6 BIT 384 CHANNEL RSDS TFT–LCD SOURCE DRIVER KS0666 KS0666 6 BIT 384 CHANNEL RSDS TFT-LCD SOURCE DRIVER August. 1999. Ver. 0.0 Prepared by: Akira Kang [email protected] Contents in this document are subject to change without notice. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of LCD Driver IC Team. 1 KS0666 PREMILINARY VER 1.0 6 BIT 384 CHANNEL RSDS TFT–LCD SOURCE DRIVER KS0666 Specification Revision History Version 0.0 2 Content Original Date Aug.1999 6 BIT 384 CHANNEL RSDS TFT–LCD SOURCE DRIVER KS0666 CONTENTS INTRODUCTION .................................................................................................... 4 FEATURES ............................................................................................................ 4 BLOCK DIAGRAM................................................................................................. 5 PIN ASSIGNMENTS .............................................................................................. 6 PIN DESCRIPTIONS.............................................................................................. 7 OPERATION DESCRIPTION ................................................................................ 8 RSDS RECEIVER AND DEMUX ............................................................................................ 8 RSDS DATA BUS INTERFACE CONTROL ........................................................................... 8 DISPLAY DATA TRANSFER .................................................................................................. 8 EXTENSION OF OUTPUT ..................................................................................................... 8 RELATIONSHIP BETWEEN INPUT DATA VALUE AND OUTPUT VOLTAGE ...................... 8 ABSOLUTE MAXIMUM RATINGS...................................................................... 15 RECOMMENDED OPERATION CONDITIONS .................................................. 15 DC CHARACTERISTICS..................................................................................... 16 RSDS CHARACTERISTICS ................................................................................ 17 AC CHARACTERISTICS..................................................................................... 18 WAVEFORMS...................................................................................................... 19 RSDS DATA TIMING DIAGRAM ........................................................................ 