Si52143 PCI-Express Gen1, Gen2, & Gen3 Quad Output Clock Generator with 25 MHz Reference Clock (Chinese)

Si52143
PCI-E XPRESS 1 代 、 2 代 和 3 代 四 输 出 时 钟 发 生 器 及
25 MH Z 参 考 时 钟
特点
订购信息:
参阅第 18 页
应用
网络附加存储
 多功能打印机
无线接入点
 路由器

引脚分配
描述
功能模块示意图
24
23
22
21
20
19
VDD_REF
1
1
18 OE[3:2]
17 VDD_DIFF
REF
2
SSON2
3
VSS_REF
4
OE_REF1
5
VDD_DIFF
6
16 DIFF3
25
GND
15 DIFF3
14 DIFF2
13 DIFF2
7
8
9
10
11
12
VDD_DIFF
Si52143 是扩频时钟使能 PCIe 时钟发生器,可作为四个 PCIe 时钟和一个 25 MHz
参考时钟的时钟源。设备有三个用于启用输出 (打开电源时即动态生成)的硬件输
出使能引脚,和一个控制 PCIe 时钟输出上的扩频的硬件引脚。除硬件控制引脚外,
I2C 编程功能还可用于动态控制 PCIe 时钟输出上的真、补偿或两种差分信号上的
偏移、边缘频率和振幅。这种控制功能可在 PCIe 时钟输出上实现最佳信号完整性
和最佳 EMI 签名。关于信号完整性调整和可配置性的信息请参考 AN636。
DIFF1

SCLK

VDD_CORE

SDATA

XOUT

DIFF1


支持 I2C,带回读功能
使用三角扩频改善图最大程度地减少
电磁干扰 (EMI)
扩展温度范围
–40 至 85 oC
3.3 V 电源
24 引脚 QFN 封装
XIN/CLKIN


DIFF0


VSS_CORE

25 MHz 参考时钟
25 MHz 晶体输入或时钟输入
 信号完整性调整

DIFF0

PCI-Express 1 代、 2 代和
3 代兼容
100 MHz 下支持串行 ATA (SATA)
低功耗,差分输出
无需终端电阻
各时钟专用输出使能硬件引脚
差分时钟上有扩频使能引脚
四个 PCI-Express 时钟
OE[1:0]1

