Download the Si52131 data sheet

S i 5 2 1 3 1 - A 11 A
PCI-E X P R E S S G EN 1 , G E N 2, & G EN 3 TW O O U T P U T C LOCK G E N E R A T O R W I T H 25 MH Z R E F E RE NCE C LOCK & A C T I V E L OW OE P IN S
Features

22
21
20
19
1
18 OE_DIFF1
17 VDD_DIFF
REF
2
OE_REF1
3
VSS_REF
4
OE_DIFF01
5
VDD_DIFF
6
16 DIFF1
25
GND
15 DIFF1
14 DIFF0
13 DIFF0
7
8
Note
1. Internal 100 k-ohm pull-down resistor
9
10
11
12
VDD_DIFF
Si52131-A11A is a high-performance, PCIe clock generator that can
source two PCIe clocks and a buffered 25 MHz reference clock from a
25 MHz crystal or clock input. The PCIe clock outputs are compliant to
PCIe Gen 1, Gen 2, and Gen 3 specifications. The device has three
active low output enable pins for enabling and disabling each output. The
device features two input select pins for frequency selection and spread
control. The small footprint and low power consumption makes Si52131A11A the ideal clock solution for consumer and embedded applications.
23
1
1
Description
24
VDD_REF
SS0
Network Attached Storage
 Wireless Access Point
Multi-function Printer
 Routers
 Ideal for Thunderbolt applications

SCLK
Applications
VDD_CORE
Pin Assignments
SDATA

NC

Ordering Information:
See page 17
XOUT

NC

XIN/CLKIN

NC

I2C support with readback
capabilities
Triangular spread spectrum
profile for maximum
electromagnetic interference
(EMI) reduction
Extended Temperature
–40 to 85oC
3.3 V Power supply
24-pin QFN package
SS1

25 MHz Crystal Input or Clock
input
VSS_CORE

PCI-Express Gen1, Gen2 &

Gen3 Compliant
Supports Serial ATA (SATA) at 
100 MHz
Low power differential output

buffers
No termination resistors required
Dedicated active low output
enable pins for each output