20 3 KS0666 6 BIT 384 CHANNEL RSDS TFT–LCD SOURCE DRIVER INTRODUCTION The KS0666 is a Source Driver suitable for Reduced Swing Differential Signaling (RSDS) digital interface. It converts 18-bit digital data into the analog voltage for 384 channels, charging each sub-pixel to the correct gray level corresponding to the digital value. The RSDS path to the panel timing controller contributes toward lowering radiated EMI, reducing system power consumption and eliminates one of the two pixel busses used in typical XGA, SXGA TFT LCD panels. This single 9-bit differential bus conveys the 18-bit color data for XGA, SXGA panels. FEATURES • TFT active matrix LCD source driver LSI • 64 G/S is possible through 10 (5 by 2) external power supply and D/A converter • Both dot inversion display and N-line inversion display are possible • Compatible with gamma-correction • Logic supply voltage: 2.7 to 3.6 V • LCD driver supply voltage: 7.0 to 10.5 V • Output dynamic range: 6.8 to 9.8 Vp-p • Maximum operating frequency: fmax = 65 MHz (internal data transmission rate at 2.7 V operation) • Output: 384 outputs • Reduced Swing Differential Signaling (RSDS) digital interface for low power consumption and low EMI. • Minimum RSDS input swing level (CLKN, CLKP, DATAN, DATAP): 200mV • Data bus interface control pin (DATPOL) • TCP and COF supported 4 6 BIT 384 CHANNEL RSDS TFT–LCD SOURCE DRIVER KS0666 POL Y384 Y383 Y382 Y3 Y2 Y1 BLOCK DIAGRAM Output Buffer R-DAC VGMA1 to VGMA10 6 6 6 6 CLK1 D22P D22N 6 6 Data Register D01N 6 RSDS Receiver D01P 6 Data Latches D00P D00N 6 6 6 6 128 bit Shift Register DATPOL CLKP DIO1 SHL DIO2 CLKN RPI1 RPO1 Line Repair AMP RPI2 RPO2 Figure 1. KS0666 Block Diagram 5 KS0666 6 BIT 384 CHANNEL RSDS TFT–LCD SOURCE DRIVER PIN ASSIGNMENTS Y372 Y373 Y374 Y375 Y376 Y377 Y378 Y379 Y380 Y381 Y382 Y383 Y384 RPI1 RPO1 DIO1 D00N D00P D01N D01P D02N D02P DATPOL POL CLK1 CLKN CLKP VSS1 VGMA1 VGMA2 VGMA3 VGMA4 VGMA5 VSS2 VDD2 VGMA6 VGMA7 VGMA8 VGMA9 VGMA10 SHL VDD1 D10N D10P D11N D11P D12N D12P D20N D20P D21N D21P D22N D22P DIO2 RPO2 RPI2 Output 384 Input 44 KS0666 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Figure 2. KS0666 Pin Assignments 6 6 BIT 384 CHANNEL RSDS TFT–LCD SOURCE DRIVER KS0666 PIN DESCRIPTIONS Symbol Pin Name Description VDD1 Logic power supply 2.7 to 3.6 V VDD2 Driver power supply 7.0 to 10.5 V VSS1 Logic ground Ground (0 V) VSS2 Driver ground Ground (0 V) Y1 to Y384 Driver outputs The D/A converted 64 gray-scale analog voltage is output. D0P<0:2> D0N<0:2> D1P<0:2> D1N<0:2> D2P<0:2> D2N<0:2> RSDS data input SHL Shift direction control input DIO1 Start pulse input / output SHL = H: Used as the start pulse input pin. SHL = L: Used as the start pulse output pin. DIO2 Start pulse input / output SHL = H: Used as the start pulse output pin. SHL = L: Used as the start pulse input pin. DATPOL Data inversion input DATPOL = L: No inversion DATPOL = H: Data polarity inversion (H↔L) Total data lines consist of 18 data bus. (6-bit digital, 3 colors (R, G, B) and 2 differential input pairs) The 3 - bit differential input pairs generate the internal 6 - bit data through the comparison between DxxP and DxxN. This pin controls the direction of shift register in cascade connection. When SHL = H: DIO1 input, Y1 → Y384, DIO2 output When SHL = L: DIO2 input, Y384 → Y1, DIO1 output POL = H: The