STWBC Digital controller for wireless battery charger (WBC) transmitters Qi 1.1.2 A11 certified, PMA compatible Datasheet - production data Memory – Flash and E2PROM with read-while-write (RWW) and error correction code (ECC) – Program memory: 32 KBytes Flash; data retention 15 years at 85 °C after 10 kcycles at 25 °C – Data memory: 1 KByte true data E2PROM; data retention:15 years at 85 °C after 100 kcycles at 85 °C – RAM: 6 KBytes VFQFPN32 Features Digital controller for wireless battery charger transmitter Multiple Qi certified and PMA standard compatible Reference design features – 2 layers PCBs – Active object detection – Graphical user interface for application monitoring – Evaluation boards Operating temperature: -40 °C up to 105 °C Package: VFQFPN32 Support for up to 5 W applications – Mobile – Wearable, sports gear, medical – Remote controllers Applications Native support to half-bridge and full bridge topologies 5 V supply voltage Certified Qi A11 – Evaluation board: STEVAL-ISB027V1 – Power rate: 5W – Input: 5V Qi A13(a) – Power rate: 5 W – Input: 5 - 16 V, 12 V 2 firmware options – Turnkey solution for quick design – APIs available for application customization(a) (a) Peripherals available via APIs – ADC with 10 bit precision and 1 M input impedance – UART – I2C master fast/slow speed rate – GPIOs Wearable(a) – Power rate: 2 W – Input: 5 V PMA(a) – power rate: 5 W – input: 5 V a. Contact local sale representative for further details: see www.st.com. February 2015 This is information on a product in full production. DocID027322 Rev 3 1/36 www.st.com Contents STWBC Contents 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Introduction to wireless battery charging systems . . . . . . . . . . . . . . . . 8 3 Certified Qi A11 solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 5 Pinout and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.1 Pinout for STWBC in Qi A11 configuration . . . . . . . . . . . . . . . . . . . . . . . . 10 4.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.1 5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.1.4 Typical current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.1.5 Loading capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.1.6 Pin output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.4 2/36 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.3.1 VOUT external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.3.2 Internal clock sources and timing characteristics . . . . . . . . . . . . . . . . . 18 5.3.3 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.3.4 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.3.5 Typical output level curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.3.6 Fast pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.3.7 Reset pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.3.8 I2C interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.3.9 10-bit SAR ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.4.1 Electrostatic discharge (ESD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.4.2 Static latch-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 DocID027322 Rev 3 STWBC Contents 6 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.1 Package design overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 8 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 DocID027322 Rev 3 3/36 36 List of tables STWBC List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. 4/36 Pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 HSI RC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 LSI RC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 PLL internal source clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Flash program memory/data E2PROM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Voltage DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Current DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 I2C interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ADC accuracy characteristics at VDD/VDDA 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ADC accuracy characteristics at VDD/VDDA 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Electrical sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 VFQFPN32 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Silicon product order code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 DocID027322 Rev 3 STWBC List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. STWBC device architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 System view of a wireless charging system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 STWBC pinout view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Supply current measurement conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 External capacitor CVOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 VOH standard pad at 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 VOL standard pad at 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 VOH standard pad at 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 VOL standard pad at 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 VOH fast pad at 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 VOL fast pad at 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 VOH fast pad at 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 VOL fast pad at 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 ADC conversion accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 VFQFPN32 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 DocID027322 Rev 3 5/36 36 Description 1 STWBC Description The STWBC is the digital controller for wireless battery charger (WBC) transmitters (TX) from STMicroelectronics, offering the most flexible and efficient solution for controlling power transfer to a receiver (RX) in WBC-enabled applications such as phones, wearables, and other battery powered devices that use electromagnetic induction for recharging. As a member of the Qi Wireless Power Consortium and the PMA (Power Matters Alliance), ST ensures full compatibility with these leading wireless charging protocols and holds certification for the Qi 1.1.2 A11 standard. The STWBC performs all the functions for transmitter control: thanks to the internal 96 MHz clock and supporting both half-bridge and full bridge topologies, it is able to precisely control the amount of transmitted power to match the requirements of the receiving unit in terms of maximizing the efficiency of the power transfer. The STWBC comes with firmware options to offer customers the ability to personalize their end product without the need of external microcontrollers: A turnkey Qi 1.1.2 A11 certified solution, fully interoperable with Qi enabled mobile phones. API (application programming interface) access to customize the underlying firmware, for example modifying the behavior of the LEDs or GPIOs in response to the receiver behavior and supporting I²C and UART communication within a network. The STWBC Qi 1.1.2 A11 certified solution is available in the STMicroelectronics STEVALISB027V1 reference design, intended for all Qi compatible receivers such as in Qi enabled mobile phones. In the reference design the STWBC integrates the foreign object detection (FOD): the digital feedback between TX and RX units allows the detection of metal objects close to the receiver that could result in potential hazards, enabling the STWBC to stop power transmission when such objects are detected. The reference design is offered together with a complete ecosystem to support customers in building their applications, including the Qi 1.1.2 A11 certified board (STEVAL-ISB027V1), API libraries and documentation to develop software customizations, as well as a comprehensive graphical user interface to monitor real-time performance and diagnostics. 6/36 DocID027322 Rev 3 STWBC Description Figure 1. STWBC device architecture Vbus Monitor 5V or 3.3V V input 2x LED Digital controller Topology specific Firmware (including Qi certification) Digital Bridge Controller Temperature Protection Overcurrent Protection Signal & Protocol Demodulator ADC GPIOs FOD UART I2C Customizable STWBC DocID027322 Rev 3 Active Object detector 7/36 36 Introduction to wireless battery charging systems 2 STWBC Introduction to wireless battery charging systems Wireless battery charging systems replace the traditional power supply cable by means of electromagnetic induction between a transmitting pad (TX) and a battery powered unit (RX), such as a mobile phone or a battery pack. The power transmitter unit is responsible for controlling the transmitting coil and generating the correct amount of power requested by the receiver unit. The receiver unit continuously feedbacks to the transmitter the correct power level requested by modulating the transmitter carrier by means of a controlled resistive of capacitive insertion. Generating the correct amount of power