Pin selectable spread control
Selectable frequencies: 100, 125, 
and 200 MHz

Up two PCI-Express clocks
25 MHz reference clock
1

Patents pending
Functional Block Diagram
25MHz
XIN/CLKIN
XOUT
DIFF0
PLL1
(SSC)
Divider
DIFF1
SCLK
SDATA
Control & Memory
OE#_REF
OE#_DIFF [1:0]
Control
RAM
SSC [1:0]
Rev 1.0 3/13
Copyright © 2013 by Silicon Laboratories
Si52131-A11A
Si52131-A11A
2
Rev 1.0
Si52131-A11A
TABLE O F C ONTENTS
Section
Page
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2.1. Crystal Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2.2. OE Pin Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.3. OE Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.4. OE Deassertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.5. SS[1:0] Pins Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
3. Test and Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
4. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
4.1. I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2. Data Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
5. Si52131-A11A Pin Descriptions 24-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Rev 1.0
3
Si52131-A11A
1. Electrical Specifications
Table 1. DC Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
3.3 V Operating Voltage
VDD core
3.3 ±5%
3.135
3.3
3.465
V
3.3 V Input High Voltage
VIH
SS1:0
2.0
—
VDD + 0.3
V
3.3 V Input Low Voltage
VIL
SS1:0
VSS – 0.3
—
0.8
V
Input High Voltage
VIHI2C
SDATA, SCLK
2.2
—
—
V
Input Low Voltage
VILI2C
SDATA, SCLK
—
—
1.0
V
Input High Leakage Current
IIH
Except internal pull-down
resistors, 0 < VIN < VDD
—
—
5
A
Input Low Leakage Current
IIL
Except internal pull-up resistors, 0 < VIN < VDD
–5
—
—
A
3.3 V Output High Voltage
(SE)
VOH
IOH = –1 mA
2.4
—
—
V
3.3 V Output Low Voltage
(SE)
VOL
IOL = 1 mA
—
—
0.4
V
High-impedance Output
Current
IOZ
–10
—
10
A
Input Pin Capacitance
CIN
1.5
—
5
pF
COUT
—
—
6
pF
LIN
—
—
7
nH
Power Down Current
IDD_PD
—
—
1
mA
Dynamic Supply Current
IDD_3.3V
—
—
45
mA
Output Pin Capacitance
Pin Inductance
4
All outputs enabled. Differential clocks with 5” traces
and 2 pF load. 25 MHz clock
with 5” traces and 4 pF load
Rev 1.0
Si52131-A11A
Table 2. AC Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
LACC
Measured at VDD/2 differential
—
—
250
ppm
TDC
Measured at VDD/2
47
—
53
%
CLKIN Rise/Fall Slew Rate
TR/TF
Measured between 0.2 VDD and
0.8 VDD
0.5
—
4.0
V/ns
CLKIN Cycle to Cycle Jitter
TCCJ
Measured at VDD/2
—
—
250
ps
CLKIN Long Term Jitter
TLTJ
Measured at VDD/2
—
—
350
ps
Input High Voltage
VIH
XIN/CLKIN pin
2
—
VDD+0.3
V
Input Low Voltage
VIL
XIN/CLKIN pin
—
—
0.8
V
Input High Current
IIH
XIN/CLKIN pin, VIN = VDD
—
—
35
µA
Input Low Current
IIL
XIN/CLKIN pin, 0 < VIN <0.8
–35
—
—
µA
Duty Cycle
TDC
Measured at 0 V differential
45
—
55
%
Cycle to Cycle Jitter
TCCJ
Measured at 0 V differential
—
35
50
ps
PCIe Gen 1 Pk-Pk Jitter
Pk-Pk
PCIe Gen 1
0
40
86
ps
PCIe Gen 2 Phase Jitter
RMSGEN2
10 kHz < F < 1.5 MHz
0
2
3.0
ps
1.5 MHz < F < Nyquist
0
2
3.1
ps
RMSGEN3
Includes PLL BW 2–4 MHz,
CDR = 10 MHz
0
0.5
1.0
ps
Long Term Accuracy
LACC
Measured at 0 V differential
—
—
100
ppm
Rise/Fall Slew Rate
TR/TF
Measured differentially from
±150 mV
1
—
8
V/ns
Voltage High
VHIGH
—
—
1.15
V
Voltage Low
VLOW
–0.3
—
—
V
VOX
300
—
550
mV
—
–0.5
—
%
30
31.5
33
kHz
Crystal
Long-term Accuracy
Clock Input
CLKIN Duty Cycle
DIFF at 0.7 V