reference voltage for odd number outputs are VGMA1 to VGMA5 and those for even number outputs are VGMA6 to VGMA10. POL = L: The reference voltage for odd number outputs are VGMA6 to VGMA10 and those for even number outputs are VGMA1 to VGMA5. POL Polarity input CLKP CLKN RSDS shift clock input CLK1 Latch input VGMA1 to VGMA10 Gamma corrected power supplies Input the gamma corrected power supplies from external source. VDD2 > VGMA1 > VGMA2 > …… > VGMA9 > VGMA10 > VSS2 Keep power supplies unchanged during the gray-scale voltage output. RPI1, RPO1 RPI2, RPO2 Line-repair AMP input / output The Structure of the line-repair amp is the same as that of the analog output. RPI1 (RPI2) → impedance changed → RPO1 (RPO2) TEST Test input The RSDS clock input pairs generate the internal shift clock, CLK2, through the comparison between CLKP and CLKN. KS0666 clears 128 shift registers at the rising edge of CLK1 and outputs the analog data to the each channel at the falling edge. TEST = L: Normal operation mode TEST = H: Test mode (OP AMP CUT-OFF, Rpd = 15 kΩ) 7 KS0666 6 BIT 384 CHANNEL RSDS TFT–LCD SOURCE DRIVER OPERATION DESCRIPTION RSDS RECEIVER AND DEMUX The KS0666 adapts the RSDS interface for EMI solution. The internal RSDS receiver block operates the comparison between the transmitted differential input pair data. The input data lines from the timing controller to the RSDS receiver consist of 6-bit digital, 3 colors, 1 port, 2 differential pairs (DxxP / DxxN). The input common mode voltage range at the RSDS receiver is 1.2 V. The differential data and clock signals from the panel timing controller arrive at the KS0666 as multiplexed, even and odd data fields. (i.e., the data is 2:1 multiplexed). The nominal peak to peak swing of this data is 200 mV across a termination resistor. RSDS DATA BUS INTERFACE CONTROL DATPOL controls the internal data inversion. When DATPOL = ” H” , the internal data is inverted. The inverted data is the same that the RSDS receiver operates the comparison between the cross-transmitted differential input pair data. Using the data inversion input pin, DATPOL, the RSDS data bus interface can be changed. DISPLAY DATA TRANSFER When DIO1 (or DIO2) pulse is loaded into the internal latch on the falling edge of CLKP, DIO1 (or DIO2) pulse enables the operation of data transfer, so display data is valid on the 2nd falling edge of CLKP. Once all the data of 384 channels is loaded into internal latch, it goes into stand-by state automatically, and any new data is not accepted even though CLKP is provided until next DIO1 (or DIO2) input. When next DIO1 (or DIO2) is provided, new display data is valid on the 2nd falling edge of CLKP after the rising edge of DIO1 (or DIO2). EXTENSION OF OUTPUT Output pin can be adjusted to an extended screen by cascade connection. When SHL = "L", Connect DIO1 pin of the previous stage to the DIO2 pin of the next stage and all