guarantees the highest level of end-to-end efficiency due to reduced energy waste. Also, it helps maintaining a lower operational temperature. The digital feedback is also used to detect foreign objects, i.e.: metal incorrectly exposed to the coils. By stopping the application as soon as a foreign object is detected the risk of damage is reduced. Digital wireless battery transmitters can adapt the amount of energy transferred by the coil by modulating the frequency, duty cycles or coil input voltage. Figure 2. System view of a wireless charging system Thanks to the internal STWBC 96 MHz clock, support for half-bridge and full bridge topologies and protocol detection units, the STWBC can drive the power emitted by a transmitting coil. The STWBC firmware sits on the top of the hardware to monitor and control the correct wireless charging operations. 8/36 DocID027322 Rev 3 STWBC 3 Certified Qi A11 solution Certified Qi A11 solution The STWBC has been certified for Qi A11, thanks to the STEVAL-ISB027V1 reference design. The certification is based on the Qi standard version 1.1.2 and supports FOD (“Foreign Object Detection”). The STEVAL-ISB027V1 reference design provides a complete kit which includes the STWBC IC, firmware, layout, graphical interfaces and tools. The layout is based on a costeffective 2-layer PCB. Firmware The STWBC firmware is available in two separate software packages: Turn-key: the firmware is distributed as a binary file. API customizable: the firmware is designed as a library and external functions as well as peripherals can be added by means of APIs. The software APIs allow a great freedom of application customization. The STWBC and the API library can be accessed by programming the internal controller via standard programming tools such as the IAR™ Workbench® Studio. Every STWBC wireless charging architecture is a reference design supported by firmware, evaluation boards, application notes and PCB layouts notes. DocID027322 Rev 3 9/36 36 Pinout and pin description 4 STWBC Pinout and pin description The STWBC is a multifunction device that can support several wireless charging architectures. The pinout is therefore application specific. Section 4.1 shows the pinout used by the STWBC when the Qi A11 configuration is used. 4.1 Pinout for STWBC in Qi A11 configuration Figure 3. STWBC pinout view 10/36 DocID027322 Rev 3 STWBC 4.2 Pinout and pin description Pin description Table 1. Pinout description Pin no. Pin name Pin type API firmware description Bin firmware description 1 UART_RX(1) DI UART RX link UART RX link 2 PWM_AUX/GPIO_2(1) DO PWM output or GPO Not used, must not be connected to any potential 3 I2C_SDA/DIGIN [4](1) I2C_SDA / digital input 4 inactive (internal pull-up) 4 (1) I2C_SCL / digital input 5 inactive (internal pull-up) I2C_SCL/DIGIN [5] 5 DRIVEOUT [3] DO Output driver for low-side branch right Output driver for low-side branch right 6 GPIO_0(1) DO Digital output for the green light indicator / general purpose I/O Digital output for the green light indicator 7 GPIO_1(1) DO Digital output for the red light indicator / general purpose I/O Digital output for the red light indicator 8 CPP_INT_3 AI Symbol detector Symbol detector 9 CPP_INT_2 AI Vmain monitor Vmain monitor 10 CPP_REF AI 11 CPP_INT_1 AI Symbol detector Symbol detector 12 CPP_INT_0 AI Symbol detector Symbol detector 13 VDDA PS Analog power supply Analog power supply 14 VSSA PS Analog ground Analog ground 15 TANK_VOLTAGE AI LC tank voltage probe LC tank voltage probe 16 VBRIDGE Inactive (to be tied to GND) Inactive (to be tied to GND) 17 SPARE_ADC(1) Spare analog input (to be tied to GND if not used) Spare analog input (to be tied to GND) 18 NTC_TEMP AI NTC temperature measurement. NTC temperature measurement. 19 ISENSE AI LC tank current measurement LC tank current measurement 20 VMAIN AI Vmain monitor Vmain monitor 21 DRIVEOUT [0] DO Output driver for low-side branch left Output driver for low-side branch left 22 DIGIN [0](1) Digital input 0 Inactive (internal pull-up) 23 (1) Digital input 1 Inactive (internal pull-up) DIGIN [1] External reference for CPP_INT_3 External reference for CPP_INT_3 (if not used, must be tied to GND) (if not used, must be tied to GND) 24 DRIVEOUT [1] DO Output driver for high-side branch left Output driver for high-side branch left 25 DRIVEOUT [2] DO Output driver for high-side branch right Output driver for high-side branch right 26 DIGIN [2](1) Digital input 2 Inactive (internal pull-up) 27 SWIM Debug interface Debug interface DIO DocID027322 Rev 3 11/36 36 Pinout and pin description STWBC Table 1. Pinout description (continued) Pin no. Pin name Pin type API firmware description Bin firmware description 28 NRST DI Reset Reset 29 VDD PS Digital and I/O power supply Digital and I/O power supply 30 VSS PS Digital and I/O ground Digital and I/O ground 31 VOUT Supply Internal LDO output Internal LDO output 32 UART_TX(1) DO UART TX link UART TX link 1. API configurable. 