Notes:
1. Internal 100 kohm pull-up.
2. Internal 100 kohm pull-down.
REF
XIN/CLKIN
XOUT
专利申请中
DIFF0
DIFF1
PLL
(SSC)
Divider
DIFF2
DIFF3
SCLK
SDATA
Control & Memory
OE_REF
OE [1:0]
Control
RAM
OE [3:2]
SSON
修订版 1.2 2/14
版权所有 © 2014 Silicon Laboratories
Si52143
Si52143
2
??? 1.2
Si52143
目录
章节
页码
1. 电气规格 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2. 功能描述 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2.1. 晶体建议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2.2. OE 引脚定义 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.3. OE 断言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.4. OE 无效置位 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.5. SSON 引脚定义 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
3. 测试和测量设置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
4. 控制寄存器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1. I2C 接口 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2. 数据协议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5. 引脚描述:24- 引脚 QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6. 订购指南 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7. 封装外形 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
文档修改列表 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
联系信息 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
??? 1.2
3
Si52143
1. 电气规格
Table 1. DC Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
3.3 V Operating Voltage
VDD core
3.3 ± 5%
3.135
3.3
3.465
V
3.3 V Input High Voltage
VIH
Control input pins
2.0
—
VDD + 0.3
V
3.3 V Input Low Voltage
VIL
Control input pins
VSS –
0.3
—
0.8
V
Input High Voltage
VIHI2C
SDATA, SCLK
2.2
—
—
V
Input Low Voltage
VILI2C
SDATA, SCLK
—
—
1.0
V
Input High Leakage Current
IIH
Except internal pull-down
resistors, 0 < VIN < VDD
—
—
5
A
Input Low Leakage Current
IIL
Except internal pull-up resistors, 0 < VIN < VDD
–5
—
—
A
3.3 V Output High Voltage
(Single-Ended Outputs)
VOH
IOH = –1 mA
2.4
—
—
V
3.3 V Output High Voltage
(Single-Ended Outputs)
VOL
IOL = 1 mA
–
—
0.4
V
High-impedance Output Current
IOZ
–10
—
10
µA
Input Pin Capacitance
CIN
1.5
—
5
pF
COUT
—
—
6
pF
LIN
—
—
7
nH
—
—
55
mA
Output Pin Capacitance
Pin Inductance
Dynamic Supply Current
4
IDD_3.3V
All outputs enabled. Differential clocks with 5” traces
and 2 pF load.
??? 1.2
Si52143
Table 2. AC Electrical Specification
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
LACC
Measured at VDD/2 differential
—
—
250
ppm
TDC
Measured at VDD/2
45
—
55
%
CLKIN Rising and Falling Slew
Rate
TR/TF
Measured between 0.2 VDD and
0.8 VDD
0.5
—
4.0
V/ns
Cycle to Cycle Jitter
TCCJ
Measured at VDD/2
—
—
250
ps
Long Term Jitter
TLTJ
Measured at VDD/2
—
—
350
ps
Input High Voltage
VIH
XIN/CLKIN pin
2
—
VDD+0.3
V
Input Low Voltage
VIL
XIN/CLKIN pin
—
—
0.8
V
Input High Current
IIH
XIN/CLKIN pin, VIN = VDD
—
—
35
µA
Input Low Current
IIL
XIN/CLKIN pin, 0 < VIN <0.8
–35
—
—
µA
