Si4730/Si4731/Si4734/Si4735-D60 Broadcast AM/FM/SW/LW Radio Receiver—Ideal for Consumer Electronics (CE). Please use Si4730-31-D50 for Mobile Devices.

Si4730/31/34/35-D60
B ROADCAST AM/FM/SW/LW R ADIO R ECEIVER
Features
















Ordering Information:
See page 31.
Pin Assignments
Si473x-D60 (QFN)
DFS


Seven selectable AM channel filters
AM/FM/SW/LW digital tuning
EN55020 compliant
No manual alignment necessary
Programmable reference clock
Adjustable soft mute control
RDS/RBDS processor (Si4731/35)
Digital audio out
2-wire and 3-wire control interface
Integrated LDO regulator
Wide range of ferrite loop sticks and
air loop antennas supported
QFN and SSOP packages
RoHS compliant
GPO3/[DCLK]


GPO2/[INT]


GPO1

Worldwide FM band support
(64–108 MHz)
Worldwide AM band support
(520–1710 kHz)
SW band support (Si4734/35)
(2.3–26.1 MHz)
LW band support (Si4734/35)
(153–279 kHz)
Excellent real-world performance
Integrated VCO
Advanced AM/FM seek tuning
Automatic frequency control (AFC)
Automatic gain control (AGC)
Digital FM stereo decoder
Programmable de-emphasis
Advanced Audio Processing
NC

20
19
18
17
16
Applications
NC

FMI 2
FM / SW
AN T
RD S
(S i4731/
35)
LN A
LO W -IF
AGC
AMI
Rev. 1.2 8/13
RCLK
VD
Si473x-D60(SSOP)
DOUT
1
24
LOUT/[DFS]
DFS
2
23
ROUT/[DOUT]
GPO3/[DCLK]
3
22
DBYP
GPO2/[INT]
4
21
VA
GPO1
5
20
VD
NC
6
19
RCLK
NC
7
18
SDIO
17
SCLK
16
SEN
DFS
NC
10
15
RST
G PO /D CLK
NC
11
14
GND
AMI
12
13
GND
RO UT
DA C
LO UT
CO NTR O L
INTER FAC E
AFC
RCLK
LD O
11 VA
D SP
AD C
M ux
VA
GND
10
9
VD
1.62 - 3.6 V
RST
AGC
SEN
2.7~5.5 V (Q FN )
2.0~5.5 V (SSO P)
LN A
9
8
DA C
SDIO
R FG N D
AD C
M ux
SCLK
A M / LW
A NT
8
FMI
DO UT
DIG ITA L
AU D IO
12 GND
7
RFGND
Si473x-D60
FM I
13 ROUT/[DOUT]
RST 5
SEN
Functional Block Diagram
14 LOUT/[DFS]
GND
PAD
AMI 4
6
The Si473x-D60 digital CMOS AM/FM radio receiver IC integrates the complete
broadcast tuner and receiver function from antenna input to digital audio output.
The device leverages the Silicon Labs broadcast proven digital low-IF
architecture, enabling a cost-effective, digital audio platform for consumer
electronic applications with high TDMA noise immunity, superior radio
performance, and high fidelity audio power amplification.
15 DOUT
RFGND 3
Description
+
1
SDIO
Modules for consumer electronics
Clock radios
 Mini HiFi and docking stations
 Entertainment systems


SCLK
Table and portable radios
Mini/micro systems
 CD/DVD and Blu-ray players
 Stereo boom boxes