the input pins except DIO1 and DIO2 are connected together in each device. When SHL = "H", Connect DIO2 pin of the previous stage to the DIO1 pin of the next stage and all the input pins except DIO2 and DIO1 are connected together in each device. RELATIONSHIP BETWEEN INPUT DATA VALUE AND OUTPUT VOLTAGE The LCD drive output voltages are determined by the input data and 10 (5 by 2) gamma corrected power supplies (VGMA1 to VGMA10). Besides, to be able to deal with dot line inversion when mounted on a singleside, gradation voltages with different polarity can be output to the odd number output pins and the even number output pins. Among 5 by 2 gamma corrected voltages, input gray scale voltages of the same polarity with respect to the common voltage, for the respective 5 gamma corrected voltages of VGMA1 to VGMA5 and VGMA6 to VGMA10. 8 6 BIT 384 CHANNEL RSDS TFT–LCD SOURCE DRIVER KS0666 VDD2 VGMA1 VGMA2 VGMA3 VGMA4 VGMA5 VCOM VGMA6 VGMA7 VGMA8 VGMA9 VGMA10 VSS2 00H 08H 10H 18H 20H 28H 30H 38H 3FH Input data Figure 3. Gamma Correction Curve 9 KS0666 6 BIT 384 CHANNEL RSDS TFT–LCD SOURCE DRIVER Table 1. Resistor Strings (R0 to R62, unit: Ω) 10 Name Value Name Value Name Value Name Value R0 500 R16 330 R32 175 R48 210 R1 500 R17 330 R33 175 R49 220 R2 500 R18 330 R34 170 R50 230 R3 500 R19 320 R35 170 R51 240 R4 500 R20 300 R36 165 R52 250 R5 500 R21 280 R37 165 R53 260 R6 500 R22 270 R38 165 R54 270 R7 500 R23 260 R39 165 R55 290 R8 500 R24 250 R40 170 R56 300 R9 500 R25 240 R41 170 R57 310 R10 500 R26 230 R42 170 R58 320 R11 500 R27 220 R43 175 R59 340 R12 450 R28 210 R44 175 R60 340 R13 450 R29 200 R45 175 R61 340 R14 400 R30 190 R46 180 R62 340 R15 370 R31 180 R47 200 6 BIT 384 CHANNEL RSDS TFT–LCD SOURCE DRIVER KS0666 Table 2. Relationship between Input Data and Output Voltage Value Input Data 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH DX5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DX4 DX3 DX2 DX1 DX0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 G/S Output Voltage VH0 VH1 VH2 VH3 VH4 VH5 VH6 VH7 VGMA1 VGMA1+(VGMA2-VGMA1) × 500/7670 VGMA1+(VGMA2-VGMA1) × 1000/7670 VGMA1+(VGMA2-VGMA1) × 1500/7670 VGMA1+(VGMA2-VGMA1) × 2000/7670 VGMA1+(VGMA2-VGMA1) × 2500/7670 VGMA1+(VGMA2-VGMA1) × 3000/7670 VGMA1+(VGMA2-VGMA1) × 3500/7670 VH8 VH9 VH10 VH11 VH12 VH13 VH14 VH15 VGMA1+(VGMA2-VGMA1) × 4000/7670 VGMA1+(VGMA2-VGMA1) × 4500/7670 VGMA1+(VGMA2-VGMA1) × 5000/7670 VGMA1+(VGMA2-VGMA1) × 5500/7670 VGMA1+(VGMA2-VGMA1) × 6000/7670 VGMA1+(VGMA2-VGMA1) × 6450/7670 VGMA1+(VGMA2-VGMA1) × 6900/7670 VGMA1+(VGMA2-VGMA1) × 7300/7670 VH16 VH17 VH18 VH19 VH20 VH21 VH22 VH23 VGMA2 VGMA2+(VGMA3-VGMA2) × 330/4140 VGMA2+(VGMA3-VGMA2) × 660/4140 VGMA2+(VGMA3-VGMA2) × 990/4140 VGMA2+(VGMA3-VGMA2) × 1310/4140 VGMA2+(VGMA3-VGMA2) × 1610/4140 VGMA2+(VGMA3-VGMA2) × 1890/4140 VGMA2+(VGMA3-VGMA2) × 2160/4140 VH24 VH25 VH26 VH27 VH28 VH29 VH30 VH31 VGMA2+(VGMA3-VGMA2) × 