PANASONIC MN838850

Color TFT LCD Driver
MN838850
Source Driver for LCD Panel Drive
■ Overview
The MN838850 converts digital display data from a personal computer or an engineering workstation to analog signal
voltages to allow those signals to be displayed on a color TFT LCD panel.
■ Features
• Includes a built-in D/A converter and accepts 8-bit digital input data for 16.7-million color display.
• Output dynamic range: 14.6 V P-P (when AVDD = 15 V)
• Supports both dot inversion drive and source inversion drive schemes.
• Number of drive outputs: 384
• Input data bus: acquires two pixels at the same time
• Supports control of data inversion at each clock cycle.
• Supports γ correction.
• Adopts a drive scheme that does not require precharging.
• Allows serial cascade connection.
• The clock is automatically stopped after the acquisition of a fixed amount of data.
• The shift register shift direction can be set to be either left-to-right or right-to-left.
• Digital circuit block features low-voltage operation:
2.7 to 3.6 V
• Maximum operating clock frequency:
50 MHz (3.1 to 3.6 V), 40 MHz (2.7 to 3.6 V)
■ Applications
• TFT LCD panels
1
MN838850
Color TFT LCD Driver
AVDD
AVSS
Output Circuit
10
VREF0 to 9
D/A Converter
POL
VOPU, VOPL
2
8
8
8
8
Two-line 384 × 8-bit latch
A
8
D00 to D07
D10 to D17
D20 to D27
D30 to D37
D40 to D47
D50 to D57
8
8
8
8
8
8
8
8
8
8
8
8
8 Latch
8
8
8
8
INV1
INV2
PLSR
Shift Register
TEST
FY
RL
DVSS
DVDD
PRSL
2
Y384
Y383
Y3
Y2
Y1
■ Block Diagram
8
Color TFT LCD Driver
MN838850
■ Pin Arrangement
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
30
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
Y384
Y383
Y382
Y381
Y380
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
··
·
Y5
Y4
Y3
Y2
Y1
PRSL
D57
D56
D55
D54
D53
D52
D51
D50
D47
D46
D45
D44
D43
D42
D41
D40
D37
D36
D35
D34
D33
D32
D31
D30
DVDD
TEST
RL
VOPU
VREF9
VREF8
VREF7
VREF6
VREF5
AVDD
AVSS
VREF4
VREF3
VREF2
VREF1
VREF0
VOPL
DVSS
FY
A
POL
INV2
INV1
D27
D26
D25
D24
D23
D22
D21
D20
D17
D16
D15
D14
D13
D12
D11
D10
D07
D06
D05
D04
D03
D02
D01
D00
PLSR
Cu Foil Surface Top View
3
MN838850
Color TFT LCD Driver
■ Pin Descriptions
Pin No.
D00 to D07
D10 to D17
I/O
I
Pin Name
Image data input
D20 to D27
Description
Image data input pins.
The R, G, and B image signals are input using
these pins.
D30 to D37
D07, D17, D27, D37, D47, D57 : MSB
D40 to D47
D50 to D57
D00, D10, D20, D30, D40, D50 : LSB
Y1 to Y384
O
Image signal output
Analog image signal output pins.
PLSR
PRSL
I/O
Start pulse input and output
Internal shift register start pulse input and
output pins.
RL = "H"
RL = "L"
PLSR
Right shift input
Left shift output
PRSL
Right shift output
Left shift input
RL
I
Shift direction selection
signal input
Input signal that selects the shift direction.
High: Right shift (Y1 to Y384)
Low: Left shift (Y384 to Y1)
FY
I
Clock input
Data acquisition clock input pin.
A
I
Analog output control
Controls the analog voltage output.
POL
I
Output polarity reversal
control input
Switches the reference voltage for odd and even
outputs.
INV1
INV2
I
Data inversion control input
Controls inversion of the input image signal.
INV1: Used for D2(7 : 0), D1(7 : 0), D0(7 : 0)
INV2: Used for D5(7 : 0), D4(7 : 0), D3(7 : 0)
VREF0 to 9
I
γ correction voltage input
Inputs the γ correction voltage used by the D/A
converter.
VOPU, VOPL
I
Analog reference voltage
Provides the reference voltage that determines
the analog circuit operating point.
VOPU: Reference voltage for the high side output
VOPL : Reference voltage for the low side output
AVDD
AVSS
I
Analog system power supply
Provides the power for the analog circuits.
DVDD
DVSS
I
Digital system power supply
Provides the power for the digital circuits.
TEST
I
Test
(Pull-down resistor: 100 kΩ)
Used for device testing.
This pin must be left open during normal operation.
4
Color TFT LCD Driver
MN838850
■ Functional Description
• Relationship between the data input and the analog output pins
The input mode used by this IC is a two-pixel mode in which the data for two pixels is input in parallel from the D0(7:0),
D1(7:0), D2(7:0), D3(7:0), D4(7:0), and D5(7:0) input ports.
The correspondence between the data input ports and the output pins is as follows.
Y(6n−5) = D00 to D07
Y(6n−2) = D30 to D37
Y(6n−4) = D10 to D17
Y(6n−3) = D20 to D27
Y(6n−1) = D40 to D47
Y(6n)
= D50 to D57
(n = 1, 2, ······, 64)
Figure 1 shows an example of color data and pin connections when RL is high.
This example shows the case where the pixels are in the order R, B, G starting at the left edge of the LCD panel.
R2n-1
B2n-1
G2n-1
D00 to D07
D10 to D17
MN838850
D20 to D27
D30 to D37
R2n
D40 to D47
B2n
Y10
Y9
Y8
Y7
Y6
Y5
Y4
Y3
Y2
(n=1..)
Y1
D50 to D57
G2n
············
R1
B1
G1
R2
B2
G2
R3
B3
G3
R4
···
R1
B1
G1
R2
B2
G2
R3
B3
G3
R4
···
R1
B1
G1
R2
B2
G2
R3
B3
G3
R4
···
LCD Panel
FY
D0(7 : 0)
R1
R3
R5
R7
R9
R11 R13 R15 R17 R19 R21 R23 R25 R27
D1(7 : 0)
B1
B3
B5
B7
B9
B11 B13 B15 B17 B19 B21 B23 B25 B27
D2(7 : 0)
G1
G3
G5
G7
G9
G11 G13 G15 G17 G19 G21 G23 G25 G27
D3(7 : 0)
R2
R4
R6
R8
R10 R12 R14 R16 R18 R20 R22 R24 R26 R28
D4(7 : 0)
B2
B4
B6
B8
B10 B12 B14 B16 B18 B20 B22 B24 B26 B28