Copyright © 2013 by Silicon Laboratories
This product, its features, and/or its
architecture is covered by one or more of
the following patents, as well as other
patents, pending and issued, both
foreign and domestic: 7,127,217;
7,272,373;
7,272,375;
7,321,324;
7,355,476;
7,426,376;
7,471,940;
7,339,503; 7,339,504.
Si473x-D60
Si4730/31/34/35-D60
2
Rev. 1.2
Si4730/31/34/35-D60
TABLE O F C ONTENTS
Section
Page
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
2. Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1. QFN Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2. SSOP Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3. Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1. QFN/SSOP Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3. FM Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
4.4. AM Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
4.5. SW Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.6. LW Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
4.7. Digital Audio Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.8. Stereo Audio Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.9. Received Signal Qualifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.10. Volume Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.11. Stereo DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.12. Soft Mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.13. FM Hi-Cut Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.14. De-emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.15. RDS/RBDS Processor (Si4731/35 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.16. Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.17. Seek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.18. Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.19. Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.20. GPO Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.21. Firmware Upgrades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
4.22. Reset, Powerup, and Powerdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.23. 2 V Operation (SSOP Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.24. Programming with Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1. Si473x-D60-GM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
5.2. Si473x-D60-GU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.1. Si473x-D60 QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.2. Si473x-D60 SSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8. PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
8.1. Si473x-D60 QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.2. Si473x-D60 SSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Rev. 1.2
3
Si4730/31/34/35-D60
9. Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
9.1. Si473x-D60 Top Marking (QFN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.2. Top Marking Explanation (QFN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.3. Si473x-D60 Top Marking (SSOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.4. Top Marking Explanation (SSOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
10. Additional Reference Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
4
Rev. 1.2
Si4730/31/34/35-D60
1. Electrical Specifications
Table 1. Recommended Operating Conditions1
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Analog Supply Voltage
VA
2.72
—
5.5
V
Digital and I/O Supply Voltage
VD
1.62
—
3.6
V
Power Supply Powerup Rise Time
VDDRISE
10
—
—
µs
Interface Power Supply Powerup Rise Time
VIORISE
10
—
—
µs
TA
–20
25
85
C
Ambient Temperature
Notes:
1. All minimum and maximum specifications apply across the recommended operating conditions. Typical values apply at
VA = 3.3 V and 25 C unless otherwise stated.
2. SSOP devices operate down to 2 V at 25 °C. See section “4.23. 2 V Operation (SSOP Only)” for details.
Rev. 1.2
5
Si4730/31/34/35-D60
Table 2. DC Characteristics
(VA = 2.7 to 5.5 V, VD = 1.62 to 3.6 V, TA = –20 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
—
8.2
9.5
—
10.5
13.5
—
18.5
21.5
Unit
FM Mode
VAQFN Supply Current
IFMVA
VDQFN Supply Current
IFMVD
VASSOP Supply Current
IFMVA
VDSSOP Supply Current
IFMVD
—
0.15
0.6
VAQFN Supply Current
IFMVA
—
9.1
10.3
VDQFN Supply Current
IFMVD
—
9.9
12.8
VASSOP Supply Current
IFMVA
—
19.1
21.3
VDSSOP Supply Current
IFMVD
0.1
0.6
—
6.5
7.5
—
8.5
11.0
—
14.5
16.5
Digital Output Mode1
Analog Output Mode2
mA
AM Mode
VAQFN Supply Current
IAMVA
VDQFN Supply Current
IAMVD
VASSOP Supply Current
IAMVA
VDSSOP Supply Current
IAMVD
—
0.15
0.50
VAQFN Supply Current
IAMVA
—
7.5
8.5
VDQFN Supply Current
IAMVD
—
8
10.2
VASSOP Supply Current
IAMVA
—
15.3
17.2
VDSSOP Supply Current
IAMVD
—
0.1
0.4
—
4
15
—
9.5
15
SCLK, RCLK inactive
—
3
10
SCLK, RCLK inactive
—
3
10
Digital Output Mode
Analog Output Mode
mA
Powerdown
VAQFN Powerdown Current
VASSOP Powerdown Current
VDQFN Powerdown Current
VDSSOP Powerdown Current
IAPD
IDPD
µA
µA
High Level Input Voltage3
VIH
0.7 x VD
—
VD + 0.3
V
3
VIL
–0.3
—
0.3 x VD
V
3
IIH
VIN = VD = 3.6 V
–10
—
10
µA
Current3
IIL
VIN = 0 V,
VD = 3.6 V
–10
—
10
µA
High Level Output Voltage4
VOH
IOUT = 500 µA
0.8 x VD
—
—
V
4
VOL
IOUT = –500 µA
—
—
0.2 x VD
V
Low Level Input Voltage
High Level Input Current
Low Level Input
Low Level Output Voltage
Notes:
1. Guaranteed by characterization.
2. Backwards compatible mode to rev B and rev C. Additional features on this device may increase typical supply current.
3. For input pins SCLK, SEN, SDIO, RST, RCLK, DCLK, DFS, GPO1, GPO2, and GPO3.
4. For output pins SDIO, DOUT, GPO1, GPO2, and GPO3.
6
Rev. 1.2
Si4730/31/34/35-D60
Table 3. Reset Timing Characteristics1,2,3
(VA = 2.7 to 5.5 V, VD = 1.62 to 3.6 V, TA = –20 to 85 °C)
Parameter
Symbol
Min
Typ
Max
Unit
tSRST
100
—
—
µs
GPO1, GPO2/INT Hold from RST
tHRST
30
—
—
ns
RST Pulse Release time before VDD/VIO turn off
tRRST
30
—
—
ns
RST Pulse Width and GPO1, GPO2/INT Setup to
RST
Important Notes:
1. When selecting 2-wire mode, the user must ensure that a 2-wire start condition (falling edge of SDIO while SCLK is
high) does not occur within 300 ns before the rising edge of RST.
2. When selecting 2-wire mode, the user must ensure that SCLK is high during the rising edge of RST, and stays high until
after the first start condition.
3. When selecting 3-wire mode, the user must ensure that a rising edge of SCLK does not occur within 300 ns before the
rising edge of RST.
4. If GPO1 and GPO2 are actively driven by the user, then minimum tSRST is only 30 ns. If GPO1 or GPO2 is hi-Z, then
minimum tSRST is 100 µs, to provide time for on-chip 1 M devices (active while RST is low) to pull GPO1 high and
GPO2 low.
5. RST must be held low for at least 100 µs after all voltage supplies have been ramped up.
6. RST needs to be asserted (pulled low) prior to any supply voltage being ramped down.
Figure 1. Reset Timing Parameters for Busmode Select
Rev. 1.2
7
Si4730/31/34/35-D60
Table 4. 2-Wire Control Interface Characteristics1,2,3
(VA = 2.7 to 5.5 V, VD = 1.62 to 3.6 V, TA = –20 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
SCLK Frequency
fSCL
0
—
400
kHz
SCLK Low Time
tLOW
1.3
—
—
µs
SCLK High Time
tHIGH
0.6
—
—
µs
SCLK Input to SDIO  Setup
(START)
tSU:STA
0.6
—
—
µs
SCLK Input to SDIO  Hold
(START)
tHD:STA
0.6
—
—
µs
SDIO Input to SCLK  Setup
tSU:DAT
100
—
—
ns
SDIO Input to SCLK  Hold4,5
tHD:DAT
0
—
900
ns
SCLK input to SDIO  Setup
(STOP)
tSU:STO
0.6
—
—
µs
STOP to START Time
tBUF
1.3
—
—
µs
SDIO Output Fall Time
tf:OUT
—
250
ns
—
300
ns
Cb
20 + 0.1 ----------1pF
SDIO Input, SCLK Rise/Fall Time
tf:IN
tr:IN
Cb
20 + 0.1 ----------1pF
SCLK, SDIO Capacitive Loading
Cb
—
—
50
pF
Input Filter Pulse Suppression
tSP
—
—
50
ns
Notes:
1. When VD = 0 V, SCLK and SDIO are low impedance.
2. When selecting 2-wire mode, the user must ensure that a 2-wire start condition (falling edge of SDIO while SCLK is
high) does not occur within 300 ns before the rising edge of RST.
3. When selecting 2-wire mode, the user must ensure that SCLK is high during the rising edge of RST, and stays high
until after the first start condition.
4. The Si473x-D60 delays SDIO by a minimum of 300 ns from the VIH threshold of SCLK to comply with the minimum
tHD:DAT specification.
5. The maximum tHD:DAT has only to be met when fSCL = 400 kHz. At frequencies below 400 KHz, tHD:DAT may be
violated as long as all other timing parameters are met.
8
Rev. 1.2
Si4730/31/34/35-D60
SCLK
SDIO
tSU:STA tHD:STA
tLOW
START
tr:IN
tHIGH
tr:IN
tf:IN
tSP
tSU:STO
tBUF
70%
30%
70%
30%
tf:IN,
tf:OUT
tHD:DAT tSU:DAT
STOP
START