2420/4140 VGMA2+(VGMA3-VGMA2) × 2670/4140 VGMA2+(VGMA3-VGMA2) × 2910/4140 VGMA2+(VGMA3-VGMA2) × 3140/4140 VGMA2+(VGMA3-VGMA2) × 3360/4140 VGMA2+(VGMA3-VGMA2) × 3570/4140 VGMA2+(VGMA3-VGMA2) × 3770/4140 VGMA2+(VGMA3-VGMA2) × 3960/4140 NOTE: VDD2 > VGMA1 > VGMA2 > VGMA3 > VGMA4 > VGMA5 11 KS0666 6 BIT 384 CHANNEL RSDS TFT–LCD SOURCE DRIVER Table 2. Relationship between Input Data and Output Voltage Value (Continued) Input Data 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH 12 DX5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DX4 DX3 DX2 DX1 DX0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 G/S Output Voltage VH32 VH33 VH34 VH35 VH36 VH37 VH38 VH39 VGMA3 VGMA3+(VGMA4-VGMA3) × 175/2765 VGMA3+(VGMA4-VGMA3) × 350/2765 VGMA3+(VGMA4-VGMA3) × 520/2765 VGMA3+(VGMA4-VGMA3) × 690/2765 VGMA3+(VGMA4-VGMA3) × 855/2765 VGMA3+(VGMA4-VGMA3) × 1020/2765 VGMA3+(VGMA4-VGMA3) × 1185/2765 VH40 VH41 VH42 VH43 VH44 VH45 VH46 VH47 VGMA3+(VGMA4-VGMA3) × 1350/2765 VGMA3+(VGMA4-VGMA3) × 1520/2765 VGMA3+(VGMA4-VGMA3) × 1690/2765 VGMA3+(VGMA4-VGMA3) × 1860/2765 VGMA3+(VGMA4-VGMA3) × 2035/2765 VGMA3+(VGMA4-VGMA3) × 2210/2765 VGMA3+(VGMA4-VGMA3) × 2385/2765 VGMA3+(VGMA4-VGMA3) × 2565/2765 VH48 VH49 VH50 VH51 VH52 VH53 VH54 VH55 VGMA4 VGMA4+(VGMA5-VGMA4) × 210/4260 VGMA4+(VGMA5-VGMA4) × 430/4260 VGMA4+(VGMA5-VGMA4) × 660/4260 VGMA4+(VGMA5-VGMA4) × 900/4260 VGMA4+(VGMA5-VGMA4) × 1150/4260 VGMA4+(VGMA5-VGMA4) × 1410/4260 VGMA4+(VGMA5-VGMA4) × 1680/4260 VH56 VH57 VH58 VH59 VH60 VH61 VH62 VH63 VGMA4+(VGMA5-VGMA4) × 1970/4260 VGMA4+(VGMA5-VGMA4) × 2270/4260 VGMA4+(VGMA5-VGMA4) × 2580/4260 VGMA4+(VGMA5-VGMA4) × 2900/4260 VGMA4+(VGMA5-VGMA4) × 3240/4260 VGMA4+(VGMA5-VGMA4) × 3580/4260 VGMA4+(VGMA5-VGMA4) × 3920/4260 VGMA5 6 BIT 384 CHANNEL RSDS TFT–LCD SOURCE DRIVER KS0666 Table 2. Relationship between Input Data and Output Voltage Value (Continued) Input Data 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH DX5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DX4 DX3 DX2 DX1 DX0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 G/S Output Voltage VL0 VL1 VL2 VL3 VL4 VL5 VL6 VL7 VGMA10 VGMA10+(VGMA9-VGMA10) × 500/7670 VGMA10+(VGMA9-VGMA10) × 1000/7670 VGMA10+(VGMA9-VGMA10) × 1500/7670 VGMA10+(VGMA9-VGMA10) × 2000/7670 VGMA10+(VGMA9-VGMA10) × 2500/7670 VGMA10+(VGMA9-VGMA10) × 3000/7670 VGMA10+(VGMA9-VGMA10) × 3500/7670 VL8 VL9 VL10 VL11 VL12 VL13 VL14 VL15 VGMA10+(VGMA9-VGMA10) × 4000/7670 VGMA10+(VGMA9-VGMA10) × 4500/7670 VGMA10+(VGMA9-VGMA10) × 5000/7670 VGMA10+(VGMA9-VGMA10) × 5500/7670 VGMA10+(VGMA9-VGMA10) × 6000/7670 VGMA10+(VGMA9-VGMA10) × 6450/7670 VGMA10+(VGMA9-VGMA10) × 6900/7670 VGMA10+(VGMA9-VGMA10) × 7300/7670 VL16 VL17 VL18 VL19 VL20 VL21 VL22 VL23 VGMA9 VGMA9+(VGMA8-VGMA9) × 330/4140 VGMA9+(VGMA8-VGMA9) × 660/4140 VGMA9+(VGMA8-VGMA9) × 990/4140 VGMA9+(VGMA8-VGMA9) × 1310/4140 VGMA9+(VGMA8-VGMA9) × 1610/4140 VGMA9+(VGMA8-VGMA9) × 1890/4140 VGMA9+(VGMA8-VGMA9) × 