D5(7 : 0)
G2
G4
G6
G8 G10 G12 G14 G16 G18 G20 G22 G24 G26 G28
Figure 1 Relationship between Input and Output Pins (When RL is high and the shift direction is Y1 to Y384)
5
MN838850
Color TFT LCD Driver
■ Functional Description (continued)
• Relationship between the data input and the analog output pins (continued)
The following presents the case with the same LCD panel color arrangement as figure 1 but with RL low.
In figure 2, R1 corresponds to Y384, B1 to Y383, and G1 to Y382. Note that the relationship between the color data
and the data ports here differs from that in figure 1.
LCD Panel
···
R1
B1
G1
R2
B2
G2
R3
B3
G3
R4
···
R2n-1
B2n-1
G2n-1
R2n
B2n
G2n
Y377
R4
Y376
G3
Y377
B3
Y378
R3
Y379
G2
Y380
B2
Y381
R2
Y382
G1
Y383
B1
Y384
R1
·········
D50 to D57
D40 to D47
D30 to D37
D20 to D27
MN838850
D10 to D17
D00 to D07
(n=1..)
FY
D0(7 : 0)
G2
G4
G6
G8 G10 G12 G14 G16 G18 G20 G22 G24 G26 G28
D1(7 : 0)
B2
B4
B6
B8
B10 B12 B14 B16 B18 B20 B22 B24 B26 B28
D2(7 : 0)
R2
R4
R6
R8
R10 R12 R14 R16 R18 R20 R22 R24 R26 R28
D3(7 : 0)
G1
G3
G5
G7
G9
G11 G13 G15 G17 G19 G21 G23 G25 G27
D4(7 : 0)
B1
B3
B5
B7
B9
B11 B13 B15 B17 B19 B21 B23 B25 B27
D5(7 : 0)
R1
R3
R5
R7
R9
R11 R13 R15 R17 R19 R21 R23 R25 R27
Figure 2 Relationship between Input and Output Pins (When RL is low and the shift direction is Y384 to Y1)
6
Color TFT LCD Driver
MN838850
■ Functional Description (continued)
• Dot inversion drive
Since dot inversion drive is used, the analog output voltages with respect to the opposite electrode voltage differ in polarity
for each of the odd and even numbered output pins. This output voltage polarity is controlled by POL. The table below
lists the correspondence between the POL polarity setting, the analog output polarity and the VREF used.
POL
Y2n-1
Y2n
"L"
Positive polarity Negativepolarity
VREF9 to 5 VREF4 to 0
"H"
Negativepolarity Positive polarity
VREF4 to 0 VREF9 to 5
The POL switching timing is presented below.
POL should be switched during the period when A is low, after the last data has been input, and before the next start
signal has been input. The POL signal level is acquired by the device internally on the falling edge of the A signal. The
output polarity is determined by the acquired signal level.
A
POL
Negative
polarity
Y2n-1
Positive
polarity
Y2n
Positive
polarity
Negative
polarity
Positive
polarity
Negative
polarity
Opposite electrode
voltages
(n=1 to 192) One horizontal period
POL Switching Timing
A
Start Signal
First data
First data
Dxx
Last data
Last data
POL
One horizontal period
Details of the POL Switching Timing
7
MN838850
Color TFT LCD Driver
■ Functional Description (continued)
• Dot inversion drive (continued)
Next we describe dot inversion drive operation.
The symbol "+" here means a voltage that is positive with respect to the voltage on the opposite electrode, and "−" means
a voltage that is negative with respect to the voltage on the opposite electrode.
The figure below shows the dot inversion drive operation.
Since POL is low in the first line of the first field, Y1 will be + and Y2 will be −, that is, odd-numbered output pins
will have positive polarity and even-numbered output pins will have negative polarity.
Since POL is switched to high for the second line, odd-numbered output pins will have negative polarity and evennumbered output pins will have positive polarity.
Thereafter, the polarity of the output voltages is determined by the POL polarity.
In the second field, the POL polarity will be the opposite of what it was for the first field, so the output voltage polarities
Field 1
Y3
Y2
Y1
will be reversed.
POL
Line 1
+
−
+
"L"
Line 2
−
+
−
"H"
Line 3
+
−
+
"L"
Line 4
−
+
−
"H"
"H"
··
··
··
Field 2
Line 1
−
+
−
Line 2
+
−
+
"L"
Line 3
−
+
−
"H"
Field 1
Y3
Y2
Y1
Note that if POL is inverted not every line, but only every field, the output polarities will be as shown below.
POL
Line 1
+
−
+
"L"
Line 2
+
−
+
"L"
Line 3
+
−
+
"L"
··
··
··
Field 2
8
Line 1
−
+
−
"H"
Line 2
−
+
−
"H"
Line 3
−
+
−
"H"
Color TFT LCD Driver
MN838850
■ Functional Description (continued)
• Operation when Connected in Cascade
When RL is high:
Driver A acquires the PLSR start pulse on the rising edge of FY and starts acquiring data on the next FY rising edge.
The PRSL (carry) output will go high 64 clock pulses after the start pulse input and data acquisition will stop one clock
cycle later.
Driver B receives the driver A PRSL rising edge and starts accepting data one clock cycle later.
64 clock cycles
FY
Acquired on the falling
edge of FY.
State of
signal 1
State of
signal 2
Driver B
D00 to D07
D10 to D17
D20 to D27
1
3
5
···
125
127
129
1
131
3
133
5
D30 to D37
D40 to D47
D50 to D57
2
4
6
···
126
128
130
2
132
4
134
6
Data acquired by driver A
LCD controller
8-bit RGB data
1
2
PLSR
PRSL
PLSR
PRSL
PLSR
PRSL
Start pulse
Driver A
Driver B
Driver C
9
MN838850
Color TFT LCD Driver
■ Functional Description (continued)
• Relationship between input data values and output voltages
The IC outputs voltages with discrete values and differing polarities for the odd and even output pins with respect to
