S i 5 3 5 0 A -B F ACTORY - P ROGRAMMABLE A NY - F REQUENCY CMOS C L O C K G ENERATOR Features www.silabs.com/custom-timing Generates up to 8 non-integer-related frequencies from 2.5 kHz to 200 MHz Exact frequency synthesis at each output (0 ppm error) Glitchless frequency changes Low output period jitter: < 70 ps pp, typ Configurable Spread Spectrum selectable at each output User-configurable control pins: Output Enable (OEB_0/1/2) Power Down (PDN) Frequency Select (FS_0/1) Spread Spectrum Enable (SSEN) Supports static phase offset Rise/fall time control Operates from a low-cost, fixed frequency crystal: 25 or 27 MHz Separate voltage supply pins provide level translation: Core VDD: 1.8 V, 2.5 V or 3.3 V Output VDDO: 1.8 V, 2.5 V or 3.3 V Excellent PSRR eliminates external power supply filtering Very low power consumption (25 mA core, typ) Available in 2 packages types: 10-MSOP: 3 outputs 20-QFN (4x4 mm): 8 outputs PCIE Gen 1 compatible Supports HCSL jitter compatible swing 10-MSOP 20-QFN Ordering Information: See page 17 Applications HDTV, DVD/Blu-ray, set-top box Audio/video equipment, gaming Printers, scanners, projectors Handheld instrumentation Residential gateways Networking/communication Servers, storage XO replacement Description The Si5350A is a highly-flexible, user-definable custom clock generator that is ideally suited for replacing crystals and crystal oscillators in cost-sensitive applications. Based on a PLL + high resolution fractional divider MultiSynthTM architecture, the Si5350A can generate any frequency up to 200 MHz on each of its outputs with 0 ppm error. Spread spectrum is selectable (on/off) on any of the outputs. Custom pin-controlled Si5350A devices can be requested using the ClockBuilder web-based part number utility (www.silabs.com/ClockBuilder). Functional Block Diagram Si5350A (20-QFN) XA Si5350A (10-MSOP) VDDO OSC PLL A XB XA OSC PLL A MultiSynth 0 CLK0 PLL B MultiSynth 1 CLK1 PLL B XB P0 P1 Control Logic P0 P1 MultiSynth 2 CLK2 P2 Control Logic P3 P4 Rev. 1.0 4/15 Copyright © 2015 by Silicon Laboratories MultiSynth 0 VDDOA MultiSynth 1 CLK1 MultiSynth 2 MultiSynth 3 VDDOB MultiSynth 4 MultiSynth 5 VDDOC MultiSynth 6 MultiSynth 7 CLK0 CLK2 CLK3 CLK4 CLK5 VDDOD CLK6 CLK7 Si5350A-B Si5350A-B Table 1. The Complete Si5350/51 Clock Generator Family Part Number I2C or Pin Frequency Reference Programmed? Outputs Datasheet Si5351A-B-GT I2C XTAL only Blank 3 Si5351-B Si5351A-B-GM I2C XTAL only Blank 8 Si5351-B Si5351B-B-GM I2C XTAL and/or Voltage Blank 8 Si5351-B Si5351C-B-GM I2C XTAL and/or CLKIN Blank 8 Si5351-B Si5351A-Bxxxxx-GT I2C XTAL only Factory Pre-Programmed 3 Si5351-B Si5351A-Bxxxxx-GM I2C XTAL only Factory Pre-Programmed 8 Si5351-B Si5351B-Bxxxxx-GM I2C XTAL and/or Voltage Factory Pre-Programmed 8 Si5351-B Si5351C-Bxxxxx-GM I2C XTAL and/or CLKIN Factory Pre-Programmed 8 Si5351-B Si5350A-Bxxxxx-GT Pin XTAL only Factory Pre-Programmed 3 Si5350A-B Si5350A-Bxxxxx-GM Pin XTAL only Factory Pre-Programmed 8 Si5350A-B Si5350B-Bxxxxx-GT Pin XTAL and/or Voltage Factory Pre-Programmed 3 Si5350B-B Si5350B-Bxxxxx-GM Pin XTAL and/or Voltage Factory Pre-Programmed 8 Si5350B-B Si5350C-Bxxxxx-GT Pin XTAL and/or CLKIN Factory Pre-Programmed 3 Si5350C-B Si5350C-Bxxxxx-GM Pin XTAL and/or CLKIN Factory Pre-Programmed 8 Si5350C-B Notes: 1. XTAL = 25/27 MHz, Voltage = 0 to VDD, CLKIN = 10 to 100 MHz. "xxxxx" = unique custom code. 2. Create custom, factory pre-programmed parts at www.silabs.com/ClockBuilder. 2 Rev. 1.0 Si5350A-B TABLE O F C ONTENTS Section Page 1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 2. Typical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 2.1. Si5350A Replaces Multiple Clocks and XOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 2.2. Applying a Reference Clock at XTAL Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 2.3. HCSL Compatible Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4. Configuring the Si5350A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 4.1. Crystal Inputs (XA, XB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.2. Output Clocks (CLK0–CLK7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.3. Programmable Control Pins (P0–P4) Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.4. Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.1. 20-pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.2. 10-pin MSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 7. 20-Pin QFN Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 8. Land Pattern: 20-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 9. 10-pin MSOP Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 10. Land Pattern: 10-Pin MSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 11. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 11.1. 20-Pin QFN Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 11.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 11.3. 10-Pin MSOP Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 11.4. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Rev. 1.0 3 Si5350A-B 1. Electrical Specifications Table 2. Recommended Operating Conditions Parameter Ambient Temperature Symbol TA Core Supply Voltage VDD Output Buffer Voltage Test Condition VDDOx Min –40 Typ 25 Max 85 Unit °C 1.71 1.8 1.89 V 2.25 2.5 2.75 V 3.0 3.3 3.60 V 1.71 1.8 1.89 V 2.25 2.5 2.75 V 3.0 3.3 3.60 V Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions. Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise noted. VDD and VDDOx can be operated at independent voltages. Power supply sequencing for VDD and VDDOx requires that all VDDOx be powered up either before or at the same time as VDD. Table 3. DC Characteristics (VDD = 1.8 V ±5%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C) Parameter Core Supply Current* Output Buffer Supply Current (Per Output)* Input Current Output Impedance Symbol Test Condition Min Typ Max Unit Enabled 3 outputs — 20 30 mA Enabled 8 outputs — 25 40 mA Power Down (PDN = VDD) — — 50 µA IDDOx CL = 5 pF — 2.2 5.6 mA IP1-P4 Pins P1, P2, P3, P4 VP1-P4 < 3.6 V — — 10 µA IP0 Pin P0 — — 30 µA ZOI 3.3 V VDDO, default high drive. — 50 — IDD *Note: Output clocks less than or equal to 100 MHz. 4 Rev. 1.0 Si5350A-B Table 4. AC Characteristics (VDD = 1.8 V ±5%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C) Parameter Symbol Test Condition Min Typ Max Unit Powerup Time TRDY From VDD = VDDmin to valid output clock, CL = 5 pF, fCLKn > 1 MHz — 2 10 ms Powerup Time, PLL Bypass Mode TBYP From VDD = VDDmin to valid output clock, CL = 5 pF, fCLKn > 1 MHz — 0.5 1 ms Output Enable Time TOE From OEB assertion to valid clock output, CL = 5 pF, fCLKn > 1 MHz — — 10 µs Output Frequency Transition Time TFREQ fCLKn > 1 MHz — — 10 µs Spread Spectrum Frequency Deviation SSDEV Down spread. Selectable in 0.1% steps. –0.1 — –2.5 % Spread Spectrum Modulation Rate SSMOD 30 31.5 33 kHz Table 5. Input Characteristics (VDD = 1.8 V ±5%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C) Parameter Min Typ Max Unit fXTAL 25 — 27 MHz P0-P4 Input Low Voltage VIL_P0-4 –0.1 — 0.3 x VDD V P0-P4 Input High Voltage VIH_P0-4 VDD = 2.5 V or 3.3 V 0.7 x VDD — 3.60 V VDD = 1.8 V 0.8 x VDD — 3.60 V Crystal Frequency Symbol Test Condition Table 6. Output Characteristics (VDD = 1.8 V ±5%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C) Parameter 1 Symbol Test Condition Min Typ Max Unit 0.0025 — 200 MHz FCLK < 100 MHz — — 15 pF FCLK < 160 MHz, Measured at VDD/2 45 50 55 % FCLK > 160 MHz, Measured at VDD/2 40 50 60 % 20%–80%, CL = 5 pF — 1 1.5 ns Frequency Range FCLK Load Capacitance CL Duty Cycle DC Rise/Fall Time tr/tf Output High Voltage VOH VDD – 0.6 — — V Output Low Voltage VOL — — 0.6 V Notes: 1. Only two unique frequencies above 112.5 MHz can be simultaneously output. 2. Measured over 10k cycles. Jitter is only specified at the default high drive strength (50 output impedance). 