PCIe Gen 3 Phase Jitter
Crossing Point Voltage at 0.7 V
Swing
Spread Range
SPR-2
Modulation Frequency
FMOD
Down spread
REF at 3.3 V
Duty Cycle
TDC
Measurement at 1.5 V
45
—
55
%
Rise/Fall Slew Rate
T R / TF
Measured between 0.8 and 2.0 V
1.0
—
4.0
V/ns
Cycle to Cycle Jitter
TCCJ
Measurement at 1.5 V
—
—
300
ps
Long Term Accuracy
LACC
Measured at 1.5 V
—
—
100
ppm
TSTABLE
—
—
1.8
ms
TSS
10.0
—
—
ns
Enable/Disable and Setup
Clock Stabilization from Power-up
Stopclock Setup Time
Note: Visit www.pcisig.com for complete PCIe specifications.
Rev 1.0
5
Si52131-A11A
Table 3. Absolute Maximum Conditions
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
VDD_3.3V
Functional
—
—
4.6
V
Input Voltage
VIN
Relative to VSS
–0.5
—
4.6
VDC
Temperature, Storage
TS
Non-functional
–65
—
150
°C
Temperature, Operating Ambient
TA
Functional
–40
—
85
°C
Temperature, Junction
TJ
Functional
—
—
150
°C
Dissipation, Junction to Case
ØJC
JEDEC (JESD 51)
—
—
20
°C/W
Dissipation, Junction to Ambient
ØJA
JEDEC (JESD 51)
—
—
60
°C/W
ESDHBM
JEDEC (JESD 22 - A114)
2000
—
—
V
UL-94
UL (Class)
Main Supply Voltage
ESD Protection (Human Body Model)
Flammability Rating
V–0
Note: While using multiple power supplies, the Voltage on any input or I/O pin cannot exceed the power pin during power-up.
Power supply sequencing is NOT required.
6
Rev 1.0
Si52131-A11A
2. Functional Description
2.1. Crystal Recommendations
The clock device requires a parallel resonance crystal.
Table 4. Crystal Recommendations
Frequency
(Fund)
Cut
Loading Load Cap
25 MHz
AT
Parallel
12–15 pF
Shunt
Cap (max)
Motional
(max)
Tolerance
(max)
Stability
(max)
Aging
(max)
5 pF
0.016 pF
35 ppm
30 ppm
5 ppm
2.1.1. Crystal Loading
Crystal loading is critical in achieving low ppm performance. To realize low ppm performance, use the total
capacitance the crystal sees to calculate the appropriate capacitive loading (CL).
Figure 1 shows a typical crystal configuration using the two trim capacitors. It is important that the trim capacitors
are in series with the crystal.
Figure 1. Crystal Capacitive Clarification
2.1.2. Calculating Load Capacitors
In addition to the standard external trim capacitors, consider the trace capacitance and pin capacitance to calculate
the crystal loading correctly. Again, the capacitance on each side is in series with the crystal. The total capacitance
on both side is twice the specified crystal load capacitance (CL). Trim capacitors are calculated to provide equal
capacitive loading on both sides.
Figure 2. Crystal Loading Example
Rev 1.0
7
Si52131-A11A
Use the following formulas to calculate the trim capacitor values for Ce1 and Ce2.
Load Capacitance (each side)
Ce = 2 x CL – (Cs + Ci)
Total Capacitance (as seen by the crystal)
CLe
=
1
1
( Ce1 + Cs1
+ Ci1 +
1
Ce2 + Cs2 + Ci2
)
CL:
Crystal load capacitance
Actual loading seen by crystal using standard value trim capacitors
Ce: External trim capacitors
Cs: Stray capacitance (terraced)
Ci : Internal capacitance (lead frame, bond wires, etc.)
CLe:
2.2. OE Pin Function
The OE pin is an active low input used to enable and disable the output clock. To enable the output clock, the OE
pin needs to be logic low and the I2C output enable bit needs to be logic high. By default, the OE pin is set to a logic
low and the I2C output enable bit is set to a logic high. There are two methods to disable the output clock: the OE