12/36 DocID027322 Rev 3 STWBC Electrical characteristics 5 Electrical characteristics 5.1 Parameter conditions Unless otherwise specified, all voltages are referred to VSS. VDDA and VDD must be connected to the same voltage value. VSS and VSSA must be connected together with the shortest wire loop. 5.1.1 Minimum and maximum values Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TA max. (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in Table 2, Table 3 and from Table 5 on page 17 to Table 17 on page 29 footnotes and are not tested in production. 5.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD and VDDA = 3.3 V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range. 5.1.3 Typical curves Unless otherwise specified, all typical curves are given as design guidelines only and are not tested. 5.1.4 Typical current consumption For typical current consumption measurements, VDD and VDDA are connected together as shown in Figure 4. DocID027322 Rev 3 13/36 36 Electrical characteristics STWBC Figure 4. Supply current measurement conditions 5.1.5 Loading capacitors The loading conditions used for the pin parameter measurement are shown in Figure 5: Figure 5. Pin loading conditions 14/36 DocID027322 Rev 3 STWBC 5.1.6 Electrical characteristics Pin output voltage The input voltage measurement on a pin is described in Figure 6. Figure 6. Pin input voltage 5.2 Absolute maximum ratings Stresses above those listed as 'absolute maximum ratings' may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect the device reliability. Table 2. Voltage characteristics Symbol Ratings VDDX - VSSX Supply voltage(1) VIN Input voltage on any other pin(2) Min. Max. -0.3 6.5 VSS -0.3 VDD +0.3 VDD - VDDA Variation between different power pins VSS - VSSA Variation between all the different ground VESD Electrostatic discharge voltage 50 pins(3) 50 Unit V mV Refer to absolute maximum ratings (electrical sensitivity) in Section 5.4.1 on page 31. 1. All power VDDX (VDD, VDDA) and ground VSSX (VSS, VSSA) pins must always be connected to the external power supply. 2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. 3. VSS and VSSA signals must be interconnected together with a short wire loop. DocID027322 Rev 3 15/36 36 Electrical characteristics STWBC Table 3. Current characteristics Symbol IVDDX IVSSX IIO Max.(1) Ratings Total current into VDDX power lines(2) (2) Total current out of VSSX power lines Output current sunk by any I/Os and control pin Unit 100 100 Ref. to Table 11 on page 21 mA Output current source by any I/Os and control pin IINJ(PIN)(3), (4) IINJ(TOT)(3), (4), (5) Injected current on any pin ±4 Sum of injected currents ±20 1. Data based on characterization results, not tested in production 2. All power VDDX (VDD, VDDA) and ground VSSX (VSS, VSSA) pins must always be connected to the external power supply. 3. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. 4. Negative injection disturbs the analog performance of the device. 5. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with IINJ(PIN) maximum current injection on four I/O port pins of the device. Table 4. Thermal characteristics Symbol TSTG TJ 16/36 Ratings Storage temperature range Maximum junction temperature DocID027322 Rev 3 Max. Unit -65 to 150 ºC 150 STWBC 5.3 Electrical characteristics Operating conditions The device must be used in operating conditions that respect the parameters in Table 5. In addition, a full account must be taken for all physical capacitor characteristics and tolerances. Table 5. General operating conditions Symbol Parameter Conditions Min. VDD1, VDDA1 Operating voltages VDD, VDDA Nominal operating voltages ESL of external Unit 5.5(1) 3.3(1) 5(1) V 470 3300 nF 0.05 0.2 1.8(2) CVOUT: capacitance of external capacitor(3) ESR of external capacitor(2) Max. 3(1) Core digital power supply VOUT Typ. at 1 MHz capacitor(2) JA(4) FR4 multilayer PCB VFQFPN32 TA Ambient temperature Pd = 100 mW 26 -40 °C/W 105 °C 1. The external power supply can be within range from 3 V up to 5.5 V. 2. Internal core power supply voltage. 