TDC
Measured at 0 V differential
45
—
55
%
TSKEW
Measured at 0 V differential
—
—
50
ps
Cycle to Cycle Jitter
TCCJ
Measured at 0 V differential
—
35
50
ps
PCIe Gen 1 Pk-Pk Jitter
Pk-Pk
PCIe Gen 1
0
40
50
ps
PCIe Gen 2 Phase Jitter
RMSGEN2
10 kHz < F < 1.5 MHz
0
2
2.6
ps
1.5 MHz< F < Nyquist Rate
0
2
2.6
ps
RMSGEN3
Includes PLL BW 2–4 MHz
(CDR = 10 MHz)
0
0.5
0.9
ps
LACC
Measured at 0 V differential
—
—
100
ppm
Rising/Falling Slew Rate
TR / TF
Measured differentially from
±150 mV
1
—
8
V/ns
Voltage High
VHIGH
—
—
1.15
V
Voltage Low
VLOW
–0.3
—
—
V
VOX
300
—
550
mV
—
–0.5
—
%
30
31.5
33
kHz
Crystal
Long-term Accuracy
Clock Input
Duty Cycle
DIFF at 0.7 V
Duty Cycle
Output-to-Output Skew
PCIe Gen 3 Phase Jitter
Long Term Accuracy
Crossing Point Voltage at 0.7 V
Swing
Spread Range
SPR-2
Modulation Frequency
FMOD
Down spread
Note: Visit www.pcisig.com for complete PCIe specifications.
??? 1.2
5
Si52143
Table 2. AC Electrical Specification (Continued)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
TDC
Measurement at 1.5 V
45
—
55
%
TR / TF
Measured between 0.8 and 2.0 V
1.0
—
4.0
V/ns
Cycle to Cycle Jitter
TCCJ
Measurement at 1.5 V
—
—
300
ps
Long Term Accuracy
LACC
Measured at 1.5 V
—
—
100
ppm
REF(25 MHz) at 3.3 V
Duty Cycle
Rising and Falling Edge Rate
Enable/Disable and Set-Up
Clock Stabilization from
Power-up
TSTABLE
—
—
1.8
ms
Stopclock Set-up Time
TSS
10.0
—
—
ns
Note: Visit www.pcisig.com for complete PCIe specifications.
Table 3. Absolute Maximum Conditions
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
VDD_3.3V
Functional
—
—
4.6
V
Input Voltage
VIN
Relative to VSS
–0.5
—
4.6
VDC
Temperature, Storage
TS
Non-functional
–65
—
150
°C
Temperature, Operating Ambient
TA
Functional
–40
—
85
°C
Temperature, Junction
TJ
Functional
—
—
150
°C
Dissipation, Junction to Case
ØJC
JEDEC (JESD 51)
—
—
35
°C/W
Dissipation, Junction to Ambient
ØJA
JEDEC (JESD 51)
—
—
37
°C/W
ESDHBM
JEDEC (JESD 22-A114)
2000
—
—
V
UL-94
UL (Class)
Main Supply Voltage
ESD Protection (Human Body Model)
Flammability Rating
V–0
Note: While using multiple power supplies, the voltage on any input or I/O pin cannot exceed the power pin during power-up.
Power supply sequencing is not required.
6
??? 1.2
Si52143
2. 功能描述
2.1. 晶体建议
如果使用晶体输入,则该设备需要并联谐振 25 MHz 晶体。
Table 4. Crystal Recommendations
Frequency
(Fund)
Cut
Loading Load Cap
25 MHz
AT
Parallel
12–15 pF
Shunt
Cap (max)
Motional
(max)
Tolerance
(max)
Stability
(max)
Aging
(max)
5 pF
0.016 pF
35 ppm
30 ppm
5 ppm
2.1.1. 晶体负载
晶体负载是 ppm 准确性的关键。为实现低 / 零 ppm 错误,请使用下面第 2.1.2 节中的计算估计合适的电容性负载 (CL)。图 1 显
示的是使用两个微调电容的典型晶体结构。请注意微调电容与晶体是串联的。
Figure 1. Crystal Capacitive Clarification
2.1.2. 计算负载电容
除标准外部微调电容外,还可考虑使用走线电容和引脚电容正确地计算晶体负载。每一侧的电容都是与晶体串联的。两侧总电容
是晶体负载电容 (CL) 上标示的两倍。 计算微调电容以便在两侧提供相等的电容负载。
Figure 2. Crystal Loading Example
使用以下公式为 Ce1 和 Ce2 计算微调电容值。
??? 1.2
7
Si52143
Load Capacitance (each side)