Figure 2. 2-Wire Control Interface Read and Write Timing Parameters
SCLK
A6-A0,
R/W
SDIO
START
ADDRESS + R/W
D7-D0
ACK
DATA
D7-D0
ACK
DATA
ACK
STOP
Figure 3. 2-Wire Control Interface Read and Write Timing Diagram
Rev. 1.2
9
Si4730/31/34/35-D60
Table 5. 3-Wire Control Interface Characteristics
(VA = 2.7 to 5.5 V, VD = 1.62 to 3.6 V, TA = –20 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
SCLK Frequency
fCLK
0
—
2.5
MHz
SCLK High Time
tHIGH
25
—
—
ns
SCLK Low Time
tLOW
25
—
—
ns
tS
20
—
—
ns
SDIO Input to SCLKHold
tHSDIO
10
—
—
ns
SEN Input to SCLKHold
tHSEN
10
—
—
ns
SCLKto SDIO Output Valid
tCDV
Read
2
—
25
ns
SCLKto SDIO Output High Z
tCDZ
Read
2
—
25
ns
SCLK, SEN, SDIO, Rise/Fall time
tR, tF
—
—
10
ns
SDIO Input, SEN to SCLKSetup
Note: When selecting 3-wire mode, the user must ensure that a rising edge of SCLK does not occur within 300 ns before the
rising edge of RST.
SCLK
70%
30%
tS
SEN
SDIO
tR
tF
70%
tHSDIO
tHIGH
tLOW
tHSEN
tS
30%
70%
30%
A7
A6-A5,
R/W,
A4-A1
A0
D15
D14-D1
Address In
D0
Data In
Figure 4. 3-Wire Control Interface Write Timing Parameters
SCLK
70%
30%
tHSDIO
tS
SEN
70%
tCDV
tHSEN
tCDZ
tS
30%
70%
SDIO
A7
30%
A6-A5,
R/W,
A4-A1
Address In
A0
D15
½ Cycle Bus
Turnaround
D14-D1
D0
Data Out
Figure 5. 3-Wire Control Interface Read Timing Parameters
10
Rev. 1.2
Si4730/31/34/35-D60
Table 6. Digital Audio Interface Characteristics
(VA = 2.7 to 5.5 V, VD = 1.62 to 3.6 V, TA = –20 to 85 °C)
Parameter
Symbol Test Condition
Min
Typ
Max
Unit
DCLK Cycle Time
tDCT
26
—
1000
ns
DCLK Pulse Width High
tDCH
10
—
—
ns
DCLK Pulse Width Low
tDCL
10
—
—
ns
DFS Set-up Time to DCLK Rising Edge
tSU:DFS
5
—
—
ns
DFS Hold Time from DCLK Rising Edge
tHD:DFS
5
—
—
ns
tPD:DOUT
0
—
50
ns
DOUT Propagation Delay from DCLK Falling
Edge
tDCH
tDCL
DCLK
tDCT
DFS
tHD:DFS
tSU:DFS
DOUT
tPD:OUT
Figure 6. Digital Audio Interface Timing Parameters, I2S Mode
Rev. 1.2
11
Si4730/31/34/35-D60
Table 7. FM Receiver Characteristics1,2
(VA = 2.7 to 5.5 V, VD = 1.62 to 3.6 V, TA = –20 to 85 °C)
Parameter
Symbol
Min
Typ
Max
Unit
76
—
108
MHz
(S+N)/N = 26 dB
—
2.2
3.5
µV EMF
f = 2 kHz,
RDS BLER < 5%
—
10
—
µV EMF
3
4
5
k
4
5
6
pF
100
105
—
dBµV EMF
m = 0.3
40
50
—
dB
Adjacent Channel Selectivity
±200 kHz
35
50
—
dB
Alternate Channel Selectivity
±400 kHz
60
70
—
dB
In-band
35
—
—
dB
72
80
90
mVRMS
—
—
1
dB
Input Frequency
fRF
Sensitivity3,4,5,6
RDS
Test Condition
Sensitivity6,7
LNA Input Resistance7,8
7,8
LNA Input Capacitance
Input IP37,9
AM
Suppression3,4,7,8
Spurious Response Rejection7
3,4,8
Audio Output Voltage
3,8,10
Audio Output L/R Imbalance
Audio Frequency Response Low7
–3 dB
—
—
30
Hz
Audio Frequency Response High7
–3 dB
15
—
—
kHz
35
42
—
dB
55
63
—
dB
—
58
—
dB
—
0.1
0.5
%
FM_DEEMPHASIS = 2
70
75
80
µs
FM_DEEMPHASIS = 1
45
50
54
µs
f = ±400 kHz
—
34
—
dBµV
f = ±4 MHz
—
30
—
dBµV
Audio Stereo Separation
Audio Mono
8,10
S/N3,4,5,8
Audio Stereo S/N4,5,7,8
Audio THD3,8,10
7
De-emphasis Time Constant
3,4,5,6,7,11,12
Blocking Sensitivity
Notes:
1. Additional testing information is available in “AN388: Si470x/1x/2x/3x/4x Evaluation Board Test Procedure.”
Volume = maximum for all tests. Tested at RF = 98.1 MHz.
2. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,
Layout, and Design Guidelines.” Silicon Laboratories will evaluate schematics and layouts for qualified customers.
3. FMOD = 1 kHz, 75 µs de-emphasis, MONO = enabled, and L = R unless noted otherwise.
4. f = 22.5 kHz.
5. BAF = 300 Hz to 15 kHz, A-weighted.
6. Analog audio output mode.
7. Guaranteed by characterization.
8. VEMF = 1 mV.
9. |f2 – f1| > 2 MHz, f0 = 2 x f1 – f2. AGC is disabled.
10. f = 75 kHz.
11. Sensitivity measured at (S+N)/N = 26 dB.
12. Blocker Amplitude = 100 dBuV.
13. At temperature (25 °C).
14. At LOUT and ROUT pins.
12
Rev. 1.2
Si4730/31/34/35-D60
Table 7. FM Receiver Characteristics1,2 (Continued)
(VA = 2.7 to 5.5 V, VD = 1.62 to 3.6 V, TA = –20 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
f = ±400 kHz, ±800 kHz
—
40
—
dBµV
f = ±4 MHz, ±8 MHz
—
35
—
dBµV
RL
Single-ended
10
—
—
k
CL
Single-ended
—
—
50
pF
RCLK tolerance
= 100 ppm
—
—
60
ms/channel
Powerup Time7
From powerdown
—
—
110
ms
RSSI Offset12,13
Input levels of 8 and
60 dBµV at RF Input
–3
—
3
dB
Intermod Sensitivity3,4,5,6,7,11,12
Audio Output Load
Resistance7,11,14
Audio Output Load Capacitance7,11,14
Seek/Tune Time7
Notes:
1. Additional testing information is available in “AN388: Si470x/1x/2x/3x/4x Evaluation Board Test Procedure.”
Volume = maximum for all tests. Tested at RF = 98.1 MHz.
2. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,
Layout, and Design Guidelines.” Silicon Laboratories will evaluate schematics and layouts for qualified customers.
3. FMOD = 1 kHz, 75 µs de-emphasis, MONO = enabled, and L = R unless noted otherwise.
4. f = 22.5 kHz.
5. BAF = 300 Hz to 15 kHz, A-weighted.
6. Analog audio output mode.
7. Guaranteed by characterization.
8. VEMF = 1 mV.
9. |f2 – f1| > 2 MHz, f0 = 2 x f1 – f2. AGC is disabled.
10. f = 75 kHz.
11. Sensitivity measured at (S+N)/N = 26 dB.
12. Blocker Amplitude = 100 dBuV.
13. At temperature (25 °C).
14. At LOUT and ROUT pins.
Rev. 1.2
13
Si4730/31/34/35-D60
Table 8. 64–75.9 MHz Input Frequency FM Receiver Characteristics1,2,3
(VA = 2.7 to 5.5 V, VD = 1.62 to 3.6 V, TA = –20 to 85 °C)
Parameter
Symbol
Min
Typ
Max
Unit
64
—
75.9
MHz
—
3.5
—
µV EMF
3
4
5
k
4
5
6
pF
—
105
—
dBµV EMF
m = 0.3
—
50
—
dB
Adjacent Channel Selectivity
±200 kHz
—
50
—
dB
Alternate Channel Selectivity
±400 kHz
—
70
—
dB
72
80
90
mVRMS
—
—
1
dB
Input Frequency
fRF
Sensitivity4,5,6,8
LNA Input
Test Condition
(S+N)/N = 26 dB
Resistance3,7
3,7
LNA Input Capacitance
Input IP3
9
AM Suppression3,4,5,7
Audio Output Voltage4,5,7
Audio Output L/R Imbalance4,7,10
3
–3 dB
—
—
30
Hz
3
–3 dB
15
—
—
kHz
Audio Mono S/N4,3,5,7,11
—
63
—
dB
Audio THD4,7,10
—
0.1
—
%
FM_DEEMPHASIS = 2
70
75
80
µs
FM_DEEMPHASIS = 1
45
50
54
µs
Audio Frequency Response Low
Audio Frequency Response High
De-emphasis Time Constant
Audio Output Load Resistance3,11
RL
Single-ended
10
—
—
k
Audio Output Load Capacitance3,11
CL
Single-ended
—
—
50
pF
RCLK tolerance
= 100 ppm
—
—
60
ms/channel
From powerdown
—
—
110
ms
Input levels of 8 and
60 dBµV EMF
–3
—
3
dB
Seek/Tune Time
Powerup Time3
12
RSSI Offset
3
Notes:
1. Additional testing information is available in “AN388: Si470x/1x/2x/3x/4x Evaluation Board Test Procedure.”
Volume = maximum for all tests. Tested at RF = 98.1 MHz.
2. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,
Layout, and Design Guidelines.” Silicon Laboratories will evaluate schematics and layouts for qualified customers.
3. Guaranteed by characterization.
4. FMOD = 1 kHz, 75 µs de-emphasis, MONO = enabled, and L = R unless noted otherwise.
5. f = 22.5 kHz.
6. BAF = 300 Hz to 15 kHz, A-weighted.
7. VEMF = 1 mV.
8. Analog output mode.
9. |f2 – f1| > 2 MHz, f0 = 2 x f1 – f2. AGC is disabled.
10. f = 75 kHz.
11. At LOUT and ROUT pins.
12. At temperature (25 °C).
14
Rev. 1.2
Si4730/31/34/35-D60
Table 9. AM/SW/LW Receiver Characteristics1,2
(VA = 2.7 to 5.5 V, VA = 1.62 to 3.6 V, TA = –20 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
fRF
Long Wave (LW)
153
—
279
kHz
Medium Wave (AM)
520
—
1710
kHz
Short Wave (SW)
2.3
—
26.1
MHz
(S+N)/N = 26 dB
—
25
35
µV EMF
THD < 8%
—
300
—
mVRMS
∆VDD = 100 mVRMS, 100 Hz
—
40
—
dB
Audio Output Voltage3,7
54
60
67
mVRMS
3,4,7
—
60
—
dB
—
0.1
0.5
%
Long Wave (LW)
—
2800
—
µH
Medium Wave (AM)
180
—
450
µH
From powerdown
—
—
110
ms
Input Frequency
Sensitivity
3,4,5
Large Signal Voltage Handling5,6
5
Power Supply Rejection Ratio
Audio S/N
Audio THD3,7
5,8
Antenna Inductance
5
Powerup Time
Notes:
1. Additional testing information is available in “AN388: Si470x/1x/2x/3x/4x Evaluation Board Test Procedure.”
Volume = maximum for all tests. Tested at RF = 520 kHz.
2. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,
Layout, and Design Guidelines.” Silicon Laboratories will evaluate schematics and layouts for qualified customers.
3. FMOD = 1 kHz, 30% modulation, 2 kHz channel filter.
4. BAF = 300 Hz to 15 kHz, A-weighted.
5. Guaranteed by characterization.
6. See “AN388: Si470x/1x/2x/3x/4x Evaluation Board Test Procedure” for evaluation method.
7. VIN = 5 mVrms.
8. Stray capacitance on antenna and board must be < 10 pF to achieve full tuning range at higher inductance levels.
Rev. 1.2
15
Si4730/31/34/35-D60
Table 10. Reference Clock and Crystal Characteristics
(VA = 2.7 to 5.5 V, VD = 1.62 to 3.6 V, TA = –20 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
31.130
32.768
40,000
kHz
–100
—
100
ppm
1
—
4095
31.130
32.768
34.406
kHz
—
32.768
—
kHz
–100
—
100
ppm
Board Capacitance
—
—
3.5
pF
ESR
—
—
50

