DC)_RESET
VSS
0.3*VDD
V
1
AC Input Low Voltage
VIL(AC)_RESET
VSS
0.2*VDD
V
7
Rising time
TR_RESET
-
1.0
us
4
RESET pulse width
tPW_RESET
1.0
-
us
3,5
NOTE :
1.After RESET_n is registered LOW, RESET_n level shall be maintained below VIL(DC)_RESET during tPW_RESET, otherwise, SDRAM may not be reset.
2. Once RESET_n is registered HIGH, RESET_n level must be maintained above VIH(DC)_RESET, otherwise, SDRAM operation will not be guaranteed until it is reset
asserting RESET_n signal LOW.
3. RESET is destructive to data contents.
4. No slope reversal(ringback) requirement during its level transition from Low to High.
5. This definition is applied only “Reset Procedure at Power Stable”.
6. Overshoot might occur. It should be limited by the Absolute Maximum DC Ratings.
7. Undershoot might occur. It should be limited by Absolute Maximum DC Ratings
tPW_RESET
0.8*VDD
0.7*VDD
0.3*VDD
0.2*VDD
TR_RESET
Figure 10. RESET_n Input Slew Rate Definition
- 20 -
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
8.7 AC and DC Logic Input Levels for DQS Signals
8.7.1 Differential Signal Definition
Figure 11. Definition of differential DQS Signal AC-swing Level
8.7.2 Differential Swing Requirements for DQS (DQS_t - DQS_c)
[ Table 17 ] Differential AC and DC Input Levels for DQS
Symbol
Parameter
VIHDiffPeak
VILDiffPeak
VIH.DIFF.Peak Voltage
VIL.DIFF.Peak Voltage
DDR4-1600/1866/2133
Min
186
Note2
Max
Note2
-186
DDR4-2400
Min
TBD
TBD
Max
TBD
TBD
Unit
Note
mV
mV
1
1
NOTE :
1.Used to define a differential signal slew-rate.
2.These values are not defined; however, the differential signals DQS_t - DQS_c, need to be within the respective limits Overshoot, Undershoot Specification for single-ended
signals.
8.7.3 Peak Voltage Calculation Method
The peak voltage of Differential DQS signals are calculated in a following equation.
VIH.DIFF.Peak Voltage = Max(f(t))
VIL.DIFF.Peak Voltage = Min(f(t))
f(t) = VDQS_t - VDQS_c
- 21 -
K4A4G045WE
K4A4G085WE
datasheet
Rev. 1.2
DDR4 SDRAM
Figure 12. Definition of differential DQS Peak Voltage
8.7.4 Differential Input Cross Point Voltage
To guarantee tight setup and hold times as well as output skew parameters with respect to strobe, the cross point voltage of differential input signals
(DQS_t, DQS_c) must meet the requirements in Table 18. The differential input cross point voltage VIX is measured from the actual cross point of true
and complement signals to the mid level that is VrefDQ.Vix Definition (DQS)
Figure 13. Vix Definition (DQS)
- 22 -
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
[ Table 18 ] Cross Point Voltage for Differential Input Signals (DQS)
Symbol
Parameter
Vix_DQS_ratio
DQS Differential input crosspoint
voltage ratio
DDR4-1600/1866/2133
DDR4-2400
Min
Max
Min
Max
-
25
-
25
Unit
Note
%
1, 2, 3
NOTE :
1. The base level of Vix_DQS_FR/RF is VrefDQ that is DDR4 SDRAM internal setting value by Vref Training.
2. Vix_DQS_FR is defined by this equation : Vix_DQS_FR = |Min(f(t)) x Vix_DQS_Ratio|
3. Vix_DQS_RF is defined by this equation : Vix_DQS_RF = Max(f(t)) x Vix_DQS_Ratio
8.7.5 Differential Input Slew Rate Definition
Input slew rate for differential signals (DQS_t, DQS_c) are defined and measured as shown in are Figure 11 and Figure 12.
NOTE :
1. Differential signal rising edge from VILDiff_DQS to VIHDiff_DQS must be monotonic slope.
2. Differential signal falling edge from VIHDiff_DQS to VILDiff_DQS must be monotonic slope.
Figure 14. Differential Input Slew Rate Definition for DQS_t, DQS_c
[ Table 19 ] Differential Input Slew Rate Definition for DQS_t, DQS_c
Description
Defined by
From
To
Differential input slew rate for rising edge(DQS_t - DQS_c)
VILDiff_DQS
VIHDiff_DQS
|VILDiff_DQS - VIHDiff_DQS|/DeltaTRdiff
Differential input slew rate for falling edge(DQS_t - DQS_c)
VIHDiff_DQS
VILDiff_DQS
|VILDiff_DQS - VIHDiff_DQS|/DeltaTFdiff
[ Table 20 ] Differential Input Level for DQS_t, DQS_c
Symbol
Parameter
VIHDiff_DQS
VILDiff_DQS
Differntial Input High
Differntial Input Low
DDR4-1600/1866/2133
Min
136
-
Max
-136
DDR4-2400
Min
TBD
TBD
Max
TBD
TBD
Unit
NOTE
mV
mV
[ Table 21 ] Differential Input Slew Rate for DQS_t, DQS_c
Symbol
Parameter
SRIdiff
Differential Intput Slew Rate
DDR4-1600/1866/2133
DDR4-2400
Min
Max
Min
Max
TBD
18
TBD
TBD
- 23 -
Unit
V/ns
NOTE
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
9. AC and DC Output Measurement Levels
9.1 Output Driver DC Electrical Characteristics
The DDR4 driver supports two different Ron values. These Ron values are referred as strong(low Ron) and weak mode(high Ron). A functional
representation of the output buffer is shown in the figure below. Output driver impedance RON is defined as follows:
The individual pull-up and pull-down resistors (RONPu and RONPd) are defined as follows:
RONPu =
VDDQ -Vout
I out
under the condition that RONPd is off
RONPd =
Vout
I out
under the condition that RONPu is off
Chip In Drive Mode
Output Drive
To
other
circuity
like
RCV, ...
VDDQ
IPu
RONPu
DQ
RONPd
Iout
IPd
Vout
VSSQ
Figure 15. Output driver
- 24 -
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
[ Table 22 ] Output Driver DC Electrical Characteristics, assuming RZQ=240ohm; entire operating temperature range;
after proper ZQ calibration
RONNOM
Resistor
Vout
Min
Nom
Max
Unit
NOTE
VOLdc= 0.5*VDDQ
0.8
1
1.1
RZQ/7
1,2
RON34Pd
VOMdc= 0.8* VDDQ
0.9
1
1.1
RZQ/7
1,2
VOHdc= 1.1* VDDQ
0.9
1
1.25
RZQ/7
1,2
1,2
34
RON34Pu
RON48Pd
48
RON48Pu
VOLdc= 0.5* VDDQ
0.9
1
1.25
RZQ/7
VOMdc= 0.8* VDDQ
0.9
1
1.1
RZQ/7
1,2
VOHdc= 1.1* VDDQ
0.8
1
1.1
RZQ/7
1,2
VOLdc= 0.5*VDDQ
0.8
1
1.1
RZQ/5
1,2
VOMdc= 0.8* VDDQ
0.9
1
1.1
RZQ/5
1,2
VOHdc= 1.1* VDDQ
0.9
1
1.25
RZQ/5
1,2
VOLdc= 0.5* VDDQ
0.9
1
1.25
RZQ/5
1,2
VOMdc= 0.8* VDDQ
0.9
1
1.1
RZQ/5
1,2
VOHdc= 1.1* VDDQ
0.8
1
1.1
RZQ/5
1,2
Mismatch between pull-up and
pull-down, MMPuPd
VOMdc= 0.8* VDDQ
-10
-
10
%
1,2,3,4
Mismatch DQ-DQ within byte variation pull-up, MMPudd
VOMdc= 0.8* VDDQ
-
-
10
%
1,2,4
Mismatch DQ-DQ within byte variation pull-dn, MMPddd
VOMdc= 0.8* VDDQ
-
-
10
%
1,2,4
NOTE :
1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity(TBD).
2. Pull-up and pull-dn output driver impedances are recommended to be calibrated at 0.8 * VDDQ. Other calibration schemes may be used to achieve the linearity spec
shown above, e.g. calibration at 0.5 * VDDQ and 1.1 * VDDQ.
3. Measurement definition for mismatch between pull-up and pull-down, MMPuPd : Measure RONPu and RONPD both at 0.8*VDD separately; Ronnom is the nominal Ron
value
MMPuPd =
RONPu -RONPd
RONNOM
*100
4. RON variance range ratio to RON Nominal value in a given component, including DQS_t and DQS_c.
MMPudd =
MMPddd =
RONPuMax -RONPuMin
RONNOM
RONPdMax -RONPdMin
RONNOM
5. This parameter of x16 device is specified for Upper byte and Lower byte.
- 25 -
*100
*100
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
9.1.1 Alert_n Output Drive Characteristic
A functional representation of the output buffer is shown in the figure below. Output driver impedance RON is defined as follows:
RONPd =
Vout
l Iout l
under the condition that RONPu is off
Alert Driver
DRAM
Alert
RONPd
Iout
IPd
Vout
VSSQ
Resistor
RONPd
Vout
Min
Max
Unit
NOTE
VOLdc= 0.1* VDDQ
0.3
1.2
34Ω
1
VOMdc = 0.8* VDDQ
0.4
1.2
34Ω
1
VOHdc = 1.1* VDDQ
0.4
1.4
34Ω
1
NOTE :
1. VDDQ voltage is at VDDQ DC. VDDQ DC definition is TBD.
9.1.2 Output Driver Characteristic of Connectivity Test ( CT ) Mode
Following Output driver impedance RON will be applied Test Output Pin during Connectivity Test ( CT ) Mode.
The individual pull-up and pull-down resistors (RONPu_CT and RONPd_CT) are defined as follows:
RONPu_CT =
RONPd_CT =
VDDQ-VOUT
l Iout l
VOUT
l Iout l
Chip In Driver Mode
Output Driver
VDDQ
IPu_CT
To
other
circuity
like
RCV,...
RON
Pu_CT
DQ
Iout
RON
Pd_CT
Vout
IPd_CT
VSSQ
Figure 16. Output Driver
- 26 -
RONNOM_CT
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
Resistor
RONPd_CT
34
RONPu_CT
DDR4 SDRAM
Vout
Max
Units
NOTE
VOBdc = 0.2 x VDDQ
1.9
34
1
VOLdc = 0.5 x VDDQ
2.0
34
1
VOMdc = 0.8 x VDDQ
2.2
34
1
VOHdc = 1.1 x VDDQ
2.5
34
1
VOBdc = 0.2 x VDDQ
2.5
34
1
VOLdc = 0.5 x VDDQ
2.2
34
1
VOMdc = 0.8 x VDDQ
2.0
34
1
VOHdc = 1.1 x VDDQ
1.9
34
1
NOTE :
1. Connectivity test mode uses un-calibrated drivers, showing the full range over PVT. No mismatch between pull up and pull down is defined.
9.2 Single-ended AC & DC Output Levels
[ Table 23 ] Single-ended AC & DC Output Levels
Symbol
Parameter
DDR4-1600/1866/2133/2400
Units
VOH(DC)
DC output high measurement level (for IV curve linearity)
1.1 x VDDQ
V
NOTE
VOM(DC)
DC output mid measurement level (for IV curve linearity)
0.8 x VDDQ
V
VOL(DC)
DC output low measurement level (for IV curve linearity)
0.5 x VDDQ
V
VOH(AC)
AC output high measurement level (for output SR)
(0.7 + 0.15) x VDDQ
V
1
VOL(AC)
AC output low measurement level (for output SR)
(0.7 - 0.15) x VDDQ
V
1
NOTE :
1. The swing of ± 0.15 × VDDQ is based on approximately 50% of the static single-ended output peak-to-peak swing with a driver impedance of RZQ/7Ω and an effective test
load of 50Ω to VTT = VDDQ.
9.3 Differential AC & DC Output Levels
[ Table 24 ] Differential AC & DC Output Levels
DDR4-1600/1866/2133/2400
Units
NOTE
VOHdiff(AC)
Symbol
AC differential output high measurement level (for output SR)
Parameter
+0.3 x VDDQ
V
1
VOLdiff(AC)
AC differential output low measurement level (for output SR)
-0.3 x VDDQ
V
1
NOTE :
1. The swing of ± 0.3 × VDDQ is based on approximately 50% of the static differential output peak-to-peak swing with a driver impedance of RZQ/7Ω and an effective test load
of 50Ω to VTT = VDDQ at each of the differential outputs.
- 27 -
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
9.4 Single-ended Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC) for
single ended signals as shown in Table 25 and Figure 17.
[ Table 25 ] Single-ended Output Slew Rate Definition
Measured
Description
Defined by
From
To
Single ended output slew rate for rising edge
VOL(AC)
VOH(AC)
[VOH(AC)-VOL(AC)] / Delta TRse
Single ended output slew rate for falling edge
VOH(AC)
VOL(AC)
[VOH(AC)-VOL(AC)] / Delta TFse
NOTE :
1. Output slew rate is verified by design and characterization, and may not be subject to production test.
VOH(AC)
VTT
VOL(AC)
delta TFse
delta TRse
Figure 17. Single-ended Output Slew Rate Definition
[ Table 26 ] Single-ended Output Slew Rate
Parameter
Single ended output slew rate
Symbol
SRQse
DDR4-1600
DDR4-1866
DDR4-2133
DDR4-2400
Min
Max
Min
Max
Min
Max
Min
Max
4
9
4
9
4
9
4
9
Units
V/ns
Description: SR: Slew Rate
Q: Query Output (like in DQ, which stands for Data-in, Query-Output)
se: Single-ended Signals
For Ron = RZQ/7 setting
NOTE :
1. In two cases, a maximum slew rate of 12 V/ns applies for a single DQ signal within a byte lane.
-Case 1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining DQ signals in the
same byte lane are static (i.e. they stay at either high or low).
-Case 2 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining DQ signals in the
same byte lane are switching into the opposite direction (i.e. from low to high or high to low respectively). For the remaining DQ signal switching into the opposite direction, the
regular maximum limit of 9 V/ns applies
- 28 -
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
9.5 Differential Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and
VOHdiff(AC) for differential signals as shown in Table 27 and Figure 18.