3. Jitter is highly dependent on device frequency configuration. Specifications represent a “worst case, real world” frequency plan; actual performance may be substantially better. Three-output 10MSOP package measured with clock outputs of 74.25, 24.576, and 48 MHz. Eight-output 20QFN package measured with clock outputs of 33.33, 74.25, 27, 24.576, 22.5792, 28.322, 125, and 48 MHz. Rev. 1.0 5 Si5350A-B Table 6. Output Characteristics (Continued) (VDD = 1.8 V ±5%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C) Parameter Period Jitter Symbol 2,3 JPER Cycle-to-Cycle Jitter2,3 JCC Test Condition Min Typ Max 20-QFN, 4 outputs running, 1 per VDDO — 40 95 10-MSOP or 20-QFN, all outputs running — 70 155 20-QFN, 4 outputs running, 1 per VDDO — 50 90 10-MSOP or 20-QFN, all outputs running — Unit ps pkpk ps pk 70 150 Notes: 1. Only two unique frequencies above 112.5 MHz can be simultaneously output. 2. Measured over 10k cycles. Jitter is only specified at the default high drive strength (50 output impedance). 3. Jitter is highly dependent on device frequency configuration. Specifications represent a “worst case, real world” frequency plan; actual performance may be substantially better. Three-output 10MSOP package measured with clock outputs of 74.25, 24.576, and 48 MHz. Eight-output 20QFN package measured with clock outputs of 33.33, 74.25, 27, 24.576, 22.5792, 28.322, 125, and 48 MHz. Table 7. 25 MHz Crystal Requirements1,2 Parameter Symbol Min Typ Max Unit Crystal Frequency fXTAL — 25 — MHz Load Capacitance CL 6 — 12 pF rESR — — 150 dL 100 — — µW Equivalent Series Resistance Crystal Max Drive Level Notes: 1. Crystals which require load capacitances of 6, 8, or 10 pF should use the device’s internal load capacitance for optimum performance. See register 183 bits 7:6. A crystal with a 12 pF load capacitance requirement should use a combination of the internal 10 pF load capacitance in addition to external 2 pF load capacitance (e.g., by using 4pF capacitors on XA and XB). 2. Refer to “AN551: Crystal Selection Guide” for more details. Table 8. 27 MHz Crystal Requirements1,2 Parameter Symbol Min Typ Max Unit Crystal Frequency fXTAL — 27 — MHz Load Capacitance CL 6 — 12 pF Equivalent Series Resistance rESR — — 150 Crystal Max Drive Level Spec dL 100 — — µW Notes: 1. Crystals which require load capacitances of 6, 8, or 10 pF should use the device’s internal load capacitance for optimum performance. See register 183 bits 7:6. A crystal with a 12 pF load capacitance requirement should use a combination of the internal 10 pF load capacitance in addition to external 2 pF load capacitance (e.g., by using 4pF capacitors on XA and XB). 2. Refer to “AN551: Crystal Selection Guide” for more details. 6 Rev. 1.0 Si5350A-B Table 9. Thermal Characteristics Parameter Symbol Test Condition Thermal Resistance Junction to Ambient JA Still Air Thermal Resistance Junction to Case JC Still Air Package Value Unit 10-MSOP 131 °C/W 20-QFN 119 °C/W 20-QFN 16 °C/W Value Unit –0.5 to 3.8 V Table 10. Absolute Maximum Ratings Parameter DC Supply Voltage Input Voltage Junction Temperature Symbol Test Condition VDD_max VIN_P1-4 Pins P1, P2, P3, P4 –0.5 to 3.8 V VIN_P0 P0 –0.5 to (VDD+0.3) V VIN_XA/B Pins XA, XB –0.5 to 1.3 V V –55 to 150 °C TJ Note: Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Rev. 1.0 7 Si5350A-B 2. Typical Application 2.1. Si5350A Replaces Multiple Clocks and XOs The Si5350A is a user-definable custom clock generator that is ideally suited for replacing crystals and crystal oscillators in cost-sensitive applications. An example application is shown in Figure 1. 74.25 MHz or 74.25 MHz 1.001 33.3333 MHz CPU XA 27 MHz Video Processor CLK2 CLK1 CLK0 27 MHz Si5350A CLK3 24.576 MHz CLK4 22.5792 MHz Audio Processor XB Ethernet PHY 125 MHz CLK5 48 MHz CLK6 CLK7 USB Controller 28.322 MHz HDMI Port Figure 1. Example of an Si5350A in an Audio/Video Application 2.2. Applying a Reference Clock at XTAL Input The Si5350A can be driven with a clock signal through the XA input pin. VIN = 1 VPP 25/27 MHz XA 0.1 µF XB PLLA Multi Synth 1 OSC PLLB Note: Float the XB input while driving the XA input with a clock Figure 2. Si5350A Driven by a Clock Signal 8 Rev. 1.0 Multi Synth 0 