2160/4140 VL24 VL25 VL26 VL27 VL28 VL29 VL30 VL31 VGMA9+(VGMA8-VGMA9) × 2420/4140 VGMA9+(VGMA8-VGMA9) × 2670/4140 VGMA9+(VGMA8-VGMA9) × 2910/4140 VGMA9+(VGMA8-VGMA9) × 3140/4140 VGMA9+(VGMA8-VGMA9) × 3360/4140 VGMA9+(VGMA8-VGMA9) × 3570/4140 VGMA9+(VGMA8-VGMA9) × 3770/4140 VGMA9+(VGMA8-VGMA9) × 3960/4140 NOTE: VGMA6 > VGMA7 > VGMA8 > VGMA9 > VGMA10 > VSS2 13 KS0666 6 BIT 384 CHANNEL RSDS TFT–LCD SOURCE DRIVER Table 2. Relationship between Input Data and Output Voltage Value (Continued) Input Data 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH 14 DX5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DX4 DX3 DX2 DX1 DX0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 G/S Output Voltage VL32 VL33 VL34 VL35 VL36 VL37 VL38 VL39 VGMA8 VGMA8+(VGMA7-VGMA8) × 175/2765 VGMA8+(VGMA7-VGMA8) × 350/2765 VGMA8+(VGMA7-VGMA8) × 520/2765 VGMA8+(VGMA7-VGMA8) × 690/2765 VGMA8+(VGMA7-VGMA8) × 855/2765 VGMA8+(VGMA7-VGMA8) × 1020/2765 VGMA8+(VGMA7-VGMA8) × 1185/2765 VL40 VL41 VL42 VL43 VL44 VL45 VL46 VL47 VGMA8+(VGMA7-VGMA8) × 1350/2765 VGMA8+(VGMA7-VGMA8) × 1520/2765 VGMA8+(VGMA7-VGMA8) × 1690/2765 VGMA8+(VGMA7-VGMA8) × 1860/2765 VGMA8+(VGMA7-VGMA8) × 2035/2765 VGMA8+(VGMA7-VGMA8) × 2210/2765 VGMA8+(VGMA7-VGMA8) × 2385/2765 VGMA8+(VGMA7-VGMA8) × 2565/2765 VL48 VL49 VL50 VL51 VL52 VL53 VL54 VL55 VGMA7 VGMA7+(VGMA6-VGMA7) × 210/4260 VGMA7+(VGMA6-VGMA7) × 430/4260 VGMA7+(VGMA6-VGMA7) × 660/4260 VGMA7+(VGMA6-VGMA7) × 900/4260 VGMA7+(VGMA6-VGMA7) × 1150/4260 VGMA7+(VGMA6-VGMA7) × 1410/4260 VGMA7+(VGMA6-VGMA7) × 1680/4260 VL56 VL57 VL58 VL59 VL60 VL61 VL62 VL63 VGMA7+(VGMA6-VGMA7) × 1970/4260 VGMA7+(VGMA6-VGMA7) × 2270/4260 VGMA7+(VGMA6-VGMA7) × 2580/4260 VGMA7+(VGMA6-VGMA7) × 2900/4260 VGMA7+(VGMA6-VGMA7) × 3240/4260 VGMA7+(VGMA6-VGMA7) × 3580/4260 VGMA7+(VGMA6-VGMA7) × 3920/4260 VGMA6 6 BIT 384 CHANNEL RSDS TFT–LCD SOURCE DRIVER KS0666 ABSOLUTE MAXIMUM RATINGS Table 3. Absolute Maximum Ratings (VSS1 = VSS2 = 0 V) Parameter Symbol Ratings Unit Logic supply voltage VDD1 -0.3 to 5.0 V Driver supply voltage VDD2 -0.3 to 12.0 V VGMA1 to 10 -0.3 to VDD2 + 0.3 RPI1, RPI2 -0.3 to VDD2 + 0.3 Others -0.3 to VDD1 + 0.3 DIO1, DIO2 -0.3 to VDD1 + 0.3 Y1 to Y384 -0.3 to VDD2 + 0.3 RPO1, RPO2 -0.3 to VDD2 + 0.3 Operating power dissipation Pd 150 mW Operation temperature Top -20 to 75 °C Storage temperature Tstg -55 to 125 °C Input voltage Output voltage V V CAUTIONS: If LSIs are stressed beyond those listed above “absolute maximum ratings” , they may be permanently destroyed. These are stress ratings only, and functional operation of the device at these or any other condition beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Turn on power order: VDD1 → control signal input → VDD2 → VGMA1 to VGMA10 Turn off power order: VGMA1 to VGMA10 → VDD2 → control signal input → VDD1 RECOMMENDED OPERATION CONDITIONS Table 4. Recommended Operation Conditions (Ta = - 20 to 75 °C, VSS1 = VSS2 = 0 