[ Table 27 ] Differential Output Slew Rate Definition
Measured
Description
Defined by
From
To
Differential output slew rate for rising edge
VOLdiff(AC)
VOHdiff(AC)
[VOHdiff(AC)-VOLdiff(AC)] / Delta TRdiff
Differential output slew rate for falling edge
VOHdiff(AC)
VOLdiff(AC)
[VOHdiff(AC)-VOLdiff(AC)] /Delta TFdiff
NOTE :
1. Output slew rate is verified by design and characterization, and may not be subject to production test.
VOHdiff(AC)
VTT
VOLdiff(AC)
delta TFdiff
delta TRdiff
Figure 18. Differential Output Slew Rate Definition
[ Table 28 ] Differential Output Slew Rate
Parameter
Differential output slew rate
Symbol
DDR4-1600
DDR4-1866
DDR4-2133
DDR4-2400
Min
Max
Min
Max
Min
Max
Min
Max
8
18
8
18
8
18
8
18
SRQdiff
Description:
SR: Slew Rate
Q: Query Output (like in DQ, which stands for Data-in, Query-Output)
diff: Differential Signals
For Ron = RZQ/7 setting
- 29 -
Units
V/ns
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
9.6 Single-ended AC & DC Output Levels of Connectivity Test Mode
Following output parameters will be applied for DDR4 SDRAM Output Signal during Connectivity Test Mode.
[ Table 29 ] Single-ended AC & DC Output Levels of Connectivity Test Mode
Symbol
Parameter
DDR4-1600/1866/2133 /2400
Unit
Notes
VOH(DC)
DC output high measurement level (for IV curve linearity)
1.1 x VDDQ
V
VOM(DC)
DC output mid measurement level (for IV curve linearity)
0.8 x VDDQ
V
VOL(DC)
DC output low measurement level (for IV curve linearity)
0.5 x VDDQ
V
VOB(DC)
DC output below measurement level (for IV curve linearity)
0.2 x VDDQ
V
VOH(AC)
AC output high measurement level (for output SR)
VTT + (0.1 x VDDQ)
V
1
VOL(AC)
AC output below measurement level (for output SR)
VTT - (0.1 x VDDQ)
V
1
Unit
Notes
NOTE
1. The effective test load is 50Ω terminated by VTT = 0.5 * VDDQ.
VOH(AC)
0.5 * VDDQ
VTT
VOL(AC)
TR_output_CT
TR_output_CT
Figure 19. Output Slew Rate Definition of Connectivity Test Mode
[ Table 30 ] Single-ended Output Slew Rate of Connectivity Test Mode
Parameter
DDR4-1600/1866/2133/2400
Symbol
Min
Max
Output signal Falling time
TF_output_CT
-
10
ns/V
Output signal Rising time
TR_output_CT
-
10
ns/V
9.7 Test Load for Connectivity Test Mode Timing
The reference load for ODT timings is defined in Figure 18.
VDDQ
CT_INPUTS
DQ, DM
DQSL , DQSL
DQSU , DQSU
DQS , DQS
DUT
Rterm = 50 ohm
VSSQ
Timing Reference Points
Figure 20. Connectivity Test Mode Timing Reference Load
- 30 -
0.5*VDDQ
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
10. Speed Bin
[ Table 31 ] DDR4-1600 Speed Bins and Operations
Speed Bin
DDR4-1600
CL-nRCD-nRP
11-11-11
Unit
NOTE
Parameter
Symbol
min
max
Internal read command to first data
tAA
13.75
18.00
ns
10
Internal read command to first data with read DBI enabled
tAA_DBI
tAA(min) + 2nCK
tAA(max) +2nCK
ns
10
ACT to internal read or write delay time
tRCD
13.75
-
ns
10
PRE command period
tRP
13.75
-
ns
10
ACT to PRE command period
tRAS
35
9 x tREFI
ns
10
tRC
48.75
-
ns
10
ns
1,2,3,4,9
ns
1,2,3,4,9
ns
1,2,3,4
ns
1,2,3,4
ns
1,2,3
ACT to ACT or REF command period
Normal
CWL = 9
CWL = 9,11
Read DBI
CL = 9
CL = 11
tCK(AVG)
CL = 10
CL = 12
tCK(AVG)
Reserved
CL = 10
CL = 12
tCK(AVG)
CL = 11
CL = 13
tCK(AVG)
1.25
CL = 12
CL = 14
tCK(AVG)
1.25
1.5
1.6
Reserved
<1.5
<1.5
Supported CL Settings
10,11,12
nCK
Supported CL Settings with read DBI
12,13,14
nCK
Supported CWL Settings
9,11
nCK
[ Table 32 ] DDR4-1866 Speed Bins and Operations
Speed Bin
DDR4-1866
CL-nRCD-nRP
Parameter
13-13-13
Symbol
min
Unit
NOTE
max
Internal read command to first data
tAA
13.92
18.00
ns
10
Internal read command to first data with read DBI enabled
tAA_DBI
tAA(min) + 2nCK
tAA(max) +2nCK
ns
10
ACT to internal read or write delay time
tRCD
13.92
-
ns
10
PRE command period
tRP
13.92
-
ns
10
ACT to PRE command period
tRAS
34
9 x tREFI
ns
10
ACT to ACT or REF command period
tRC
47.92
-
ns
10
ns
1,2,3,4,9
CWL = 9
CWL = 9,11
CWL = 10,12
Normal
Read DBI
CL = 9
CL = 11
tCK(AVG)
CL = 10
CL = 12
tCK(AVG)
CL = 10
CL = 12
tCK(AVG)
Reserved
1.5
1.6
Reserved
ns
1,2,3,4,9
ns
4
CL = 11
CL = 13
tCK(AVG)
1.25
<1.5
ns
1,2,3,4,6
CL = 12
CL = 14
tCK(AVG)
1.25
<1.5
ns
1,2,3,6
CL = 12
CL = 14
tCK(AVG)
ns
1,2,3,4
CL = 13
CL = 15
tCK(AVG)
1.071
<1.25
ns
1,2,3,4
CL = 14
CL = 16
tCK(AVG)
1.071
<1.25
ns
1,2,3
Reserved
Supported CL Settings
10,11,12,13,14
nCK
Supported CL Settings with read DBI
12,13,14,15,16
nCK
Supported CWL Settings
9,10,11,12
nCK
- 31 -
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
[ Table 33 ] DDR4-2133 Speed Bins and Operations
Speed Bin
DDR4-2133
CL-nRCD-nRP
15-15-15
Parameter
Symbol
Internal read command to first data
tAA
Internal read command to first data with read DBI
enabled
tAA_DBI
ACT to internal read or write delay time
tRCD
PRE command period
tRP
ACT to PRE command period
tRAS
ACT to ACT or REF command period
tRC
Normal
CWL = 9
CWL = 9,11
CWL = 10,12
CWL = 11,14
Unit
NOTE
18.00
ns
10
tAA(max) + 3nCK
ns
10
-
ns
10
-
ns
10
9 x tREFI
ns
10
-
ns
10
min
max
14.06
(13.75)5
tAA(min) + 3nCK
14.06
(13.75)5
14.06
(13.75)5
33
47.06
(46.75)5
Read DBI
CL = 9
CL = 11
tCK(AVG)
ns
1,2,3,4,9
CL = 10
CL = 12
tCK(AVG)
1.5
Reserved
1.6
ns
1,2,3,4,9
CL = 11
CL = 13
tCK(AVG)
1.25
<1.5
ns
1,2,3,4,7
CL = 12
CL = 14
tCK(AVG)
1.25
<1.5
ns
1,2,3,7
CL = 13
CL = 15
tCK(AVG)
1.071
<1.25
ns
1,2,3,4,7
CL = 14
CL = 16
tCK(AVG)
1.071
<1.25
ns
1,2,3,7
CL = 14
CL = 17
tCK(AVG)
ns
1,2,3,4
CL = 15
CL = 18
tCK(AVG)
0.938
<1.071
ns
1,2,3,4
CL = 16
CL = 19
tCK(AVG)
0.938
ns
1,2,3
Reserved
<1.071
Supported CL Settings
10,11.12,13,14,15,16
nCK
Supported CL Settings with read DBI
12,13,14,15,16,18,19
nCK
Supported CWL Settings
9,10,11,12,14
nCK
- 32 -
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
[ Table 34 ] DDR4-2400 Speed Bins and Operations
Speed Bin
DDR4-2400
CL-nRCD-nRP
17-17-17
Parameter
Symbol
Internal read command to first data
tAA
Internal read command to first data with read DBI
enabled
tAA_DBI
ACT to internal read or write delay time
tRCD
PRE command period
tRP
ACT to PRE command period
tRAS
ACT to ACT or REF command period
tRC
Normal
CWL = 9
CWL = 9,11
CWL = 10,12
CWL = 11,14
CWL = 12,16
Unit
NOTE
18.00
ns
10
tAA(max) + 3nCK
ns
10
-
ns
10
-
ns
10
9 x tREFI
ns
10
-
ns
10
ns
1,2,3,4,9
ns
1,2,3,4,9
min
max
14.16
(13.75)5
tAA(min) + 3nCK
14.16
(13.75)5
14.16
(13.75)5
32
46.16
(45.75)5
Read DBI
CL = 9
CL = 11
tCK(AVG)
CL = 10
CL = 12
tCK(AVG)
Reserved
1.5
1.6
CL = 10
CL = 12
tCK(AVG)
CL = 11
CL = 13
tCK(AVG)
1.25
Reserved
CL = 12
CL = 14
tCK(AVG)
1.25
CL = 12
CL = 14
tCK(AVG)
CL = 13
CL = 15
tCK(AVG)
1.071
CL = 14
CL = 16
tCK(AVG)
1.071
CL = 14
CL = 17
tCK(AVG)
CL = 15
CL = 18
tCK(AVG)
0.938
CL = 16
CL = 19
tCK(AVG)
0.938
CL = 15
CL = 18
tCK(AVG)
CL = 16
CL = 19
tCK(AVG)
CL = 17
CL = 20
tCK(AVG)
0.833
<0.938
CL = 18
CL = 21
tCK(AVG)
0.833
<0.938
<1.5
<1.5
ns
4
ns
1,2,3,4,8
ns
1,2,3,8
ns
4
<1.25
ns
1,2,3,4,8
<1.25
ns
1,2,3,8
ns
4
<1.071
ns
1,2,3,4,8
<1.071
ns
1,2,3,8
ns
1,2,3,4
ns
1,2,3,4
ns
1,2,3
Reserved
Reserved
Reserved
Reserved
Supported CL Settings
10,11,12,13,14,15,16,17,18
nCK
Supported CL Settings with read DBI
12,13,14,15,16,18,19,20,21
nCK
Supported CWL Settings
9,10,11,12,14,16
nCK
- 33 -
K4A4G045WE
K4A4G085WE
datasheet
Rev. 1.2
DDR4 SDRAM
10.1 Speed Bin Table Note
Absolute Specification
- VDDQ = VDD = 1.20V +/- 0.06 V
- VPP = 2.5V +0.25/-0.125 V
- The values defined with above-mentioned table are DLL ON case.
- DDR4-1600, 1866, 2133 and 2400 Speed Bin Tables are valid only when Geardown Mode is disabled.
1. The CL setting and CWL setting result in tCK(avg).MIN and tCK(avg).MAX requirements. When making a selection of tCK(avg), both need to be fulfilled: Requirements from
CL setting as well as requirements from CWL setting.
2. tCK(avg).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be
guaranteed. An application should use the next smaller JEDEC standard tCK(avg) value (1.5, 1.25, 1.071, 0.938 or 0.833 ns) when calculating CL [nCK] = tAA [ns] / tCK(avg)
[ns], rounding up to the next ‘Supported CL’, where tAA = 12.5ns and tCK(avg) = 1.3 ns should only be used for CL = 10 calculation.
3. tCK(avg).MAX limits: Calculate tCK(avg) = tAA.MAX / CL SELECTED and round the resulting tCK(avg) down to the next valid speed bin (i.e. 1.5ns or 1.25ns or 1.071 ns or
0.938 ns or 0.833 ns). This result is tCK(avg).MAX corresponding to CL SELECTED.
4. ‘Reserved’ settings are not allowed. User must program a different value.
5. 'Optional' settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature. Refer to supplier's data sheet and/or the DIMM SPD
information if and how this setting is supported.
6. Any DDR4-1866 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
7. Any DDR4-2133 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
8. Any DDR4-2400 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
9. DDR4-1600 AC timing apply if DRAM operates at lower than 1600 MT/s data rate.
10. Parameters apply from tCK(avg)min to tCK(avg)max at all standard JEDEC clock period values as stated in the Speed Bin Tables.
- 34 -
K4A4G045WE
K4A4G085WE
datasheet
Rev. 1.2
DDR4 SDRAM
11. IDD and IDDQ Specification Parameters and Test Conditions
11.1 IDD, IPP and IDDQ Measurement Conditions
In this chapter, IDD, IPP and IDDQ measurement conditions such as test load and patterns are defined. Figure 21 shows the setup and test load for IDD,
IPP and IDDQ measurements.
l
l
l
IDD currents (such as IDD0, IDD0A, IDD1, IDD1A, IDD2N, IDD2NA, IDD2NL, IDD2NT, IDD2P, IDD2Q, IDD3N, IDD3NA, IDD3P, IDD4R, IDD4RA,
IDD4W, IDD4WA, IDD5B, IDD5F2, IDD5F4, IDD6N, IDD6E, IDD6R, IDD6A, IDD7 and IDD8) are measured as time-averaged currents with all VDD
balls of the DDR4 SDRAM under test tied together. Any IPP or IDDQ current is not included in IDD currents.
IPP currents have the same definition as IDD except that the current on the VPP supply is measured.
IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all VDDQ balls of the DDR4 SDRAM under test tied
together. Any IDD current is not included in IDDQ currents.
Attention: IDDQ values cannot be directly used to calculate IO power of the DDR4 SDRAM. They can be used to support correlation of simulated IO
power to actual IO power as outlined in Figure 22. In DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are
using one merged-power layer in Module PCB.
For IDD, IPP and IDDQ measurements, the following definitions apply:
l “0” and “LOW” is defined as VIN <= VILAC(max).
l
l
l
l
l
l
l
l
l
“1” and “HIGH” is defined as VIN >= VIHAC(min).
“MID-LEVEL” is defined as inputs are VREF = VDD / 2.
Timings used for IDD, IPP and IDDQ Measurement-Loop Patterns are provided in Table 35.
Basic IDD, IPP and IDDQ Measurement Conditions are described in Table 36.
Detailed IDD, IPP and IDDQ Measurement-Loop Patterns are described in Table 37 through Table 45.
IDD Measurements are done after properly initializing the DDR4 SDRAM. This includes but is not limited to setting
RON = RZQ/7 (34 Ohm in MR1);
RTT_NOM = RZQ/6 (40 Ohm in MR1);
RTT_WR = RZQ/2 (120 Ohm in MR2);
RTT_PARK = Disable;
Qoff = 0B (Output Buffer enabled) in MR1;
TDQS_t disabled in MR1;
CRC disabled in MR2;
CA parity feature disabled in MR5;
Gear down mode disabled in MR3
Read/Write DBI disabled in MR5;
DM disabled in MR5
Attention: The IDD, IPP and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is
started.