CL3
7
12
22
pF
CL–single ended3
14
24
44
pF
Reference Clock
RCLK Supported Frequencies1
RCLK Frequency Tolerance
2
REFCLK_PRESCALE
REFCLK
Crystal Oscillator
Crystal Oscillator Frequency
Crystal Frequency Tolerance2
Notes:
1. The Si473x-D60 divides the RCLK input by REFCLK_PRESCALE to obtain REFCLK. There are some RCLK
frequencies between 31.130 kHz and 40 MHz that are not supported. For more details, see Table 6 of “AN332: Si47xx
Programming Guide”.
2. A frequency tolerance of ±50 ppm is required for FM seek/tune using 50 kHz channel spacing and AM seek/tune in SW
frequencies.
3. Guaranteed by characterization.
Table 11. Thermal Conditions
Parameter
Symbol
Min
Typ
Max
Unit
Thermal Resistance*
JA
—
80
—
°C/W
Ambient Temperature
TA
–20
25
85
°C
Junction Temperature
TJ
—
—
92
°C
*Note: Thermal resistance assumes a multi-layer PCB with the exposed pad soldered to a topside PCB pad.
16
Rev. 1.2
Si4730/31/34/35-D60
Table 12. Absolute Maximum Ratings1,2
Parameter
Symbol
Value
Unit
Analog Supply Voltage
VA
–0.5 to 5.8
V
Digital and I/O Supply Voltage
VD
–0.5 to 3.9
V
Input Current3
IIN
10
mA
3
VIN
–0.3 to (VIO + 0.3)
V
Operating Temperature
TOP
–40 to 95
C
Storage Temperature
TSTG
–55 to 150
C
0.4
Vpk
Input Voltage
RF Input Level4
Notes:
1. Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation
should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure beyond
recommended operating conditions for extended periods may affect device reliability.
2. The Si473x-D60 devices are high-performance RF integrated circuits with certain pins having an ESD rating of < 2 kV
HBM. Handling and assembly of these devices should only be done at ESD-protected workstations.
3. For input pins DFS, SCLK, SEN, SDIO, RST, RCLK, GPO1, GPO2, GPO3, and DCLK.
4. At RF input pins FMI and AMI.
Rev. 1.2
17
Si4730/31/34/35-D60
2. Typical Application Schematic
2.1. QFN Typical Application Schematic
2SWLRQDO'LJLWDO$XGLR2XW
2302'([%[%
&
*32
*32,17
5
*32'&/.
5287
6L[
*1'
/287
5287
WR9
&
9$
9'
9$
5&/.
'287
')6
*32'&/.
/287
'
')6
5
'287
567%
6(1%
$0,
&
5)*1'
6',2
/
)0,
*32,17
1&
6&/.
)0$QWHQQD
1&
&
*32
5
WR9
&
567%
9'
5&/.
6',2
6&/.
6(1%
2SWLRQDO$0$LU/RRS$QWHQQD
*32
7
1
&
5&/.
;
$0,
&
3
/
&
5)*1'
2SWLRQDO)RU&U\VWDO26&
Notes:
1. Place C1 close to VA pin and C4 close to VD pin.
2. All grounds connect directly to GND plane on PCB.
3. Pins 1 and 20 are no connects, leave floating.
4. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,
Layout, and Design Guidelines.” Silicon Laboratories will evaluate schematics and layouts for qualified customers.
5. Pin 2 connects to the FM antenna interface, and pin 4 connects to the AM antenna interface.
6. Place Si473x-D60 as close as possible to antenna and keep the FMI and AMI traces as short as possible.
18
Rev. 1.2
Si4730/31/34/35-D60
2.2. SSOP Typical Application Schematic
2SWLRQDO'LJLWDO$XGLR2XW
2302'([%[%
&
*32'&/.
5
5
*32,17
*32
&
)0$QWHQQD
'287
/287
')6
5287
*32'&/.
'%<3
*32,17
*32
1&
1&
&
9$
9'
5&/.
)0,
5)*1'
1&
/
'
')6
5
6L[
'287
6',2
6&/.
6(1%
567%
5287
&
WR9
6&/.
6(1%
*1' &
6',2
WR9
5&/.
*1' 9$
9'
1&
$0,
/287
567%
2SWLRQDO$0$LU/RRS$QWHQQD
*32
7
1
&
5&/.
;
$0,
&
3
/
&
5)*1'
2SWLRQDO)RU&U\VWDO26&
Notes:
1. Place C1 close to VA and C4 close to VD pin.
2. All grounds connect directly to GND plane on PCB.
3. Pins 6 and 7 are no connects, leave floating.
4. Pins 10 and 11 are unused. Tie these pins to GND.
5. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,
Layout, and Design Guidelines.” Silicon Laboratories will evaluate schematics and layouts for qualified customers.
6. Pin 8 connects to the FM antenna interface, and pin 12 connects to the AM antenna interface.
7. Place Si473x-D60 as close as possible to antenna and keep the FMI and AMI traces as short as possible.
Rev. 1.2
19
Si4730/31/34/35-D60
3. Bill of Materials
3.1. QFN/SSOP Bill of Materials
Table 13. Si473x-D60 QFN/SSOP Bill of Materials
Component(s)
Value/Description
Supplier
C1
Supply bypass capacitor, 22 nF, ±20%, Z5U/X7R
Murata
C2
Coupling capacitor, 1 nF, ±20%, Z5U/X7R
Murata
C3
Coupling capacitor, 0.47 μF, ±20%, Z5U/X7R
Murata
C4
Supply bypass capacitor, 100 nF, 10%, Z5U/X7R
Murata
L1
Ferrite loop stick, 180–450 μH
Jiaxin
U1
Si47xx AM/FM Radio Tuner
Silicon Laboratories
Optional Components
C5, C6
20
Crystal load capacitors, 22 pF, ±5%, COG
(Optional for crystal oscillator)
Venkel
C9
Noise mitigating capacitor, 2~5 pF
(Optional for digital audio)
Murata
R1
Resistor, 600 Ω
(Optional for digital audio)
Venkel
R2
Resistor, 2 kΩ
(Optional for digital audio)
Venkel
R3
Resistor, 2 kΩ
(Optional for digital audio)
Venkel
L2
Air Loop, 10-20 µH
(Optional for AM Input)
Jiaxin
T1
Transformer, 1:5 turns ratio
(Optional for AM Input)
X1
32.768 kHz crystal
(Optional for crystal oscillator)
Jiaxin, UMEC
Epson
Rev. 1.2
Si4730/31/34/35-D60
4. Functional Description
4.1. Overview
FM / SW
ANT
Si473x-D 60
RDS
(Si4731/
35)
FM I
LN A
AMI
ADC
LD O
DAC
LO U T
C O N TR O L
IN TER FA C E
A FC
SEN
VD
1.62 - 3.6 V
RST
Mux
VA
GND
ROUT
D SP
RCLK
+
AGC
DAC
SDIO
2.7~5.5 V (Q FN )
2.0~5.5 V (SSO P )
LN A
SCLK
R FG N D
ADC
M ux
D FS
G PO /D C LK
LO W -IF
AGC
A M / LW
ANT
DOUT
D IG ITA L
A U D IO
Figure 7. Functional Block Diagram
The Si473x-D60 digital CMOS AM/FM radio receiver IC
integrates the complete broadcast tuner and receiver
function from antenna input to digital audio output. The
device leverages the Silicon Labs broadcast proven
digital low-IF architecture, enabling a cost-effective
digital audio platform for consumer electronic
applications with high TDMA noise immunity, superior
radio performance, and high fidelity audio power
amplification. Offering unmatched integration and PCB
space savings, the Si473x-D60 requires only a few
external components and less than 15 mm2 of board
area, excluding the antenna inputs. The Si473x-D60
AM/FM radio provides the space savings and low power
consumption necessary for portable devices while
delivering the high performance and design simplicity
desired for all AM/FM solutions.
Leveraging Silicon Laboratories' proven and patented
Si4700/01 FM tuner's digital low intermediate frequency
(low-IF) receiver architecture, the Si473x-D60 delivers
superior RF performance and interference rejection in
the AM, FM, SW, and LW bands. The high level of
integration and complete system production test
simplifies design-in, increases system quality, and
improves reliability and manufacturability.
audio processing.
In addition, the Si473x-D60 provides analog and digital
audio outputs and a programmable reference clock. The
device supports I2C-compatible 2-wire control interface,
and a Si4700/01 backwards-compatible 3-wire control
interface.
The Si473x-D60 utilizes digital signal processing to
achieve high fidelity, optimal performance, and design
flexibility. The chip provides excellent pilot rejection,
selectivity, and unmatched audio performance, and
offers both the manufacturer and the end-user
extensive programmability and a better listening
experience.
The Si4731/35 incorporates a digital signal processor
for the European Radio Data System (RDS) and the
North American Radio Broadcast Data System (RBDS)
including all required symbol decoding, block
synchronization, error detection, and error correction
functions. Using this feature, the Si4731/35 enables
broadcast data such as station identification and song
name to be displayed to the user.
The Si473x-D60 is a feature-rich solution that includes
advanced seek algorithms, soft mute, auto-calibrated
digital tuning, FM stereo processing and advanced
Rev. 1.2
21
Si4730/31/34/35-D60
4.2. Operating Modes
The Si473x-D60 operates in either an FM receive or AM
receive modes. In FM mode, radio signals are received
on FMI and processed by the FM front-end circuitry. In
AM mode, radio signals are received on AMI and
processed by the AM front-end circuitry. In addition to
the receiver mode, there is a clocking mode to choose
to clock the Si473x-D60 from a reference clock or
crystal. On the Si473x-D60, there is an audio output
mode to choose between an analog and/or digital audio
output. In the analog audio output mode, ROUT and
LOUT are used for the audio output pins. In the digital
audio mode, DOUT, DFS, and DCLK pins are used.
Concurrent analog/digital audio output mode is also
available requiring all five pins.
4.3. FM Receiver
The Si473x-D60 FM receiver is based on the proven
Si4700/01 FM tuner. The receiver uses a digital low-IF
architecture allowing the elimination of external
components and factory adjustments. The Si473x-D60
integrates a low noise amplifier (LNA) supporting the
worldwide FM broadcast band (64 to 108 MHz). An
AGC circuit controls the gain of the LNA to optimize
sensitivity and rejection of strong interferers. An imagereject mixer downconverts the RF signal to low-IF. The
quadrature mixer output is amplified, filtered, and
digitized with high resolution analog-to-digital
converters (ADCs). This advanced architecture allows
the Si473x-D60 to perform channel selection, FM
demodulation, and stereo audio processing to achieve
superior performance compared to traditional analog
architectures.
4.4. AM Receiver
The highly-integrated Si473x-D60 supports worldwide
AM band reception from 520 to 1710 kHz using a digital
low-IF architecture with a minimum number of external
components and no manual alignment required. This
digital low-IF architecture allows for high-precision
filtering offering excellent selectivity and SNR with
minimum variation across the AM band. The DSP also
provides adjustable channel step sizes in 1 kHz
increments, AM demodulation, soft mute, seven
different channel bandwidth filters, and additional
features, such as a programmable automatic volume
control (AVC) maximum gain allowing users to adjust
the level of background noise.
Similar to the FM receiver, the integrated LNA and AGC
optimize sensitivity and rejection of strong interferers
allowing better reception of weak stations.
22
The Si473x-D60 provides highly-accurate digital AM
tuning without factory adjustments. To offer maximum
flexibility, the receiver supports a wide range of ferrite
loop sticks from 180–450 µH. An air loop antenna is
supported by using a transformer to increase the
effective inductance from the air loop. Using a 1:5 turn
ratio inductor, the inductance is increased by 25 times
and easily supports all typical AM air loop antennas
which generally vary between 10 and 20 µH.
4.5. SW Receiver
The Si4734/35 is the first fully integrated IC to support
AM and FM, as well as short wave (SW) band reception
from 2.3 to 26.1 MHz fully covering the 120 meter to
11 meter bands. The Si4734/35 offers extensive
shortwave features such as continuous digital tuning
with minimal discrete components and no factory
adjustments. Other SW features include adjustable
channel step sizes in 1 kHz increments, adjustable
channel bandwidth settings, advanced seek algorithm,
and soft mute.
The Si4734/35 uses the FM antenna to capture short
wave signals. These signals are then fed directly into
the AMI pin in a wide band configuration. See "AN332:
Si47xx Programming Guide” and “AN383: Si47xx
Antenna and Schematic Guidelines" for more details.
4.6. LW Receiver
The Si4734/35 supports the long wave (LW) band from
153 to 279 kHz. The highly integrated Si4734/35 offers
continuous digital tuning with minimal discrete
components and no factory adjustments. The Si4734/35
also offers adjustable channel step sizes in 1 kHz
increments, adjustable channel bandwidth settings,
advanced seek algorithm, and soft mute.
The Si4734/35 uses a separate ferrite bar antenna to
capture long wave signals.
Rev. 1.2
Si4730/31/34/35-D60
4.7. Digital Audio Interface
4.7.2. Audio Sample Rates
The digital audio interface operates in slave mode and
supports a variety of MSB-first audio data formats
including I2S and left-justified modes. The interface has
three pins: digital data input (DIN), digital frame
synchronization input (DFS), and a digital bit
synchronization input clock (DCLK). The Si473x-D60
supports a number of industry-standard sampling rates
including 32, 44.1, and 48 kHz. The digital audio
interface enables low-power operation by eliminating
the need for redundant DACs and ADCs on the audio
baseband processor.
The device supports a number of industry-standard
sampling rates including 32, 44.1, and 48 kHz. The
digital audio interface enables low-power operation by
eliminating the need for redundant DACs on the audio
baseband processor.
4.7.1. Audio Data Formats
The digital audio interface operates in slave mode and
supports three different audio data formats:
I2S
Left-Justified
 DSP Mode