Multi Synth N Si5350A-B 2.3. HCSL Compatible Outputs The Si5350A can be configured to support HCSL compatible swing when the VDDO of the output pair of interest is set to 2.5 V (i.e., VDDOA must be 2.5 V when using CLK0/1; VDDOB must be 2.5 V for CLK2/3 and so on). The circuit in Figure 3 must be applied to each of the two clocks used, and one of the clocks in the pair must also be inverted to generate a differential pair. ZO = 50 PLLA Multi Synth 0 0 R1 511 240 OSC PLLB Multi Synth 1 ZO = 50 0 HCSL CLKIN R1 511 240 Multi Synth N R2 R2 Note: The complementary -180 degree out of phase output clock is generated using the INV function Figure 3. Si5350A Output is HCSL Compatible Rev. 1.0 9 Si5350A-B 3. Functional Description The Si5350A’s synthesis architecture consists of two high-frequency PLLs in addition to one high-resolution fractional MultiSynthTM divider per output. A block diagram of both the 3-output and 8-output versions are shown in Figure 4. This unique architecture allows the Si5350A to simultaneously generate up to eight independent, noninteger-related frequencies. In addition, each MultiSynthTM is configurable with two different frequencies (F1_x, F2_x). This allows a pin controlled glitchless frequency change at each output (CLK0 to CLK5). 10-MSOP XA OSC VDDO VDD MultiSynth 0 F1_0 PLL A XB F2_0 R0 CLK0 R1 CLK1 R2 CLK2 FS MultiSynth 1 F1_1 PLL B F2_1 FS P0 P1 MultiSynth 2 F1_2 Control Logic F2_2 FS MultiSynth 3 GND VDD 20-QFN MultiSynth 0 F1_0 F2_0 XA OSC PLL A R0 CLK0 FS MultiSynth 1 F1_1 XB PLL B VDDOA F2_1 CLK1 R1 FS MultiSynth 2 F1_2 F2_2 VDDOB R2 CLK2 FS MultiSynth 3 F1_3 F2_3 CLK3 R3 FS MultiSynth 4 F1_4 F2_4 VDDOC R4 CLK4 FS MultiSynth 5 F1_5 P0 F2_5 P1 P2 CLK5 R5 FS Control Logic F1_6 P3 VDDOD MultiSynth 6 R6 CLK6 P4 MultiSynth 7 F1_7 CLK7 R7 GND Figure 4. Block Diagrams of 3-Output and 8-Output Si5350A Devices 10 Rev. 1.0 Si5350A-B 4. Configuring the Si5350A The Si5350A is a factory-programmed custom clock generator that is user definable with a simple to use webbased utility (www.silabs.com/ClockBuilder). The ClockBuilder utility provides a simple graphical interface that allows the user to enter input and output frequencies along with other custom features as described in the following sections. All synthesis calculations are automatically performed by ClockBuilder to ensure an optimum configuration. A unique part number is assigned to each custom configuration. 4.1. Crystal Inputs (XA, XB) The Si5350A uses a fixed-frequency standard AT-cut crystal as a reference to synthesize its output clocks. 4.1.1. Crystal Frequency The Si5350A can operate using either a 27 MHz or a 25 MHz crystal. 4.1.2. Internal XTAL Load Capacitors Internal load capacitors are provided to eliminate the need for external components when connecting a XTAL to the Si5350A. The total internal XTAL load capacitance (CL) can be selected to be 0, 6, 8, or 10 pF. XTALs with alternate load capacitance requirements are supported using additional external load capacitance 2 pF (e.g., by using 4 pF capacitors on XA and XB) as shown in Figure 5. XA XB Optional internal load capacitance 0, 6, 8,10 pF Optional additional external load capacitance (< 2 pF) Figure 5. External XTAL with Optional Load Capacitors 4.2. Output Clocks (CLK0–CLK7) The Si5350A is orderable as a 3-output (10-MSOP) or 8-output (20-QFN) clock generator. Output clocks CLK0 to CLK5 can be ordered with two clock frequencies (F1_x, F2_x) which are selectable with the optional frequency select pins (FS0/1). See “4.3.3. Frequency Select (FS_0, FS_1)” for more details on the operation of the frequency select pins. 4.2.1. Output Clock Frequency Outputs can be configured at any frequency from 2.5 kHz up to 200 MHz. However, only two unique frequencies above 112.5 MHz can be simultaneously output. For example, 125 MHz (CLK0), 130 MHz (CLK1), and 150 MHz (CLKx) is not allowed. Note that multiple copies of frequencies above 112.5 MHz can be provided, for example, 125 MHz could be provided on four outputs (CLKS0-3) simultaneously with 130 MHz on four different outputs (CLKS4-7). 