Define D = {CS_n, ACT_n, RAS_n, CAS_n, WE_n } := {HIGH, LOW, LOW, LOW, LOW} ; apply BG/BA changes when directed.
Define D# = {CS_n, ACT_n, RAS_n, CAS_n, WE_n } := {HIGH, HIGH, HIGH, HIGH, HIGH} apply invert of BG/BA changes when directed above.
- 35 -
datasheet
K4A4G045WE
K4A4G085WE
IDD
VDD
RESET
CK_t/CK_c
CKE
CS
C
ACT,RAS,CAS,WE
A,BG,BA
ODT
ZQ
IPP
Rev. 1.2
DDR4 SDRAM
IDDQ
VPP
VDDQ
DDR4 SDRAM
DQS_t/DQS_c
DQ
DM
VSS
VSSQ
NOTE:
1. DIMM level Output test load condition may be different from above
Figure 21. Measurement Setup and Test Load for IDD, IPP and IDDQ Measurements
Application specific
IDDQ
TestLad
memory channel
environment
Channel
IO Powe
Simulatin
IDDQ
Simuaion
IDDQ
Measurement
X
X
Correlation
Channel IO Power
Number
Figure 22. Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ Measurement.
- 36 -
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
[ Table 35 ] Timings Used for IDD, IPP and IDDQ Measurement-Loop Patterns
DDR4-1600
DDR4-1866
DDR4-2133
DDR4-2400
11-11-11
13-13-13
15-15-15
17-17-17
tCK
1.25
1.071
0.938
0.833
ns
CL
11
13
15
17
nCK
CWL
11
12
14
16
nCK
nRCD
11
13
15
17
nCK
nRC
39
45
51
56
nCK
nRAS
28
32
36
39
nCK
nRP
11
13
15
17
nCK
x4
16
16
16
16
nCK
x8
20
22
23
26
nCK
x16
28
28
32
36
nCK
x4
4
4
4
4
nCK
Symbol
nFAW
nRRDS
nRRDL
Unit
x8
4
4
4
4
nCK
x16
5
5
6
7
nCK
x4
5
5
6
6
nCK
x8
5
5
6
6
nCK
6
6
7
8
nCK
tCCD_S
x16
4
4
4
4
nCK
tCCD_L
5
5
6
6
nCK
tWTR_S
2
3
3
3
nCK
tWTR_L
6
7
8
9
nCK
nRFC 2Gb
128
150
171
193
nCK
nRFC 4Gb
208
243
278
313
nCK
nRFC 8Gb
280
327
374
421
nCK
TBD
nCK
- 37 -
K4A4G045WE
K4A4G085WE
datasheet
Rev. 1.2
DDR4 SDRAM
[ Table 36 ] Basic IDD, IPP and IDDQ Measurement Conditions
Symbol
Description
Operating One Bank Active-Precharge Current (AL=0)
IDD0
CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 35 on page 37; BL: 81; AL: 0; CS_n: High between ACT and PRE;
Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 37 on page 41; Data IO: VDDQ;
DM_n: stable at 1; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 37 on page 41); Output Buffer and
RTT: Enabled in Mode Registers2; ODT Signal: stable at 0; Pattern Details: see Table 37 on page 41
IDD0A
IPP0
Operating One Bank Active-Precharge Current (AL=CL-1)
AL = CL-1, Other conditions: see IDD0
Operating One Bank Active-Precharge IPP Current
Same condition with IDD0
Operating One Bank Active-Read-Precharge Current (AL=0)
IDD1
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 35 on page 37; BL: 81; AL: 0; CS_n: High between ACT, RD
and PRE; Command, Address, Bank Group Address, Bank Address Inputs, Data IO: partially toggling according to Table 38 on
page 42; DM_n: stable at 1; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 38 on page 42); Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable at 0; Pattern Details: see Table 38 on page 42
IDD1A
IPP1
Operating One Bank Active-Read-Precharge Current (AL=CL-1)
AL = CL-1, Other conditions: see IDD1
Operating One Bank Active-Read-Precharge IPP Current
Same condition with IDD1
Precharge Standby Current (AL=0)
IDD2N
CKE: High; External clock: On; tCK, CL: see Table 35 on page 37; BL: 81; AL: 0; CS_n: stable at 1; Command, Address, Bank Group
Address, Bank Address Inputs: partially toggling according to Table 39 on page 43; Data IO: VDDQ; DM_n: stable at 1; Bank Activity:
all banks closed; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable at 0; Pattern Details: see Table 39 on
page 43
IDD2NA
IPP2N
Precharge Standby Current (AL=CL-1)
AL = CL-1, Other conditions: see IDD2N
Precharge Standby IPP Current
Same condition with IDD2N
Precharge Standby ODT Current
IDD2NT
CKE: High; External clock: On; tCK, CL: see Table 35 on page 37; BL: 81; AL: 0; CS_n: stable at 1; Command, Address, Bank Group
Address, Bank Address Inputs: partially toggling according to Table 40 on page 44; Data IO: VSSQ; DM_n: stable at 1; Bank Activity:
all banks closed; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: toggling according to Table 40 on page 44; Pattern
Details: see Table 40 on page 44
IDDQ2NT Precharge Standby ODT IDDQ Current
(Optional) Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current
IDD2NL
IDD2NG
IDD2ND
IDD2N_par
IDD2P
Precharge Standby Current with CAL enabled
Same definition like for IDD2N, CAL enabled3
Precharge Standby Current with Gear Down mode enabled
Same definition like for IDD2N, Gear Down mode enabled3,5
Precharge Standby Current with DLL disabled
Same definition like for IDD2N, DLL disabled3
Precharge Standby Current with CA parity enabled
Same definition like for IDD2N, CA parity enabled3
Precharge Power-Down Current CKE: Low; External clock: On; tCK, CL: see Table 35 on page 37; BL: 81; AL: 0; CS_n: stable at 1;
Command, Address, Bank Group Address, Bank Address Inputs: stable at 0; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: all
banks closed; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable at 0
IPP2P
Precharge Power-Down IPP Current
Same condition with IDD2P
IDD2Q
Precharge Quiet Standby Current
CKE: High; External clock: On; tCK, CL: see Table 35 on page 37; BL: 81; AL: 0; CS_n: stable at 1; Command, Address, Bank Group
Address, Bank Address Inputs: stable at 0; Data IO: VDDQ; DM_n: stable at 1;Bank Activity: all banks closed; Output Buffer and RTT:
Enabled in Mode Registers2; ODT Signal: stable at 0
IDD3N
Active Standby Current
CKE: High; External clock: On; tCK, CL: see Table 35 on page 37; BL: 81; AL: 0; CS_n: stable at 1; Command, Address, Bank Group
Address, Bank Address Inputs: partially toggling according to Table 39 on page 43; Data IO: VDDQ; DM_n: stable at 1;Bank Activity:
all banks open; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable at 0; Pattern Details: see Table 39 on page 43
- 38 -
K4A4G045WE
K4A4G085WE
datasheet
Symbol
IDD3NA
Rev. 1.2
DDR4 SDRAM
Description
Active Standby Current (AL=CL-1)
AL = CL-1, Other conditions: see IDD3N
IPP3N
Active Standby IPP Current
Same condition with IDD3N
IDD3P
Active Power-Down Current
CKE: Low; External clock: On; tCK, CL: see Table 35 on page 37; BL: 81; AL: 0; CS_n: stable at 1; Command, Address, Bank Group
Address, Bank Address Inputs: stable at 0; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: all banks open; Output Buffer and
RTT: Enabled in Mode Registers2; ODT Signal: stable at 0
IPP3P
Active Power-Down IPP Current
Same condition with IDD3P
IDD4R
Operating Burst Read Current
CKE: High; External clock: On; tCK, CL: see Table 35 on page 37; BL: 82; AL: 0; CS_n: High between RD; Command, Address,
Bank Group Address, Bank Address Inputs: partially toggling according to Table 41 on page 45; Data IO: seamless read data burst
with different data between one burst and the next one according to Table 41 on page 45; DM_n: stable at 1; Bank Activity: all banks
open, RD commands cycling through banks: 0,0,1,1,2,2,... (see Table 41 on page 45); Output Buffer and RTT: Enabled in Mode
Registers2; ODT Signal: stable at 0; Pattern Details: see Table 41 on page 45
IDD4RA
Operating Burst Read Current (AL=CL-1)
AL = CL-1, Other conditions: see IDD4R
IDD4RB
Operating Burst Read Current with Read DBI
Read DBI enabled3, Other conditions: see IDD4R
IPP4R
Operating Burst Read IPP Current
Same condition with IDD4R
IDDQ4R
(Optional)
Operating Burst Read IDDQ Current
Same definition like for IDD4R, however measuring IDDQ current instead of IDD current
IDDQ4RB
(Optional)
Operating Burst Read IDDQ Current with Read DBI
Same definition like for IDD4RB, however measuring IDDQ current instead of IDD current
IDD4W
Operating Burst Write Current
CKE: High; External clock: On; tCK, CL: see Table 35 on page 37; BL: 81; AL: 0; CS_n: High between WR; Command, Address,
Bank Group Address, Bank Address Inputs: partially toggling according to Table 42 on page 46; Data IO: seamless write data burst
with different data between one burst and the next one according to Table 42 on page 46; DM_n: stable at 1; Bank Activity: all banks
open, WR commands cycling through banks: 0,0,1,1,2,2,... (see Table 42 on page 46); Output Buffer and RTT: Enabled in Mode
Registers2; ODT Signal: stable at HIGH; Pattern Details: see Table 42 on page 46
IDD4WA
Operating Burst Write Current (AL=CL-1)
AL = CL-1, Other conditions: see IDD4W
IDD4WB
Operating Burst Write Current with Write DBI
Write DBI enabled3, Other conditions: see IDD4W
IDD4WC
Operating Burst Write Current with Write CRC
Write CRC enabled3, Other conditions: see IDD4W
IDD4W_par
Operating Burst Write Current with CA Parity
CA Parity enabled3, Other conditions: see IDD4W
IPP4W
Operating Burst Write IPP Current
Same condition with IDD4W
IDD5B
Burst Refresh Current (1X REF)
CKE: High; External clock: On; tCK, CL, nRFC: see Table 35 on page 37; BL: 81; AL: 0; CS_n: High between REF; Command,
Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 44 on page 48; Data IO: VDDQ; DM_n:
stable at 1; Bank Activity: REF command every nRFC (see Table 44 on page 48); Output Buffer and RTT: Enabled in Mode
Registers2; ODT Signal: stable at 0; Pattern Details: see Table 44 on page 48
IPP5B
Burst Refresh Write IPP Current (1X REF)
Same condition with IDD5B
IDD5F2
Burst Refresh Current (2X REF)
tRFC=tRFC_x2, Other conditions: see IDD5B
IPP5F2
Burst Refresh Write IPP Current (2X REF)
Same condition with IDD5F2
IDD5F4
Burst Refresh Current (4X REF)
tRFC=tRFC_x4, Other conditions: see IDD5B
IPP5F4
Burst Refresh Write IPP Current (4X REF)
Same condition with IDD5F4
- 39 -
K4A4G045WE
K4A4G085WE
datasheet
Rev. 1.2
DDR4 SDRAM
Symbol
Description
IDD6N
Self Refresh Current: Normal Temperature Range
TCASE: 0 - 85°C; Low Power Array Self Refresh (LP ASR) : Normal4; CKE: Low; External clock: Off; CK_t and CK_c#: LOW; CL: see
Table 35 on page 37; BL: 81; AL: 0; CS_n#, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n: stable
at 1; Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: MID-LEVEL
IPP6N
Self Refresh IPP Current: Normal Temperature Range
Same condition with IDD6N
IDD6E
Self-Refresh Current: Extended Temperature Range)
TCASE: 0 - 95°C; Low Power Array Self Refresh (LP ASR) : Extended4; CKE: Low; External clock: Off; CK_t and CK_c: LOW; CL: see
Table 35 on page 37; BL: 81; AL: 0; CS_n, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n:stable at
1; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: MIDLEVEL
IPP6E
Self Refresh IPP Current: Extended Temperature Range
Same condition with IDD6E
IDD6R
Self-Refresh Current: Reduced Temperature Range
TCASE: 0 - 45 °C; Low Power Array Self Refresh (LP ASR) : Reduced4; CKE: Low; External clock: Off; CK_t and CK_c#: LOW; CL: see
Table 35 on page 37; BL: 81; AL: 0; CS_n#, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n:stable at
1; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: MIDLEVEL
IPP6R
Self Refresh IPP Current: Reduced Temperature Range
Same condition with IDD6R
IDD6A
Auto Self-Refresh Current
TCASE: 0 - 95°C; Low Power Array Self Refresh (LP ASR) : Auto4;CKE: Low; External clock: Off; CK_t and CK_c#: LOW; CL: see
Table 35 on page 37; BL: 81; AL: 0; CS_n#, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n:stable at
1; Bank Activity: Auto Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: MID-LEVEL
IPP6A
Auto Self-Refresh IPP Current
Same condition with IDD6A
IDD7
Operating Bank Interleave Read Current
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see Table 35 on page 37; BL: 81; AL: CL-1; CS_n: High
between ACT and RDA; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 45 on
page 49; Data IO: read data bursts with different data between one burst and the next one according to Table 45 on page 49; DM_n: stable
at 1; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing, see Table 45 on page 49; Output
Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable at 0; Pattern Details: see Table 45 on page 49
IPP7
Operating Bank Interleave Read IPP Current
Same condition with IDD7
IDD8
Maximum Power Down Current
TBD
IPP8
Maximum Power Down IPP Current
Same condition with IDD8
NOTE :
1. Burst Length: BL8 fixed by MRS: set MR0 [A1:0=00].
2. Output Buffer Enable
- set MR1 [A12 = 0] : Qoff = Output buffer enabled
- set MR1 [A2:1 = 00] : Output Driver Impedance Control = RZQ/7
RTT_Nom enable
- set MR1 [A10:8 = 011] : RTT_NOM = RZQ/6
RTT_WR enable
- set MR2 [A10:9 = 01] : RTT_WR = RZQ/2
RTT_PARK disable
- set MR5 [A8:6 = 000]
3. CAL enabled : set MR4 [A8:6 = 001] : 1600MT/s
010] : 1866MT/s, 2133MT/s
011] : 2400MT/s
Gear Down mode enabled :set MR3 [A3 = 1] : 1/4 Rate
DLL disabled : set MR1 [A0 = 0]
CA parity enabled :set MR5 [A2:0 = 001] : 1600MT/s,1866MT/s, 2133MT/s
010] : 2400MT/s
Read DBI enabled : set MR5 [A12 = 1]
Write DBI enabled : set :MR5 [A11 = 1]
4. Low Power Array Self Refresh (LP ASR) : set MR2 [A7:6 = 00] : Normal
01] : Reduced Temperature range
10] : Extended Temperature range
11] : Auto Self Refresh
5. IDD2NG should be measured after sync pulse(NOP) input.
- 40 -
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
0
0
0
-
0
0
0
0
-
3,4
D_#, D_#
1
1
1
1
1
0
0
32
3
0
0
0
7
F
0
-
...
repeat pattern 1...4 until nRAS - 1, truncate if necessary
0
0
0
0
0
0
0
0
-
PRE
0
1
0
1
0
0
0
1*nRC
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 1 instead
2
2*nRC
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead
3
3*nRC
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 3 instead
4
4*nRC
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead
5
5*nRC
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 2 instead
6
6*nRC
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead
7
7*nRC
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 0 instead
8
8*nRC
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead
9
9*nRC
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 1 instead
10
10*nRC
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead
11
11*nRC
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 3 instead
12*nRC
repeat Sub-Loop 0, use
BG[1:0]2 =
2, BA[1:0] = 1 instead
repeat Sub-Loop 0, use
BG[1:0]2 =
3, BA[1:0] = 2 instead
2=
2, BA[1:0] = 3 instead
13
14
15
13*nRC
14*nRC
15*nRC
Data4
repeat pattern 1...4 until nRC - 1, truncate if necessary
1
12
A[2:0]
0
0
A[6:3]
0
0
A[9:7]
0
0
A[10]/AP
0
0
A[13,11]
0
0
A12/BC_n
0
0
BA[1:0]
0
0
BG[1:0]2
0
0
C[2:0]3
0
0
ODT
0
0
...
