Si52146 P C I - E X P R E S S G E N 1 , G E N 2, G E N 3 , & G EN 4 S IX O U T P U T CLOCK GENERATOR Features PCI-Express Gen 1, Gen 2, Gen 3, and Gen 4 common clock compliant Gen 3 SRNS Compliant Supports Serial-ATA (SATA) at 100 MHz Low power push-pull HCSL compatible differential outputs No termination resistors required Dedicated output enable pins for each clock Pin selectable spread control Up to six PCI-Express clock outputs 25 MHz crystal input or clock input I2C support with readback capabilities Triangular spread spectrum profile for maximum electromagnetic interference (EMI) reduction Industrial temperature: –40 to 85 °C 3.3 V Power supply 32-pin QFN package Ordering Information: See page 18 Applications Wireless access point Switches SCLK 28 CKPWRGD/PDB1 29 27 26 25 1 24 VDD_DIFF OE_DIFF21 2 23 DIFF5 SSON2 3 22 DIFF5 OE_DIFF31 4 OE_DIFF41 5 OE_DIFF51 6 19 DIFF4 NC 7 18 VDD_DIFF 8 17 DIFF3 21 VDD_DIFF 33 GND 10 11 12 13 14 15 16 VDD_DIFF DIFF2 DIFF2 VDD_DIFF 20 9 Notes: 1. Internal 100 kohm pull-up. 2. Internal 100 kohm pull-down. Functional Block Diagram 30 SDATA 31 VDD_CORE 32 VDD_DIFF DIFF1 The Si52146 is a high-performance, PCIe clock generator that can source six PCIe clocks from a 25 MHz crystal or clock input. The clock outputs are compliant to PCIe Gen 1, Gen 2, Gen 3, Gen 3 SRNS and Gen 4 common clock specifications. The device has six output enable control pins for enabling and disabling differential outputs. A spread spectrum control pin for EMI reduction is also available. The small footprint and low power consumption makes the Si52146 the ideal clock solution for consumer and embedded applications. Measuring PCIe clock jitter is quick and easy with the Silicon Labs PCIe Clock Jitter Tool. Download it for free at www.silabs.com/ pcie-learningcenter. XOUT Description XIN/CLKIN Pin Assignments OE_DIFF01 DIFF1 DIFF0 Network attached storage Multi-function printer OE_DIFF11 DIFF0 DIFF4 DIFF3 Patents pending DIFF0 XIN/CLKIN DIFF1 XOUT PLL1 (SSC) Divider DIFF2 DIFF3 DIFF4 DIFF5 SCLK SDATA Control & Memory CKPWRGD/PDB Control RAM OE [5:0] SSON Rev. 1.4 4/16 Copyright © 2016 by Silicon Laboratories Si52146 Si52146 2 Rev. 1.4 Si52146 TABLE O F C ONTENTS Section Page 1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 2.1. Crystal Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 2.2. CKPWRGD/PDB (Power Down) Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 2.3. PDB (Power Down) Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 2.4. PDB Deassertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 2.5. OE Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 2.6. OE Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 2.7. OE Deassertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 2.8. SSON Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 3. Test and Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 4. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 4.1. I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.2. Data Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 5. Pin Descriptions: 32-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 7. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 8. Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Rev. 1.4 3 Si52146 1. Electrical Specifications Table 1. DC Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit 3.3 V Operating Voltage VDD core 3.3 ±5% 3.135 3.3 3.465 V 3.3 V Input High Voltage VIH Control input pins 2.0 — VDD + 0.3 V 3.3 V Input Low Voltage VIL Control input pins VSS – 0.3 — 0.8 V Input High Voltage VIHI2C SDATA, SCLK 2.2 — — V Input Low Voltage VILI2C SDATA, SCLK — — 1.0 V Input High Leakage Current IIH Except internal pull-down resistors, 0 < VIN < VDD — — 5 A Input Low Leakage Current IIL Except internal pull-up resistors, 0 < VIN < VDD –5 — — A High-impedance Output Current IOZ –10 — 10 A Input Pin Capacitance CIN 1.5 — 5 pF COUT — — 6 pF LIN — — 7 nH Power Down Current IDD_PD — — 1 mA Dynamic Supply Current IDD_3.3V — — 60 mA Output Pin Capacitance Pin Inductance 4 All outputs enabled. Differential clocks with 5” traces and 2 pF load. Rev. 1.4 Si52146 Table 2. AC Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit LACC Measured at VDD/2 differential — — 250 ppm TDC Measured at VDD/2 47 — 53 % CLKIN Rise and Fall Times TR/TF Measured between 0.2 VDD and 0.8 VDD 0.5 — 4.0 V/ns CLKIN Cycle to Cycle Jitter TCCJ Measured at VDD/2 — — 250 ps CLKIN Long Term Jitter TLTJ Measured at VDD/2 — — 350 ps Input High Voltage VIH XIN/CLKIN pin 2 — VDD+0.3 V Input Low Voltage VIL XIN/CLKIN pin — — 0.8 V Input High Current IIH XIN/CLKIN pin, VIN = VDD — — 35 uA Input Low Current IIL XIN/CLKIN pin, 0 < VIN <0.8 –35 — — uA TDC Measured at 0 V differential 45 — 55 % TSKEW Measured at 0 V differential — — 800 ps DIFF Cycle to Cycle Jitter TCCJ Measured at 0 V differential — 35 50 ps PCIe Gen 1 Pk-Pk, Common Clock Pk-Pk PCIe Gen 1 0 30 50 ps PCIe Gen 2 Phase Jitter, Common Clock RMSGEN2 10 kHz < F < 1.5 MHz 0 1.75 2.1 ps PCIe Gen 2 Phase Jitter, Common Clock RMSGEN2 1.5 MHz < F < Nyquist 0 1.75 2.0 ps PCIe Gen 3 Phase Jitter, Common Clock RMSGEN3 PLL BW of 2–4 or 2–5 MHz, CDR = 10 MHz 0 0.5 0.6 ps PCIe Gen 3 Phase Jitter, Separate Reference No Spread, SRNS RMSGEN3_SRNS PLL BW of 2–4 or 2–5 MHz, CDR = 10 MHz — 0.35 0.42 ps PCIe Gen 4 Phase Jitter, Common Clock RMSGEN4 PLL BW of 2–4 or 2–5 MHz, CDR = 10 MHz — 0.5 0.6 ps Long Term Accuracy LACC Measured at 0 V differential — — 100 ppm Rising/Falling Slew Rate TR/TF Measured differentially from ±150 mV 1 — 8 V/ns Voltage High VHIGH — — 1.15 V Voltage Low VLOW –0.3 — — V VOX 300 — 550 mV — –0.5 — % Crystal Long-term Accuracy Clock Input CLKIN Duty Cycle DIFF at 0.7 V Duty Cycle Output-to-Output skew Crossing Point Voltage at 0.7 V Swing Spread Range SPR-2 Down spread Notes: 1. Visit www.pcisig.com for complete PCIe specifications. 2. Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5. 3. Download the Silicon Labs PCIe Clock Jitter Tool at www.silabs.com/pcie-learningcenter. Rev. 1.4 5 Si52146 Table 2. AC Electrical Specifications (Continued) Parameter Symbol Modulation Frequency Test Condition FMOD Min Typ Max Unit 30 31.5 33 kHz — — 1.8 ms 10.0 — — ns Enable/Disable and Setup Clock Stabilization from Power-up TSTABLE Stopclock Set-up Time TSS Measured from the point both VDD and clock input are valid Notes: 1. Visit www.pcisig.com for complete PCIe specifications. 2. Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5. 3. Download the Silicon Labs PCIe Clock Jitter Tool at www.silabs.com/pcie-learningcenter. Table 3. Absolute Maximum Conditions Parameter Symbol Test Condition Min Typ Max Unit VDD_3.3V Functional — — 4.6 V Input Voltage VIN Relative to VSS –0.5 — 4.6 VDC Temperature, Storage TS Non-functional –65 — 150 °C Temperature, Operating Ambient TA Functional –40 — 85 °C Temperature, Junction TJ Functional — — 150 °C Dissipation, Junction to Case ØJC JEDEC (JESD 51) — — 17 °C/W Dissipation, Junction to Ambient ØJA JEDEC (JESD 51) — — 35 °C/W ESDHBM JEDEC (JESD 22-A114) 2000 — — V UL-94 UL (Class) Main Supply Voltage ESD Protection (Human Body Model) Flammability Rating V–0 Note: While using multiple power supplies, the voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is not required. 