4.2.2. .Spread Spectrum Spread spectrum can be enabled on any of the clock outputs that use PLLA as its reference. Spread spectrum is useful for reducing electromagnetic interference (EMI). Enabling spread spectrum on an output clock modulates its frequency, which effectively reduces the overall amplitude of its radiated energy. Note that spread spectrum is not available on clocks synchronized to PLLB. The Si5350A supports several levels of spread spectrum allowing the designer to choose an ideal compromise between system performance and EMI compliance. An optional spread spectrum enable pin (SSEN) is configurable to enable or disable the spread spectrum feature. Rev. 1.0 11 Si5350A-B See “4.3.1. Spread Spectrum Enable (SSEN)” for details. Reduced Am plitude and EM I Center Frequency Am plitude fc fc No Spread Spectrum D ow n Spread Figure 6. Available Spread Spectrum Profiles 4.2.3. Invert/Non-Invert By default, each of the output clocks are generated in phase (non-inverted) with respect to each other. An option to invert any of the clock outputs is also available. 4.2.4. Output State When Disabled There are up to three output enable pins configurable on the Si5350A as described in “4.3.4. Output Enable (OEB_0, OEB_1, OEB_2)” . The output state when disabled for each of the outputs is configurable as output high, output low, or high-impedance. 4.2.5. Powering Down Unused Outputs Unused clock outputs can be completely powered down to conserve power. 4.3. Programmable Control Pins (P0–P4) Options Up to five programmable control pins (P0-P4) are configurable allowing direct pin control of the following features: 4.3.1. Spread Spectrum Enable (SSEN) An optional control pin allows disabling the spread spectrum feature for all outputs that were configured with spread spectrum enabled. Hold SSEN low to disable spread spectrum. The SSEN pin provides a convenient method of evaluating the effect of using spread spectrum clocks during EMI compliance testing. 4.3.2. Power Down (PDN) An optional power down control pin allows a full shutdown of the Si5350A to minimize power consumption when its output clocks are not being used. The Si5350A is in normal operation when the PDN pin is held low and is in power down mode when held high. Power consumption when the device is in power down mode is indicated in Table 3 on page 4. 4.3.3. Frequency Select (FS_0, FS_1) The Si5350A offers the option of configuring up to two frequencies per clock output on CLK0-CLK5. This is a useful feature for applications that need to support more than one clock rate on the same output. An example of this is shown in Figure 7 where the FS pins selects which frequency is generated from the clock output: F1_0 is generated when FS is set low, and F2_0 is generated when FS is set high. 27 MHz 74.25 MHz FS0 Bit Level Output Frequency Selected 0 F1_0: 74.25 MHz 1 F2_0: 74.25 MHz 1.001 XA XB or 74.25 MHz 1.001 FS0 Si5350A CLK0 Video Processor Figure 7. Example of Generating Two Clock Frequencies from the Same Clock Output 12 Rev. 1.0 Si5350A-B Up to two frequency select pins are available on the Si5350A. Each of the frequency select pins can be linked to any of the clock outputs as shown in Figure 8. For example, FS_0 can be linked to control clock frequency selection on CLK0, CLK3, and CLK5; FS_1 can be used to control clock frequency selection on CLK1, CLK2, and CLK4. Any other combination is also possible. The frequency select feature is not available for CLKs 6 and 7. The Si5350A uses control circuitry to ensure that frequency changes are glitchless. This ensures that the clock always completes its last cycle before starting a new clock cycle of a different frequency. Customizable FS Control FS FS FS_0 Output Frequency 0 F1_0, F1_3, F1_5 1 F2_0, F2_3, F2_5 FS_0 FS FS FS FS_1 Output Frequency 0 F1_1, F1_2, F1_4 1 F2_1, F2_2, F2_4 FS_1 FS Glitchless Frequency Changes MultiSynth 0 CLK0 MultiSynth 1 CLK1 MultiSynth 2 CLK2 MultiSynth 3 CLK3 MultiSynth 4 CLK4 