Static High
WE_n/ A14
0
1
nRAS
toggling
CAS_n/ A15
0
D, D
RAS_n
ACT
ACT_n
0
1,2
CS_n
Command
0
Cycle
Number
Sub-Loop
CKE
CK_t /CK_c
[ Table 37 ] IDD0, IDD0A and IPP0 Measurement-Loop Pattern1
repeat Sub-Loop 0, use BG[1:0]
2
repeat Sub-Loop 0, use BG[1:0] = 3, BA[1:0] = 0 instead
NOTE :
1. DQS_t, DQS_c are VDDQ.
2. BG1 is don’t care for x16 device
3. C[2:0] are used only for 3DS device
4. DQ signals are VDDQ.
- 41 -
For x4 and
x8 only
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
CS_n
ACT_n
RAS_n
CAS_n/A15
WE_n/A14
ODT
C[2:0]3
BG[1:0]2
BA[1:0]
A12/BC_n
A[13,11]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
0
ACT
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
1, 2
D, D
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
0
b
3
0
0
0
7
F
0
-
0
Cycle
Number
Command
Data4
Sub-Loop
CKE
CK_t, CK_c
[ Table 38 ] IDD1, IDD1A and IPP1 Measurement-Loop Pattern1
3, 4
D#, D#
...
repeat pattern 1...4 until nRCD - AL - 1, truncate if necessary
nRCD -AL
RD
1
0
1
1
1
1
1
0
1
1
0
0
0
3
0
...
repeat pattern 1...4 until nRAS - 1, truncate if necessary
nRAS
PRE
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
D0=00, D1=FF
D2=FF, D3=00
D4=FF, D5=00
D6=00, D7=FF
0
0
0
0
0
0
0
-
...
repeat pattern 1...4 until nRC - 1, truncate if necessary
1*nRC + 0
ACT
0
0
0
1
1
0
0
1
1
0
0
0
0
0
0
-
1*nRC + 1, 2
D, D
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
1*nRC + 3, 4
D#, D#
1
1
1
1
1
0
0
3b
3
0
0
0
7
F
0
-
...
repeat pattern nRC + 1...4 until 1*nRC + nRAS - 1, truncate if necessary
1
Static High
toggling
1*nRC + nRCD - AL RD
0
1
1
0
1
0
0
1
...
repeat pattern 1...4 until nRAS - 1, truncate if necessary
0
1
0
1
0
0
0
0
1
0
0
0
0
0
0
D0=FF, D1=00
D2=00, D3=FF
D4=00, D5=FF
D6=FF, D7=00
0
0
0
0
0
0
0
-
1*nRC + nRAS
PRE
...
repeat nRC + 1...4 until 2*nRC - 1, truncate if necessary
2
2*nRC
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead
3
3*nRC
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead
4
4*nRC
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead
5
5*nRC
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead
6
6*nRC
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead
8
7*nRC
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead
9
9*nRC
repeat Sub-Loop 1, use BG[1:0]2 = 2, BA[1:0] = 0 instead
10 10*nRC
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 1 instead
11 11*nRC
repeat Sub-Loop 1, use BG[1:0]2 = 2, BA[1:0] = 2 instead
12 12*nRC
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 3 instead
13 13*nRC
repeat Sub-Loop 1, use BG[1:0]2 = 2, BA[1:0] = 1 instead
14 14*nRC
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 2 instead
15 15*nRC
repeat Sub-Loop 1, use BG[1:0]2 = 2, BA[1:0] = 3 instead
16 16*nRC
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 0 instead
NOTE :
1. DQS_t, DQS_c are used according to RD Commands, otherwise VDDQ
2. BG1 is don’t care for x16 device
3. C[2:0] are used only for 3DS device
4. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are VDDQ.
- 42 -
For x4 and x8 only
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
Static High
toggling
A[6:3]
A[2:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
0
0
0
7
F
0
0
3
0
0
0
7
F
0
0
2
D#, D#
1
1
1
1
1
0
0
32
3
D#, D#
1
1
1
1
1
0
0
2
1
4-7
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 1 instead
2
8-11
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead
3
12-15
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 3 instead
4
16-19
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead
5
20-23
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 2 instead
6
24-27
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead
7
28-31
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 0 instead
8
32-35
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead
9
36-39
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 1 instead
10
40-43
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead
11
44-47
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 3 instead
12
48-51
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead
13
52-55
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 2 instead
14
56-59
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead
15
60-63
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 0 instead
NOTE :
1. DQS_t, DQS_c are VDDQ.
2. BG1 is don’t care for x16 device
3. C[2:0] are used only for 3DS device
4. DQ signals are VDDQ.
- 43 -
3
A[13,11]
0
0
BA[1:0]
0
0
BG[1:0]2
0
0
C[2:0]3
0
0
ODT
A[9:7]
A12/BC_n
WE_n/A14
CAS_n/A15
1
1
RAS_n
D, D
D, D
ACT_n
0
1
CS_n
Data4
Cycle
Number
A[10]/AP
0
Command
Sub-Loop
CKE
CK_t, CK_c
[ Table 39 ] IDD2N, IDD2NA, IDD2NL, IDD2NG, IDD2ND, IDD2N_par, IPP2,IDD3N, IDD3NA and IDD3P Measurement-Loop Pattern1
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
Static High
A[2:0]
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
0
3
2
3
0
0
0
7
F
0
-
3
2
3
0
0
0
7
F
0
-
D#, D#
D#, D#
1
1
1
1
1
1
1
1
1
1
ODT
D, D
D, D
2
0
0
0
A[9:7]
A[10]/AP
A[13,11]
A12/BC_n
BA[1:0]
BG[1:0]2
C[2:0]3
WE_n/A14
CAS_n/A15
RAS_n
ACT_n
0
1
CS_n
Data4
3
toggling
Command
A[6:3]
0
Cycle
Number
Sub-Loop
CKE
CK_t, CK_c
[ Table 40 ] IDD2NT and IDDQ2NT Measurement-Loop Pattern1
2
1
4-7
repeat Sub-Loop 0, but ODT = 1 and BG[1:0] = 1, BA[1:0] = 1 instead
2
8-11
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 0, BA[1:0] = 2 instead
3
12-15
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 1, BA[1:0] = 3 instead
4
16-19
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 0, BA[1:0] = 1 instead
5
20-23
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 1, BA[1:0] = 2 instead
6
24-27
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 0, BA[1:0] = 3 instead
7
28-31
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 1, BA[1:0] = 0 instead
8
32-35
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 0 instead
9
36-39
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 1 instead
10
40-43
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 2 instead
11
44-47
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 3 instead
12
48-51
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 1 instead
13
52-55
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 2 instead
14
56-59
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 3 instead
15
60-63
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 0 instead
NOTE :
1. DQS_t, DQS_c are VDDQ.
2. BG1 is don’t care for x16 device
3. C[2:0] are used only for 3DS device
4. DQ signals are VDDQ.
- 44 -
For x4
and x8
only
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
CS_n
ACT_n
RAS_n
CAS_n/A15
WE_n/A14
ODT
C[2:0]3
BG[1:0]2
BA[1:0]
A12/BC_n
A[13,11]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
0
RD
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
D0=00, D1=FF
D2=FF, D3=00
D4=FF, D5=00
D6=00, D7=FF
1
D
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
3
0
0
0
7
F
0
-
Cycle
Number
Command
Data4
Sub-Loop
CKE
CK_t, CK_c
[ Table 41 ] IDD4R, IDDR4RA, IDD4RB and IDDQ4R Measurement-Loop Pattern1
0
2,3
D#, D#
1
1
1
1
1
0
0
32
4
RD
0
1
1
0
1
0
0
1
1
0
0
0
7
F
0
D0=FF, D1=00
D2=00, D3=FF
D4=00, D5=FF
D6=FF, D7=00
5
D
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
0
2
3
0
0
0
7
F
0
-
1
Static High
toggling
6,7
D#, D#
1
1
1
1
1
0
3
2
2
8-11
repeat Sub-Loop 0, use BG[1:0] = 0, BA[1:0] = 2 instead
3
12-15
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead
4
16-19
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead
5
20-23
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead
6
24-27
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead
7
28-31
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead
8
32-35
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead
9
36-39
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead
10
40-43
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead
11
44-47
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 3 instead
12
48-51
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead
13
52-55
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead
14
56-59
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead
15
60-63
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead
NOTE :
1. DQS_t, DQS_c are used according to RD Commands, otherwise VDDQ.
2. BG1 is don’t care for x16 device
3. C[2:0] are used only for 3DS device
4. Burst Sequence driven on each DQ signal by Read Command.
- 45 -
For x4 and x8 only
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
CS_n
ACT_n
RAS_n
CAS_n/A15
WE_n/A14
ODT
C[2:0]3
BG[1:0]2
BA[1:0]
A12/BC_n
A[13,11]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
0
WR
0
1
1
0
1
1
0
0
0
0
0
0
0
0
0
D0=00, D1=FF
D2=FF, D3=00
D4=FF, D5=00
D6=00, D7=FF
1
D
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
-
3
0
0
0
7
F
0
-
Cycle
Number
Command
Data4
Sub-Loop
CKE
CK_t, CK_c
[ Table 42 ] IDD4W, IDD4WA, IDD4WB and IDD4W_par Measurement-Loop Pattern1
0
2,3
D#, D#
1
1
1
1
1
1
0
32
4
WR
0
1
1
0
1
1
0
1
1
0
0
0
7
F
0
D0=FF, D1=00
D2=00, D3=FF
D4=00, D5=FF
D6=FF, D7=00
5
D
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
-
0
2
3
0
0
0
7
F
0
-
1
Static High
toggling
6,7
D#, D#
1
1
1
1
1
1
3
2
2
8-11
repeat Sub-Loop 0, use BG[1:0] = 0, BA[1:0] = 2 instead
3
12-15
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead
4
16-19
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead
5
20-23
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead
6
24-27
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead
7
28-31
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead
8
32-35
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead
9
36-39
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead
10
40-43
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead
11
44-47
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 3 instead
12
48-51
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead
13
52-55
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead
14
56-59
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead
15
60-63
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead
NOTE :
1. DQS_t, DQS_c are used according to WR Commands, otherwise VDDQ.
2. BG1 is don’t care for x16 device
3. C[2:0] are used only for 3DS device
4. Burst Sequence driven on each DQ signal by Write Command.
- 46 -
For x4 and x8 only
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
Static High
1
1
0
1
1
0
0
0
0
0
0
0
0
0
1,2
D, D
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
-
0
2
3
0
0
0
7
F
0
-
D#, D#
1
1
1
1
1
1
3
A[6:3]
0
ODT
WR
3,4
A[9:7]
A[10]/AP
A[13,11]
A12/BC_n
BA[1:0]
BG[1:0]2
C[2:0]3
WE_n/A14
CAS_n/A15
RAS_n
ACT_n
0
D0=00, D1=FF
D2=FF, D3=00
D4=FF, D5=00
D6=00, D7=FF
D8=CRC
CS_n
Data4
5
WR
0
1
1
0
1
1
0
1
1
0
0
0
7
F
0
D0=FF, D1=00
D2=00, D3=FF
D4=00, D5=FF
D6=FF, D7=00
D8=CRC
6,7
D, D
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
-
0
32
3
0
0
0
7
F
0
-
8,9
toggling
Command
A[2:0]
0
Cycle
Number
Sub-Loop
CKE
CK_t, CK_c
[ Table 43 ] IDD4WC Measurement-Loop Pattern1
D#, D#
1
1
1
1
1
1
2
2
10-14
repeat Sub-Loop 0, use BG[1:0] = 0, BA[1:0] = 2 instead
3
15-19
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead
4
20-24
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead
5
25-29
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead
6
30-34
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead
7
35-39
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead
8
40-44
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead
9
45-49
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead
10 50-54
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead
11 55-59
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 3 instead
12 60-64
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead
13 65-69
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead
14 70-74
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead
15 75-79
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead
NOTE :