pin is pulled to a logic high or the I2C output enable bit is set to a logic low. The OE pin is required to be driven at all
times even though it has an internal 100 k resistor.
2.3. OE Assertion
The OE pin is an active low input used for synchronous stopping and starting the respective output clock while the
rest of the clock generator continues to function. The assertion of the OE function is achieved by pulling the OE pin
low and the I2C output enable bit high, which causes the respective stopped output to resume normal operation.
No short or stretched clock pulses are produced when the clocks resume. The maximum latency from the assertion
to active outputs is no more than two to six output clock cycles.
2.4. OE Deassertion
The OE function is de-asserted by pulling the pin high, or setting the I2C output enable bit to a logic low. The
corresponding output is stopped and the final output state is driven low.
2.5. SS[1:0] Pins Function
SS1 and SS0 are active inputs used to change the frequency and/or to enable –0.5% down spread on all DIFF
outputs. When sampled high or low, the appropriate selection of frequency and spread from Table 5 is applied on
all differential outputs. These inputs have an internal pull-down though a 100 k resistor. The default state is
SS[1:0] = 00, corresponding to 100 MHz outputs with spread spectrum disabled.
Table 5. SS0 & SS1 Frequency/Spread Selection
8
SS1
SS0
Differential
Frequency
Differential
Spread
0
0
100 MHz
Spread Off
0
1
100 MHz
–0.50%
1
0
125 MHz
Spread Off
1
1
200 MHz
Spread Off
Rev 1.0
Si52131-A11A
3. Test and Measurement Setup
This diagram shows the test load configuration for differential clock signals.
M e a s u re m e n t
P o in t
L1
O U T+
5 0
2 pF
L1 = 5"
M e a s u re m e n t
P o in t
L1
O U T-
5 0
2 pF
Figure 3. 0.7 V Differential Load Configuration
Figure 4. Differential Output Signals (for AC Parameters Measurement)
Rev 1.0
9
Si52131-A11A
Figure 5. Single-Ended Measurement for Differential Output Signals
(for AC Parameter Measurement)
L1 = 0.5", L2 = 5"
Measurement
50
SE Clocks
Point
L1
33 
L2
4 pF
Figure 6. Single-Ended Clocks with Single Load Configuration
Figure 7. Single-Ended Output Signal (for AC Parameter Measurement)
10
Rev 1.0
Si52131-A11A
4. Control Registers
4.1. I2C Interface
To enhance the flexibility and function of the clock synthesizer, an I2C interface is provided. One can control
various functions through the I2C interface, such as individual enabling or disabling of the clock output buffers. The
registers associated with the I2C interface initialize to their default setting at power-up. The use of this interface is
optional. Clock device register changes are normally made at system initialization, if any are required.
4.2. Data Protocol
The I2C protocol accepts byte write, byte read, block write, and block read operations from the controller. For block
write/read operation, access the bytes in sequential order from lowest to highest (most significant bit first) with the
ability to stop after any complete byte is transferred. For byte write and byte read operations, the system controller
can access individually indexed bytes.
The block write and block read protocol is outlined in Table 6 while Table 7 outlines byte write and byte read
protocol. The slave receiver address is 11010110 (D6h).
Table 6. Block Read and Block Write Protocol