Ce = 2 x CL – (Cs + Ci)
Total Capacitance (as seen by the crystal)
CLe
=
CL:
1
1
( Ce1 + Cs1
+ Ci1 +
)
晶体负载电容
CLe:
从晶体来看使用标准值微调电容时的实际负载
Ce:
外部微调电容
Cs:
杂散电容 (阶梯)
Ci
1
Ce2 + Cs2 + Ci2
: 内部电容 (引线框架、接合线等)
2.2. OE 引脚定义
OE 是用于启用和禁用输出时钟的有效高输入。要启用输出时钟,OE 引脚应为逻辑高且 I2C 输出位使能应为逻辑高。
有两种禁用输出时钟的方法:将 OE 拉到逻辑低,或将 I2C 使能位设置为逻辑低。 OE 引脚虽然有一个内置 100 k
电阻,但仍需要随时处于驱动状态。
2.3. OE 断言
OE 信号是用于分别同步停止和启动输出时钟且其他时钟发生器继续发挥作用的有效高输入。将 OE 信号设置为逻辑
高的断言会使停止的各输出时钟恢复正常运行。时钟恢复时不会产生短时或延长的时钟脉冲。从断言到有效输出的
最大延迟不超过二到六个输出时钟周期。
2.4. OE 无效置位
将 OE 引脚设为逻辑低而使其为无效置位时,相应的输出时钟将完全停止,最终输出状态被拉低。
2.5. SSON 引脚定义
SSON 是用于在所有 DIFF 输出上启用 –0.5% 扩频的有效输入。采样高时,所有 DIFF 输出上均启用 –0.5% 扩频。采样低时,
DIFF 输出频率不扩频。
8
??? 1.2
Si52143
3. 测试和测量设置
图 3 显示 HCSL 时钟输出的测试负载配置。
M e a s u re m e n t
P o in t
L1
O U T+
5 0
2 pF
L1 = 5"
M e a s u re m e n t
P o in t
L1
O U T-
5 0
2 pF
Figure 3. 0.7 V Differential Load Configuration
关于如何终止 LVDS、 LVPECL 或 CML 信号水平的差分输出的建议,请见应用注释 AN781。
Figure 4. Differential Output Measurement for Differential Signals
(for AC Parameters Measurement)
??? 1.2
9
Si52143
VMIN = –0.30V
VMIN = –0.30V
Figure 5. Single-ended Measurement for Differential Output Signals
(for AC Parameters Measurement
L1 = 0.5", L2 = 5"
Measurement
50
SE Clocks
Point
L1
33 
L2
4 pF
Figure 6. Single-Ended Clocks with Single Load Configuration
Figure 7. Single Ended Output Signal (for AC Parameter Measurement)
10
??? 1.2
Si52143
4. 控制寄存器
4.1. I2C 接口
为提高时钟合成器的灵活性和功能,可使用 I2C 接口。通过 I2C 接口可使用各种设备功能,如启用单个时钟。与 I2C 接口相关的
寄存器在上电时初始化为默认设置。此接口的使用是可选的。若需要更改时钟寄存器,则这种更改通常是在系统初始化时进行的。
电源管理功能只能在程序模式下编程,不能在普通运行模式下进行。
4.2. 数据协议
时钟驱动器 I2C 协议可接受控制器的写字节、读字节、写块和读块操作。对于写 / 读块操作,从低到高依次存取字节 (从最高有
效位开始),并有在传输完任何完整字节后停止的能力。对于写字节和读字节操作,系统控制器可存取独立索引的字节。
写块和读块协议请见 表 5,写字节和读字节协议请见 表 6。从接收器地址为 11010110 (D6h)。
Table 5. Block Read and Block Write Protocol
Block Write Protocol
Bit
1
8:2
Block Read Protocol
Description
Bit
1
Start
8:2
Slave address—7 bits
Description
Start
Slave address—7 bits
9
Write
9
Write
10
Acknowledge from slave
10
Acknowledge from slave
18:11
Command Code—8 bits
18:11
Command Code—8 bits
19
Acknowledge from slave
19
Acknowledge from slave
Byte Count—8 bits
20
Repeat start
27:20
28
36:29
37
45:38
Acknowledge from slave
27:21
Slave address—7 bits
Data byte 1—8 bits
28
Read = 1
Acknowledge from slave
29
Acknowledge from slave
37:30
Data byte 2—8 bits
46
Acknowledge from slave
....
Data Byte /Slave Acknowledges
....
Data Byte N—8 bits
....
Acknowledge from slave
....
Stop
38
46:39
47
55:48
Byte Count from slave—8 bits
Acknowledge
Data byte 1 from slave—8 bits
Acknowledge
Data byte 2 from slave—8 bits
56
Acknowledge
....
Data bytes from slave/Acknowledge
....
Data Byte N from slave–8 bits
....
NOT Acknowledge
....
Stop
Table 6. Byte Read and Byte Write Protocol
Byte Write Protocol
Bit
1
8:2
Byte Read Protocol
Description
Bit
Start
1
Slave address–7 bits
8:2
??? 1.2
Description
Start
Slave address–7 bits
11
Si52143