1. DQS_t, DQS_c are VDDQ.
2. BG1 is don’t care for x16 device.
3. C[2:0] are used only for 3DS device.
4. Burst Sequence driven on each DQ signal by Write Command.
- 47 -
For x4 and x8 only
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
0
Static High
toggling
A[2:0]
A[6:3]
A[9:7]
A[10]/AP
A[13,11]
A12/BC_n
BA[1:0]
BG[1:0]2
C[2:0]3
ODT
WE_n/A14
CAS_n/A15
RAS_n
ACT_n
CS_n
REF
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
1
D
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
2
D
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
0
2
3
0
0
0
7
F
0
-
2
3
0
0
0
7
F
0
-
4
2
Data4
0
3
1
Command
Cycle
Number
Sub-Loop
CKE
CK_t, CK_c
[ Table 44 ] IDD5B Measurement-Loop Pattern1
D#, D#
D#, D#
1
1
1
1
1
1
1
1
1
1
0
0
0
3
3
2
4-7
repeat pattern 1...4, use BG[1:0] = 1, BA[1:0] = 1 instead
8-11
repeat pattern 1...4, use BG[1:0]2 = 0, BA[1:0] = 2 instead
12-15
repeat pattern 1...4, use BG[1:0]2 = 1, BA[1:0] = 3 instead
16-19
repeat pattern 1...4, use BG[1:0]2 = 0, BA[1:0] = 1 instead
20-23
repeat pattern 1...4, use BG[1:0]2 = 1, BA[1:0] = 2 instead
24-27
repeat pattern 1...4, use BG[1:0]2 = 0, BA[1:0] = 3 instead
28-31
repeat pattern 1...4, use BG[1:0]2 = 1, BA[1:0] = 0 instead
32-35
repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 0 instead
36-39
repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 1 instead
40-43
repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 2 instead
44-47
repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 3 instead
48-51
repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 1 instead
52-55
repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 2 instead
56-59
repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 3 instead
60-63
repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 0 instead
64 ... nRFC - 1
repeat Sub-Loop 1, Truncate, if necessary
NOTE :
1. DQS_t, DQS_c are VDDQ.
2. BG1 is don’t care for x16 device.
3. C[2:0] are used only for 3DS device.
4. DQ signals are VDDQ.
- 48 -
For x4 and x8 only
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
RAS_n
CAS_n/A15
WE_n/A14
ODT
C[2:0]3
BG[1:0]2
BA[1:0]
A12/BC_n
A[13,11]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
ACT
ACT_n
0
CS_n
Command
Cycle
Number
Sub-Loop
CKE
CK_t, CK_c
[ Table 45 ] IDD7 Measurement-Loop Pattern1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
RDA
0
1
1
0
1
0
2
D
1
0
0
0
0
0
3
D#
1
1
1
1
1
0
-
0
0
D0=00, D1=FF
D2=FF, D3=00
D4=FF, D5=00
D6=00, D7=FF
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
-
0
32
3
0
0
0
7
F
0
-
0
0
0
0
-
0
D0=FF, D1=00
D2=00, D3=FF
D4=00, D5=FF
D6=FF, D7=00
0
Static High
toggling
1
...
repeat pattern 2...3 until nRRD - 1, if nRRD > 4. Truncate if necessary
nRRD
ACT
0
0
0
1
0
1
0
0
0
1
0
0
0
1
1
1
1
0
0
0
nRRD + 1
RDA
...
repeat pattern 2 ... 3 until 2*nRRD - 1, if nRRD > 4. Truncate if necessary
2
2*nRRD
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead
3
3*nRRD
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead
4
4*nRRD
repeat pattern 2 ... 3 until nFAW - 1, if nFAW > 4*nRRD. Truncate if necessary
5
nFAW
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead
6
nFAW + nRRD
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead
7
nFAW + 2*nRRD
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead
8
nFAW + 3*nRRD
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead
9
nFAW + 4*nRRD
repeat Sub-Loop 4
0
1
10 2*nFAW
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead
11 2*nFAW + nRRD
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead
12 2*nFAW + 2*nRRD
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead
13 2*nFAW + 3*nRRD
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 3 instead
14 2*nFAW + 4*nRRD
repeat Sub-Loop 4
15 3*nFAW
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead
16 3*nFAW + nRRD
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead
17 3*nFAW + 2*nRRD
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead
18 3*nFAW + 3*nRRD
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead
19 3*nFAW + 4*nRRD
repeat Sub-Loop 4
20 4*nFAW
repeat pattern 2 ... 3 until nRC - 1, if nRC > 4*nFAW. Truncate if necessary
NOTE :
1. DQS_t, DQS_c are VDDQ.
2. BG1 is don’t care for x16 device.
3. C[2:0] are used only for 3DS device.
4. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are VDDQ.
- 49 -
Data4
0
0
For x4 and x8
only
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
11.2 4Gb DDR4 SDRAM E-die IDD Specification Table
IDD and IPP values are for full operating range of voltage and temperature unless otherwise noted. IDD and IPP values are for full operating range of
voltage and temperature unless otherwise noted.
[ Table 46 ] IDD and IDDQ Specification
1Gx4 (K4A4G045WE)
512Mx8 (K4A4G085WE)
DDR4-2133
DDR4-2400
DDR4-2133
DDR4-2400
15-15-15
17-17-17
15-15-15
17-17-17
1.2V
1.2V
1.2V
1.2V
IDD Max.
IDD Max.
IDD Max.
IDD Max.
IDD0
30
31
30
31
mA
IDD0A
32
33
32
33
mA
IDD1
38
40
40
42
mA
Symbol
Unit
IDD1A
41
43
43
45
mA
IDD2N
15
15
15
15
mA
IDD2NA
18
19
18
19
mA
IDD2NT
16
17
16
17
mA
IDD2NL
11
12
11
12
mA
IDD2NG
15
16
15
16
mA
IDD2ND
12
12
12
12
mA
IDD2N_par
15
15
15
15
mA
IDD2P
10
10
10
10
mA
IDD2Q
13
13
13
13
mA
IDD3N
27
28
27
28
mA
IDD3NA
28
29
28
29
mA
IDD3P
13
13
13
13
mA
IDD4R
72
80
84
90
mA
IDD4RA
75
83
87
95
mA
IDD4RB
73
81
87
94
mA
IDD4W
65
73
72
78
mA
IDD4WA
69
77
76
81
mA
IDD4WB
65
72
72
77
mA
IDD4WC
59
66
66
70
mA
IDD4W_par
72
81
78
85
mA
IDD5B
190
192
190
192
mA
IDD5F2
160
162
160
162
mA
IDD5F4
120
122
120
122
mA
IDD6N
13
13
13
13
mA
IDD6E
20
20
20
20
mA
IDD6R
10
10
10
10
mA
IDD6A
13
13
13
13
mA
IDD7
181
199
146
148
mA
IDD8
6.5
6.5
6.5
6.5
mA
NOTE
IDD and IPP values are for full operating range of voltage and temperature unless otherwise noted. IDD and IPP values are for full operating range
voltage and temperature unless otherwise noted.
- 50 -
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
[ Table 47 ] IPP Specification
512Mx8 (K4A4G085WE)
1Gx4 (K4A4G045WE)
DDR4-2133
DDR4-2400
DDR4-2133
DDR4-2400
15-15-15
17-17-17
15-15-15
17-17-17
2.5V
2.5V
2.5V
2.5V
IPP Max.
IPP Max.
IPP Max.
IPP Max.
IPP0
4
4
4
4
mA
IPP1
3
3
3
3
mA
IPP2N
3
3
3
3
mA
IPP2P
3
3
3
3
mA
IPP3N
3
3
3
3
mA
IPP3P
3
3
3
3
mA
Symbol
Unit
IPP4R
3
3
3
3
mA
IPP4W
3
3
3
3
mA
IPP5B
18
18
18
18
mA
IPP5F2
15
15
15
15
mA
IPP5F4
11
11
11
11
mA
IPP6N
4
4
4
4
mA
IPP6E
4
4
4
4
mA
IPP7
9
9
9
9
mA
IPP8
2
2
2
2
mA
NOTE
[ Table 48 ] IDD6 Specification
Symbol
Temperature Range
Value
Value
1Gx4 (K4A4G045WE)
512Mx8 (K4A4G085WE)
DDR4-2133
DDR4-2400
DDR4-2133
DDR4-2400
15-15-15
17-17-17
15-15-15
17-17-17
1.2V
Unit
NOTE
1.2V
IDD6N
0 - 85 oC
13
13
13
13
mA
3,4
IDD6E
0 - 95 oC
20
20
20
20
mA
4,5
NOTE :
1. Some IDD currents are higher for x16 organization due to larger page-size architecture.
2. Max. values for IDD currents considering worst case conditions of process, temperature and voltage.
3. Applicable for MR2 settings A6=0 and A7=0.
4. Include a max value for IDD6.
5. Applicable for MR2 settings A6=0 and A7=1. IDD6E is only specified for devices which support the Extended Temperature Range feature.
- 51 -
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
12. Input/Output Capacitance
[ Table 49 ] Silicon Pad I/O Capacitance
Symbol
Parameter
CIO
DDR4-1600/1866/2133
DDR4-2400
Unit
NOTE
1.15
pF
1,2,3
min
max
min
max
Input/output capacitance
0.55
1.4
0.55
CDIO
Input/output capacitance delta
-0.1
0.1
-0.1
0.1
pF
1,2,3,11
CDDQS
Input/output capacitance delta DQS_t and DQS_c
-
0.05
-
0.05
pF
1,2,3,5
CCK
Input capacitance, CK_t and CK_c
0.2
0.8
0.2
0.7
pF
1,3
CDCK
Input capacitance delta CK_t and CK_c
-
0.05
-
0.05
pF
1,3,4
CI
Input capacitance(CTRL, ADD, CMD pins only)
0.2
0.8
0.2
0.7
pF
1,3,6
CDI_ CTRL
Input capacitance delta(All CTRL pins only)
-0.1
0.1
-0.1
0.1
pF
1,3,7,8
CDI_ ADD_CMD
Input capacitance delta(All ADD/CMD pins only)
-0.1
0.1
-0.1
0.1
pF
1,2,9,10
CALERT
Input/output capacitance of ALERT
0.5
1.5
0.5
1.5
pF
1,3
CZQ
Input/output capacitance of ZQ
0.5
2.3
0.5
2.3
pF
1,3,12
CTEN
Input capacitance of TEN
0.2
2.3
0.2
2.3
pF
1,3,13
NOTE:
1. This parameter is not subject to production test. It is verified by design and characterization. The silicon only capacitance is validated by de-embedding the package L & C
parasitic. The capacitance is measured with VDD, VDDQ, VSS, VSSQ applied with all other signal pins floating. Measurement procedure tbd.
2. DQ, DM_n, DQS_T, DQS_C, TDQS_T, TDQS_C. Although the DM, TDQS_T and TDQS_C pins have different functions, the loading matches DQ and DQS
3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here
4. Absolute value CK_T-CK_C
5. Absolute value of CIO(DQS_T)-CIO(DQS_C)
6. CI applies to ODT, CS_n, CKE, A0-A15, BA0-BA1, BG0-BG1, RAS_n, CAS_n/A15, WE_n/A14, ACT_n and PAR.
7. CDI CTRL applies to ODT, CS_n and CKE
8. CDI_CTRL = CI(CTRL)-0.5*(CI(CLK_T)+CI(CLK_C))
9. CDI_ADD_ CMD applies to, A0-A15, BA0-BA1, BG0-BG1,RAS_n, CAS_n/A15, WE_n/A14, ACT_n and PAR.
10. CDI_ADD_CMD = CI(ADD_CMD)-0.5*(CI(CLK_T)+CI(CLK_C))
11. CDIO = CIO(DQ,DM)-0.5*(CIO(DQS_T)+CIO(DQS_C))
12. Maximum external load capacitance on ZQ pin: tbd pF.
13.TEN pin may be DRAM internally pulled low through a weak pull-down resistor to VSS. In this case CTEN might not be valid and system shall verify TEN signal with Vendor
specific information.
- 52 -
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
[ Table 50 ] DRAM Package Electrical Specifications (x4/x8)
Symbol
Parameter
ZIO
DDR4-1600/1866
DDR4-2133/2400
Unit
NOTE
85

1,2,4,5,10,11
14
42
ps
1,3,4,5,11
3.3
-
3.3
nH
11,12
0.78
-
0.78
pF
11,13
min
max
min
max
Input/output Zpkg
45
85
45
TdIO
Input/output Pkg Delay
14
42
Lio
Input/Output Lpkg
-
Cio
Input/Output Cpkg
-
ZIO DQS
DQS_t, DQS_c Zpkg
45
85
45
85

1,2,5,10,11
TdIO DQS
DQS_t, DQS_c Pkg Delay
14
42
14
42
ps
1,3,5,10,11
Lio DQS
DQS Lpkg
-
3.3
-
3.3
nH
11,12
Cio DQS
DQS Cpkg
-
0.78
-
0.78
pF
11,13
DZDIO DQS
Delta Zpkg DQS_t, DQS_c
-
10
-
10

1,2,5,7,10
DTdDIO DQS
Delta Delay DQS_t, DQS_c
-
5
-
5
ps
1,3,5,7,10
ZI CTRL
Input- CTRL pins Zpkg
50
90
50
90

1,2,5,9,10,11
TdI_ CTRL
Input- CTRL pins Pkg Delay
14
42
14
42
ps
1,3,5,9,10,11
Li CTRL
Input CTRL Lpkg
-
3.4
-
3.4
nH
11,12
Ci CTRL
Input CTRL Cpkg
-
0.7
-
0.7
pF
11,13
ZIADD CMD
Input- CMD ADD pins Zpkg
50
90
50
90

1,2,5,8,10,11
TdIADD_ CMD
Input- CMD ADD pins Pkg Delay
14
45
14
45
ps
1,3,5,8,10,11
Li ADD CMD
Input CMD ADD Lpkg
-
3.6
-
3.6
nH
11,12
Ci ADD CMD
Input CMD ADD Cpkg
-
0.74
-
0.74
pF
11,13
ZCK
CLK_t & CLK_c Zpkg
50
90
50
90

1,2,5,10,11
TdCK
CLK_t & CLK_c Pkg Delay
14
42
14
42
ps
1,3,5,10,11
Li CLK
Input CLK Lpkg
-
3.4
-
3.4
nH
11,12
Ci CLK
Input CLK Cpkg
-
0.7
-
0.7
pF
11,13
DZDCK
Delta Zpkg CLK_t & CLK_c
-
10
-
10

1,2,5,6,10
DTdCK
Delta Delay CLK_t & CLK_c
-
5
-
5
ps
1,3,5,6,10
ZOZQ
ZQ Zpkg
40
100
40
100

1,2,5,10,11
TdO ZQ
ZQ Delay
20
90
20
90
ps
1,3,5,10,11
ZO ALERT
ALERT Zpkg
40
100
40
100

1,2,5,10,11
TdO ALERT
ALERT Delay
20
55
20
55
ps
1,3,5,10,11
NOTE :
1. This parameter is not subject to production test. It is verified by design and characterization. The package parasitic( L & C) are validated using package only samples. The
capacitance is measured with VDD, VDDQ, VSS, VSSQ shorted with all other signal pins floating. The inductance is measured with VDD, VDDQ, VSS and VSSQ shorted
and all other signal pins shorted at the die side(not pin). Measurement procedure tbd
2. Package only impedance (Zpkg) is calculated based on the Lpkg and Cpkg total for a given pin where:
Zpkg(total per pin) = GGGGLpkg/Cpkg
3. Package only delay(Tpkg) is calculated based on Lpkg and Cpkg total for a given pin where:
Tdpkg(total per pin) = GGLpkgCpkg
4. Z & Td IO applies to DQ, DM, TDQS_T and TDQS_C
5. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here
6. Absolute value of ZCK_t-ZCK_c for impedance(Z) or absolute value of TdCK_t-TdCK_c for delay(Td).
7. Absolute value of ZIO(DQS_t)-ZIO(DQS_c) for impedance(Z) or absolute value of TdIO(DQS_t)-TdIO(DQS_c) for delay(Td)
8. ZI & Td ADD CMD applies to A0-A13,A17, ACT_n, BA0-BA1, BG0-BG1, RAS_n/16, CAS_n/A15, WE_n/A14 and PAR.
9. ZI & Td CTRL applies to ODT, CS_n and CKE
10. This table applies to monolithic X4 and X8 devices.
11. Package implementations shall meet spec if the Zpkg and Pkg Delay fall within the ranges shown, and the maximum Lpkg and Cpkg do not exceed the maximum values
shown.