MultiSynth 5 CLK5 New frequency starts at its leading edge Frequency_A Frequency_B Frequency_A CLKx Cannot be controlled by FS pins Full cycle completes before changing to a new frequency CLK6 CLK7 Figure 8. Example Configuration of a Pin-Controlled Frequency Select (FS) 4.3.4. Output Enable (OEB_0, OEB_1, OEB_2) Up to three output enable pins (OEB_0/1/2) are available on the Si5350A. Similar to the FS pins, each OEB pin can be linked to any of the output clocks. In the example shown in Figure 9, OEB_0 is linked to control CLK0, CLK3, and CLK5; OEB_1 is linked to control CLK6 and CLK7, and OEB_2 is linked to control CLK1, CLK2, CLK4, and CLK5. Any other combination is also possible. If more than one OEB pin is linked to the same CLK output, the pin forcing a disable state will be dominant. Clock outputs are enabled when the OEB pin is held low. The output enable control circuitry ensures glitchless operation by starting the output clock cycle on the first leading edge after OEB is asserted (OEB = low). When OEB is released (OEB = high), the clock is allowed to complete its full clock cycle before going into a disabled state. This is shown in Figure 9. When disabled, the output state is configurable as disabled high, disabled low, or disabled in high-impedance. Customizable OEB Control Glitchless Output Enable CLK0 OEB_0 0 1 Output State CLK Enabled CLK Disabled OEB OEB_0 CLK1 OEB Clock starts on the first leading edge CLK2 OEB OEB_1 0 1 Output State CLK Enabled CLK Disabled Clock continues until cycle is complete CLK3 OEB_1 CLKx OEB CLK4 OEBx OEB CLK5 OEB OEB_2 0 1 Output State CLK Enabled CLK Disabled CLK6 OEB_2 OEB CLK7 OEB Figure 9. Example Configuration of a Pin-Controlled Output Enable Rev. 1.0 13 Si5350A-B 4.4. Design Considerations The Si5350A is a self-contained clock generator that requires very few external components. The following general guidelines are recommended to ensure optimum performance. 4.4.1. Power Supply Decoupling/Filtering The Si5350A has built-in power supply filtering circuitry to help keep the number of external components to a minimum. All that is recommended is one 0.1 to 1.0 µF decoupling capacitor per power supply pin. This capacitor should be mounted as close to the VDD and VDDO pins as possible without using vias. 4.4.2. Power Supply Sequencing The VDD and VDDOx (i.e., VDDO0, VDDO1, VDDO2, VDDO3) power supply pins have been separated to allow flexibility in output signal levels. Power supply sequencing for VDD and VDDOx requires that all VDDOx be powered up either before or at the same time as VDD. Unused VDDOx pins should be tied to VDD. 4.4.3. External Crystal The external crystal should be mounted as close to the pins as possible using short PCB traces. The XA and XB traces should be kept away from other high-speed signal traces. See “AN551: Crystal Selection Guide” for more details. 4.4.4. External Crystal Load Capacitors The Si5350A provides the option of using internal and external crystal load capacitors. If external load capacitors are used, they should be placed as close to the XA/XB pads as possible. See “AN551: Crystal Selection Guide” for more details. 4.4.5. Unused Pins Unused control pins (P0–P4) should be tied to GND. Unused output pins (CLK0–CLK7) should be left floating. 4.4.6. Trace Characteristics The Si5350A features various output drive strength settings. It is recommended to configure the trace characteristics as shown in Figure 10 when the default high output drive setting is used. ZO = 50 ohms R = 0 ohms CLK (Optional resistor for EMI management) Figure 10. Recommended Trace Characteristics with Default Drive Strength Setting 14 Rev. 1.0 Si5350A-B 5. Pin Descriptions XA 1 XB 2 16 CLK6 17 CLK5 18 VDDOC 19 CLK4 20 VDD 5.1. 