Table 6. Byte Read and Byte Write Protocol
9
Write
9
Write
10
Acknowledge from slave
10
Acknowledge from slave
18:11
19
27:20
Command Code–8 bits
18:11
Acknowledge from slave
19
Acknowledge from slave
Data byte–8 bits
20
Repeated start
28
Acknowledge from slave
29
Stop
27:21
??? 1.2
Slave address–7 bits
28
Read
29
Acknowledge from slave
37:30
12
Command Code–8 bits
Data from slave–8 bits
38
NOT Acknowledge
39
Stop
Si52143
Control Register 0. Byte 0
Bit
D7
D6
D5
D4
D3
D1
D0
R/W
R/W
R/W
D2
D1
D0
REF_OE
Name
Type
D2
R/W
R/W
R/W
R/W
R/W
重置设置 = 00000100
Bit
Name
Function
7:3
Reserved
2
REF_OE
Output Enable for REF.
0: Output disabled.
1: Output enabled.
1:0
Reserved
Control Register 1. Byte 1
Bit
D7
D6
D5
D4
D3
Name
Type
DIFF0_OE
R/W
R/W
R/W
R/W
R/W
R/W
DIFF1_OE
R/W
R/W
重置设置 = 00000101
Bit
Name
7:3
Reserved
2
DIFF0_OE
Function
Output Enable for DIFF0.
0: Output disabled.
1: Output enabled.
1
Reserved
0
DIFF1_OE
Output Enable for DIFF1.
0: Output disabled.
1: Output enabled.
??? 1.2
13
Si52143
Control Register 2. Byte 2
Bit
D7
D6
Name
DIFF2_OE
DIFF3_OE
Type
R/W
R/W
D5
D4
D3
D2
D1
D0
R/W
R/W
R/W
R/W
R/W
R/W
D2
D1
D0
重置设置 = 11000000
Bit
Name
Function
7
DIFF2_OE
Output Enable for DIFF2.
0: Output disabled.
1: Output enabled.
6
DIFF3_OE
Output Enable for DIFF3.
0: Output disabled.
1: Output enabled.
5:0
Reserved
Control Register 3. Byte 3
Bit
D7
D6
Name
Type
D5
D4
D3
Rev Code[3:0]
R/W
R/W
R/W
Vendor ID[3:0]
R/W
R/W
R/W
R/W
R/W
D3
D2
D1
D0
R/W
R/W
R/W
R/W
重置设置 = 00001000
Bit
Name
Function
7:4
Rev Code[3:0]
Program Revision Code.
3:0
Vendor ID[3:0]
Vendor Identification Code.
Control Register 4. Byte 4
Bit
D7
D6
D5
D4
Name
Type
BC[7:0]
R/W
R/W
R/W
R/W
重置设置 = 00000110
14
??? 1.2
Si52143
Bit
Name
7:0
BC[7:0]
Function
Byte Count Register.
Control Register 5. Byte 5
Bit
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R/W
R/W
R/W
Name DIFF_Amp_Sel DIFF_Amp_Cntl[2] DIFF_Amp_Cntl[1] DIFF_Amp_Cntl[0]
Type
R/W
R/W
R/W
R/W
重置设置 = 11011000
Bit
Name
7
DIFF_Amp_Sel
Function
Amplitude Control for DIFF Differential Outputs.
0: Differential outputs with Default amplitude.
1: Differential outputs amplitude is set by Byte 5[6:4].
6
DIFF_Amp_Cntl[2]
5
DIFF_Amp_Cntl[1]
4
DIFF_Amp_Cntl[0]
3:0
Reserved
DIFF Differential Outputs Amplitude Adjustment.
000: 300 mV 001: 400 mV 010: 500 mV
100: 700 mV 101: 800 mV 110: 900 mV
??? 1.2
011: 600 mV
111: 1000 mV
15
Si52143
VSS_CORE
XIN/CLKIN
XOUT
VDD_CORE
SDATA
SCLK
5. 引脚描述:24- 引脚 QFN
24
23
22
21
20
19
VDD_REF
1
1
18 OE[3:2]
REF
2
17 VDD_DIFF
SSON2
3
VSS_REF
4
OE_REF1
5
VDD_DIFF
6
16 DIFF3
25
GND
15 DIFF3
14 DIFF2
7
8
9
10
11
12
OE[1:0]1
DIFF0
DIFF0
DIFF1
DIFF1
VDD_DIFF
13 DIFF2
Notes:
1. Internal 100 kohm pull-up.
2. Internal 100 kohm pull-down.
Table 7. Si52143 24-Pin QFN Descriptions
Pin #
Name
1
VDD_REF
2
REF
3
SSON
I,PD
Active high input pin enables –0.5% spread on DIFF outputs
(internal 100 k pull-down).
4
VSS_REF
GND