the common electrode. The output voltage is determined by the input data value, the γ correction voltages (VREF0 to
VREF9), VOPL, VOPU, and POL.
Output Voltage
AVDD
Output Voltage
AVDD
Common
voltage
Common
voltage
00
1F
3F
5F
7F
9F
Input data
BF
DF
FF
00
Input data (Hexadecimal)
Relationship between Input Data and Output Voltage
(VREF0 > VREF1 > VREF2 > VREF3 > VREF4,
VREF5 > VREF6 > VREF7 > VREF8 > VREF9)
10
1F
3F
5F
7F
9F
BF
DF
FF
Input data
Relationship between Input Data and Output Voltage
(VREF0 < VREF1 < VREF2 < VREF3 < VREF4,
VREF5 < VREF6 < VREF7 < VREF8 < VREF9)
Color TFT LCD Driver
MN838850
■ Functional Description (continued)
• Relationship between input data values and output voltages (continued)
Apply the voltages for the γ correction to the pins VREF0 to VREF9.
The γ correction voltage input pins are divided into two groups: the high-level output control group and the low-level
output control group, and each group is connected in series with resistors. Each of these resistor series has a total
typical value of 14 kΩ.
This structure is shown in the figure. The typical values of the resistors are shown in parentheses.
Note that since these voltages are resistor divided internally, the voltages applied to the VREF pins should be applied
through a low-impedance circuit. If the voltages are directly applied by the resistor divider, the desired output voltages
may not result.
IC internal circuits
Data correspondence
VREF9
R0 (2000 Ω)
High-level FF
output side
VREF8
External reference voltage generating circuit
R1 (3800 Ω)
VREF7
R2 (4500 Ω)
VREF6
R3 (3700 Ω)
VREF5
00
VREF4
R4 (3700 Ω)
Low-level 00
output side
VREF3
VREF2
VREF1
VREF0
R5 (4500 Ω)
R6 (3800 Ω)
R7 (2000 Ω)
FF
11
MN838850
Color TFT LCD Driver
■ Functional Description (continued)
• Table 1 Relationship between VREF Voltages and Analog Output Voltages (High-level side) (Values are examples)
VREF5 = 9.200, VREF6 = 10.635, VREF7 = 12.380, VREF8 = 13.854, VREF9 = 14.630, VOPU = 11.250
Display data
12
Logical expression
Voltage level
Voltage level difference
00
VOPU × 63/31− (42 × VREF8+1238 × VREF9) /1240
7.787
0.026
01
VOPU × 63/31− (84 × VREF8+1196 × VREF9) /1240
7.813
0.026
02
··
·
0D
VOPU × 63/31− (126 × VREF8+1154 × VREF9) /1240
7.839
0.026
VOPU × 63/31− (588 × VREF8+692 × VREF9) /1240
8.128
0.026
0E
VOPU × 63/31− (630 × VREF8+650 × VREF9) /1240
8.155
0.026
0F
VOPU × 63/31− (672 × VREF8+608 × VREF9) /1240
8.181
0.023
10
VOPU × 63/31− (710 × VREF8+570 × VREF9) /1240
8.205
0.023
11
VOPU × 63/31− (748 × VREF8+532 × VREF9) /1240
8.228
0.023
12
·
··
1D
VOPU × 63/31− (786 × VREF8+494 × VREF9) /1240
8.252
0.023
VOPU × 63/31− (1204 × VREF8+76 × VREF9) /1240
8.514
0.023
1E
VOPU × 63/31− (1242 × VREF8+38 × VREF9) /1240
8.537
0.023
1F
VOPU × 63/31− (1280 × VREF8+0 × VREF9) /1240
8.561
0.020
20
VOPU × 63/31− (32 × VREF7+2400 × VREF8) /2356
8.581
0.020
21
VOPU × 63/31− (64 × VREF7+2368 × VREF8) /2356
8.601
0.020
22
·
··
2D
VOPU × 63/31− (96 × VREF7+2336 × VREF8) /2356
8.621
0.020
VOPU × 63/31− (448 × VREF7+1984 × VREF8) /2356
8.841
0.020
2E
VOPU × 63/31− (480 × VREF7+1952 × VREF8) /2356
8.861
0.020
2F
VOPU × 63/31− (512 × VREF7+1920 × VREF8) /2356
8.882
0.016
30
VOPU × 63/31− (538 × VREF7+1894 × VREF8) /2356
8.898
0.016
31
VOPU × 63/31− (564 × VREF7+1868 × VREF8) /2356
8.914
0.016
32
·
··
3D
VOPU × 63/31− (590 × VREF7+1842 × VREF8) /2356
8.930
0.016
VOPU × 63/31− (876 × VREF7+1556 × VREF8) /2356
9.109
0.016
3E
VOPU × 63/31− (902 × VREF7+1530 × VREF8) /2356
9.125
0.016
3F
VOPU × 63/31− (928 × VREF7+1504 × VREF8) /2356
9.142
0.015
40
VOPU × 63/31− (953 × VREF7+1479 × VREF8) /2356
9.157
0.015
41
VOPU × 63/31− (978 × VREF7+1454 × VREF8) /2356
9.173
0.015
42
·
··
4D
VOPU × 63/31− (1003 × VREF7+1429 × VREF8) /2356
9.189
0.015
VOPU × 63/31− (1278 × VREF7+1154 × VREF8) /2356
9.361
0.015
4E
VOPU × 63/31− (1303 × VREF7+1129 × VREF8) /2356
9.376
0.015
4F
VOPU × 63/31− (1328 × VREF7+1104 × VREF8) /2356
9.392
0.015
Color TFT LCD Driver
MN838850
■ Functional Description (continued)
• Table 1 (continued) Relationship between VREF Voltages and Analog Output Voltages (High-level side) (Values are examples)
VREF5 = 9.200, VREF6 = 10.635, VREF7 = 12.380, VREF8 = 13.854, VREF9 = 14.630, VOPU = 11.250
Display data
Logical expression
Voltage level
Voltage level difference
50
VOPU × 63/31− (1353 × VREF7+1079 × VREF8) /2356
9.408
0.015
51
VOPU × 63/31− (1378 × VREF7+1054 × VREF8) /2356
9.423
0.015
52
·
··
5D
VOPU × 63/31− (1403 × VREF7+1029 × VREF8) /2356
9.439
0.015
VOPU × 63/31− (1678 × VREF7+754 × VREF8) /2356
9.611
0.015
5E
VOPU × 63/31− (1703 × VREF7+729 × VREF8) /2356
9.627
0.015
5F
VOPU × 63/31− (1728 × VREF7+704 × VREF8) /2356
9.642
0.013
60
VOPU × 63/31− (1750 × VREF7+682 × VREF8) /2356
9.656
0.013
61
VOPU × 63/31− (1772 × VREF7+660 × VREF8) /2356
9.670
0.013
62
·
··
6D
VOPU × 63/31− (1794 × VREF7+638 × VREF8) /2356
9.683
0.013
VOPU × 63/31− (2036 × VREF7+396 × VREF8) /2356
9.835
0.013
6E
VOPU × 63/31− (2058 × VREF7+374 × VREF8) /2356
9.849
0.013
6F
VOPU × 63/31− (2080 × VREF7+352 × VREF8) /2356
9.862
0.013
70
VOPU × 63/31− (2102 × VREF7+330 × VREF8) /2356
9.876
0.013
71
VOPU × 63/31− (2124 × VREF7+308 × VREF8) /2356