In I2S mode, by default the MSB is captured on the
second rising edge of DCLK following each DFS
transition. The remaining bits of the word are sent in
order, down to the LSB. The left channel is transferred
first when the DFS is low, and the right channel is
transferred when the DFS is high.
In left-justified mode, by default the MSB is captured on
the first rising edge of DCLK following each DFS
transition. The remaining bits of the word are sent in
order, down to the LSB. The left channel is transferred
first when the DFS is high, and the right channel is
transferred when the DFS is low.
In DSP mode, the DFS becomes a pulse with a width of
1DCLK period. The left channel is transferred first,
followed right away by the right channel. There are two
options in transferring the digital audio data in DSP
mode: the MSB of the left channel can be transferred on
the first rising edge of DCLK following the DFS pulse or
on the second rising edge.
In all audio formats, depending on the word size, DCLK
frequency, and sample rates, there may be unused
DCLK cycles after the LSB of each word before the next
DFS transition and MSB of the next word. In addition, if
preferred, the user can configure the MSB to be
captured on the falling edge of DCLK via properties.
The number of audio bits can be configured for 8, 16,
20, or 24 bits.
Rev. 1.2
23
Si4730/31/34/35-D60
(OFALL = 1)
INVERTED
DCLK
(OFALL = 0)
DCLK
LEFT CHANNEL
DFS
I2S
(OMODE = 0000)
RIGHT CHANNEL
1 DCLK
1 DCLK
1
DOUT
2
n-2
3
n-1
MSB
n
1
LSB
MSB
2
n-2
3
n-1
n
LSB
Figure 8. I2S Digital Audio Format
(OFALL = 1)
INVERTED
DCLK
(OFALL = 0)
DCLK
DFS
LEFT CHANNEL
RIGHT CHANNEL
Left-Justified
(OMODE = 0110)
1
DOUT
2
3
n-2
n-1
MSB
n
1
LSB
MSB
2
n-2
3
n-1
n
LSB
Figure 9. Left-Justified Digital Audio Format
(OFALL = 0)
DCLK
DFS
RIGHT CHANNEL
LEFT CHANNEL
(OMODE = 1100)
DOUT
(MSB at 1st rising edge)
1
2
3
n-2
n-1
MSB
DOUT
(MSB at 2nd rising edge)
1
LSB
MSB
n-1
n
1
LSB
MSB
2
3
1
2
3
n-2
MSB
Rev. 1.2
n-1
n
LSB
RIGHT CHANNEL
2
Figure 10. DSP Digital Audio Format
24
n-2
LEFT CHANNEL
1 DCLK
(OMODE = 1000)
n
3
n-2
n-1
n
LSB
Si4730/31/34/35-D60
4.9. Received Signal Qualifiers
The output of the FM demodulator is a stereo
multiplexed (MPX) signal. The MPX standard was
developed in 1961, and is used worldwide. Today's
MPX signal format consists of left + right (L+R) audio,
left – right (L–R) audio, a 19 kHz pilot tone, and
RDS/RBDS data as shown in Figure 11 below.
The quality of a tuned signal can vary depending on
many factors including environmental conditions, time of
day, and position of the antenna. To adequately manage
the audio output and avoid unpleasant audible effects to
the end-user, the Si473x-D60 monitors and provides
indicators of the signal quality, allowing the host
processor to perform additional processing if required
by the customer. The Si473x-D60 monitors signal
quality metrics including RSSI, SNR, and multipath
interference on FM signals. These metrics are used to
optimize signal processing and are also reported to the
host processor. The signal processing algorithms can
use
either
Silicon
Labs'
optimized
settings
(recommended) or be customized to modify
performance.
Modulation Level
4.8. Stereo Audio Processing
Mono Audio
Left + Right
0
Stereo
Pilot
15 19 23
Stereo Audio
Left - Right
38
RDS/
RBDS
53
57
Frequency (kHz)
4.10. Volume Control
Figure 11. MPX Signal Spectrum
4.8.1. Stereo Decoder
The
Si473x-D60's
integrated
stereo
decoder
automatically decodes the MPX signal using DSP
techniques. The 0 to 15 kHz (L+R) signal is the mono
output of the FM tuner. Stereo is generated from the
(L+R), (L–R), and a 19 kHz pilot tone. The pilot tone is
used as a reference to recover the (L–R) signal. Output
left and right channels are obtained by adding and
subtracting the (L+R) and (L–R) signals respectively.
4.8.2. Stereo-Mono Blending
Adaptive noise suppression is employed to gradually
combine the stereo left and right audio channels to a
mono (L+R) audio signal as the signal quality degrades
to maintain optimum sound fidelity under varying
reception conditions. Three metrics, received signal
strength indicator (RSSI), signal-to-noise ratio (SNR),
and
multipath
interference,
are
monitored
simultaneously in forcing a blend from stereo to mono.
The metric which reflects the minimum signal quality
takes precedence and the signal is blended
appropriately.
All three metrics have programmable stereo/mono
thresholds and attack/release rates. If a metric falls
below its mono threshold, the signal is blended from
stereo to full mono. If all metrics are above their
respective stereo thresholds, then no action is taken to
blend the signal. If a metric falls between its mono and
stereo thresholds, then the signal is blended to the level
proportional to the metric’s value between its mono and
stereo thresholds, with an associated attack and
release rate.
The audio output may be muted. Volume is adjusted
digitally by the RX_VOLUME property.
4.11. Stereo DAC
High-fidelity stereo digital-to-analog converters (DACs)
drive analog audio signals onto the LOUT and ROUT
pins. The audio output may be muted.
4.12. Soft Mute
The soft mute feature is available to attenuate the audio
outputs and minimize audible noise in very weak signal
conditions. The soft mute feature is triggered by the
SNR metric. The SNR threshold for activating soft mute
is programmable, as are soft mute attenuation levels
and attack and release rates.
4.13. FM Hi-Cut Control
Hi-cut control is employed on audio outputs with
degradation of the signal due to low SNR and/or
multipath interference. Two metrics, SNR and multipath
interference, are monitored concurrently in forcing hi-cut
of the audio outputs. Programmable minimum and
maximum thresholds are available for both metrics. The
transition frequency for hi-cut is also programmable with
up to seven hi-cut filter settings. A single set of attack
and release rates for hi-cut are programmable for both
metrics from a range of 2 ms to 64 s. The level of hi-cut
applied can be monitored with the FM_RSQ_STATUS
command. Hi-cut can be disabled by setting the hi-cut
filter to audio bandwidth of 15 kHz.
Rev. 1.2
25
Si4730/31/34/35-D60
4.14. De-emphasis
Pre-emphasis and de-emphasis is a technique used by
FM broadcasters to improve the signal-to-noise ratio of
FM receivers by reducing the effects of high-frequency
interference and noise. When the FM signal is
transmitted, a pre-emphasis filter is applied to
accentuate the high audio frequencies. The Si473x-D60
incorporates a de-emphasis filter which attenuates high
frequencies to restore a flat frequency response. Two
time constants are used in various regions. The deemphasis time constant is programmable to 50 or 75 µs
and is set by the FM_DEEMPHASIS property.
4.15. RDS/RBDS Processor
(Si4731/35 Only)
The Si4731/35 implements an RDS/RBDS* processor
for symbol decoding, block synchronization, error
detection, and error correction.
The Si4731/35 device is user configurable and provides
an optional interrupt when RDS is synchronized, loses
synchronization, and/or the user configurable RDS
FIFO threshold has been met.
The Si4731/35 reports RDS decoder synchronization
status and detailed bit errors in the information word for
each RDS block with the FM_RDS_STATUS command.
The range of reportable block errors is 0, 1–2, 3–5, or
6+. More than six errors indicates that the
corresponding block information word contains six or
more non-correctable errors or that the block checkword
contains errors. The pilot does not have to be present to
decode RDS/RBDS.
*Note: RDS/RBDS is referred to only as RDS throughout the
remainder of this document.
4.16. Tuning
The tuning frequency is directly programmed using the
FM_TUNE_FREQ and AM_TUNE_FREQ commands.
The Si473x-D60 supports channel spacing steps of
10 kHz in FM mode and 1 kHz in AM mode.
4.17. Seek
The Si473x-D60 seek functionality is performed
completely on-chip and will search up or down the
selected frequency band for a valid channel. A valid
channel is qualified according to a series of
programmable signal indicators and thresholds. The
seek function can be made to stop at the band edge and
provide an interrupt, or wrap the band and continue
seeking until arriving at the original departure frequency.
The device sets interrupts with found valid stations or, if
the seek results in zero found valid stations, the device
indicates failure and again sets an interrupt. Refer to
“AN332: Si47xx Programming Guide”.
26
The Si473x-D60 uses RSSI, SNR, and AFC to qualify
stations. Most of these variables have programmable
thresholds for modifying the seek function according to
customer needs.
RSSI is employed first to screen all possible candidate
stations. SNR and AFC are subsequently used in
screening the RSSI qualified stations. The more
thresholds the system engages, the higher the
confidence that any found stations will indeed be valid
broadcast stations. The Si473x-D60 defaults set RSSI
to a mid-level threshold and add an SNR threshold set