6 Rev. 1.4 Si52146 2. Functional Description 2.1. Crystal Recommendations If using crystal input, the device requires a parallel resonance 25 MHz crystal. Table 4. Crystal Recommendations Frequency (Fund) Cut Loading Load Cap 25 MHz AT Parallel 12–15 pF Shunt Cap (max) Motional (max) Tolerance (max) Stability (max) Aging (max) 5 pF 0.016 pF 35 ppm 30 ppm 5 ppm 2.1.1. Crystal Loading Crystal loading is critical in achieving low ppm performance. In order to achieve low zero ppm error, use the calculations in section 2.1.2 to estimate the appropriate capacitive loading (CL). Figure 1 shows a typical crystal configuration using the two trim capacitors. It is important that the trim capacitors are in series with the crystal. Figure 1. Crystal Capacitive Clarification 2.1.2. Calculating Load Capacitors In addition to the standard external trim capacitors, consider the trace capacitance and pin capacitance to calculate the crystal loading correctly. The capacitance on each side is in series with the crystal. The total capacitance on both sides is twice the specified crystal load capacitance (CL). Trim capacitors are calculated to provide equal capacitive loading on both sides. Figure 2. Crystal Loading Example Use the following formulas to calculate the trim capacitor values for Ce1 and Ce2. Rev. 1.4 7 Si52146 Load Capacitance (each side) Ce = 2 x CL – (Cs + Ci) Total Capacitance (as seen by the crystal) CLe = 1 1 ( Ce1 + Cs1 + Ci1 + 1 Ce2 + Cs2 + Ci2 ) CL: Crystal load capacitance CLe: Actual loading seen by crystal using standard value trim capacitors Ce: External trim capacitors Cs: Stray capacitance (terraced) Ci : Internal capacitance (lead frame, bond wires, etc.) 2.2. CKPWRGD/PDB (Power Down) Pin The CKPWRGD/PDB pin is a dual-function pin. During initial power up, the pin functions as the CKPWRGD pin. Upon the first power up, if the CKPWRGD pin is low, the outputs will be disabled, but the crystal oscillator and I2C logics will be active. Once the CKPWRGD pin has been sampled high by the clock chip, the pin assumes a PDB functionality. When the pin has assumed a PDB functionality and is pulled low, the device will be placed in power down mode. The CKPWRGD/PDB pin is required to be driven at all times even though it has an internal 100 k resistor. 2.3. PDB (Power Down) Assertion The PDB pin is an asynchronous active low input used to disable all output clocks in a glitch-free manner. All outputs will be driven low in power down mode. In power down mode, all outputs, the crystal oscillator, and the I2C logic are disabled. 2.4. PDB Deassertion When a valid rising edge on CKPWRGD/PDB pin is applied, all outputs are enabled in a glitch-free manner within two to six output clock cycles. 2.5. OE Pin The OE pin is an active high input used to enable and disable the output clock. To enable the output clock, the OE pin and the I2C OE bit need to be a logic high. By default, the OE pin and the I2C OE bit are set to a logic high. There are two methods to disable the output clock: the OE pin is pulled to a logic low, or the I2C OE bit is set to a logic low. The OE pin is required to be driven at all times even though it has an internal 100 k resistor. 2.6. OE Assertion The OE pin is an active high input used for synchronous stopping and starting the respective output clock while the rest of the clock generator continues to function. The assertion of the OE function is achieved by pulling the OE pin and the I2C OE bit high which causes the respective stopped output to resume normal operation. No short or stretched clock pulses are produced when the clocks resume. The maximum latency from the assertion to active outputs is no more than two to six output clock cycles. 