12. It is assumed that Lpkg can be approximated as Lpkg = Zo*Td.
13. It is assumed that Cpkg can be approximated as Cpkg = Td/Zo.
- 53 -
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
13. Electrical Characteristics & AC Timing
13.1 Reference Load for AC Timing and Output Slew Rate
Figure 23 represents the effective reference load of 50 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate
measurements.
It is not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester.
System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to
their production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics.
VDDQ
50 Ohm
DUT
CK_t, CK_c
DQ
DQS_t
DQS_c
VTT = VDDQ
Timing Reference Point
Timing Reference Point
Figure 23. Reference Load for AC Timing and Output Slew Rate
13.2 tREFI
Average periodic Refresh interval (tREFI) of DDR4 SDRAM is defined as shown in the table.
[ Table 51 ] tREFI by Device Density
Parameter
Symbol
2Gb
4Gb
8Gb
16Gb
Units
All Bank Refresh to active/refresh cmd time
tRFC
160
260
350
TBD
ns
7.8
7.8
7.8
TBD
s
tREFI -40CTCASE  85C
7.8
7.8
7.8
TBD
s
2
85CTCASE  95C
3.9
3.9
3.9
TBD
s
1
0CTCASE  85C
Average periodic refresh interval
NOTE
NOTE :
1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR4 SDRAM devices support the following options or requirements referred to in
this material.
2. Supported only for Industrial Temperature
- 54 -
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
13.3 Timing Parameters by Speed Grade
[ Table 52 ] Timing Parameters by Speed Bin for DDR4-1600 to DDR4-2400
Speed
Parameter
DDR4-1600
DDR4-1866
DDR4-2133
DDR4-2400
Symbol
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
tCK
(DLL_OFF)
8
20
8
20
8
20
8
20
Units
NOTE
ns
35,36
Clock Timing
Minimum Clock Cycle Time (DLL off mode)
Average Clock Period
tCK(avg)
1.25
<1.5
1.071
<1.25
0.938
<1.071
0.833
<0.938
ns
Average high pulse width
tCH(avg)
0.48
0.52
0.48
0.52
0.48
0.52
0.48
0.52
tCK(avg)
Average low pulse width
tCL(avg)
0.48
0.52
0.48
0.52
0.48
0.52
0.48
0.52
tCK(avg)
Absolute Clock Period
tCK(abs)
tCK(avg)min
+
tJIT(per)min
_to t
tCK(avg)m
ax +
tJIT(per)m
ax_tot
tCK(avg)min
+
tJIT(per)min
_to t
tCK(avg)m
ax +
tJIT(per)m
ax_tot
tCK(avg)min
+
tJIT(per)min
_to t
tCK(avg)m
ax +
tJIT(per)m
ax_tot
tCK(avg)min
+
tJIT(per)min
_to t
tCK(avg)m
ax +
tJIT(per)m
ax_tot
tCK(avg)
Absolute clock HIGH pulse width
tCH(abs)
0.45
-
0.45
-
0.45
-
0.45
-
tCK(avg)
Absolute clock LOW pulse width
tCL(abs)
0.45
-
0.45
-
0.45
-
0.45
-
tCK(avg)
24
JIT(per)_tot
-63
63
-54
54
-47
47
-42
42
ps
23
26
Clock Period Jitter- total
Clock Period Jitter- deterministic
JIT(per)_dj
-31
31
-27
27
-23
23
-21
21
ps
Clock Period Jitter during DLL locking period
tJIT(per, lck)
-50
50
-43
43
-38
38
-33
33
ps
Cycle to Cycle Period Jitter
23
tJIT(cc)_total
125
107
94
83
ps
25
Cycle to Cycle Period Jitter deterministic
tJIT(cc)_dj
63
54
47
42
ps
26
Cycle to Cycle Period Jitter during DLL locking period
tJIT(cc, lck)
100
86
75
67
ps
Duty Cycle Jitter
tJIT(duty)
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
ps
Cumulative error across 2 cycles
tERR(2per)
-92
92
-79
79
-69
69
-61
61
ps
Cumulative error across 3 cycles
tERR(3per)
-109
109
-94
94
-82
82
-73
73
ps
Cumulative error across 4 cycles
tERR(4per)
-121
121
-104
104
-91
91
-81
81
ps
Cumulative error across 5 cycles
tERR(5per)
-131
131
-112
112
-98
98
-87
87
ps
Cumulative error across 6 cycles
tERR(6per)
-139
139
-119
119
-104
104
-92
92
ps
Cumulative error across 7 cycles
tERR(7per)
-145
145
-124
124
-109
109
-97
97
ps
Cumulative error across 8 cycles
tERR(8per)
-151
151
-129
129
-113
113
-101
101
ps
Cumulative error across 9 cycles
tERR(9per)
-156
156
-134
134
-117
117
-104
104
ps
Cumulative error across 10 cycles
tERR(10per)
-160
160
-137
137
-120
120
-107
107
ps
Cumulative error across 11 cycles
tERR(11per)
-164
164
-141
141
-123
123
-110
110
ps
Cumulative error across 12 cycles
tERR(12per)
-168
168
-144
144
-126
126
-112
112
ps
Cumulative error across 13 cycles
tERR(13per)
-172
172
-147
147
-129
129
-114
114
ps
Cumulative error across 14 cycles
tERR(14per)
-175
175
-150
150
-131
131
-116
116
ps
Cumulative error across 15 cycles
tERR(15per)
-178
178
-152
152
-133
133
-118
118
ps
Cumulative error across 16 cycles
tERR(16per)
-180
189
-155
155
-135
135
-120
120
ps
Cumulative error across 17 cycles
tERR(17per)
-183
183
-157
157
-137
137
-122
122
ps
Cumulative error across 18 cycles
tERR(18per)
-185
185
-159
159
-139
139
-124
124
ps
t
ERR(nper)min
t
= ((1 + 0.68ln(n)) * tJIT(per)_total min)
ERR(nper)max = ((1 + 0.68ln(n)) * tJIT(per)_total max)
Cumulative error across n = 13, 14 . . . 49, 50
cycles
tERR(nper)
Command and Address setup time to CK_t,
CK_c referenced to Vih(ac) / Vil(ac) levels
tIS(base)
115
-
100
-
80
-
62
-
ps
Command and Address setup time to CK_t,
CK_c referenced to Vref levels
tIS(Vref)
215
-
200
-
180
-
162
-
ps
Command and Address hold time to CK_t,
CK_c referenced to Vih(dc) / Vil(dc) levels
tIH(base)
140
-
125
-
105
-
87
-
ps
Command and Address hold time to CK_t,
CK_c referenced to Vref levels
tIH(Vref)
215
-
200
-
180
-
162
-
ps
Control and Address Input pulse width for
each input
tIPW
600
-
525
-
460
-
410
-
ps
CAS_n to CAS_n command delay for same
bank group
tCCD_L
max(5 nCK,
6.250 ns)
-
max(5 nCK,
5.355 ns)
-
max(5 nCK,
5.625 ns)
-
max(5 nCK,
5 ns)
-
nCK
34
CAS_n to CAS_n command delay for different bank group
tCCD_S
4
-
4
-
4
-
4
-
nCK
34
ACTIVATE to ACTIVATE Command delay to
different bank group for 2KB page size
tRRD_S(2K)
Max(4nCK,6
ns)
-
Max(4nCK,5
.3ns)
-
Max(4nCK,5
.3ns)
-
Max(4nCK,5
.3ns)
-
nCK
34
ACTIVATE to ACTIVATE Command delay to
different bank group for 2KB page size
tRRD_S(\1K)
Max(4nCK,5
ns)
Max(4nCK,4
.2ns)
Max(4nCK,3
.7ns)
Max(4nCK,3
.3ns)
-
nCK
34
ACTIVATE to ACTIVATE Command delay to
different bank group for 1/2KB page size
tRRD_S(1/2K)
Max(4nCK,5
ns)
Max(4nCK,4
.2ns)
Max(4nCK,3
.7ns)
Max(4nCK,3
.3ns)
-
nCK
34
ps
Command and Address Timing
- 55 -
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
Speed
DDR4-1600
DDR4 SDRAM
DDR4-1866
DDR4-2133
DDR4-2400
Units
NOTE
-
nCK
34
Max(4nCK,4
.9ns)
-
nCK
34
Max(4nCK,5
.3ns)
Max(4nCK,4
.9ns)
-
nCK
34
Max(28nCK,
30ns)
Max(28nCK,
30ns)
Max(28nCK,
30ns)
-
ns
34
Max(20nCK,
25ns)
Max(20nCK,
23ns)
Max(20nCK,
21ns)
Max(20nCK,
21ns)
-
ns
34
tFAW_1/2K
Max(16nCK,
20ns)
Max(16nCK,
17ns)
Max(16nCK,
15ns)
Max(16nCK,
13ns)
-
ns
34
Delay from start of internal write transaction
to internal read command for different bank
group
tWTR_S
max(2nCK,2.
5ns)
-
max(2nCK,2
.5ns)
-
max(2nCK,2
.5ns)
-
max (2nCK,
2.5ns)
-
1,2,e,3
4
Delay from start of internal write transaction
to internal read command for same bank
group
tWTR_L
max(4nCK,7.
5ns)
-
max(4nCK,7
.5ns)
-
max(4nCK,7
.5ns)
-
max
(4nCK,7.5ns
)
-
1,34
Internal READ Command to PRECHARGE
Command delay
tRTP
max(4nCK,7.
5ns)
-
max(4nCK,7
.5ns)
-
max(4nCK,7
.5ns)
-
max
(4nCK,7.5ns
)
-
34
WRITE recovery time
tWR
15
-
15
-
15
-
15
-
ns
1
Write recovery time when CRC and DM are
enabled
tWR_CRC
_DM
tWR+max
(4nCK,3.75n
s)
-
tWR+max
(5nCK,3.75n
s)
-
tWR+max
(5nCK,3.75n
s)
-
tWR+max
(5nCK,3.75n
s)
-
ns
1, 28
delay from start of internal write transaction to
internal read command for different bank
group with both CRC and DM enabled
tWTR_S_C
RC_DM
tWTR_S+ma
x
(4nCK,3.75n
s)
-
tWTR_S+ma
x
(5nCK,3.75n
s)
-
tWTR_S+ma
x
(5nCK,3.75n
s)
-
tWTR_S+ma
x
(5nCK,3.75n
s)
-
ns
2, 29,
34
delay from start of internal write transaction to
internal read command for same bank group
with both CRC and DM enabled
tWTR_L_C
RC_DM
tWTR_L+ma
x
(4nCK,3.75n
s)
-
tWTR_L+ma
x
(5nCK,3.75n
s)
-
tWTR_L+ma
x
(5nCK,3.75n
s)
-
tWTR_L+ma
x
(5nCK,3.75n
s)
-
ns
3,30,
34
DLL locking time
tDLLK
597
-
597
-
768
-
768
-
nCK
Mode Register Set command cycle time
tMRD
8
-
8
-
8
-
8
-
nCK
tMOD
max(24nCK,
15ns)
-
max(24nCK,
15ns)
-
max(24nCK,
15ns)
-
max(24nCK,
15ns)
-
Parameter
Symbol
MIN
ACTIVATE to ACTIVATE Command delay to
same bank group for 2KB page size
tRRD_L(2K)
Max(4nCK,7.