to a level delivering acceptable audio performance. This
trade-off will eliminate very low RSSI stations while
keeping the seek time to acceptable levels. Generally,
the time to auto-scan and store valid channels for an
entire FM band with all thresholds engaged is very short
depending on the band content. Seek is initiated using
the FM_SEEK_START command. The RSSI, SNR, and
AFC threshold settings are adjustable using properties.
4.18. Reference Clock
The Si473x-D60 reference clock is programmable,
supporting RCLK frequencies listed in Table 10,
“Reference Clock and Crystal Characteristics,” on
page 16. Refer to Table 2, “DC Characteristics,” on
page 6 for switching voltage levels and Table 10 for
frequency tolerance information.
An onboard crystal oscillator is available to generate the
32.768 kHz reference when an external crystal and load
capacitors are provided. Refer to "2. Typical Application
Schematic" on page 18. This mode is enabled using the
POWER_UP command. Refer to “AN332: Si47xx
Programming Guide”.
The Si473x-D60 performance may be affected by data
activity on the SDIO bus when using the integrated
internal oscillator. SDIO activity results from polling the
tuner for status or communicating with other devices
that share the SDIO bus. If there is SDIO bus activity
while the Si473x-D60 is performing the seek/tune
function, the crystal oscillator may experience jitter,
which may result in mistunes, false stops, and/or lower
SNR.
For best seek/tune results, Silicon Laboratories
recommends that all SDIO data traffic be suspended
during Si473x-D60 seek and tune operations. This is
achieved by keeping the bus quiet for all other devices
on the bus, and delaying tuner polling until the tune or
seek operation is complete. The seek/tune complete
(STC) interrupt should be used instead of polling to
determine when a seek/tune operation is complete.
Rev. 1.2
Si4730/31/34/35-D60
4.19. Control Interface
A serial port slave interface is provided, which allows an
external controller to send commands to the Si473xD60 and receive responses from the device. The serial
port can operate in two bus modes: 2-wire mode and 3wire mode. The Si473x-D60 selects the bus mode by
sampling the state of the GPO1 and GPO2 pins on the
rising edge of RST. The GPO1 pin includes an internal
pull-up resistor, which is connected while RST is low,
and the GPO2 pin includes an internal pull-down
resistor, which is connected while RST is low.
Therefore, it is only necessary for the user to actively
drive pins which differ from these states. See Table 14.
Table 14. Bus Mode Select on Rising Edge of
RST
Bus Mode
2-Wire
3-Wire
GPO1
1
0 (must drive)
GPO2
0
0
After the rising edge of RST, the pins GPO1 and GPO2
are used as general purpose output (O) pins, as
described in Section “4.20. GPO Outputs”. In any bus
mode, commands may only be sent after VD and VA
supplies are applied.
In any bus mode, before sending a command or reading
a response, the user must first read the status byte to
ensure that the device is ready (CTS bit is high).
4.19.1. 2-Wire Control Interface Mode
When selecting 2-wire mode, the user must ensure that
SCLK is high during the rising edge of RST, and stays
high until after the first start condition. Also, a start
condition must not occur within 300 ns before the rising
edge of RST.
The 2-wire bus mode uses only the SCLK and SDIO
pins for signaling. A transaction begins with the START
condition, which occurs when SDIO falls while SCLK is
high. Next, the user drives an 8-bit control word serially
on SDIO, which is captured by the device on rising
edges of SCLK. The control word consists of a 7-bit
device address, followed by a read/write bit (read = 1,
write = 0). The Si473x-D60 acknowledges the control
word by driving SDIO low on the next falling edge of
SCLK.
Although the Si473x-D60 will respond to only a single
device address, this address can be changed with the
SEN pin (note that the SEN pin is not used for signaling
in 2-wire mode). Refer to “AN332: Si47xx Programming
Guide”
For write operations, the user then sends an 8-bit data
byte on SDIO, which is captured by the device on rising
edges of SCLK. The Si473x-D60 acknowledges each
data byte by driving SDIO low for one cycle, on the next
falling edge of SCLK. The user may write up to 8 data
bytes in a single 2-wire transaction. The first byte is a
command, and the next seven bytes are arguments.
For read operations, after the Si473x-D60 has
acknowledged the control byte, it will drive an 8-bit data
byte on SDIO, changing the state of SDIO on the falling
edge of SCLK. The user acknowledges each data byte
by driving SDIO low for one cycle, on the next falling
edge of SCLK. If a data byte is not acknowledged, the
transaction will end. The user may read up to 16 data
bytes in a single 2-wire transaction. These bytes contain
the response data from the Si473x-D60.
A 2-wire transaction ends with the STOP condition,
which occurs when SDIO rises while SCLK is high.
For details on timing specifications and diagrams, refer
to Table 4, “2-Wire Control Interface Characteristics” on
page 8; Figure 2, “2-Wire Control Interface Read and
Write Timing Parameters,” on page 9, and Figure 3, “2Wire Control Interface Read and Write Timing Diagram,”
on page 9.
4.19.2. 3-Wire Control Interface Mode
When selecting 3-wire mode, the user must ensure that
a rising edge of SCLK does not occur within 300 ns
before the rising edge of RST.
The 3-wire bus mode uses the SCLK, SDIO, and SEN_
pins. A transaction begins when the user drives SEN
low. Next, the user drives a 9-bit control word on SDIO,
which is captured by the device on rising edges of
SCLK. The control word consists of a 9-bit device
address (A7:A5 = 101b), a read/write bit (read = 1, write
= 0), and a 5-bit register address (A4:A0).
For write operations, the control word is followed by a
16-bit data word, which is captured by the device on
rising edges of SCLK.
For read operations, the control word is followed by a
delay of one-half SCLK cycle for bus turn-around. Next,
the Si473x-D60 will drive the 16-bit read data word
serially on SDIO, changing the state of SDIO on each
rising edge of SCLK.
A transaction ends when the user sets SEN high, then
pulses SCLK high and low one final time. SCLK may
either stop or continue to toggle while SEN is high.
In 3-wire mode, commands are sent by first writing each
argument to register(s) 0xA1–0xA3, then writing the
command word to register 0xA0. A response is
retrieved by reading registers 0xA8–0xAF.
For details on timing specifications and diagrams, refer
to Table 5, “3-Wire Control Interface Characteristics,” on
page 10; Figure 4, “3-Wire Control Interface Write
Rev. 1.2
27
Si4730/31/34/35-D60
Timing Parameters,” on page 10, and Figure 5, “3-Wire
Control Interface Read Timing Parameters,” on page
10.
4.20. GPO Outputs
The Si473x-D60 provides three general-purpose output
pins. The GPO pins can be configured to output a
constant low, constant high, or high-impedance. The
GPO pins can be reconfigured as specialized functions.
4.21. Firmware Upgrades
The Si473x-D60 contains on-chip program RAM to
accommodate minor changes to the firmware. This
allows Silicon Labs to provide future firmware updates
to optimize the characteristics of new radio designs and
those already deployed in the field.
4.24. Programming with Commands
To ease development time and offer maximum
customization, the Si473x-D60 provides a simple yet
powerful software interface to program the receiver. The
device is programmed using commands, arguments,
properties, and responses.
To perform an action, the user writes a command byte
and associated arguments, causing the chip to execute
the given command. Commands control an action such
as powerup the device, shut down the device, or tune to
a station. Arguments are specific to a given command
and are used to modify the command.
4.22. Reset, Powerup, and Powerdown
Properties are a special command argument used to
modify the default chip operation and are generally
configured immediately after powerup. Examples of
properties are de-emphasis level, RSSI seek threshold,
and soft mute attenuation threshold.
Setting the RST pin low will disable analog and digital
circuitry, reset the registers to their default settings, and
disable the bus. Setting the RST pin high will bring the
device out of reset.
Responses provide the user information and are
echoed after a command and associated arguments are
issued. All commands provide a 1-byte status update,
indicating interrupt and clear-to-send status information.
The Si473x-D60 contains an on-board non-volatile
memory for storing its operational firmware. Proper
timing as specified in this data sheet, particularly with
respect to keeping RST pin low during any power
supply transitions, must be honored to avoid the risk of
corrupting the contents of this memory, which can
render the device permanently non-functional.
For a detailed description of the commands and