V) Parameter Symbol Min. Typ. Max. Unit Logic supply voltage VDD1 2.7 3.0 3.6 V Driver supply voltage VDD2 7.0 - 10.5 V VGMA1 to VGMA5 0.5VDD2 - VDD2 - 0.1 V VGMA6 to VGMA10 + 0.1 - 0.5VDD2 V Vyo + 0.1 - VDD2 - 0.1 V VDD1 = 2.7V - - 65 VDD1 = 3.0V - - 75 - - 150 Gamma corrected voltage Driver part output voltage Maximum clock frequency Output load capacitance fmax CL MHz pF / PIN 15 KS0666 6 BIT 384 CHANNEL RSDS TFT–LCD SOURCE DRIVER DC CHARACTERISTICS Table 5 . DC Characteristics (Ta = -20 to 75 °C, VDD1 = 2.7 to 3.6 V, VDD2 = 7.0 to 10.5 V, VSS1 = VSS2 = 0) Parameter Symbol High level input voltage VIH Condition SHL, CLK1, POL, DIO1 (DIO2) Min. Typ. Max. 0.7VDD1 - VDD1 0 - 0.3VDD1 -1 - 1 Low level input voltage VIL Input leakage current IL1 Repair input leak current IL2 RPI1(RPI2) -1 - 1 High level output voltage VOH DIO1(DIO2), IO = - 1.0 mA VDD1 - 0.5 - - Low level output voltage VOL DIO1(DIO2), IO = + 1.0 mA - - 0.5 Resistance between gamma voltage R0 to R62 Refer to Table 1. Resistor Strings Rn × 0.7 IVOH1 VDD2 = 8.0 V, Vx(1) = 4.0 V, Vyo(2) = 7.0 V - - 0.8 - 0.4 IVOL1 VDD2 = 8.0 V, Vx(1) = 4.0 V, Vyo(2) = 1.0 V 0.4 0.8 - IVOH2 VDD2 = 8.0 V, (1) Vx = 4.0 V, Vyo(2) = 7.0 V - -2.0 -1.0 IVOL2 VDD2 = 8.0 V, Vx(1) = 4.0 V, Vyo(2) = 1.0 V 1.0 2.0 - Output voltage deviation DVO Input data: 00H to 3FH - ± 10 ± 20 Output swing voltage difference deviation dVrms(3) Input data: 00H to 3FH - ±5 ± 15 Output voltage range VYO Input data: 00H to 3FH VSS2 + 0.1 - VDD2 - 0.1 Logic part dynamic current IDD1 VDD1 = 3.0 V (4) - 6.0 8.0 IDD2 VDD1 = 3.0 V, VDD2 = 9.0 V, VGMA1 = 8.5 V, VGMA5 = 5.0 V, VGMA6 = 4.0 V, VGMA10 = 0.5 V (4) (5) - 6.0 9.0 Driver output current Line-repair Driver output current Driver part dynamic current Rn × 1.3 V µA V Ω mA mV V mA NOTES: 1. Vx is the voltage applied to analog output pins Y1 to Y384. 2. Vyo is the output voltage of analog output pins Y1 to Y384. 3. dVrms = max. deviation of (VHx-VLx) VHx; the x gray level positive polarity driver output voltage VLx; the x gray level negative polarity driver output voltage 4. CLK1 period = 20 µs at fCLKP = 33 MHz, data pattern = 1010……, (checkerboard pattern), Ta = 25 °C 5. Yout load condition (refer to Figure 4. Yout Load Condition) applied. 16 Unit 6 BIT 384 CHANNEL RSDS TFT–LCD SOURCE DRIVER KS0666 RSDS CHARACTERISTICS Table 6 . RSDS Characteristics (Ta = - 20 to 75 °C, VDD1 = 2.7 to 3.6 V, VDD2 = 7.0 to 10.5 V, VSS1 = VSS2 = 0) Parameter Symbol Condition Min. Typ. RSDS high input voltage VIHRSDS VCMRSDS = + 1.2 V (1) 100 200 RSDS low input voltage VIHRSDS VCMRSDS = + 1.2 V (1) RSDS common mode input voltage range VCMRSDS VDIFFRSDS = + 200 mV (2) RSDS input leakage current IDL DxxP, DxxN, CLKP, CLKN Max. Unit mV - 200 - 100 VSS1 + 0.1 - VDD1 - 1.2 V - 10 - 10 µA NOTES: 1. VCMRSDS = (VCLKP + VCLKN) / 2 or VCMRSDS = (VDxxP + VDxxN) / 2 2. VDIFFRSDS = VCLKP - VCLKN or VDIFFRSDS = VDxxP - VDxxN 10kΩ 20kΩ 