9.890
0.013
72
·
··
7D
VOPU × 63/31− (2146 × VREF7+286 × VREF8) /2356
9.904
0.013
VOPU × 63/31− (2388 × VREF7+44 × VREF8) /2356
10.055
0.013
7E
VOPU × 63/31− (2410 × VREF7+22 × VREF8) /2356
10.069
0.013
7F
VOPU × 63/31− (2432 × VREF7+0 × VREF8) /2356
10.083
0.013
80
VOPU × 63/31− (11 × VREF6+1429 × VREF7) /1395
10.096
0.013
81
VOPU × 63/31− (22 × VREF6+1418 × VREF7) /1395
10.110
0.013
82
·
··
8D
VOPU × 63/31− (33 × VREF6+1407 × VREF7) /1395
10.124
0.013
VOPU × 63/31− (154 × VREF6+1286 × VREF7) /1395
10.275
0.013
8E
VOPU × 63/31− (165 × VREF6+1275 × VREF7) /1395
10.289
0.013
8F
VOPU × 63/31− (176 × VREF6+1264 × VREF7) /1395
10.303
0.013
90
VOPU × 63/31− (187 × VREF6+1253 × VREF7) /1395
10.317
0.013
91
VOPU × 63/31− (198 × VREF6+1242 × VREF7) /1395
10.330
0.013
92
·
··
9D
VOPU × 63/31− (209 × VREF6+1231 × VREF7) /1395
10.344
0.013
VOPU × 63/31− (330 × VREF6+1110 × VREF7) /1395
10.495
0.013
9E
VOPU × 63/31− (341 × VREF6+1099 × VREF7) /1395
10.509
0.013
9F
VOPU × 63/31− (352 × VREF6+1088 × VREF7) /1395
10.523
0.016
13
MN838850
Color TFT LCD Driver
■ Functional Description (continued)
• Table 1 (continued) Relationship between VREF Voltages and Analog Output Voltages (High-level side) (Values are examples)
VREF5 = 9.200, VREF6 = 10.635, VREF7 = 12.380, VREF8 = 13.854, VREF9 = 14.630, VOPU = 11.250
Display data
14
Logical expression
Voltage level
Voltage level difference
A0
VOPU × 63/31− (365 × VREF6+1075 × VREF7) /1395
10.539
0.016
A1
VOPU × 63/31− (378 × VREF6+1062 × VREF7) /1395
10.556
0.016
A2
··
·
AD
VOPU × 63/31− (391 × VREF6+1049 × VREF7) /1395
10.572
0.016
VOPU × 63/31− (534 × VREF6+906 × VREF7) /1395
10.751
0.016
AE
VOPU × 63/31− (547 × VREF6+893 × VREF7) /1395
10.767
0.016
AF
VOPU × 63/31− (560 × VREF6+880 × VREF7) /1395
10.783
0.016
B0
VOPU × 63/31− (573 × VREF6+867 × VREF7) /1395
10.800
0.016
B1
VOPU × 63/31− (586 × VREF6+854 × VREF7) /1395
10.816
0.016
B2
·
··
BD
VOPU × 63/31− (599 × VREF6+841 × VREF7) /1395
10.832
0.016
VOPU × 63/31− (742 × VREF6+698 × VREF7) /1395
11.011
0.016
BE
VOPU × 63/31− (755 × VREF6+685 × VREF7) /1395
11.027
0.016
BF
VOPU × 63/31− (768 × VREF6+672 × VREF7) /1395
11.043
0.022
C0
VOPU × 63/31− (786 × VREF6+654 × VREF7) /1395
11.066
0.022
C1
VOPU × 63/31− (804 × VREF6+636 × VREF7) /1395
11.089
0.022
C2
·
··
CD
VOPU × 63/31− (822 × VREF6+618 × VREF7) /1395
11.111
0.022
VOPU × 63/31− (1020 × VREF6+420 × VREF7) /1395
11.359
0.022
CE
VOPU × 63/31− (1038 × VREF6+402 × VREF7) /1395
11.381
0.022
CF
VOPU × 63/31− (1056 × VREF6+384 × VREF7) /1395
11.404
0.030
D0
VOPU × 63/31− (1080 × VREF6+360 × VREF7) /1395
11.434
0.030
D1
VOPU × 63/31− (1104 × VREF6+336 × VREF7) /1395
11.464
0.030
D2
·
··
DD
VOPU × 63/31− (1128 × VREF6+312 × VREF7) /1395
11.494
0.030
VOPU × 63/31− (1392 × VREF6+48 × VREF7) /1395
11.824
0.030
DE
VOPU × 63/31− (1416 × VREF6+24 × VREF7) /1395
11.854
0.030
DF
VOPU × 63/31− (1440 × VREF6+0 × VREF7) /1395
11.884
0.041
E0
VOPU × 63/31− (66 × VREF5+2302 × VREF6) /2294
11.926
0.041
E1
VOPU × 63/31− (132 × VREF5+2236 × VREF6) /2294
11.967
0.041
E2
·
··
ED
VOPU × 63/31− (198 × VREF5+2170 × VREF6) /2294
12.008
0.041
VOPU × 63/31− (924 × VREF5+1444 × VREF6) /2294
12.462
0.041
EE
VOPU × 63/31− (990 × VREF5+1378 × VREF6) /2294
12.504
0.041
EF
VOPU × 63/31− (1056 × VREF5+1312 × VREF6) /2294
12.545
0.051
Color TFT LCD Driver
MN838850
■ Functional Description (continued)
• Table 1 (continued) Relationship between VREF Voltages and Analog Output Voltages (High-level side) (Values are examples)
VREF5 = 9.200, VREF6 = 10.635, VREF7 = 12.380, VREF8 = 13.854, VREF9 = 14.630, VOPU = 11.250
Display data
Logical expression
Voltage level
Voltage level difference
F0
VOPU × 63/31− (1138 × VREF5+1230 × VREF6) /2294
12.596
0.051
F1
VOPU × 63/31− (1220 × VREF5+1148 × VREF6) /2294
12.647
0.051
F2
·
··
FD
VOPU × 63/31− (1302 × VREF5+1066 × VREF6) /2294
12.699
0.051
VOPU × 63/31− (2204 × VREF5+164 × VREF6) /2294
13.263
0.051
FE
VOPU × 63/31− (2286 × VREF5+82 × VREF6) /2294
13.314
0.051
FF
VOPU × 63/31− (2368 × VREF5+0 × VREF6) /2294
13.366
• Table 2 Relationship between VREF Voltages and Analog Output Voltages (Low-level side) (Values are examples)
VREF0 = 1.760, VREF1 = 2.536, VREF2 = 4.010, VREF3 = 5.755, VREF4 = 7.190, VOPL = 3.750
Display data
Logical expression
Voltage level
Voltage level difference
00
VOPL × 63/31− (42 × VREF1+1238 × VREF0) /1240
5.777
0.026
01
VOPL × 63/31− (84 × VREF1+1196 × VREF0) /1240
5.751
0.026
02
·
··
0D
VOPL × 63/31− (126 × VREF1+1154 × VREF0) /1240
5.725
0.026
VOPL × 63/31− (588 × VREF1+692 × VREF0) /1240
5.436
0.026
0E
VOPL × 63/31− (630 × VREF1+650 × VREF0) /1240
5.410
0.026
0F
VOPL × 63/31− (672 × VREF1+608 × VREF0) /1240
5.383
0.023
10
VOPL × 63/31− (710 × VREF1+570 × VREF0) /1240
5.360
0.023
11
VOPL × 63/31− (748 × VREF1+532 × VREF0) /1240
5.336
0.023
12
·
··
1D
VOPL × 63/31− (786 × VREF1+494 × VREF0) /1240
5.312
0.023
VOPL × 63/31− (1204 × VREF1+76 × VREF0) /1240
5.051
0.023
1E
VOPL × 63/31− (1242 × VREF1+38 × VREF0) /1240
5.027
0.023
1F
VOPL × 63/31− (1280 × VREF1+0 × VREF0) /1240
5.003
0.020
20
VOPL × 63/31− (32 × VREF2+2400 × VREF1) /2356
4.983
0.020
21
VOPL × 63/31− (64 × VREF2+2368 × VREF1) /2356