properties for the Si473x-D60, see “AN332: Si47xx
Programming Guide.”
A powerdown mode is available to reduce power
consumption when the part is idle. Putting the device in
powerdown mode will disable analog and digital circuitry
while keeping the bus active.
4.23. 2 V Operation (SSOP Only)
The Si473x-D60 is capable of operating down to 2 V as
the battery drains in an application. Any power-up or
reset is not guaranteed to work below the DC
characteristics defined in Table 2. This capability
enables a much longer run time in battery operated
devices.
28
Rev. 1.2
Si4730/31/34/35-D60
5. Pin Descriptions
GPO2/[INT]
GPO3/[DCLK]
DFS
1
GPO1
NC
NC
5.1. Si473x-D60-GM
20
19
18
17
16
FMI 2
15 DOUT
RFGND 3
14 LOUT/[DFS]
GND
PAD
AMI 4
13 ROUT/[DOUT]
6
7
8
9
10
SCLK
SDIO
RCLK
VD
12 GND
SEN
RST 5
11 VA
Pin Number(s)
Name
1, 20
NC
No connect. Leave floating.
2
FMI
FM RF inputs. FMI should be connected to the antenna trace.
3
RFGND
4
AMI
AM RF input. AMI should be connected to the AM antenna.
5
RST
Device reset input (active low).
6
SEN
Serial enable input (active low).
7
SCLK
Serial clock input.
8
SDIO
Serial data input/output.
9
RCLK
External reference oscillator input.
10
VD
Digital and I/O supply voltage.
11
VA
Analog supply voltage. May be connected directly to battery.
12, GND PAD
GND
13
RF ground. Connect to ground plane on PCB.
Ground. Connect to ground plane on PCB.
ROUT/[DOUT] Right audio line output for analog output mode.
14
LOUT/[DFS]
15
DOUT
16
DFS
17
Description
Left audio line output for analog output mode.
Digital output data for digital output mode.
Digital frame synchronization input for digital output mode.
GPO3/[DCLK] General purpose output, crystal oscillator, or digital bit synchronous clock input
in digital output mode.
18
GPO2/[INT]
19
GPO1
General purpose output or interrupt pin.
General purpose output.
Rev. 1.2
29
Si4730/31/34/35-D60
5.2. Si473x-D60-GU
Pin Number(s)
Name
1
DOUT
2
3
1
24
LOUT/[DFS]
DFS
2
23
ROUT/[DOUT]
GPO3/[DCLK]
3
22
DBYP
GPO2/[INT]
4
21
VA
GPO1
5
20
VD
NC
6
19
RCLK
NC
7
18
SDIO
FMI
8
17
SCLK
RFGND
9
16
SEN
NC
10
15
RST
NC
11
14
GND
AMI
12
13
GND
Description
Digital output data for digital output mode.
Digital frame synchronization input for digital output mode.
GPO3/[DCLK] General purpose output, crystal oscillator, or digital bit synchronous clock input
in digital output mode.
4
GPO2/[INT]
5
GPO1
General purpose output or interrupt pin.
General purpose output.
6,7
NC
No connect. Leave floating.
8
FMI
FM RF inputs. FMI should be connected to the antenna trace.
9
RFGND
10,11
NC
Unused. Tie these pins to GND.
12
AMI
AM/SW/LW RF input.
13,14
GND
Ground. Connect to ground plane on PCB.
15
RST
Device reset input (active low).
16
SEN
Serial enable input (active low).
17
SCLK
Serial clock input.
18
SDIO
Serial data input/output.
19
RCLK
External reference oscillator input.
20
VD
Digital and I/O supply voltage.
21
VA
Analog supply voltage. May be connected directly to battery.
22
DBYP
23
24
30
DFS
DOUT
RF ground. Connect to ground plane on PCB.
Bypass capacitor.
ROUT/[DOUT] Right audio line output in analog output mode.
LOUT/[DFS]
Left audio line output in analog output mode.
Rev. 1.2
Si4730/31/34/35-D60
6. Ordering Guide
Description
Part Number1
Package
Type
Si4730-D60-GM
Si4730-D60-GU
2
AM/FM Broadcast Radio Receiver
Si4731-D60-GM
Si4731-D60-GU
2
AM/FM Broadcast Radio Receiver with
RDS/RBDS
Si4734-D60-GM
Si4734-D60-GU
2
AM/FM/SW/LW Broadcast Radio Receiver
Si4735-D60-GM
Si4735-D60-GU
2
AM/FM/SW/LW Broadcast Radio Receiver
with RDS/RBDS
QFN
Pb-free
SSOP
Pb-free
QFN
Pb-free
SSOP
Pb-free
QFN
Pb-free
SSOP
Pb-free
QFN
Pb-free
SSOP
Pb-free
Operating
Temperature/Voltage
–20 to 85 °C
2.7 to 5.5 V
–20 to 85 °C
2.7 to 5.5 V
–20 to 85 °C
2.7 to 5.5 V
–20 to 85 °C
2.7 to 5.5 V
Notes:
1. Add an “(R)” at the end of the device part number to denote tape and reel option.
2. SSOP devices operate down to VA = 2 V at 25 °C.
Rev. 1.2
31
Si4730/31/34/35-D60
7. Package Outline
7.1. Si473x-D60 QFN
Figure 12 illustrates the package details for the Si473x. Table 15 lists the values for the dimensions shown in the
illustration.
Figure 12. 20-Pin Quad Flat No-Lead (QFN)
Table 15. Package Dimensions
Symbol
Millimeters
Symbol
Min
Nom
Max
A
0.50
0.55
0.60
A1
0.00
0.02
0.05
L
0.35
0.40
0.45
b
0.20
0.25
0.30
L1
0.00
—
0.10
c
0.27
0.32
0.37
aaa
—
—
0.05
bbb
—
—
0.05
D
D2
Min
f
3.00 BSC
1.65
2.53 BSC
ccc
—
—
0.08
ddd
—
—
0.10
E
3.00 BSC
eee
—
—
0.10
1.70
1.75
Max
0.50 BSC
1.65
1.70
Nom
e
E2
1.75
Notes:
1. All dimensions are shown in millimeters (mm) unless otherwise noted.
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.
32
Millimeters
Rev. 1.2
Si4730/31/34/35-D60
7.2. Si473x-D60 SSOP
Figure 13 illustrates the package details for the Si473x. Table 16 lists the values for the dimensions shown in the
illustration.
Figure 13. 24-Pin SSOP
Table 16. Package Dimensions
Dimension
A
A1
b
c
D
E
E1
e
L
L2
θ
aaa
bbb
ccc
ddd
Min
—
0.10
0.20
0.10
Nom
—
—
—
—
8.65 BSC
6.00 BSC
3.90 BSC
0.635 BSC
—
0.25 BSC
—
0.20
0.18
0.10
0.10
0.40
0°
Max
1.75
0.25
0.30
0.25
1.27
8°
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MO-137, Variation AE.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification
for Small Body Components.
Rev. 1.2
33
Si4730/31/34/35-D60
8. PCB Land Pattern
8.1. Si473x-D60 QFN
Figure 14 illustrates the PCB land pattern details for the Si473x-D60-GM QFN. Table 17 lists the values for the
dimensions shown in the illustration.
Figure 14. PCB Land Pattern
34
Rev. 1.2
Si4730/31/34/35-D60
Table 17. PCB Land Pattern Dimensions
Symbol
Millimeters
Min
D
D2
Symbol
Max
2.71 REF
1.60
1.80
Min
Max
GE
2.10
—
W
—
0.34
—
e
0.50 BSC
X
E
2.71 REF
Y
E2
f
GD
1.60
1.80
2.53 BSC
2.10
Millimeters
0.28
0.61 REF
ZE
—
3.31
ZD
—
3.31
—
Notes: General
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
3. This Land Pattern Design is based on IPC-SM-782 guidelines.
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material
Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.
Notes: Solder Mask Design
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the
solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.
Notes: Stencil Design
1. A stainless steel, laser-cut, and electro-polished stencil with trapezoidal walls should
be used to assure good solder paste release.
2. The stencil thickness should be 0.125 mm (5 mils).
3. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.
4. A 1.45 x 1.45 mm square aperture should be used for the center pad. This provides
approximately 70% solder paste coverage on the pad, which is optimum to assure
correct component stand-off.
Notes: Card Assembly
1. A No-Clean, Type-3 solder paste is recommended.
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification
for Small Body Components.
Rev. 1.2
35
Si4730/31/34/35-D60
8.2. Si473x-D60 SSOP
Figure 15 illustrates the PCB land pattern details for the Si473x-D60-GU SSOP. Table 18 lists the values for the
dimensions shown in the illustration.
Figure 15. PCB Land Pattern
Table 18. PCB Land Pattern Dimensions
Dimension
Min
Max
C
5.20
5.30
E
0.635 BSC
X
0.30
0.40
Y1
1.50
1.60
General:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This land pattern design is based on the IPC-7351 guidelines.
Solder Mask Design:
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the
solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.
Stencil Design:
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should
be used to assure good solder paste release.
5. The stencil thickness should be 0.125 mm (5 mils).
6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
Card Assembly:
7. A No-Clean, Type-3 solder paste is recommended.
8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification
for Small Body Components.
36
Rev. 1.2
Si4730/31/34/35-D60
9. Top Markings
9.1. Si473x-D60 Top Marking (QFN)
3460
DTTT
YWW
3160
DTTT
YWW
3060
DTTT
YWW
3560
DTTT
YWW
9.2. Top Marking Explanation (QFN)
Mark Method:
YAG Laser
Line 1 Marking:
Part Number
30 = Si4730, 31 = Si4731, 34 = Si4734, 35 = Si4735.
Firmware Revision
60 = Firmware Revision 6.0.
Die Revision
D = Revision D Die.
TTT = Internal Code
Internal tracking code.
Line 2 Marking:
Line 3 Marking:
Circle = 0.5 mm Diameter Pin 1 Identifier.
(Bottom-Left Justified)
Y = Year
WW = Workweek
Assigned by the Assembly House. Corresponds to the last
significant digit of the year and work week of the mold date.
Rev. 1.2
37
Si4730/31/34/35-D60
9.3. Si473x-D60 Top Marking (SSOP)
473XD60GU
YYWWTTTTTT
9.4. Top Marking Explanation (SSOP)
Mark Method:
Line 1 Marking:
Line 2 Marking:
38
YAG Laser
Part Number
4730 = Si4730; 4731 = Si4731; 4734 = Si4734;
4735 = Si4735.
Die Revision
D = Revision D die.
Firmware Revision
60 = Firmware Revision 6.0.
Package Type
GU = 24-pin SSOP Pb-free package
YY = Year
WW = Work week
Assigned by the Assembly House.
TTTTTT = Manufacturing code
Rev. 1.2
Si4730/31/34/35-D60
10. Additional Reference Resources
Contact your local sales representatives for more information or to obtain copies of the following references:






EN55020 Compliance Test Certificate
AN332: Si47xx Programming Guide
AN383: Si47xx Antenna, Schematic, Layout, and Design Guidelines
AN388: Si470x/1x/2x/3x/4x Evaluation Board Test Procedure
Si47xx EVB User’s Guide
Customer Support Site: www.silabs.com
This site contains all application notes, evaluation board schematics and layouts, and evaluation software. NDA
is required for complete access. Please visit the Silicon Labs Technical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support
request.
Rev. 1.2
39
Si4730/31/34/35-D60
DOCUMENT CHANGE LIST
Revision 1.0 to Revision 1.1









Updated part number throughout.
Updated pin assignments on front page.
Updated block diagram on front page.
Updated Table 6, “Digital Audio Interface
Characteristics,” on page 11.
Updated Table 10, “Reference Clock and Crystal
Characteristics,” on page 16.
Added Table 11, “Thermal Conditions,” on page 16.
Updated Section "2. Typical Application Schematic"
on page 18.
Updated Section "4. Functional Description" on page
21.
Updated Section "5. Pin Descriptions" on page 29.
Revision 1.1 to Revision 1.2
Deleted the AUXIN feature.
Updated Table 3, “Reset Timing Characteristics.”
 Updated Table 11, “Thermal Conditions.”
 Updated Section 4.22, “Reset, Powerup, and
Powerdown.”


40
Rev. 1.2
Si4730/31/34/35-D60
NOTES:
Rev. 1.2
41
Smart.
Connected.
Energy-Friendly
Products
Quality
Support and Community
www.silabs.com/products
www.silabs.com/quality
community.silabs.com
Disclaimer
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.
Trademark Information
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
http://www.silabs.com