Block Write Protocol
Bit
1
8:2
Block Read Protocol
Description
Bit
Start
1
Slave address–7 bits
8:2
Description
Start
Slave address–7 bits
9
Write
9
Write
10
Acknowledge from slave
10
Acknowledge from slave
18:11
19
27:20
28
36:29
37
45:38
Command Code–8 bits
18:11
Command Code–8 bits
Acknowledge from slave
19
Acknowledge from slave
Byte Count–8 bits
20
Repeat start
Acknowledge from slave
27:21
Slave address–7 bits
Data byte 1–8 bits
28
Read = 1
Acknowledge from slave
29
Acknowledge from slave
Data byte 2–8 bits
46
Acknowledge from slave
....
Data Byte /Slave Acknowledges
....
Data Byte N–8 bits
....
Acknowledge from slave
....
Stop
37:30
38
46:39
47
55:48
Rev 1.0
Byte Count from slave–8 bits
Acknowledge
Data byte 1 from slave–8 bits
Acknowledge
Data byte 2 from slave–8 bits
56
Acknowledge
....
Data bytes from slave/Acknowledge
....
Data Byte N from slave–8 bits
....
NOT Acknowledge
....
Stop
11
Si52131-A11A
Table 7. Byte Read and Byte Write Protocol
Byte Write Protocol
Bit
1
8:2
Byte Read Protocol
Description
Bit
Start
1
Slave address–7 bits
8:2
Start
Slave address–7 bits
9
Write
9
Write
10
Acknowledge from slave
10
Acknowledge from slave
18:11
19
27:20
Command Code–8 bits
18:11
Command Code–8 bits
Acknowledge from slave
19
Acknowledge from slave
Data byte–8 bits
20
Repeated start
28
Acknowledge from slave
29
Stop
27:21
Rev 1.0
Slave address–7 bits
28
Read
29
Acknowledge from slave
37:30
12
Description
Data from slave–8 bits
38
NOT Acknowledge
39
Stop
Si52131-A11A
Register 1. Byte 0: Control Register 0
Bit
D7
D6
D5
D4
D3
D1
D0
R/W
R/W
R/W
25M_OE
Name
Type
D2
R/W
R/W
R/W
R/W
R/W
Reset settings = 00000100
Bit
Name
Function
7:3
Reserved
2
25_OE
1:0
Reserved
Output Enable for 25 MHz.
0: Output disabled.
1: Output enabled.
Register 2. Byte 1: Control Register 1
Bit
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Name
Type
Reset settings = 00000000
Bit
Name
Function
7:0
Reserved
Register 3. Byte 2: Control Register 2
Bit
D7
D6
Name
DIFF0_OE
DIFF1_OE
Type
R/W
R/W
D5
D4
D3
D2
D1
D0
R/W
R/W
R/W
R/W
R/W
R/W
Reset settings = 11000000
Bit
Name
Function
7
DIFF0_OE
Output Enable for DIFF0.
0: Output disabled.
1: Output enabled.
6
DIFF1_OE
Output Enable for DIFF1.
0: Output disabled.
1: Output enabled.
5:0
Reserved
Rev 1.0
13
Si52131-A11A
Register 4. Byte 3: Control Register 3
Bit
D7
D6
D5
D4
Name
Rev Code
Bit 3
Rev Code
Bit 2
Rev Code
Bit 1
Rev Code
Bit 0
Type
R/W
R/W
R/W
R/W
D3
D2
D1
D0
Vendor ID bit Vendor ID bit Vendor ID bit Vendor ID bit
3
0
2
1
R/W
R/W
R/W
R/W
Reset settings = 00001000
Bit
Name
Function
7:4
Rev Code Bit 3:0
Program Revision Code
3:0
Vendor ID bit 3:0
Vendor Identification Code
Register 5. Byte 4: Control Register 4
Bit
D7
D6
D5
D4
D3
D2
D1
D0
Name
BC7
BC7
BC5
BC4
BC3
BC2
BC1
BC0
Type
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Reset settings = 00000110
Bit
Name
7:0
BC7:0
Function
Byte Count Register.
Register 6. Byte 5: Control Register 5
Bit
D7
D6
D5
D4
Name
DIFF_Am_Sel
DIFF_Amp_Cntl[2]
DIFF_Amp_Cntl[1]
DIFF_Amp_Cntl[0]
Type
R/W
R/W
R/W
R/W
D3
D2
D1
D0
R/W
R/W
R/W
R/W
Reset settings = 11011000
14
Bit
Name
7
DIFF_Amp_Sel
6:4
DIFF_Amp_Cntl[2:0]
3:0
Reserved
Function
Amplitude control for DIFF Differential outputs.
0: Differential outputs with Default amplitude.
1: Differential outputs amplitude is set by Byte 5[6:4].
DIFF Differential Outputs Amplitude Adjustment.
000: 300 mV 001: 400 mV 010: 500 mV 011: 600 mV