20kΩ YOUT 20pF 20pF 20pF VCOM=0.5VDD2 Figure 4. Yout Load Condition 17 KS0666 6 BIT 384 CHANNEL RSDS TFT–LCD SOURCE DRIVER AC CHARACTERISTICS Table 6. AC Characteristics (Ta = - 20 to 75 °C, VDD2 = 7.0 to 10.5 V, VSS1 = VSS2 = 0 V) Parameter Symbol Condition Min. Typ. Max. Clock pulse width PWCLK - 15 - - Clock pulse low period PWCLK(L) - 6 - - Clock pulse high period PWCLK(H) - 6 - - Data setup time tSETUP1 - 2 - - Data hold time tHOLD1 - 0 - - Start pulse setup time tSETUP2 - 4 - - Start pulse hold time tHOLD2 - 2 - - Start pulse delay time tPLH1 CL = 15pF - - 12 DIO signal pulse width PWDIO 1CLKP - 2CLKP CLK1 setup time tSETUP3 - 2CLKP - - CLK1 high pulse width PWCLK1 - 0.5 - 2 Driver output delay time1 tPHL1 (1) (3) - - 6 Driver output delay time2 tPHL2 (2) (3) - Repair output delay time1 tPHL3 CL = 150pF - Repair output delay time2 tPHL4 CL = 150pF - Last data timing tLDT - 1CLKP - - CLK1-CLK2 time tCLK1-CLK2 CLK1 ↑ → CLKP ↓ 4 - - POL-CLK1 time tPOL-CLK1 POL ↑ or ↓ → CLK1 ↑ 14 - - CLK1-POL time tCLK1-POL CLK1 ↓ → POL ↑ or ↓ 10 - - 10 - ns CLKP period µs 6 10 NOTES: 1. The value is specified when the drive voltage value reaches the target output voltage level of 90% 2. The value is specified when the drive voltage value reaches the target output voltage level of 6-bit accuracy. 3. Yout load condition (refer to Figure 4. Yout Load Condition) 18 Unit CLKP period ns DIO1; SHL=H DIO2; SHL=L Input CLKP-CLKN (RSDS) RPO1, RPO2 Y1 to Y384 POL CLK1 DIO1; SHL=H DIO2; SHL=L Output DxxP-DxxN (RSDS) DIO1; SHL=H DIO2; SHL=L Input CLKP-CLKN (RSDS) tSETUP2 PWDIO 90% Invalid 90% ODD PWCLK 1st Data EVEN tHOLD2 PWCLK(L) ODD VCM VCM VCM RSDS -100mV RSDS RSDS +100mV 2nd Data EVEN PWCLK(H) EVEN 90% ODD DxxP-DxxN (RSDS) CLKP-CLKN (RSDS) tPLH1 EVEN EVEN tSETUP1 tHOLD1 tPOL-CLK1 10% ODD tPHL1 tLDT 10% 90% VCM VCM VCM VCM VCM VCM tPHL4 RSDS -100mV RSDS RSDS +100mV RSDS -100mV RSDS RSDS +100mV 90% tCLK1-POL tHOLD1 tSETUP1 tPHL2 tPHL1 90% 10% 10% 90% tPHL3 tCLK1-CLK2 PWCLK1 90% 10% 90% ODD Invalid 6 BIT 384 CHANNEL RSDS TFT–LCD SOURCE DRIVER KS0666 WAVEFORMS Figure 5. Waveforms 19 KS0666 6 BIT 384 CHANNEL RSDS TFT–LCD SOURCE DRIVER RSDS DATA TIMING DIAGRAM tHOLD2 tSETUP2 tHOLD1 tSETUP1 tHOLD1 tSETUP1 CLKP Input DIO: SHL=H DOI: SHL=L D00P/N R[0] 1 R[1] 1 R[0] 2 R[1] 2 R[0] 3 R[1] 3 R[0] 4 R[1] 4 D01P/N R[2] 1 R[3] 1 R[2] 2 R[3] 2 R[2] 3 R[3] 3 R[2] 4 R[3] 4 D02P/N R[4] 1 R[5] 1 R[4] 2 R[5] 2 R[4] 3 R[5] 3 R[4] 4 R[5] 4 D10P/N G[0] 1 G[1] 1 G[0] 2 G[1] 2 G[0] 3 G[1] 3 G[0] 4 G[1] 4 D11P/N G[2] 1 G[3] 1 G[2] 2 G[3] 2 G[2] 3 G[3] 3 G[2] 4 G[3] 4 D12P/N G[4] 1 G[5] 1 G[4] 2 G[5] 2 G[4] 3 G[5] 3 G[4] 4 G[5] 4 D20P/N B[0] 1 B[1] 1 B[0] 2 B[1] 2 B[0] 3 B[1] 3 B[0] 4 B[1] 4 D21P/N B[2] 1 B[3] 1 B[2] 2 B[3] 2 B[2] 3 B[3] 3 B[2] 4 B[3] 4 D22P/N B[4] 1 B[5] 1 B[4] 2 B[5] 2 B[4] 3 B[5] 3 B[4] 4 B[5] 4 Figure 6. RSDS Data Timing Diagram 20 6 BIT 384 CHANNEL RSDS TFT–LCD SOURCE DRIVER KS0666 NOTES 21