2.7. OE Deassertion The OE function is deasserted by pulling the pin or the I2C OE bit to a logic low. The corresponding output is stopped cleanly and the final output state is driven low. 2.8. SSON Pin The SSON pin is an active input used to enable –0.5% spread spectrum on the outputs. When sampled high, –0.5% spread is enabled on the output clocks. When sampled low, the output clocks are non-spread. 8 Rev. 1.4 Si52146 3. Test and Measurement Setup Figure 3 shows the test load configuration for the HCSL compatible clock outputs. M e a s u re m e n t P o in t L1 O U T+ 5 0 2 pF L1 = 5" M e a s u re m e n t P o in t L1 O U T- 5 0 2 pF Figure 3. 0.7 V Differential Load Configuration Please reference application note AN781 for recommendations on how to terminate the differential outputs for LVDS, LVPECL, or CML signalling levels. Figure 4. Differential Output Signals (for AC Parameters Measurement) Rev. 1.4 9 Si52146 VMIN = –0.30V VMIN = –0.30V Figure 5. Single-ended Measurement for Differential Output Signals (for AC Parameters Measurement) 10 Rev. 1.4 Si52146 4. Control Registers 4.1. I2C Interface To enhance the flexibility and function of the clock synthesizer, an I2C interface is provided. Through the I2C interface, various device functions are available, such as individual clock output enablement. The registers associated with the I2C interface initialize to their default setting at power-up. The use of this interface is optional. Clock device register changes are normally made at system initialization, if any are required. 4.2. Data Protocol The clock driver I2C protocol accepts byte write, byte read, block write, and block read operations from the controller. For block write/read operation, access the bytes in sequential order from lowest to highest (most significant bit first) with the ability to stop after any complete byte is transferred. For byte write and byte read operations, the system controller can access individually indexed bytes. . The block write and block read protocol is outlined in Table 5 while Table 6 outlines byte write and byte read protocol. The slave receiver address is 11010110 (D6h). Table 5. Block Read and Block Write Protocol Block Write Protocol Bit 1 8:2 Block Read Protocol Description Bit Start 1 Slave address—7 bits 8:2 Description Start Slave address—7 bits 9 Write 9 Write 10 Acknowledge from slave 10 Acknowledge from slave 18:11 Command Code—8 bits 18:11 19 Acknowledge from slave 19 Acknowledge from slave Byte Count—8 bits 20 Repeat start 27:20 28 36:29 37 45:38 Acknowledge from slave 27:21 Command Code–8 bits Slave address—7 bits Data byte 1–8 bits 28 Read = 1 Acknowledge from slave 29 Acknowledge from slave Data byte 2–8 bits 46 Acknowledge from slave .... Data Byte/Slave Acknowledges .... Data Byte N–8 bits .... Acknowledge from slave .... Stop 37:30 38 46:39 47 55:48 Rev. 1.4 Byte Count from slave—8 bits Acknowledge Data byte 1 from slave—8 bits Acknowledge Data byte 2 from slave—8 bits 56 Acknowledge .... Data bytes from slave/Acknowledge .... Data Byte N from slave—8 bits .... NOT Acknowledge .... Stop 11 Si52146 Table 6. Byte Read and Byte Write Protocol Byte Write Protocol Bit 1 8:2 Byte Read Protocol Description Bit Start 1 Slave address–7 bits 8:2 Start Slave address–7 bits 9 Write 9 Write 10 Acknowledge from slave 10 Acknowledge from slave 18:11 19 27:20 Command Code–8 bits 18:11 Command Code–8 bits Acknowledge from slave 19 Acknowledge from