4.963
0.020
22
·
··
2D
VOPL × 63/31− (96 × VREF2+2336 × VREF1) /2356
4.943
0.020
VOPL × 63/31− (448 × VREF2+1984 × VREF1) /2356
4.723
0.020
2E
VOPL × 63/31− (480 × VREF2+1952 × VREF1) /2356
4.703
0.020
2F
VOPL × 63/31− (512 × VREF2+1920 × VREF1) /2356
4.683
0.016
15
MN838850
Color TFT LCD Driver
■ Functional Description (continued)
• Table 2 (continued) Relationship between VREF Voltages and Analog Output Voltages (Low-level side) (Values are examples)
VREF0 = 1.760, VREF1 = 2.536, VREF2 = 4.010, VREF3 = 5.755, VREF4 = 7.190, VOPL = 3.750
Display data
16
Logical expression
Voltage level
Voltage level difference
30
VOPL × 63/31− (538 × VREF2+1894 × VREF1) /2356
4.666
0.016
31
VOPL × 63/31− (564 × VREF2+1868 × VREF1) /2356
4.650
0.016
32
·
··
3D
VOPL × 63/31− (590 × VREF2+1842 × VREF1) /2356
4.634
0.016
VOPL × 63/31− (876 × VREF2+1556 × VREF1) /2356
4.455
0.016
3E
VOPL × 63/31− (902 × VREF2+1530 × VREF1) /2356
4.439
0.016
3F
VOPL × 63/31− (928 × VREF2+1504 × VREF1) /2356
4.422
0.015
40
VOPL × 63/31− (953 × VREF2+1479 × VREF1) /2356
4.407
0.015
41
VOPL × 63/31− (978 × VREF2+1454 × VREF1) /2356
4.391
0.015
42
·
··
4D
VOPL × 63/31− (1003 × VREF2+1429 × VREF1) /2356
4.376
0.015
VOPL × 63/31− (1278 × VREF2+1154 × VREF1) /2356
4.203
0.015
4E
VOPL × 63/31− (1303 × VREF2+1129 × VREF1) /2356
4.188
0.015
4F
VOPL × 63/31− (1328 × VREF2+1104 × VREF1) /2356
4.172
0.015
50
VOPL × 63/31− (1353 × VREF2+1079 × VREF1) /2356
4.157
0.015
51
VOPL × 63/31− (1378 × VREF2+1054 × VREF1) /2356
4.141
0.015
52
·
··
5D
VOPL × 63/31− (1403 × VREF2+1029 × VREF1) /2356
4.125
0.015
VOPL × 63/31− (1678 × VREF2+754 × VREF1) /2356
3.953
0.015
5E
VOPL × 63/31− (1703 × VREF2+729 × VREF1) /2356
3.938
0.015
5F
VOPL × 63/31− (1728 × VREF2+704 × VREF1) /2356
3.922
0.013
60
VOPL × 63/31− (1750 × VREF2+682 × VREF1) /2356
3.908
0.013
61
VOPL × 63/31− (1772 × VREF2+660 × VREF1) /2356
3.894
0.013
62
·
··
6D
VOPL × 63/31− (1794 × VREF2+638 × VREF1) /2356
3.881
0.013
VOPL × 63/31− (2036 × VREF2+396 × VREF1) /2356
3.729
0.013
6E
VOPL × 63/31− (2058 × VREF2+374 × VREF1) /2356
3.716
0.013
6F
VOPL × 63/31− (2080 × VREF2+352 × VREF1) /2356
3.702
0.013
70
VOPL × 63/31− (2102 × VREF2+330 × VREF1) /2356
3.688
0.013
71
VOPL × 63/31− (2124 × VREF2+308 × VREF1) /2356
3.674
0.013
72
·
··
7D
VOPL × 63/31− (2146 × VREF2+286 × VREF1) /2356
3.660
0.013
VOPL × 63/31− (2388 × VREF2+44 × VREF1) /2356
3.509
0.013
7E
VOPL × 63/31− (2410 × VREF2+22 × VREF1) /2356
3.495
0.013
7F
VOPL × 63/31− (2432 × VREF2+0 × VREF1) /2356
3.482
0.013
Color TFT LCD Driver
MN838850
■ Functional Description (continued)
• Table 2 (continued) Relationship between VREF Voltages and Analog Output Voltages (Low-level side) (Values are examples)
VREF0 = 1.760, VREF1 = 2.536, VREF2 = 4.010, VREF3 = 5.755, VREF4 = 7.190, VOPL = 3.750
Display data
Logical expression
Voltage level
Voltage level difference
80
VOPL × 63/31− (11 × VREF3+1429 × VREF2) /1395
3.468
0.013
81
VOPL × 63/31− (22 × VREF3+1418 × VREF2) /1395
3.454
0.013
82
··
·
8D
VOPL × 63/31− (33 × VREF3+1407 × VREF2) /1395
3.440
0.013
VOPL × 63/31− (154 × VREF3+1286 × VREF2) /1395
3.289
0.013
8E
VOPL × 63/31− (165 × VREF3+1275 × VREF2) /1395
3.275
0.013
8F
VOPL × 63/31− (176 × VREF3+1264 × VREF2) /1395
3.261
0.013
90
VOPL × 63/31− (187 × VREF3+1253 × VREF2) /1395
3.248
0.013
91
VOPL × 63/31− (198 × VREF3+1242 × VREF2) /1395
3.234
0.013
92
·
··
9D
VOPL × 63/31− (209 × VREF3+1231 × VREF2) /1395
3.220
0.013
VOPL × 63/31− (330 × VREF3+1110 × VREF2) /1395
3.069
0.013
9E
VOPL × 63/31− (341 × VREF3+1099 × VREF2) /1395
3.055
0.013
9F
VOPL × 63/31− (352 × VREF3+1088 × VREF2) /1395
3.041
0.016
A0
VOPL × 63/31− (365 × VREF3+1075 × VREF2) /1395
3.025
0.016
A1
VOPL × 63/31− (378 × VREF3+1062 × VREF2) /1395
3.009
0.016
A2
·
··
AD
VOPL × 63/31− (391 × VREF3+1049 × VREF2) /1395
2.992
0.016
VOPL × 63/31− (534 × VREF3+906 × VREF2) /1395
2.813
0.016
AE
VOPL × 63/31− (547 × VREF3+893 × VREF2) /1395
2.797
0.016
AF
VOPL × 63/31− (560 × VREF3+880 × VREF2) /1395
2.781
0.016
B0
VOPL × 63/31− (573 × VREF3+867 × VREF2) /1395
2.765
0.016
B1
VOPL × 63/31− (586 × VREF3+854 × VREF2) /1395
2.748
0.016
B2
·
··
BD
VOPL × 63/31− (599 × VREF3+841 × VREF2) /1395
2.732
0.016
VOPL × 63/31− (742 × VREF3+698 × VREF2) /1395
2.553
0.016
BE
VOPL × 63/31− (755 × VREF3+685 × VREF2) /1395
2.537
0.016
BF
VOPL × 63/31− (768 × VREF3+672 × VREF2) /1395
2.521
0.022
C0
VOPL × 63/31− (786 × VREF3+654 × VREF2) /1395
2.498
0.022
C1
VOPL × 63/31− (804 × VREF3+636 × VREF2) /1395
2.476
0.022
C2
·
··
CD
VOPL × 63/31− (822 × VREF3+618 × VREF2) /1395
2.453
0.022
VOPL × 63/31− (1020 × VREF3+420 × VREF2) /1395
2.205
0.022
CE
VOPL × 63/31− (1038 × VREF3+402 × VREF2) /1395
2.183
0.022
CF
VOPL × 63/31− (1056 × VREF3+384 × VREF2) /1395
2.160
0.030
17
MN838850
Color TFT LCD Driver
■ Functional Description (continued)
• Table 2 (continued) Relationship between VREF Voltages and Analog Output Voltages (Low-level side) (Values are examples)
VREF0 = 1.760, VREF1 = 2.536, VREF2 = 4.010, VREF3 = 5.755, VREF4 = 7.190, VOPL = 3.750
Display data
18
Logical expression
Voltage level
Voltage level difference
D0
VOPL × 63/31− (1080 × VREF3+360 × VREF2) /1395