5ns)
Max(4nCK,6
.4ns)
ACTIVATE to ACTIVATE Command delay to
same bank group for 1KB page size
tRRD_L(1K)
Max(4nCK,6
ns)
ACTIVATE to ACTIVATE Command delay to
same bank group for 1/2KB page size
tRRD_L(1/2K)
Four activate window for 2KB page size
Four activate window for 1KB page size
Four activate window for 1/2KB page size
Mode Register Set command update delay
Multi-Purpose Register Recovery Time
MAX
MIN
MAX
MIN
MAX
MIN
MAX
Max(4nCK,6
.4ns)
Max(4nCK,6
.4ns)
Max(4nCK,5
.3ns)
Max(4nCK,5
.3ns)
Max(4nCK,6
ns)
Max(4nCK,5
.3ns)
tFAW_2K
Max(28nCK,
35ns)
tFAW_1K
tMPRR
1
-
1
-
1
-
1
-
nCK
Multi Purpose Register Write Recovery Time
tWR_MPR
tMOD (min)
+ AL + PL
-
tMOD (min)
+ AL + PL
-
tMOD (min)
+ AL + PL
-
tMOD (min)
+ AL + PL
-
-
Auto precharge write recovery + precharge
time
tDAL(min)
DQ0 or DQL0 driven to 0 set-up time to first
DQS rising edge
tPDA_S
0.5
-
0.5
-
0.5
-
0.5
-
UI
45,47
DQ0 or DQL0 driven to 0 hold time from last
DQS fall-ing edge
tPDA_H
0.5
-
0.5
-
0.5
-
0.5
-
UI
46,47
tCAL
3
-
4
-
4
-
5
-
nCK
tDQSQ
-
0.16
-
0.16
-
0.16
-
0.16
tCK(avg)
/2
13,18
tQH
0.76
-
0.76
-
0.76
-
0.76
-
tCK(avg)
/2
13,17,1
8
Data Valid Window per device: tQH - tDQSQ
for a device
tDVWd
0.63
-
0.63
-
0.64
-
0.64
-
UI
16,17,1
8
Data Valid Window per device, per pin: tQH tDQSQ each device’s output
tDVWp
0.66
-
0.66
-
0.69
-
0.72
-
UI
16,17,1
8
0.9
NOTE44
0.9
NOTE44
0.9
NOTE44
0.9
NOTE 44
tCK
40
NA
NA
NA
NA
NA
NA
1.8
NOTE 44
tCK
41
Programmed WR + roundup ( tRP / tCK(avg))
33
nCK
CS_n to Command Address Latency
CS_n to Command Address Latency
DRAM Data Timing
DQS_t,DQS_c to DQ skew, per group, per
access
DQ output hold time from DQS_t,DQS_c
Data Strobe Timing
DQS_t, DQS_c differential READ Preamble
tRPRE
DQS_t, DQS_c differential READ Postamble
tRPST
0.33
TBD
0.33
TBD
0.33
TBD
0.33
TBD
tCK
DQS_t,DQS_c differential output high time
tQSH
0.4
-
0.4
-
0.4
-
0.4
-
tCK
21
DQS_t,DQS_c differential output low time
tQSL
0.4
-
0.4
-
0.4
-
0.4
-
tCK
20
0.9
-
0.9
-
0.9
-
0.9
-
tCK
42
1.8
-
tCK
43
DQS_t, DQS_c differential WRITE Preamble
tWPRE
NA
NA
NA
DQS_t, DQS_c differential WRITE Postamble
tWPST
0.33
TBD
0.33
TBD
0.33
TBD
0.33
TBD
tCK
DQS_t and DQS_c low-impedance time (Referenced from RL-1)
tLZ(DQS)
-450
225
-390
195
-360
180
-300
150
ps
- 56 -
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
Speed
Parameter
DDR4-1600
DDR4 SDRAM
DDR4-1866
DDR4-2133
DDR4-2400
Units
NOTE
Symbol
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
DQS_t and DQS_c high-impedance time
(Referenced from RL+BL/2)
tHZ(DQS)
-
225
-
195
-
180
-
150
ps
DQS_t, DQS_c differential input low pulse
width
tDQSL
0.46
0.54
0.46
0.54
0.46
0.54
0.46
0.54
tCK
DQS_t, DQS_c differential input high pulse
width
tDQSH
0.46
0.54
0.46
0.54
0.46
0.54
0.46
0.54
tCK
DQS_t, DQS_c rising edge to CK_t, CK_c rising edge (1 clock preamble)
tDQSS
-0.27
0.27
-0.27
0.27
-0.27
0.27
-0.27
0.27
tCK
DQS_t, DQS_c falling edge setup time to
CK_t, CK_c rising edge
tDSS
0.18
-
0.18
-
0.18
-
0.18
-
tCK
DQS_t, DQS_c falling edge hold time from
CK_t, CK_c rising edge
tDSH
0.18
-
0.18
-
0.18
-
0.18
-
tCK
DQS_t, DQS_c rising edge output timing locatino from rising CK_t, CK_c with DLL On
mode
tDQSCK
(DLL On)
-225
225
-195
195
-180
180
-175
175
ps
37,38,3
9
DQS_t, DQS_c rising edge output variance
window per DRAM
tDQSCKI
(DLL On)
290
ps
37,38,3
9
370
330
310
MPSM Timing
Command path disable delay upon MPSM
entry
tMPED
tMOD(min) +
tCPDED(min)
-
tMOD(min) +
tCPDED(min)
-
tMOD(min) +
tCPDED(min)
-
tMOD(min) +
tCPDED(min)
-
Valid clock requirement after MPSM entry
tCKMPE
tMOD(min) +
tCPDED(min)
-
tMOD(min) +
tCPDED(min)
-
tMOD(min) +
tCPDED(min)
-
tMOD(min) +
tCPDED(min)
-
Valid clock requirement before MPSM exit
tCKMPX
tCKSRX(min
)
-
tCKSRX(min
)
-
tCKSRX(min
)
-
tCKSRX(min
)
-
Exit MPSM to commands not requiring a
locked DLL
tXMP
tXS(min)
-
tXS(min)
-
tXS(min)
-
tXS(min)
-
tXMPDLL
tXMP(min) +
tXSDLL(min)
-
tXMP(min) +
tXSDLL(min)
-
tXMP(min) +
tXSDLL(min)
-
tXMP(min) +
tXSDLL(min)
-
tMPX_S
tIS(min) +
tIHL(min)
-
tIS(min) +
tIHL(min)
-
tIS(min) +
tIHL(min)
-
tIS(min) +
tIHL(min)
-
Power-up and RESET calibration time
tZQinit
1024
-
1024
-
1024
-
1024
-
nCK
Normal operation Full calibration time
tZQoper
512
-
512
-
512
-
512
-
nCK
tZQCS
128
-
128
-
128
-
128
-
nCK
tXPR
max
(5nCK,tRFC(
min)+
10ns)
-
max
(5nCK,tRFC(
min)+
10ns)
-
max
(5nCK,tRFC(
min)+
10ns)
-
max
(5nCK,tRFC(
min)+10ns)
-
Exit Self Refresh to commands not requiring
a locked DLL
tXS
tRFC(min)+1
0ns
-
tRFC(min)+1
0ns
-
tRFC(min)+1
0ns
-
tRFC(min)+1
0ns
-
SRX to commands not requiring a locked DLL
in Self Refresh ABORT
tXS_ABORT(min
)
tRFC4(min)+
10ns
-
tRFC4(min)+
10ns
-
tRFC4(min)+
10ns
-
tRFC4(min)+
10ns
-
Exit Self Refresh to ZQCL,ZQCS and MRS
(CL,CWL,WR,RTP and Gear Down)
tXS_FAST
(min)
tRFC4(min)+
10ns
-
tRFC4(min)+
10ns
-
tRFC4(min)+
10ns
-
tRFC4(min)+
10ns
-
Exit Self Refresh to commands requiring a
locked DLL
tXSDLL
tDLLK(min)
-
tDLLK(min)
-
tDLLK(min)
-
tDLLK(min)
-
Minimum CKE low width for Self refresh entry
to exit timing
tCKESR
tCKE(min)+1
nCK
-
tCKE(min)+1
nCK
-
tCKE(min)+1
nCK
-
tCKE(min)+1
nCK
-
Minimum CKE low width for Self refresh entry
to exit timing with CA Parity enabled
tCKESR_ PAR
tCKE(min)+
1nCK+PL
-
tCKE(min)+
1nCK+PL
-
tCKE(min)+
1nCK+PL
-
tCKE(min)+
1nCK+PL
-
tCKSRE
max(5nCK,1
0ns)
-
max(5nCK,1
0ns)
-
max(5nCK,1
0ns)
-
max
(5nCK,10ns)
-
Valid Clock Requirement after Self Refresh
Entry (SRE) or Power-Down when CA Parity
is enabled
tCKSRE_PAR
max
(5nCK,10ns)
+PL
-
max
(5nCK,10ns)
+PL
-
max
(5nCK,10ns)
+PL
-
max
(5nCK,10ns)
+PL
-
Valid Clock Requirement before Self Refresh
Exit (SRX) or Power-Down Exit (PDX) or Reset Exit
tCKSRX
max(5nCK,1
0ns)
-
max(5nCK,1
0ns)
-
max(5nCK,1
0ns)
-
max
(5nCK,10ns)
-
tXP
max
(4nCK,6ns)
-
max
(4nCK,6ns)
-
max
(4nCK,6ns)
-
max
(4nCK,6ns)
-
tCKE
max (3nCK,
5ns)
-
max (3nCK,
5ns)
-
max (3nCK,
5ns)
-
max
(3nCK, 5ns)
-
tCPDED
4
-
4
-
4
-
4
-
Exit MPSM to commands requiring a locked
DLL
CS setup time to CKE
Calibration Timing
Normal operation Short calibration time
Reset/Self Refresh Timing
Exit Reset from CKE HIGH to a valid command
Valid Clock Requirement after Self Refresh
Entry (SRE) or Power-Down Entry (PDE)
Power Down Timing
Exit Power Down with DLL on to any valid
command;Exit Precharge Power Down with
DLL frozen to commands not requiring a
locked DLL
CKE minimum pulse width
Command pass disable delay
- 57 -
31,32
nCK
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
Speed
Parameter
DDR4-1600
DDR4 SDRAM
DDR4-1866
DDR4-2133
DDR4-2400
Units
NOTE
Symbol
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
tPD
tCKE(min)
9*tREFI
tCKE(min)
9*tREFI
tCKE(min)
9*tREFI
tCKE(min)
9*tREFI
tACTPDEN
1
-
1
-
2
-
2
-
nCK
7
Timing of PRE or PREA command to Power
Down entry
tPRPDEN
1
-
1
-
2
-
2
-
nCK
7
Timing of RD/RDA command to Power Down
entry
tRDPDEN
RL+4+1
-
RL+4+1
-
RL+4+1
-
RL+4+1
-
nCK
Timing of WR command to Power Down
entry (BL8OTF, BL8MRS, BC4OTF)
tWRPDEN
WL+4+(tWR/
tCK(avg))
-
WL+4+(tWR/
tCK(avg))
-
WL+4+(tWR/
tCK(avg))
-
WL+4+(tWR/
tCK(avg))
-
nCK
4
tWRAPDEN
WL+4+WR+
1
-
WL+4+WR+
1
-
WL+4+WR+
1
-
WL+4+WR+
1
-
nCK
5
Timing of WR command to Power Down
entry (BC4MRS)
tWRPBC4DEN
WL+2+(tWR/
tCK(avg))
-
WL+2+(tWR/
tCK(avg))
-
WL+2+(tWR/
tCK(avg))
-
WL+2+(tWR/
tCK(avg))
-
nCK
4
Timing of WRA command to Power Down entry (BC4MRS)
tWRAPBC4DEN
WL+2+WR+
1
-
WL+2+WR+
1
-
WL+2+WR+
1
-
WL+2+WR+
1
-
nCK
5
Timing of REF command to Power Down
entry
tREFPDEN
1
-
1
-
2
-
2
-
nCK
7
Timing of MRS command to Power Down
entry
tMRSPDEN
tMOD(min)
-
tMOD(min)
-
tMOD(min)
-
tMOD(min)
-
-
Mode Register Set command cycle time in
PDA mode
tMRD_PDA
max(16nCK,
10ns)
Mode Register Set command update delay in
PDA mode
tMOD_PDA
Power Down Entry to Exit Timing
Timing of ACT command to Power Down
entry
Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF)
6
PDA Timing
max(16nCK,
10ns)
tMOD
max(16nCK,
10ns)
tMOD
max(16nCK,
10ns)
tMOD
-
tMOD
-
ODT Timing
Asynchronous RTT turn-on delay (PowerDown with DLL frozen)
tAONAS
1.0
9.0
1.0
9.0
1.0
9.0
1.0
9.0
ns
Asynchronous RTT turn-off delay (PowerDown with DLL frozen)
tAOFAS
1.0
9.0
1.0
9.0
1.0
9.0
1.0
9.0
ns
tADC
0.3
0.7
0.3
0.7
0.3
0.7
0.3
0.7
tCK(avg)
tWLMRD
40
-
40
-
40
-
40
-
nCK
12
tWLDQSEN
25
-
25
-
25
-
25
-
nCK
12
Write leveling setup time from rising CK_t,
CK_c crossing to rising DQS_t/DQS_n crossing
tWLS
0.13
-
0.13
-
0.13
-
0.13
-
tCK(avg)
Write leveling hold time from rising DQS_t/
DQS_n crossing to rising CK_t, CK_ crossing
tWLH
0.13
-
0.13
-
0.13
-
0.13
-
tCK(avg)
Write leveling output delay
tWLO
0
9.5
0
9.5
0
9.5
0
9.5
ns
Write leveling output error
tWLOE
RTT dynamic change skew
Write Leveling Timing
First DQS_t/DQS_n rising edge after write
leveling mode is programmed
DQS_t/DQS_n delay after write leveling
mode is programmed
ns
CA Parity Timing
Commands not guaranteed to be executed
during this time
tPAR_UNKNOWN
-
PL
-
PL
-
PL
-
PL
-
Delay from errant command to ALERT_n
assertion
tPAR_ALERT_
ON
-
PL+6ns
-
PL+6ns
-
PL+6ns
-
PL+6ns
-
Pulse width of ALERT_n signal when asserted
tPAR_ALERT_
PW
48
96
56
112
64
128
72
144
nCK
Time from when Alert is asserted till controller
must start providing DES commands in Persistent CA parity mode
tPAR_ALERT
_RSP
-
43
-
50
-
57
-
64
nCK
Parity Latency
PL
4
4
4
5
nCK
CRC Error Reporting
CRC error to ALERT_n latency
tCRC_ALERT
3
13
3
13
3
13
3
13
ns
CRC ALERT_n pulse width
CRC_ALERT_
PW
6
10
6
10
6
10
6
10
nCK
2Gb
160
-
160
-
160
-
160
-
ns
34
4Gb
260
-
260
-
260
-
260
-
ns
34
8Gb
350
-
350
-
350
-
350
-
ns
34
16Gb
TBD
-
TBD
-
TBD
-
TBD
-
ns
34
2Gb
110
-
110
-
110
-
110
-
ns
34
4Gb
160
-
160
-
160
-
160
-
ns
34
8Gb
260
-
260
-
260
-
260
-
ns
34
16Gb
TBD
-
TBD
-
TBD
-
TBD
-
ns
34
tREFI
tRFC1 (min)
tRFC2 (min)
- 58 -
Speed
Parameter
tRFC4 (min)
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4-1600
Symbol
MIN
DDR4-1866
MAX
MIN
DDR4 SDRAM
DDR4-2133
MAX
MIN
DDR4-2400
MAX
MIN
MAX
Units
NOTE
2Gb
90
-
90
-
90
-
90
-
ns
34
4Gb
110
-
110
-
110
-
110
-
ns
34
8Gb
160
-
160
-
160
-
160
-
ns
34
16Gb
TBD
-
TBD
-
TBD
-
TBD
-
ns
34
- 59 -
K4A4G045WE
K4A4G085WE
datasheet
Rev. 1.2
DDR4 SDRAM
NOTE :
1. Start of internal write transaction is defined as follows :
For BL8 (Fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL.
For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after WL.
For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL.
2. A separate timing parameter will cover the delay from write to read when CRC and DM are simultaneously enabled
3. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.
4. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR/tCK to the next integer.
5. WR in clock cycles as programmed in MR0.
6. tREFI depends on TOPER.
7. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down
IDD spec will not be applied until finishing those operations.