Ground
5
OE_REF
I,PU
Active high input to enable or disable REF clock.
6
VDD_DIFF
7
OE[1:0]
8
DIFF0
O, DIF 0.7 V, 100 MHz differential clock output.
9
DIFF0
O, DIF 0.7 V, 100 MHz differential clock output.
10
DIFF1
O, DIF 0.7 V, 100 MHz differential clock output.
16
Type
Description
PWR 3.3 V power supply.
O, SE 3.3 V, 25 MHz crystal reference clock output.
PWR 3.3 V power supply.
I,PU
Active high input to enable or disable DIFF0 and DIFF1 clocks.
??? 1.2
Si52143
Table 7. Si52143 24-Pin QFN Descriptions (Continued)
Pin #
Name
Type
Description
11
DIFF1
12
VDD_DIFF
13
DIFF2
O, DIF 0.7 V, 100 MHz differential clock output.
14
DIFF2
O, DIF 0.7 V, 100 MHz differential clock output.
15
DIFF3
O, DIF 0.7 V, 100 MHz differential clock output.
16
DIFF3
O, DIF 0.7 V, 100 MHz differential clock output.
17
VDD_DIFF
18
OE[3:2]
I,PU
19
SCLK
I
20
SDATA
I/O
21
VDD_CORE
22
XOUT
O
25.00 MHz crystal output, Float XOUT if using only CLKIN (Clock input).
23
XIN/CLKIN
I
25.00 MHz crystal input or 3.3 V, 25 MHz Clock Input.
24
VSS_CORE
GND
Ground.
25
GND
GND
Ground for bottom pad of the IC.
O, DIF 0.7 V, 100 MHz differential clock output.
PWR 3.3 V power supply.
PWR 3.3 V power supply.
Active high input to enable or disable DIFF2 and DIFF3 clocks.
I2C SCLOCK.
I2C SDATA.
PWR 3.3 V power supply.
??? 1.2
17
Si52143
6. 订购指南
Part Number
Package Type
Temperature
Si52143-A01AGM
24-pin QFN
Industrial, –40 to 85 C
Si52143-A01AGMR
24-pin QFN—Tape and Reel
Industrial, –40 to 85 C
Lead-free
18
??? 1.2
Si52143
7. 封装外形
图 8 说明 Si52142 的封装详细信息。表 8 列出插图中尺寸值。
Figure 8. 24-Pin Quad Flat No Lead (QFN) Package
Table 8. Package Diagram Dimensions
Symbol
Millimeters
Min
Nom
Max
0.70
0.75
0.80
A1
0.00
0.025
0.05
b
0.20
0.25
0.30
A
D
D2
4.00 BSC
2.60
2.70
e
0.50 BSC
E
4.00 BSC
2.80
E2
2.60
2.70
2.80
L
0.30
0.40
0.50
aaa
0.10
bbb
0.10
ccc
0.08
ddd
0.07
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise
noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to JEDEC outline MO-220, variation VGGD-8.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020
specification for Small Body Components.
??? 1.2
19
Si52143
文档修改列表
修订版 0.1 至修订版 1.0









已更新第 1 页上的功能。
已更新第 1 页上的说明。
已更新第 4 页上的表 1。
已更新第 5 页上的表 2。
已更新第 7 页上的第 2 节。
已更新第 7 页上的第 2.1.1 节。
已更新第 11 页上的第 4.1 节。
已更新第 11 页上的第 4.2 节。
已更新第 16 页上的引脚说明。
修订版 1.0 至修订版 1.1

从表 3 删除了湿敏度规格。
修订版 1.1 至修订版 1.2


20
更新了表 2。
更新了第 3 节。
??? 1.2
Si52143
注意:
??? 1.2
21
ClockBuilder Pro
One-click access to Timing tools,
documentation, software, source
code libraries & more. Available for
Windows and iOS (CBGo only).
www.silabs.com/CBPro
Timing Portfolio
www.silabs.com/timing
SW/HW
Quality
Support and Community
www.silabs.com/CBPro
www.silabs.com/quality
community.silabs.com
Disclaimer
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.
Trademark Information
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
http://www.silabs.com