20-pin QFN 15 CLK7 14 VDDOD GND PAD 11 VDDOA CLK0 VDDOB 10 9 5 CLK2 P2 8 12 CLK1 CLK3 4 7 P1 P4 13 6 3 P3 P0 Figure 11. Si5350A 20-Pin QFN Top View Pin Name Pin Number Pin Type* XA 1 I Function Input pin for external XTAL XB 2 I Input pin for external XTAL CLK0 13 O Output clock 0 CLK1 12 O Output clock 1 CLK2 9 O Output clock 2 CLK3 8 O Output clock 3 CLK4 19 O Output clock 4 CLK5 17 O Output clock 5 CLK6 16 O Output clock 6 CLK7 15 O Output clock 7 P0 3 I User configurable input pin 0. See 4.4.5. P1 4 I User configurable input pin 1. See 4.4.5. P2 5 I User configurable input pin 2. See 4.4.5. P3 6 I User configurable input pin 3. See 4.4.5. P4 7 I User configurable input pin 4. See 4.4.5. VDD 20 P Core voltage supply pin. See 4.4.2 VDDOA 11 P Output voltage supply pin for CLK0 and CLK1. See 4.4.2 VDDOB 10 P Output voltage supply pin for CLK2 and CLK3. See 4.4.2 VDDOC 18 P Output voltage supply pin for CLK4 and CLK5. See 4.4.2 VDDOD 14 P Output voltage supply pin for CLK6 and CLK7. See 4.4.2 GND Center Pad P Ground *Note: I = Input, O = Output, P = Power Rev. 1.0 15 Si5350A-B 5.2. 10-pin MSOP VDD 1 10 CLK0 XA 2 9 CLK1 XB 3 8 GND P0 4 7 VDDO P1 5 6 CLK2 Figure 12. Si5350A 10-pin MSOP Top View Pin Name Pin Number Pin Type* XA 2 I Input pin for external XTAL XB 3 I Input pin for external XTAL CLK0 10 O Output clock 0 CLK1 9 O Output clock 1 CLK2 6 O Output clock 2 P0 4 I User configurable input pin 0 P1 5 I User configurable input pin 1 VDD 1 P Core voltage supply pin. See 4.4.2 VDDO 7 P Output clock voltage supply pin for CLK0, CLK1, and CLK2. See 4.4.2 GND 8 P Ground Function *Note: I = Input, O = Output, P = Power 16 Rev. 1.0 Si5350A-B 6. Ordering Information Factory programmed Si5350A devices can be requested using the ClockBuilder web-based utility available at: www.silabs.com/ClockBuilder. A unique part number is assigned to each custom configuration as indicated in Figure 13. Use ClockBuilder to create custom part numbers or consult a Silicon Labs sales representative for other custom NVM configurations. Si5350A BXXXXX XXX Blank = Bulk R = Tape and R eel G T =10- M SO P G M = 20- Q FN B = Product R evision B XXXXX = U nique C ustom C ode . A five character code w ill be assigned for each unique custom configuration Evaluation Boards Si535x-TM STK Si535x-B20QFN-EVB For evaluation of Si5350A-Bxxxxx-G T (10 M SO P) For evaluation of Si5350A-Bxxxxx-G M (20 Q FN) Figure 13. Custom Clock Part Numbers Rev. 1.0 17 Si5350A-B 7. 20-Pin QFN Package Outline Seating Plane Figure 14 illustrates the package details for the Si5350A-B in a 20-pin QFN package. Table 11 lists the values for the dimensions shown in the illustration. C D2 B D A D2/2 A1 L E E2 E2/2 b A e Figure 14. 20-pin QFN Package Drawing 18 Rev. 1.0 Si5350A-B Table 11. Package Dimensions Dimension A Min 0.80 Nom 0.85 Max 0.90 A1 0.00 — 0.05 b D D2 e E E2 L 0.20 0.30 2.65 0.35 0.25 4.00 BSC 2.70 0.50 BSC 4.00 BSC 2.70 0.40 2.75 0.45 aaa — — 0.10 bbb — — 0.10 ccc — — 0.08 ddd — — 0.10 2.65 2.75 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to JEDEC Outline MO-220, variation VGGD-5. 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. Rev. 1.0 19 Si5350A-B 8. Land Pattern: 20-Pin QFN Figure 15 shows the recommended land pattern details for the Si5350 in a 20-Pin QFN package. Table 12 lists the values for the dimensions shown in the illustration. Figure 15. 20-Pin QFN Land Pattern 20 Rev. 1.0 Si5350A-B Table 12. PCB Land Pattern Dimensions Symbol Millimeters C1 4.0 C2 4.0 E 0.50 BSC X1 0.30 X2 2.70 Y1 0.80 Y2 2.70 Notes: General 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This land pattern design is based on IPC7351 guidelines. Solder Mask Design 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. Stencil Design 4. A stainless steel, laser-cut and electropolished stencil with trapezoidal walls should be used to assure good solder paste release. 5. The stencil thickness should be 0.125 mm (5 mils). 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads. 7. A 2x2 array of 1.10 x 1.10 mm openings on 1.30 mm pitch should be used for the center ground pad. Card Assembly 8. A No-Clean, Type-3 solder paste is recommended. 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body components. Rev. 1.0 21 Si5350A-B 9. 