100: 700 mV 101: 800 mV 110: 900 mV 111: 1000 mV
Rev 1.0
Si52131-A11A
VSS_CORE
XIN/CLKIN
XOUT
VDD_CORE
SDATA
SCLK
5. Si52131-A11A Pin Descriptions: 24-Pin QFN
24
23
22
21
20
19
VDD_REF
1
1
18 OE_DIFF1
REF
2
17 VDD_DIFF
OE_REF1
3
VSS_REF
4
OE_DIFF01
5
VDD_DIFF
6
16 DIFF1
25
GND
15 DIFF1
14 DIFF0
9
10
11
12
NC
NC
VDD_DIFF
SS1
1
8
SS0
1
7
NC
13 DIFF0
Note
1. Internal 100 k-ohm pull-down resistor
Table 8. Part Number 24-Pin QFN Descriptions
Pin #
Name
Type
Description
1
VDD_REF
2
REF
3
OE_REF1
I,PD
Active low input pin enables REF (internal 100 k pull-down).
4
VSS_REF
GND
Ground.
5
OE_DIFF01
I,PD
Active low input pin enables DIFF0 (internal 100 k pull-down).
6
VDD_DIFF
PWR 3.3 V power supply.
7
SS01
I, PD
8
SS11
I, PD
PWR 3.3 V power supply.
O, SE 3.3 V, 25 MHz Reference clock output.
3.3 V tolerant input for enabling frequency/spread selection on DIFF0 and
DIFF1 outputs (internal 100 k pull-down).
SS1
SS0
0
Differential
Frequency
100 MHz
Differential
Spread
Spread Off
0
0
1
100 MHz
–0.50%
1
0
125 MHz
Spread Off
1
1
200 MHz
Spread Off
Rev 1.0
15
Si52131-A11A
Table 8. Part Number 24-Pin QFN Descriptions (Continued)
Pin #
Name
Type
9
NC
NC
No connect.
10
NC
NC
No connect.
11
NC
NC
No connect.
12
VDD_DIFF
13
DIFF0
O, DIF 0.7 V, 100 MHz differential clock output.
14
DIFF0
O, DIF 0.7 V, 100 MHz differential clock output.
15
DIFF1
O, DIF 0.7 V, 100 MHz differential clock output.
16
DIFF1
O, DIF 0.7 V, 100 MHz differential clock output.
17
VDD_DIFF
PWR 3.3 V power supply.
18
OE_DIFF11
I,PD
19
SCLK
I
20
SDATA
I/O
21
VDD_CORE
22
XOUT
O
25.00 MHz Crystal output, Float XOUT if using CLKIN (Clock input).
23
XIN/CLKIN
I
25.00 MHz Crystal input or 3.3 V, 25 MHz clock input.
24
VSS_CORE
GND
Ground for core.
25
GND
GND
Ground for bottom pad of the IC.
16
Description
PWR 3.3 V power supply.
Active low input pin enables DIFF1 (internal 100 k pull-down).
I2C compatible SCLOCK.
I2C compatible SDATA.
PWR 3.3 V power supply for core.
Rev 1.0
Si52131-A11A
6. Ordering Guide
Part Number
Package Type
Temperature
Si52131-A11AGM
24-pin QFN
Extended, –40 to 85 C
Si52131-A11AGMR
24-pin QFN—Tape and Reel
Extended, –40 to 85 C
Lead-free
Rev 1.0
17
Si52131-A11A
7. Package Outline
Figure 8 illustrates the package details. Table 9 lists the values for the dimensions shown in the illustration.
Figure 8. 24-Pin Quad Flat No Lead (QFN) Package
Table 9. Package Diagram Dimensions
Symbol
Millimeters
Min
Nom
Max
0.70
0.75
0.80
A1
0.00
0.025
0.05
b
0.20
0.25
0.30
A
D
D2
4.00 BSC.
2.60
2.70
e
0.50 BSC.
E
4.00 BSC.
2.80
E2
2.60
2.70
2.80
L
0.30
0.40
0.50
aaa
0.10
bbb
0.10
ccc
0.08
ddd
0.07
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise
noted.
2. Dimensioning and Tolerances per ANSI Y14.5M-1994.
3. This drawing conforms to JEDEC outline MO-220, variation VGGD-8
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020
specification for Small Body Components
18
Rev 1.0
ClockBuilder Pro
One-click access to Timing tools,
documentation, software, source
code libraries & more. Available for
Windows and iOS (CBGo only).
www.silabs.com/CBPro
Timing Portfolio
www.silabs.com/timing
SW/HW
Quality
Support and Community
www.silabs.com/CBPro
www.silabs.com/quality
community.silabs.com
Disclaimer
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.
Trademark Information
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
http://www.silabs.com