3. Care should be taken when the capacitor is selected due to its tolerance, its dependency on temperature, DC bias and frequency. 4. To calculate PDmax (TA), use the formula PDmax = (TJmax - TA)/JA. Table 6. Operating conditions at power-up/power-down Symbol Parameter Conditions Min.(1) VDD rising Typ. Max.(2) tTEMP Reset release delay 3 VIT+ Power-on reset threshold 2.65 2.8 2.98 VIT- Brownout reset threshold 2.58 2.73 2.88 Unit ms V 1. Guaranteed by design, not tested in production. 2. Power supply ramp must be monotone. DocID027322 Rev 3 17/36 36 Electrical characteristics 5.3.1 STWBC VOUT external capacitor The stabilization of the main regulator is achieved by connecting an external capacitor CVOUT(b) to the VOUT pin. The CVOUT is specified in Section 5.3: Operating conditions. Care should be taken to limit the series inductance to less than 15 nH. Figure 7. External capacitor CVOUT 5.3.2 Internal clock sources and timing characteristics HSI RC oscillator The HSI RC oscillator parameters are specified under general operating conditions for VDD and TA. Table 7. HSI RC oscillator Symbol fHSI ACCHSI tSU(HSI) Parameter Conditions Min.(1) Frequency Max.(1) 16 Accuracy of HSI oscillator (factory calibrated)(1), (2) -1% +1% VDD = 3.3 V -40 ºC TA 105 ºC -4% +4% VDD = 5 V -40 ºC TA 105 ºC -4% +4% HSI oscillator wakeup time including calibration 2. Variation referred to fHSI nominal value. b. ESR is the equivalent series resistance and ESL is the equivalent inductance. DocID027322 Rev 3 1 Unit MHz VDD = 3.3 V TA= 25 ºC 1. Data based on characterization results, not tested in production. 18/36 Typ. % µs STWBC Electrical characteristics LSI RC oscillator The LSI RC oscillator parameters are specified under general operating conditions for VDD and TA. Table 8. LSI RC oscillator Symbol fLSI Parameter Conditions Min.(1) Frequency ACCLSI Accuracy of LSI oscillator tSU(LSI) LSI oscillator wakeup time 3.3 V VDD 5 V -40 ºC TA 105 ºC Typ. Max.(1) Unit 153.6 kHz -10% 10% 7 % µs 1. Guaranteed by design, not tested in production. PLL internal source clock Table 9. PLL internal source clock Symbol Parameter fIN Input frequency(2) fOUT Output frequency tlock PLL lock time Conditions 3.3 V VDD 5 V -40 ºC TA 105 ºC Min Typ. Max.(1) Unit 16 MHz 96 200 µs 1. Data based on characterization results, not tested in production. 2. PLL maximum input frequency 16 MHz. DocID027322 Rev 3 19/36 36 Electrical characteristics 5.3.3 STWBC Memory characteristics Flash program and memory/data E2PROM memory General conditions: TA = -40 °C to 105 °C. Table 10. Flash program memory/data E2PROM memory Min.(1) Typ.(1) Max.(1) Unit Standard programming time (including erase) for byte/word/block (1 byte/4 bytes/128 bytes) 6 6.6 ms Fast programming time for 1 block (128 bytes) 3 3.3 3 3.3 Symbol tPROG Parameter Conditions tERASE Erase time for 1 block (128 bytes) Erase/write NWE tRET IDDPRG cycles((2)(program memory) TA = 25 °C 10 K TA = 85 °C 100 K TA = 105 °C 35 K Data retention (program memory) after 10 K erase/write cycles at TA= 25 °C TRET = 85 °C 15 Data retention (program memory) after 10 K erase/write cycles at TA= 25 °C TRET = 105 °C 11 Data retention (data memory) after 100 K erase/write cycles at TA= 85 °C TRET = 85 °C 15 Data retention (data memory) after 35 K erase/write cycles at TA= 105 °C TRET = 105 °C 6 Supply current during program and erase cycles -40 ºC TA 105 ºC Erase/write cycles(2)(data memory) ms Cycles Years 2 mA 1. Data based on characterization results, not tested in production. 2. The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a write/erase operation addresses a single byte. 20/36 DocID027322 Rev 3 STWBC 5.3.4 Electrical characteristics I/O port pin characteristics The I/O port pin parameters are specified under general operating conditions for VDD and TA unless otherwise specified. Unused input pins should not be left floating. Table 11. Voltage DC characteristics Symbol VIL VIH Min.(1) Description Input low voltage Input high voltage (2) VOL2 Output low voltage at 5 V(3) VOL3 Output low voltage high sink at 3.3 V / 5 V(2),(5), (6) VOH2 Output high voltage at 5 0.3 * VDD 0.7 * VDD VDD Unit 0.4(4) Output low voltage at 3.3 V Output high voltage at 3.3 Max.(1) -0.3 (3) VOL1 VOH1 Typ. 0.5 V(3) 0.6(4) VDD - V(3) V 0.4(4) VDD - 0.5 VOH3 Output high voltage high sink at 3.3 V / 5 HVS Hysteresis input voltage(7) RPU Pull-up resistor V(2), (5), (6) VDD - 0.6(4) 0.1 * VDD 30 45 60 k 1. Data based on characterization result, not tested in production. 