2.130
0.030
D1
VOPL × 63/31− (1104 × VREF3+336 × VREF2) /1395
2.100
0.030
D2
·
··
DD
VOPL × 63/31− (1128 × VREF3+312 × VREF2) /1395
2.070
0.030
VOPL × 63/31− (1392 × VREF3+48 × VREF2) /1395
1.740
0.030
DE
VOPL × 63/31− (1416 × VREF3+24 × VREF2) /1395
1.710
0.030
DF
VOPL × 63/31− (1440 × VREF3+0 × VREF2) /1395
1.680
0.041
E0
VOPL × 63/31− (66 × VREF4+2302 × VREF3) /2294
1.639
0.041
E1
VOPL × 63/31− (132 × VREF4+2236 × VREF3) /2294
1.597
0.041
E2
··
·
ED
VOPL × 63/31− (198 × VREF4+2170 × VREF3) /2294
1.556
0.041
VOPL × 63/31− (924 × VREF4+1444 × VREF3) /2294
1.102
0.041
EE
VOPL × 63/31− (990 × VREF4+1378 × VREF3) /2294
1.061
0.041
EF
VOPL × 63/31− (1056 × VREF4+1312 × VREF3) /2294
1.019
0.051
F0
VOPL × 63/31− (1138 × VREF4+1230 × VREF3) /2294
0.968
0.051
F1
VOPL × 63/31− (1220 × VREF4+1148 × VREF3) /2294
0.917
0.051
F2
·
··
FD
VOPL × 63/31− (1302 × VREF4+1066 × VREF3) /2294
0.865
0.051
VOPL × 63/31− (2204 × VREF4+164 × VREF3) /2294
0.301
0.051
FE
VOPL × 63/31− (2286 × VREF4+82 × VREF3) /2294
0.250
0.051
FF
VOPL × 63/31− (2368 × VREF4+0 × VREF3) /2294
0.199
Color TFT LCD Driver
MN838850
■ Functional Description (continued)
• Relationship between the A signal, the image input timing, and the start pulse
The figure below shows the relationship between the A signal, the image data input timing, and the start pulse.
The last data of the image should be input within one clock cycle of the fall of the A signal. Data input two or more clock
cycles later will not be transmitted to the analog outputs and the IC will not be able to output the correct analog voltage.
And also hold the levels of the data bus fixed from 1 µs before the rise of the A signal until 4 clock cycles after the rise
of the A signal. The output analog voltages may be displaced or shifted if the data bus levels are changed with that
timing.
FY
A signal
Start pulse
PLSR(RL = "H")
PRSL(RL = "L")
Data
1 clock cycle (max.)
4 clock cycle (min.)
N-2 N-1 N
Last data value
1
1 µs(min.)
2
3
First data value
Period during which the data must be held fixed
19
MN838850
Color TFT LCD Driver
■ Functional Description (continued)
• Data inversion control function
All the bits in the input image data can be inverted at the same time, thus creating new data values to be used by controlling
the INV1 and INV2 pins.
INV1 inverts the D0(7:0), D1(7:0), and D2(7:0) data and INV2 inverts the D3(7:0), D4(7:0), and D5(7:0) data.
The figure below shows the inversion control provided by INV1 and INV2 for the input image data.
The input image data and the INV1 and INV2 states are acquired on the same clock cycle, and the data is controlled by
the INV1 and INV2 logic states at that time.
FY
D07 to 00
00
00
00
0F
FF
FF
FF
00
00
05
08
D17 to 10
00
00
05
0F
FF
FE
FF
00
00
05
08
D27 to 20
00
00
08
0F
FF
FD
FF
00
00
05
08
INV1
Internal data
ID07 to 00
FF
00
FF
0F
FF
00
FF
00
00
05
08
ID17 to 10
FF
00
FA
0F
FF
01
FF
00
00
05
08
ID27 to 20
FF
00
F7
0F
FF
02
FF
00
00
05
08
Since INV1 is high, All the bits in the
data D0x, D1x, and D2x are inverted.
FY
D37 to 30
00
00
0A
0F
FF
F7
FF
00
00
05
08
D47 to 40
00
00
0C
0F
FF
F4
FF
00
00
05
08
D57 to 50
00
00
0F
0F
FF
F1
FF
00
00
05
08
INV2
Internal data
ID37 to 30
FF
00
F5
0F
FF
08
FF
00
00
05
08
ID47 to 40
FF
00
F3
0F
FF
0B
FF
00
00
05
08
ID57 to 50
FF
00
F0
0F
FF
0E
FF
00
00
05
08
Since INV1 is high, All the bits in the
data D0x, D1x, and D2x are inverted.
20
Color TFT LCD Driver
MN838850
■ Functional Description (continued)
• Possible periods of the clock stop
The possible periods of the clock stop in which clock has been stopped are shown below.
The clock signal must be provided during the period starting one clock cycle before the start pulse input and ending 5
clock cycles after the rise of the A signal.
However, if it is not the case that the first data is input with the next clock timing (T) after the input of the start pulse,
the clock may be stopped during the period between the start pulse input and the start of data input. The clock signal
may be stopped at either the high or low level.
T
FY
Start pulse
PLSR(RL = "H")
PRSL(RL = "L")
First data
DXX
1
3
··· N
Last data
1
2
3
4
5
A signal
Period during which clock input is required
Period during
which clock input
may be stopped
■ Electrical Characteristics
1. Absolute Maximum Ratings at AVSS = 0 V, DVSS = 0 V
Parameter
Symbol
Rating
Unit
Digital system supply voltage
DVDD
− 0.3 to +7.0
V
Analog system supply voltage
AVDD
− 0.3 to +17
V
Digital input voltage
VI1
− 0.3 to DVDD+0.3
V
Analog input voltage
VI2
− 0.3 to AVDD+0.3
V
Digital output voltage
VO1
− 0.3 to DVDD+0.3
V
Analog output voltage
VO2
− 0.3 to AVDD+0.3
V
Operating temperature
Topr
−20 to +75
°C
Storage temperature
Tstg
−40 to +110
°C
Note) The absolute maximum ratings are limiting values under which the device will not be destroyed. Operation is not
guaranteed within these ranges.
21
MN838850
Color TFT LCD Driver
■ Electrical Characteristics (continued)
2. Operating Conditions at AVSS = DVSS = 0 V, Ta = −20 °C to +75 °C
Parameter
Symbol
Conditions
Min
Typ
Max
Unit
Operating digital system supply voltage
DVDD
fFY max = 50 MHz
3.1