8. For these parameters, the DDR4 SDRAM device supports tnPARAM[nCK]=RU{tPARAM[ns]/tCK(avg)[ns]}, which is in clock cycles assuming all input clock jitter
specifications are satisfied
9. When CRC and DM are both enabled, tWR_CRC_DM is used in place of tWR.
10. When CRC and DM are both enabled tWTR_S_CRC_DM is used in place of tWTR_S.
11. When CRC and DM are both enabled tWTR_L_CRC_DM is used in place of tWTR_L.
12. The max values are system dependent.
13. DQ to DQS total timing per group where the total includes the sum of deterministic and random timing terms for a specified BER. BER spec and measurement method are
tbd.
14. The deterministic component of the total timing. Measurement method tbd.
15. DQ to DQ static offset relative to strobe per group. Measurement method tbd.
16. This parameter will be characterized and guaranteed by design.
17 When the device is operated with the input clock jitter, this parameter needs to be derated by the actual tjit(per)_total of the input clock. (output deratings are relative to the
SDRAM input clock). Example tbd.
18. DRAM DBI mode is off.
19. DRAM DBI mode is enabled. Applicable to x8 and x16 DRAM only.
20. tQSL describes the instantaneous differential output low pulse width on DQS_t - DQS_c, as measured from on falling edge to the next consecutive rising edge
21. tQSH describes the instantaneous differential output high pulse width on DQS_t - DQS_c, as measured from on falling edge to the next consecutive rising edge
22. There is no maximum cycle time limit besides the need to satisfy the refresh interval tREFI
23. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge
24. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge
25. Total jitter includes the sum of deterministic and random jitter terms for a specified BER. BER target and measurement method are tbd.
26. The deterministic jitter component out of the total jitter. This parameter is characterized and gauranteed by design.
27. This parameter has to be even number of clocks
28. When CRC and DM are both enabled, tWR_CRC_DM is used in place of tWR.
29. When CRC and DM are both enabled tWTR_S_CRC_DM is used in place of tWTR_S.
30. When CRC and DM are both enabled tWTR_L_CRC_DM is used in place of tWTR_L.
31. After CKE is registered LOW, CKE signal level shall be maintained below VILDC for tCKE specification ( Low pulse width ).
32. After CKE is registered HIGH, CKE signal level shall be maintained above VIHDC for tCKE specification ( HIGH pulse width ).
33. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.
34. Parameters apply from tCK(avg)min to tCK(avg)max at all standard JEDEC clock period values as stated in the Speed Bin Tables.
35. This parameter must keep consistency with Speed-Bin Tables shown in Device Operation.
36. DDR4-1600 AC timing apply if DRAM operates at lower than 1600 MT/s data rate.
UI=tCK(avg).min/2
37. applied when DRAM is in DLL ON mode.
38. Assume no jitter on input clock signals to the DRAM
39. Value is only valid for RZQ/7
40. 1tCK toggle mode with setting MR4:A11 to 0
41. 2tCK toggle mode with setting MR4:A11 to 1, which is valid for DDR4-2400 speed grade.
42. 1tCK mode with setting MR4:A12 to 0
43. 2tCK mode with setting MR4:A12 to 1, which is valid for DDR4-2400 speed grade.
44. The maximum read preamble is bounded by tLZ(DQS)min on the left side and tDQSCK(max) on the right side. See Device Operation.
to Data Strobe Relationship”. Boundary of DQS Low-Z occur one cycle earlier in 2tCK toggle mode which is illustrated in See Device Operation Preamble.
45.DQ falling signal middle-point of transferring from High to Low to first rising edge of DQS diff-signal cross-point
46. last falling edge of DQS diff-signal cross-point to DQ rising signal middle-point of transferring from Low to High
47. VrefDQ value must be set to either its midpoint or Vcent_DQ(midpoint) in order to capture DQ0 or DQL0 low level for entering PDA mode.
- 60 -
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
13.4 The DQ Input Receiver Compliance Mask for Voltage and Timing
The DQ input receiver compliance mask for voltage and timing is shown in the figure below. The receiver mask (Rx Mask) defines area the input signal
must not encroach in order for the DRAM input receiver to be expected to be able to successfully capture a valid input signal with BER of 1e-16; any input
signal encroaching within the Rx Mask is subject to being invalid data. The Rx Mask is the receiver property for each DQ input pin and it is not the valid
data-eye.
Figure 24. DQ Receiver(Rx) compliance mask
DQx
DQz
DQy
(Smallest Vref_DQ Level)
Vcent_DQx
(Largest Vref_DQ Level)
Vcent_DQz
Vcent_DQy
Vcent_DQ(midpoint)
Vref variation
(Component)
Figure 25. Vcent_DQ Variation to Vcent_DQ(midpoint)
The Vref_DQ voltage is an internal reference voltage level that shall be set to the properly trained setting, which is generally Vcent_DQ(midpoint), in order
to have valid Rx Mask values.
Vcent_DQ is defined as the midpoint between the largest Vref_DQ voltage level and the smallest Vref_DQ voltage level across all DQ pins for a given
DDR4 DRAM component. Each DQ pin Vref level is defined by the center, i.e. widest opening, of the cumulative data input eye as depicted in
Figure 24.This clarifies that any DDR4 DRAM component level variation must be accounted for within the DDR4 DRAM Rx mask.The component level
Vref will be set by the system to account for Ron and ODT settings.
- 61 -
Rev. 1.2
datasheet
DQS, DQs Data-in at DRAM Ball
Rx Mask
DDR4 SDRAM
DQS, DQs Data-in at DRAM Ball
Rx Mask - Alternative View
DQS_t
DQS_t
DQS_c
DQS_c
DRAMa
Rx Mask
DQx-z
0.5xTdiVW 0.5xTdiVW
VdiVW
0.5xTdiVW 0.5xTdiVW
DRAMa
TdiVW
tDQS2DQ + 0.5 x TdiVW
DRAMb
Rx Mask
VdiVW
Rx Mask
TdiVW
DQy
tDQ2DQ
DQz
VdiVW
DRAMb
tDQ2DQ
Rx Mask
Rx Mask
DRAMb
TdiVW
DQz
tDQ2DQ
VdiVW
DQy
VdiVW
tDQS2DQ
DRAMb
Rx Mask
DQx-z
TdiVW
VdiVW
K4A4G045WE
K4A4G085WE
tDQS2DQ + 0.5 x TdiVW
tDQ2DQ
VdiVW
DQy
Rx Mask
TdiVW
DQz
tDQ2DQ
DRAMc
Rx Mask
DRAMc
VdiVW
DQz
Rx Mask
DRAMc
DQy
Rx Mask
TdiVW
VdiVW
DRAMc
VdiVW
tDQS2DQ
tDQ2DQ
NOTE : DQx represents an optimally centered mask.
DQy represents earliest valid mask.
DQz represents latest valid mask.
NOTE : DRAMa represents a DRAM without any DQS/DQ skews.
DRAMb represents a DRAM with early skews (negative tDQS2DQ).
NOTE : Figures show skew allowed between DRAM to DRAM and DQ to DQ for a DRAM. Signals assume data centered aligned at DRAM Latch.
TdiPW is not shown; composite data-eyes shown would violate TdiPW.
VCENT DQ(midpoint) is not shown but is assummed to be midpoint of VdiVW..
Figure 26. DQS to DQ and DQ to DQ Timings at DRAM Balls
All of the timing terms in Figure 26 are measured at the VdIVW_voltage levels centered around Vcent_DQ(midpoint) and are referenced to the DQS_t/
DQS_c center aligned to the DQ per pin.
- 62 -
datasheet
K4A4G045WE
K4A4G085WE
Rev. 1.2
DDR4 SDRAM
The rising edge slew rates are defined by srr1 and srr2. The slew rate measurement points for a rising edge are shown in Figure 5A below: A low to high
transition tr1 is measured from 0.5*VdiVW(max) below Vcent_DQ(midpoint) to the last transition through 0.5*VdiVW(max) above Vcent_DQ(midpoint)
while tr2 is measured from the last transition through 0.5*VdiVW(max) above Vcent_DQ(midpoint) to the first transition through the 0.5*VIHL_AC(min)
above Vcent_DQ(midpoint).
Rising edge slew rate equations:
srr1 = VdIVW(max) / tr1
srr2 = (VIHL_AC(min) – VdIVW(max)) / (2*tr2)
Rx Mask
0.5*VdiVW(max)
Vcent_DQ(midpoint)
0.5*VdiVW(max)
VdiVW(max)
0.5*VHL_AC(min) 0.5*VHL_AC(min)
VHL_AC(min)
tr2
tr1
Figure 27. Slew Rate Conditions For Rising Transition
The falling edge slew rates are defined by srf1 and srf2. The slew rate measurement points for a falling edge are shown in Figure 5B below: A high to low
transition tf1 is measured from 0.5*VdiVW(max) above Vcent_DQ(midpoint) to the last transition through 0.5*VdiVW(max) below Vcent_DQ(midpoint)
while tf2 is measured from the last transition through 0.5*VdiVW(max) below Vcent_DQ(midpoint) to the first transition through the 0.5*VIHL_AC(min)
below Vcent_DQ(pin mid).
tr1
Rx Mask
0.5*VdiVW(max)
Vcent_DQ(midpoint)
0.5*VdiVW(max)
tr2
Figure 28. Slew Rate Conditions For Falling Transition
- 63 -
VdiVW(max)
0.5*VHL_AC(min) 0.5*VHL_AC(min)
VHL_AC(min)
Falling edge slew rate equations:
srf1 = VdIVW(max) / tf1
srf2 = (VIHL_AC(min) – VdIVW(max)) / (2*tf2)
Rev. 1.2
datasheet
K4A4G045WE
K4A4G085WE
DDR4 SDRAM
[ Table 53 ] DRAM DQs In Receive Mode; * UI=tck(avg)min/2
Symbol
Parameter
1600/1866/2133
min
2400
max
136
Unit
NOTE
min
max
-
130
mV
1,2,10
-
0.2
UI*
1,2,10
160
-
mV
3,4,10
UI*
5,10
VdIVW
Rx Mask voltage - pk-pk
-
TdIVW
Rx timing window
-
VIHL_AC
DQ AC input swing pk-pk
186
TdIPW
DQ input pulse width
0.58
tDQS2DQ
Rx Mask DQS to DQ offset
-0.17
0.17
-0.17
0.17
UI*
6, 10
tDQ2DQ
Rx Mask DQ to DQ offset
-
tbd
-
tbd
UI*
7
1.0
9
1.0
9
V/ns
8,10
-
-
1.25
9
V/ns
8,10
Input Slew Rate over VdIVW if tCK >= 0.935ns
srr1, srf1
Input Slew Rate over
VdIVW if 0.935ns > tCK >= 0.625ns
0.2
-
0.58
srr2
Rising Input Slew Rate
over 1/2 VIHL_AC
0.2*srr1
9
0.2*srr1
9
V/ns
9,10
srf2
Falling Input Slew Rate
over 1/2 VIHL_AC
0.2*srf1
9
0.2*srf1
9
V/ns
9,10
NOTE :
1. Data Rx mask voltage and timing total input valid window where VdIVW is centered around Vcent_DQ( midpoint) after VrefDQ training is completed. The data Rx mask is
applied per bit and should include voltage and temperature drift terms. The input buffer design specification is to achieve at least a BER = e-16 when the RxMask is not
violated. The BER will be characterized and extrapolated if necessary using a dual dirac method from a higher BER(tbd).
2. Defined over the DQ internal Vref range 1.
3. See Overshoot and Undershoot Specification.
4. DQ input pulse signal swing into the receiver must meet or exceed VIHL AC(min). . VIHL_AC(min) is to be achieved on an UI basis when a rising and falling edge occur in
the same UI, i.e. a valid TdiPW.
5. DQ minimum input pulse width defined at the Vcent_DQ( midpoint).
6. DQS to DQ offset is skew between DQS and DQs within a nibble (x4) or word (x8, x16) at the DDR4 SDRAM balls over process, voltage, and temperature.
7. DQ to DQ offset is skew between DQs within a nibble (x4) or word (x8, x16) at the DDR4 SDRAM balls for a given component over process, voltage, and temperature.
8. Input slew rate over VdIVW Mask centered at Vcent_DQ( midpoint). Slowest DQ slew rate to fastest DQ slew rate per transition edge must be within 1.7 V/ns of each other.
9. Input slew rate between VdIVW Mask edge and VIHL_AC(min) points.
10. All Rx Mask specifications must be satisfied for each UI. For example, if the minimum input pulse width is violated when satisfying TdiVW(min), VdiVW(max), and minimum
slew rate limits, then either TdiVW(min) or minimum slew rates would have to be increased to the point where the minimum input pulse width would no longer be violated.
- 64 -
K4A4G045WE
K4A4G085WE
Rev. 1.2
datasheet
DDR4 SDRAM
13.5 DDR4 Function Matrix
DDR4 SDRAM has several features supported by ORG and also by Speed. The following Table is the summary of the features.
[ Table 54 ] Function Matrix (By ORG. V:Supported, Blank:Not supported)
Functions
x4
x8
x16
Write Leveling
V
V
V
Temperature controlled Refresh
V
V
V
Low Power Auto Self Refresh
V
V
V
Fine Granularity Refresh
V
V
V
Multi Purpose Register
V
V
V
Data Mask
V
V
Data Bus Inversion
V
V
V
TDQS
ZQ calibration
V
V
V
DQ Vref Training
V
V
V
Per DRAM Addressability
V
V
V
Mode Register Readout
V
V
V
CAL
V
V
V
WRITE CRC
V
V
V
CA Parity
V
V
V
Control Gear Down Mode
V
V
V
Programmable Preamble
V
V
V
Maximum Power Down Mode
V
V
V
Boundary Scan Mode
Additive Latency
V
V
3DS
V
V
- 65 -
NOTE
K4A4G045WE
K4A4G085WE
Rev. 1.2
datasheet
DDR4 SDRAM
[ Table 55 ] Function Matrix (By Speed. V:Supported, Blank:Not supported)
DLL Off mode
Functions
Write Leveling
DLL On mode
equal or slower
than
250Mbps
1600/1866/2133 Mbps
2400Mbps
V
V
V
Temperature controlled Refresh
V
V
V
Low Power Auto Self Refresh
V
V
V
Fine Granularity Refresh
V
V
V
Multi Purpose Register
V
V
V
Data Mask
V
V
V
Data Bus Inversion
V
V
V
V
V
TDQS
ZQ calibration
V
V
V
DQ Vref Training
V
V
V
V
V
Per DRAM Addressability
V
V
CAL
V
V
WRITE CRC
V
V
CA Parity
V
V
Mode Register Readout
V
Control Gear Down Mode
V
Programmable Preamble ( = 2tCK)
Maximum Power Down Mode
V
V
Boundary Scan Mode
V
V
V
3DS
V
V
V
- 66 -
NOTE