2. All signals are not 5 V tolerant (input signals can't be exceeded VDDX (VDDX = VDD, VDDA). 3. Parameter applicable to signals: GPIO_[0:2], DRIVEOUT[0:3], PWM_AUX. 4. Electrical threshold voltage not yet characterized at -40 ºC. 5. Parameter applicable to signal: SWIM. 6. Parameter applicable to signal: DIGIN [0]. 7. Applicable to any digital inputs. DocID027322 Rev 3 21/36 36 Electrical characteristics STWBC Table 12. Current DC characteristics Symbol IOL1 IOL2 Description Min. Standard output low level current at 3.3 V and VOL1(2) Standard output low level current at 5 V and VOL 2 IOLhs2 High sink output low level current at 5 V and VOL(3),(4) , (2) IOH1 Standard output high level current at 3.3 V and VOH1 IOH2 Standard output high level current at 5 V and VOLH2(2) (3), (4) IOHhs1 High sink output low level current at 3.3 V and VOH3 IOHhs2 High sink output low level current at 5 V and VOH3(3), (4) I_lnj Input leakage current digital - analog VSS VIN VDD Injection (5) current(6), (7) 5 7.75 1.5 pins)(6) 5 7.75 ±1 ± 20 1. Data based on characterization result, not tested in production. 2. Parameter applicable to signals: GPIO_[0:2], DRIVEOUT[0:3], PWM_AUX. 3. Parameter applicable to signal: SWIM. 4. Parameter applicable to signal: DIGIN [0]. 5. Applicable to any digital inputs. 6. Maximum value must never be exceeded. 7. Negative injection current on the ADCIN [7:0] signals (product depending) => SPARE_ADC signals have to avoid since impact the ADC conversion accuracy. 22/36 DocID027322 Rev 3 mA 3 ±4 Total injection current (sum of all I/O and control Unit 3 (3) (4) High sink output low level current at 3.3 V and VOL3 I_lnj Max.(1) 1.5 (2) IOLhs1 ILKg Typ. A mA STWBC 5.3.5 Electrical characteristics Typical output level curves This section shows the typical output voltage level curves measured on a single output pin for the two-pad family present in the STWBC device. Standard pad This pad is associated to the following signals: DIGIN [0:1], SWIM and GPIO_[0:2] when available. Figure 8. VOH standard pad at 3.3 V Figure 9. VOL standard pad at 3.3 V DocID027322 Rev 3 23/36 36 Electrical characteristics STWBC Figure 10. VOH standard pad at 5 V Figure 11. VOL standard pad at 5 V 24/36 DocID027322 Rev 3 STWBC 5.3.6 Electrical characteristics Fast pad This pad is associated to the DRIVEOUT[0:3], PWM_AUX signals if the external pin is available. Figure 12. VOH fast pad at 3.3 V Figure 13. VOL fast pad at 3.3 V DocID027322 Rev 3 25/36 36 Electrical characteristics STWBC Figure 14. VOH fast pad at 5 V Figure 15. VOL fast pad at 5 V 26/36 DocID027322 Rev 3 STWBC 5.3.7 Electrical characteristics Reset pin characteristics The reset pin parameters are specified under general operating conditions for VDD and TA unless otherwise specified. Table 13. NRST pin characteristics Symbol Parameter Conditions NRST input low level voltage(1) VIL(NRST) (1) VIH(NRST) NRST input high level voltage NRST output low level voltage VOL(NRST) NRST pull-up resistor tIFP(NRST) NRST input filtered pulse(3) NRST not input filtered Max.(1) -0.3 0.3 x VDD 0.7 x VDD VDD + 0.3 40 60 75 pulse(3) Unit V 0.5 30 500 NRST output filtered pulse(3) tOP(NRST) Typ. IOL = 2 mA (2) RPU(NRST) tINFP(NRST) (1) Min.(1) 15 k ns µs 1. Data based on characterization results, not tested in production. 2. The RPU pull-up equivalent resistor is based on a resistive transistor. 3. Data guaranteed by design, not tested in production. 5.3.8 I2C interface characteristics Table 14. I2C interface characteristics Standard mode Symbol Parameter Min.(1) Max.(1) Fast mode Min.(1) tw(SCLL) SCL clock low time 4.7 1.3 tw(SCLH) SCL clock high time 4.0 0.6 tsu(SDA) SDA setup time 250 100 SDA data hold time 0(2) 0(2) th(SDA) Max.(1) Unit µs 900(2) tr(SDA) tr(SCL) SDA and SCL rise time (VDD = 3.3 to 5 V)(3) 1000 300 tf(SDA) tf(SCL) SDA and SCL fall time (VDD = 3.3 to 5 V)(3) 300 300 ns th(STA) START condition hold time 4.0 0.6 tsu(STA) Repeated START condition setup time 4.7 0.6 tsu(STO) STOP condition setup time 4.0 0.6 µs STOP to START condition time (bus free) 4.7 1.3 µs tw(STO:STA) Cb Capacitive load for each bus line(4) 50 µs 50 pF 2 1. Data based on standard I C protocol requirement, not tested in production. 2. The maximum hold time of the start condition has only to be met if the interface does not stretch the low time 3. I2C multifunction signals require the high sink pad configuration and the interconnection of 1 K pull-up resistances. 