slave Data byte–8 bits 20 Repeated start 28 Acknowledge from slave 29 Stop 27:21 Rev. 1.4 Slave address–7 bits 28 Read 29 Acknowledge from slave 37:30 12 Description Data from slave–8 bits 38 NOT Acknowledge 39 Stop Si52146 Control Register 0. Byte 0 Bit D7 D6 D5 D4 D3 D2 D1 D0 R/W R/W R/W R/W R/W R/W R/W R/W D2 D1 D0 Name Type Reset settings = 00000000 Bit Name 7:0 Reserved Function Control Register 1. Byte 1 Bit D7 D6 D5 Name Type D4 D3 DIFF1_OE DIFF0_OE R/W R/W R/W R/W R/W R/W DIFF2_OE R/W R/W Reset settings = 00010101 Bit Name 7:5 Reserved 4 DIFF0_OE Function Output Enable for DIFF0. 0: Output disabled. 1: Output Enabled. 3 Reserved 2 DIFF1_OE Output Enable for DIFF1. 0: Output disabled. 1: Output enabled. 1 Reserved 0 DIFF2_OE Output Enable for DIFF2. 0: Output disabled. 1: Output enabled. Rev. 1.4 13 Si52146 Control Register 2. Byte 2 Bit D7 D6 D5 Name DIFF3_OE DIFF4_OE DIFF5_OE Type R/W R/W R/W D4 D3 D2 D1 D0 R/W R/W R/W R/W R/W D2 D1 D0 Reset settings = 11100000 Bit Name Function 7 DIFF3_OE Output Enable for DIFF3. 0: Output disabled. 1: Output enabled. 6 DIFF4_OE Output Enable for DIFF4. 0: Output disabled. 1: Output enabled. 5 DIFF5_OE Output Enable for DIFF5. 0: Output disabled. 1: Output enabled. 4:0 Reserved Control Register 3. Byte 3 Bit D7 D6 Name Type D5 D4 D3 Rev Code[3:0] R/W R/W R/W Vendor ID[3:0] R/W R/W Reset settings = 00001000 14 Bit Name Function 7:4 Rev Code[3:0] Program Revision Code. 3:0 Vendor ID[3:0] Vendor Identification Code. Rev. 1.4 R/W R/W R/W Si52146 Control Register 4. Byte 4 Bit D7 D6 D5 D4 Name Type D3 D2 D1 D0 R/W R/W R/W R/W BC[7:0] R/W R/W R/W R/W Reset settings = 00000110 Bit Name 7:0 BC[7:0] Function Byte Count Register. Control Register 5. Byte 5 Bit D7 D6 D5 D4 D3 D2 D1 D0 R/W R/W R/W R/W Name DIFF_Amp_Sel DIFF_Amp_Cntl[2] DIFF_Amp_Cntl[1] DIFF_Amp_Cntl[0] Type R/W R/W R/W R/W Reset settings = 11011000 Bit Name 7 DIFF_Amp_Sel Function Amplitude Control for DIFF Differential Outputs. 0: Differential outputs with Default amplitude. 1: Differential outputs amplitude is set by Byte 5[6:4]. 6 DIFF_Amp_Cntl[2] 5 DIFF_Amp_Cntl[1] 4 DIFF_Amp_Cntl[0] 3:0 Reserved DIFF Differential Outputs Amplitude Adjustment. 000: 300 mV 001: 400 mV 010: 500 mV 100: 700 mV 101: 800 mV 110: 900 mV Rev. 1.4 011: 600 mV 111: 1000 mV 15 Si52146 SDATA SCLK 29 CKPWRGD/PDB1 30 VDD_CORE 31 XOUT OE_DIFF01 32 XIN/CLKIN OE_DIFF11 5. Pin Descriptions: 32-Pin QFN 28 27 26 25 VDD_DIFF 1 24 VDD_DIFF OE_DIFF21 2 23 DIFF5 SSON 2 3 22 DIFF5 OE_DIFF31 4 OE_DIFF41 5 OE_DIFF51 6 19 DIFF4 NC 7 18 VDD_DIFF 8 17 DIFF3 21 VDD_DIFF 33 GND 9 10 11 12 13 14 15 16 DIFF0 DIFF0 DIFF1 DIFF1 VDD_DIFF DIFF2 DIFF2 VDD_DIFF 20 Notes: 1. Internal 100 kohm pull-up. 2. Internal 100 kohm pull-down. DIFF4 DIFF3 Table 7. Si52146 32-Pin QFN Descriptions Pin # Name 1 VDD_DIFF PWR 3.3 V power supply 2 OE_DIFF2 I,PU Active high input pin enables DIFF2 (internal 100 k pull-up). 3 SSON I, PD Active high input pin enables –0.5% spread on DIFF clocks (internal 100 k pull-down) 4 OE_DIFF3 I,PU Active high input pin enables DIFF3 (internal 100 k pull-up). 5 OE_DIFF4 I,PU Active high input pin enables DIFF4 (internal 100 k pull-up). 6 OE_DIFF5 I,PU Active high input pin enables DIFF5 (internal 100 k pull-up). 