3.6
V
fFY max = 40 MHz
2.7

3.6
14.5

15.5
V
0.2

AVDD/2
V
AVDD/2

AVDD− 0.2
DVDD = 3.1 V to 3.6 V


50
DVDD = 2.7 V to 3.6 V


40
CIN
At 1 MHz

5

pF
CVREF
At 1 MHz

500

pF
VOPL input voltage range
AVDD/4
− 0.2

AVDD/4
+ 0.2
V
VOPU input voltage range
AVDD ×
3/4− 0.2

AVDD ×
3/4+ 0.2
V

14

kΩ
Operating analog system supply voltage
AVDD
γ correction voltage input voltage range VREF 0 to 4
VREF 5 to 9
Operating frequency
Digital signal input capacitance
γ correction voltage input capacitance
VREF resistance
VREF9 to 5, VREF4 to 0
RVREF
MHz
Note) 1. All the AVDD power supply pins must be connected to each other directly.
2. All the AVSS and DVSS power supply pins must be connected to each other directly.
3. When first applying power, first apply the DVDD voltage, then apply the logic input pin signal levels, and then apply
the A VDD voltage. After that apply the VOP and VREF reference voltages. When cutting the power, remove these
voltages in the reverse order.
3. DC Characteristics at DVDD = 2.7 V to 3.6 V, AVDD = 14.5 V to 15.5 V, AVSS = DVSS = 0 V, Ta = −20 °C to +75 °C
Parameter
Symbol
Operating analog supply current 1 *1,3
ISS1
Operating analog supply current 2
ISS2
Operating digital supply current *1,2
ISS3
Digital quiescent supply current
ISS4
Conditions
AVDD = 15 V
*1, 3 With no load
In the clock stopped state
Min
Typ
Max
Unit

39
45
mA

11

mA

2
8
mA


100
µA
1) Input pins RL, A, D00 to D07, D10 to D17, D20 to D27, D30 to D37, D40 to D47, D50 to D57, FY, POL, INV1, INV2
High-level input voltage
VIH1
0.7 × DVDD