4. 50 pF is the maximum load capacitance value to meet the I2C std timing specifications. DocID027322 Rev 3 27/36 36 Electrical characteristics 5.3.9 STWBC 10-bit SAR ADC characteristics The 10-bit SAR ADC oscillator parameters are specified under general operating conditions for VDDA and TA unless otherwise specified. Table 15. ADC characteristics Symbol N RADCIN Parameter Conditions Min. Resolution Typ. Max. Unit 10 ADC input impedance 1 VIN1 Conversion voltage range for gain x1 0 Vref ADC main reference voltage(3) bit M 1.25(1), (2) 1.250 V 1. Maximum input analog voltage cannot exceed VDDA. 2. Exceeding the maximum voltage on the SPARE_ADC signals for the related conversion scale must be avoided since the ADC conversion accuracy can be impacted. 3. ADC reference voltage at TA = 25 °C. ADC accuracy characteristics at VDD/VDDA 3.3 V Table 16. ADC accuracy characteristics at VDD/VDDA 3.3 V Min.(2) Max.(2) Offset + gain error(6), (7) -8.5 9.3 EO+G Offset + gain error(6), (8) -11 11 EO+G Offset + gain error(6), (9) -14.3 11.3 Symbol |ET| Parameter Total unadjusted error(3), (4), (5) error(3), (4), (5) |EO| Offset |EG| Gain error(3), (4), (5), (6) EO+G |ED| |EL| Differential linearity error(1), (2), (3) Integral linearity error(3), (4), (5) Typ.(1) Unit 2.8 0.3 0.4 LSB 0.5 1.4 1. Temperature operating: TA = 25 °C. 2. Data based on characterization results, not tested in production. 3. ADC accuracy vs. negative injection current. Injecting negative current on any of the analog input pins should be avoided as this reduces the accuracy of the conversion being performed on another analog input. It is recommended a Schottky diode (pin to ground) to be added to standard analog pins which may potentially inject the negative current. Any positive injection current within the limits specified for IINJ(PIN)and INJ(PIN) in the I/O port pin characteristic section does not affect the ADC accuracy. The ADC accuracy parameters may be also impacted exceeding the ADC maximum input voltage VIN1 or VIN2. 4. Results in manufacturing test mode. 5. Data aligned with trimming voltage parameters. 6. Gain error evaluation with the two point method. 7. Temperature operating range: 0 ºC TA 85 ºC. 8. Temperature operating range: -25 ºC TA 105 ºC. 9. Temperature operating range: -40 ºC TA 105 ºC. 28/36 DocID027322 Rev 3 STWBC Electrical characteristics ADC accuracy characteristics at VDD/VDDA 5 V Table 17. ADC accuracy characteristics at VDD/VDDA 5 V Symbol |ET| |EO| |EG| Parameter Total unadjusted error(3) (4), (5) Typ.(1) 0.5 (3) (4) (5) (6) 0.4 Gain error , , , Max.(2) , (6) (7) EO+G Offset + gain error , -8.3 8.9 EO+G Offset + gain error(6), (8) -10.9 10.9 EO+G Offset + gain error(6), (9) -13.8 10.9 |ED| |EL| Differential linearity Integral linearity Unit TBD (3) (4) (5) Offset error , Min.(2) error(1), (2), (3) error(3), (4), (5) LSB 0.8 2.0 1. Temperature operating: TA= 25 °C. 2. Data based on characterization results, not tested in production. 3. ADC accuracy vs. negative injection current. Injecting negative current on any of the analog input pins should be avoided as this reduces the accuracy of the conversion being performed on another analog input. It is recommended a Schottky diode (pin to ground) to be to added to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in the I/O port pin characteristic section does not affect the ADC accuracy. The ADC accuracy parameters may be also impacted exceeding the ADC maximum input voltage VIN1 or VIN2. 4. Results in manufacturing test mode. 5. Data aligned with trimming voltage parameters. 6. Gain error evaluation with two point method. 7. Temperature operating range: 0 ºC TA 85 ºC. 8. Temperature operating range: -25 ºC TA 105 ºC. 9. Temperature operating range: -40 ºC TA 105 ºC. 11. DocID027322 Rev 3 29/36 36 Electrical characteristics STWBC ADC conversion accuracy Figure 16. ADC conversion accuracy ADC accuracy parameter definitions: 30/36 ET = total unadjusted error: Maximum deviation between the actual and the ideal transfer curves. EO = offset error: deviation between the first actual transition and the first ideal one. EOG = offset + gain error (1-point gain): deviation between the last ideal transition and the last actual one. EG = gain error (2-point gain): defined so that EOG = EO + EG (parameter correlated to the deviation of the characteristic slope). ED = differential linearity error: maximum deviation between