7 NC NC No connect 8 VDD_DIFF 9 DIFF0 O, DIF 0.7 V, 100 MHz differential clock output 10 DIFF0 O, DIF 0.7 V, 100 MHz differential clock output 11 DIFF1 O, DIF 0.7 V, 100 MHz differential clock output 12 DIFF1 O, DIF 0.7 V, 100 MHz differential clock output 16 Type Description PWR 3.3 V power supply Rev. 1.4 Si52146 Table 7. Si52146 32-Pin QFN Descriptions (Continued) Pin # Name Type Description 13 VDD_DIFF 14 DIFF2 O, DIF 0.7 V, 100 MHz differential clock output 15 DIFF2 O, DIF 0.7 V, 100 MHz differential clock output 16 VDD_DIFF 17 DIFF3 O, DIF 0.7 V, 100 MHz differential clock output 18 DIFF3 O, DIF 0.7 V, 100 MHz differential clock output 19 DIFF4 O, DIF 0.7 V, 100 MHz differential clock output 20 DIFF4 O, DIF 0.7 V, 100 MHz differential clock output 21 VDD_DIFF 22 DIFF5 O, DIF 0.7 V, 100 MHz differential clock output 23 DIFF5 O, DIF 0.7 V, 100 MHz differential clock output 24 VDD_DIFF 25 SCLK I 26 SDATA I/O 27 CKPWRGD/PDB I, PU 28 VDD_CORE 29 XOUT O 25.00 MHz crystal output, Float XOUT if using only CLKIN (clock input) 30 XIN/CLKIN I 25.00 MHz crystal input or 3.3 V, 25 MHz clock input 31 OE_DIFF0 I,PU Active high input pin enables DIFF0 (internal 100 k pull-up). 32 OE_DIFF1 I,PU Active high input pin enables DIFF1 (internal 100 k pull-up). 33 GND GND Ground for bottom pad of the IC. PWR 3.3 V power supply PWR 3.3 V power supply PWR 3.3 V power supply PWR 3.3 V power supply I2C compatible SCLOCK I2C compatible SDATA Active low input for asserting power down (PDB) and disabling all outputs (internal 100 k pull-up). PWR 3.3 V power supply Rev. 1.4 17 Si52146 6. Ordering Guide Part Number Package Type Temperature Si52146-A01AGM 32-pin QFN Industrial, –40 to 85 C Si52146-A01AGMR 32-pin QFN—Tape and Reel Industrial, –40 to 85 C Lead-free 18 Rev. 1.4 Si52146 7. Package Outline Figure 6 illustrates the package details for the Si52146. Table 8 lists the values for the dimensions shown in the illustration. Figure 6. 32-Pin Quad Flat No Lead (QFN) Package Table 8. Package Diagram Dimensions Symbol A A1 b D D2 e E E2 L aaa bbb ccc ddd eee Millimeters Nom 0.75 0.02 0.25 5.00 BSC 3.20 0.50 BSC 5.00 BSC 3.20 0.40 0.10 0.10 0.08 0.10 0.08 Min 0.70 0.00 0.18 3.15 3.15 0.30 Max 0.80 0.05 0.30 3.25 3.25 0.50 Notes: 4. All dimensions shown are in millimeters (mm) unless otherwise noted. 5. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 6. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. 7. This drawing conforms to the JEDEC Solid State Outline MO-220. Rev. 1.4 19 Si52146 8. Land Pattern Figure 7. QFN Land Pattern Table 9. Land Pattern Dimensions 20 Dimension mm S1 4.01 S 4.01 L1 3.20 W1 3.20 e 0.50 W 0.26 Rev. 1.4 Si52146 Table 9. Land Pattern Dimensions L 0.86 Notes: General 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This Land Patter Design is based on the IPC-7351 guidelines. Solder Mask Design 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. Stencil Design 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 5. The stencil thickness should be 0.125 mm (5 mils). 6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads. 7. A 3x3 array of 0.85 mm square openings on a 1.00mm pitch can be used for the center ground pad. Card Assembly 8. A No-Clean, Type-3 solder paste is recommended. 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. Rev. 1.4 21 Si52146 DOCUMENT CHANGE LIST Revision 0.1 to Revision 1.0 Updated Pin Names. Updated Table 1. Updated Table 2. Updated Table 3. Updated section 2.1. Updated section 2.1.1. Updated sections 2.2 through 2.8. Updated section 4.2. Updated Table 7. Revision 1.0 to Revision 1.1 Removed Moisture Sensitivity Level specification from Table 3. Revision 1.1 to Revision 1.2 Updated Table 2. Updated section 3. Revision 1.2 to Revision 1.3 Updated Features on page 1 Updated Description on page 1. Updated specs in Table 2, “AC Electrical Specifications,” on page 5. Updated the package outline. Revision 1.3 to Revision 1.4 22 Added test condition for Tstable in Table 2. Rev. 1.4