DVDD
V
Low-level input voltage
VIL1
0

0.3× DVDD
V
Input leakage current
ILI1
−10

10
µA
High-level input voltage
VIH2
0.7 × DVDD

DVDD
V
Low-level input voltage
VIL2
0

0.3× DVDD
V
High-level output voltage
VOH
DVDD = 3.3 V, IO = −5 mA
0.7 × DVDD


V
Low-level output voltage
VOL
DVDD = 3.3 V, IO = 2 mA


0.3× DVDD
V
Input leakage current
ILI2
−10

10
µA
2) I/O pins PRSL, PLSR
22
Color TFT LCD Driver
MN838850
■ Electrical Characteristics (continued)
3. DC Characteristics at DVDD = 2.7 V to 3.6 V, AVDD = 14.5 V to 15.5 V, AVSS = DVSS = 0 V, Ta = −20 °C to +75 °C (continued)
Parameter
Symbol
Conditions
Min
Typ
Max
Unit
3) Pull-down resistor pin TEST
High-level input voltage
VIH3
0.7 × DVDD

DVDD
V
Low-level input voltage
VIL3
0

0.3× DVDD
V
Input leakage current
ILI3
−10

10
µA
Pull-down resistance
RPD
40
100
350
kΩ
−100

100
µA
mA
4) Reference voltage input pins VOPU, VOPL
Input current
IVOP
5) Analog output pins Y1 to Y384
Output current *4
Output voltage difference *5
IVOH
VX = 15 V, VOUT = 14 V,
AVDD = 15 V, DVDD = 3.3 V

− 0.5
− 0.2
IVOL
VX = 0.0 V, VOUT = 1.0 V,
AVDD = 15 V, DVDD = 3.3 V
0.2
0.5

∆VO
AVDD = 15 V, DVDD = 3.3 V

±4
±20
mV
AVSS+0.2

AVDD− 0.2
V
6) Analog output pin (Y1 to Y384) output voltage range
Operating voltage range *6
VO
Note) 1. *1: The standard conditions are as follows. A clock frequency of 50 MHz, a raster period of 15 µs, the data pattern
fixed at FF, the POL level switched between high and low at each raster period, INV1 and INV2 held fixed at the
low level, and each of VREF0 to VREF9 held fixed at its respective levels.
*2: The maximum conditions are as follows. A clock frequency of 50 MHz, a raster period of 15 µs, the data pattern
switches between FF and 00 on each clock cycle, the POL level switched between high and low at each raster
period, INV1 and INV2 held fixed at the low level, and each of VREF0 to VREF9 held fixed at its respective levels.
*3: The loads on the analog output pins (Y1 to Y384) are shown below. The values of the components in the load
circuit are subject to change.
AVDD
DVDD
ISS3
ISS4
ISS2
ISS1
DUT
A
A
5 kΩ
AVDD
Y1
DVDD
Y2
··
··
··
·
Y384
AVSS
75 pF
AVSS
AVSS
DVSS
75 pF
0V
DUT : Device Under Test
*4: The VX are the output voltages from the analog output pins Y1 to Y384.
The VOUT are the voltages applied to the analog output pins Y1 to Y384.
*5: The standard conditions apply when the output voltages are at the same voltage as VOPL and VOPU.
*6: Set up VREF0 to VREF9, VOPU, and VOPL so that the output voltages never exceed the output voltage range
listed above.
2. The following formula expresses the power dissipation when the loads described in *3 above are attached.
ISS1 × AVDD + ISS3 × DVDD
Replace ISS1 in the above formula with the value of ISS2 to calculate the power dissipation when there is no load.
3. The supply current in the no load state is provided for reference purposes and is not guaranteed.
23
MN838850
Color TFT LCD Driver
■ Electrical Characteristics (continued)
4. AC Characteristics at DVDD = 2.7 V to 3.6 V, AVDD = 14.5 V to 15.5 V, AVSS = DVSS = 0 V, Ta = −20 °C to +75 °C (continued)
Parameter
Symbol
FY period
tp
Conditions
Min
Typ
Max
Unit
DVDD = 3.1 V to 3.6 V
20


ns
DVDD = 2.7 V to 3.6 V
25


Clock high-level period
twcH
4


ns
Clock low-level period
twcL
4


ns
Data and INV setup time
tst1
0


ns
Data and INV hold time
thd1
4


ns
Start pulse setup time
tst2
0


ns
Start pulse hold time
thd2
4


ns
Start pulse low-level period
twsL
2


Clock
cycles
Start pulse high-level period
twsH
1


Clock
cycles
Carry signal delay time
td1
CL = 15 pF, DVDD = 3.1 V to 3.6 V


13
ns
CL = 15 pF, DVDD = 2.7 V to 3.6 V


17
Carry signal rise time
A signal low-level period
A signal start pulse setup time
64
tc
*1
Clock
cycles
twA
2


µs
tst3
4


Clock
cycles
Data input invalid time *1
tng1
Last data timing *1
tng2
LCD drive signal delay time *2,3
td2
1
AVDD = 15 V
Clock
cycles


1
Clock
cycles


11
µs
Note) *1: The starting point is at the rise of the first clock cycle after the rise of the PRSL (PLSR) signal.
*2: Stipulated as the value until the drive output voltage reaches the target output voltage ±20 mV (not including the
deviation).
*3: See note 1. *3 in section 3. DC Characteristics for the analog output pin load.
24
Color TFT LCD Driver
MN838850
■ Electrical Characteristics (continued)
4. AC Characteristics (continued)
tp
twcH
twcL
VIH
FY
tst
VIL
thd1
Dxx
INV1
INV2
Input
PLSR(RL = "H")
PRSL(RL = "L")
twsL
tst2
thd2
twsH
tc
td1
Output
PRSL(RL = "H")
PLSR(RL = "L")
VOH
twA
tst3
A signal
td2
Hi-Z
Y1 to Y384
Target output voltage ±20 mV
(not including the deviation)
D/A converter setup period
Hi-Z
Target output voltage
The D/A converter setup period (when the outputs are high impedance) is synchronized
with the falling edge of the A signal.
Unless otherwise specified, the digital input and output levels are
VIH = VOH 0.7 × DVDD, VIL = VOL = 0.3 × DVDD.
25
MN838850
Color TFT LCD Driver
■ Electrical Characteristics (continued)
4. AC Characteristics (continued)
tng1
FY
tst2
thd2
Input
PLSR(RL = "H")
PRSL(RL = "L")
tst1
thd1
Dxx
INV1
INV2
FY
tng2
A singal
tst1
Dxx
INV1
INV2
26
Valid
Valid
Valid
thd1
Valid
Invalid
Invalid
Invalid