10-pin MSOP Package Outline Figure 16 illustrates the package details for the Si5350A-B in a 10-pin MSOP package. Table 13 lists the values for the dimensions shown in the illustration. Figure 16. 10-pin MSOP Package Drawing 22 Rev. 1.0 Si5350A-B Table 13. 10-MSOP Package Dimensions Dimension A A1 A2 b c D E E1 e L L2 q aaa bbb ccc ddd Min — 0.00 0.75 0.17 0.08 Nom — — 0.85 — — 3.00 BSC 4.90 BSC 3.00 BSC 0.50 BSC 0.60 0.25 BSC — — — — — 0.40 0 — — — — Max 1.10 0.15 0.95 0.33 0.23 0.80 8 0.20 0.25 0.10 0.08 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to the JEDEC Solid State Outline MO-137, Variation C 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. Rev. 1.0 23 Si5350A-B 10. Land Pattern: 10-Pin MSOP Figure 17 shows the recommended land pattern details for the Si5350A-B in a 10-Pin MSOP package. Table 14 lists the values for the dimensions shown in the illustration. Figure 17. 10-Pin MSOP Land Pattern 24 Rev. 1.0 Si5350A-B Table 14. PCB Land Pattern Dimensions Symbol Millimeters Min Max C1 4.40 REF E 0.50 BSC G1 3.00 — X1 — 0.30 Y1 Z1 1.40 REF — 5.80 Notes: General 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ASME Y14.5M-1994. 3. This Land Pattern Design is based on the IPC-7351 guidelines. 4. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05mm. Solder Mask Design 5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. Stencil Design 6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 7. The stencil thickness should be 0.125 mm (5 mils). 8. The ratio of stencil aperture to land pad size should be 1:1. Card Assembly 9. A No-Clean, Type-3 solder paste is recommended. 10. The recommended card reflow profile is per the JEDEC/IPC J-STD020C specification for Small Body components. Rev. 1.0 25 Si5350A-B 11. Top Marking 11.1. 20-Pin QFN Top Marking Figure 18. 20-Pin QFN Top Marking 11.2. Top Marking Explanation Mark Method: Laser Pin 1 Mark: Filled Circle = 0.50 mm Diameter (Bottom-Left Corner) Font Size: 0.60 mm (24 mils) Line 1 Mark Format Device Part Number Si5350 Line 2 Mark Format: TTTTTT = Mfg Code* Manufacturing Code from the Assembly Purchase Order Form. Line 3 Mark Format: YY = Year WW = Work Week Assigned by the Assembly House. Corresponds to the year and work week of the assembly date. *Note: The code shown in the “TTTTTT” line does not correspond to the orderable part number or frequency plan. It is used for package assembly quality tracking purposes only. 26 Rev. 1.0 Si5350A-B 11.3. 10-Pin MSOP Top Marking Figure 19. 10-Pin MSOP Top Marking 11.4. Top Marking Explanation Mark Method: Laser Pin 1 Mark: Mold Dimple (Bottom-Left Corner) Font Size: 0.60 mm (24 mils) Line 1 Mark Format Device Part Number Si5350 Line 2 Mark Format: TTTT = Mfg Code* Line 2 from the “Markings” section of the Assembly Purchase Order form. Line 3 Mark Format: YWW = Date Code Assigned by the Assembly House. Y = Last Digit of Current Year (Ex: 2013 = 3) WW = Work Week of Assembly Date. *Note: The code shown in the “TTTT” line does not correspond to the orderable part number or frequency plan. It is used for package assembly quality tracking purposes only. Rev. 1.0 27 Si5350A-B DOCUMENT CHANGE LIST Revision 0.75 to Revision 1.0 28 Extended frequency range from 8 MHz-160 MHz to 2.5 kHz-200 MHz. Added 1.8 V VDD support. Updated block diagrams for clarity. Added complete Si5350/1 family table, Table 1. Added top mark information. Added land pattern drawings. Added PowerUp Time, PLL Bypass mode, Table 4. Clarified Down Spread step sizes in Table 4. Updated max jitter specs (typ unchanged) in Table 6. Clarified power supply sequencing requirement, Section 4.4.2. Rev. 1.0 ClockBuilder Pro One-click access to Timing tools, documentation, software, source code libraries & more. Available for Windows and iOS (CBGo only). www.silabs.com/CBPro Timing Portfolio www.silabs.com/timing SW/HW Quality Support and Community www.silabs.com/CBPro www.silabs.com/quality community.silabs.com Disclaimer Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Trademark Information Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA http://www.silabs.com