actual steps and the ideal one. EL = integral linearity error: maximum deviation between any actual transition and the end point correlation line. DocID027322 Rev 3 STWBC Electrical characteristics 5.4 EMC characteristics 5.4.1 Electrostatic discharge (ESD) Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts * (n + 1) supply pin). Table 18. ESD absolute maximum ratings Symbol Ratings Conditions Maximum value VESD(HBM) Electrostatic discharge voltage (human body model) TA = 25 °C, conforming to JEDEC/JESD22-A114E 2000 VESD(CDM) Electrostatic discharge voltage (charge device model) TA = 25 °C, conforming to ANSI/ESD STM 5.3.1 ESDA 500 VESD(MM) Electrostatic discharge voltage (machine model) TA = 25 °C, conforming to JEDEC/JESD-A115-A 200 Unit V Data based on characterization results, not tested in production. 5.4.2 Static latch-up Two complementary static tests are required on 10 parts to assess the latch-up performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to THE each input, output and configurable I/O pin) are performed on each sample. This test conforms to the EIA/JESD 78 IC latch-up standard. Table 19. Electrical sensitivity Symbol Parameter Conditions Level LU Static latch-up class TA = 105 °C A DocID027322 Rev 3 31/36 36 Thermal characteristics 6 STWBC Thermal characteristics The STWBC functionality cannot be guaranteed when the device operating exceeds the maximum chip junction temperature (TJmax). TJmax, in °C, may be calculated using equation: TJmax = TAmax + (PDmax x JA) where: TAmax is the maximum ambient temperature in °C JA is the package junction to ambient thermal resistance in °C/W PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax) PINTmax is the product of IDD and VDD, expressed in watts. This is the maximum chip internal power. PI/Omax represents the maximum power dissipation on output pins where: PI/Omax = (VOL * IOL) + [(VDD - VOH) * IOH], taking into account the actual VOL/IOL and VOH/IOH of the I/Os at the low and high level. Table 20. Package thermal characteristics Symbol JA Parameter VFQFPN32 - thermal resistance junction to ambient(1) Value Unit 26 °C/W 1. Thermal resistance is based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment. 32/36 DocID027322 Rev 3 STWBC 7 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 7.1 Package design overview Figure 17. VFQFPN32 package outline DocID027322 Rev 3 33/36 36 Package information 7.2 STWBC Package mechanical data Table 21. VFQFPN32 package mechanical data Dimensions (mm) Symbol Min. Typ. Max. A 0.80 0.90 1.00 A1 0 0.02 0.05 A3 0.20 b 0.18 0.25 0.30 D 4.85 5.00 5.15 D2 3.40 3.45 3.50 E 4.85 5.00 5.15 E2 3.40 3.45 3.50 0.50 0.55 0.40 0.50 e L 0.30 ddd Note: 0.08 1. VFQFPN stands for “Thermally Enhanced Very thin Fine pitch Quad Flat Package No lead”. 2. Very thin profile: 0.80 < A ≤ 1.00 mm. 3. Details of the terminal 1 are optional but must be located on the top surface of the package by using either a mold or marked features. 4. Package outline exclusive of any mold flashes dimensions and metal burrs. 34/36 DocID027322 Rev 3 STWBC 8 Order codes Order codes Table 22. Silicon product order code Order code Package STWBC Tube VFQFPN32 STWBCTR 9 Packaging Tape and reel Revision history Table 23. Document revision history Date Revision 18-Dec-2014 1 Initial release. 2 Updated main title on page 1. Updated Section : Applications on page 1 (added “certified” to Qi A11). Added Section 3: Certified Qi A11 solution on page 9. Updated Figure 3: STWBC pinout view on page 10 (updated title, replaced by new figure). Updated Table 1: Pinout description on page 11 (replaced by new table). Added Section 5: Electrical characteristics on page 13 and Section 6: Thermal characteristics on page 32. Minor modifications throughout document. 3 Updated main title on page 1. Updated Section : Features on page 1 (minor modifications). Updated Section 1: Description on page 6 (replaced by new Description). Added Section 2: Introduction to wireless battery charging systems on page 8 (added title and Description from rev. 2, updated title of Figure 2). Removed Section “2 STWBC system architecture” from page 7 (Figure 2 on page 8 moved to Section 1: Description). Updated Section 3: Certified Qi A11 solution on page 9 (renumbered headings). Minor modifications throughout document. 23-Feb-2015 26-Feb-2015 Changes DocID027322 Rev 3 35/36 36 STWBC IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics – All rights reserved 36/36 DocID027322 Rev 3