1EDI05I12AH Data Sheet (695 KB, EN)

1EDIxxI12AH/1EDIxxH12AH
EiceDRIVER™ 1EDI Compact
Single channel IGBT gate driver IC in wide body package
Features
•
•
•
•
•
•
•
Single channel isolated IGBT driver
For 600 V/650 V/1200 V IGBTs and MOSFETs
Up to 10 A typical peak current at rail-to-rail outputs
Separate source and sink outputs
Galvanically isolated coreless transformer driver
Wide input voltage operating range
Suitable for operation at high ambient temperature
Applications
•
•
•
•
AC and brushless DC motor drives
High voltage DC/DC-converter and DC/AC-inverter
Induction heating resonant application
UPS-systems, welding and solar
Product Type
Output current configuration
Package
1EDI05I12AH
±0.5 A
PG-DSO-8-59
1EDI20I12AH
±2.0 A
PG-DSO-8-59
1EDI20H12AH
±2.0 A for high speed IGBTs
PG-DSO-8-59
1EDI40I12AH
±4.0 A
PG-DSO-8-59
1EDI60I12AH
±6.0 A
PG-DSO-8-59
1EDI60H12AH
±6.0 A for high speed IGBTs
PG-DSO-8-59
Description
The 1EDI05I12AH, 1EDI20I12AH, 1EDI40I12AH,
1EDI60I12AH, 1EDI20H12AH and 1EDI60H12AH are
galvanically isolated single channel IGBT driver in a
PG-DSO-8-59 package that provide output currents up
to 10 A at separated output pins.
The input logic pins operate on a wide input voltage
range from 3 V to 15 V using scaled CMOS threshold
levels to support even 3.3 V microcontroller.
Data transfer across the isolation barrier is realized by
the coreless transformer technology.
Every driver family member comes with logic input
and driver output under voltage lockout (UVLO) and
active shutdown
VCC1
OUT+
IN+
IN-
EiceDRIVERTM
1EDIxxy12AH
OUT-
GND1
GND2,H
VCC1
VCC2,L
Control
OUT+
IN+
IN-
EiceDRIVERTM
1EDIxxy12AH
OUT-
GND1
Preliminary Datasheet
VCC2,H
GND2,L
Please read the Important Notice and Warnings at the end of this document
www.infineon.com/eicedriver
Rev. 1.0
2016-04-20
EiceDRIVER™ 1EDI Compact
Single channel IGBT gate driver IC in wide body package
Table of Contents
Table of Contents
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
2.1
2.2
Pin Configuration and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Pin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
3.1
3.2
3.3
3.3.1
3.3.2
3.3.3
3.4
3.5
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Protection Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Active Shut-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Short Circuit Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Non-Inverting and Inverting Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Driver Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4
4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.3.4
Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Voltage Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Logic Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Gate Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Short Circuit Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3.5
4.3.6
Dynamic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Active Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
6
6.1
6.2
Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Reference Layout for Thermal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Printed Circuit Board Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Preliminary Datasheet
2
Rev. 1.0
2016-04-20
EiceDRIVER™ 1EDI Compact
Single channel IGBT gate driver IC in wide body package
Block Diagram
1
Block Diagram
VCC1
OUT-
7
OUT+
&
UVLO
1
8
GND2
IN+
input
filter
2
GND1
Shoot
through
protection
&
active
filter
TX
VCC2
RX
VCC1
IN-
GND1
Figure 1
input
filter
3
UVLO
4
6
5
VCC2
GND2
Block Diagram
Preliminary Datasheet
3
Rev. 1.0
2016-04-20
EiceDRIVER™ 1EDI Compact
Single channel IGBT gate driver IC in wide body package
Pin Configuration and Functionality
2
Pin Configuration and Functionality
2.1
Pin Configuration
Table 1
Pin Configuration
Pin No.
Name
Function
1
VCC1
Positive logic supply
2
IN+
Non-inverted driver input (active high)
3
IN-
Inverted driver input (active low)
4
GND1
Logic ground
5
GND2
Power ground
6
VCC2
Positive power supply output side
7
OUT+
Driver source output
8
OUT-
Driver sink output
Figure 2
1
VCC1
OUT-
8
2
IN+
OUT+
7
3
IN-
VCC2
6
4
GND1
GND2
5
(top view)
2.2
Pin Functionality
VCC1
Logic input supply voltage of 3.3 V up to 15 V wide operating range.
IN+ Non Inverting Driver Input
IN+ non-inverted control signal for driver output if IN- is set to low. (Output sourcing active at IN+ = high and IN= low)
Due to internal filtering a minimum pulse width is defined to ensure robustness against noise at IN+. An internal
weak pull-down-resistor favors off-state.
Preliminary Datasheet
4
Rev. 1.0
2016-04-20
EiceDRIVER™ 1EDI Compact
Single channel IGBT gate driver IC in wide body package
Pin Configuration and Functionality
IN- Inverting Driver Input
IN- inverted control signal for driver output if IN+ is set to high. (Output sourcing active at IN- = low and IN
+ = high)
Due to internal filtering a minimum pulse width is defined to ensure robustness against noise at IN-. An internal
weak pull-up-resistor favors off-state.
GND1
Ground connection of input circuit.
GND2 Reference Ground
Reference ground of the output driving circuit.
In case of a bipolar supply (positive and negative voltage referred to IGBT emitter) this pin is connected to the
negative supply voltage.
VCC2
Positive power supply pin of output driving circuit. A proper blocking capacitor has to be placed close to this
supply pin.
OUT+ Driver Source Output
Driver source output pin to turn on external IGBT. During on-state the driving output is switched to VCC2.
Switching of this output is controlled by IN+ and IN-. This output will also be turned off at an UVLO event.
During turn off the OUT+ terminal is able to sink approx. 100 mA. In case of an unconnected OUT- the complete
gate charge is discharged through this channel resulting in a slow turn off.
OUT- Driver Sink Output
Driver sink output pin to turn off external IGBT. During off-state the driving output is switched to GND2.
Switching of this output is controlled by IN+ and IN-. In case of UVLO an active shut down keeps the output
voltage at a low level.
Preliminary Datasheet
5
Rev. 1.0
2016-04-20
EiceDRIVER™ 1EDI Compact
Single channel IGBT gate driver IC in wide body package
Functional Description
3
Functional Description
3.1
Introduction
The 1EDIxxI12AH and 1EDIxxH12AH are general purpose IGBT gate drivers. Basic control and protection features
support fast and easy design of highly reliable systems.
The integrated galvanic isolation between control input logic and driving output stage grants additional safety.
Its wide input voltage supply range support the direct connection of various signal sources like DSPs and
microcontrollers.
The separated rail-to-rail driver outputs simplify gate resistor selection, save an external high current bypass
diode and enhance dV/dt control.
3.2
Supply
The driver can operate over a wide supply voltage range, either unipolar or bipolar.
+5V
VCC1
+15V
VCC2
1µ
100n
10R
SGND
IN
Figure 3
OUT+
GND1
3R3
IN+
OUT-
IN-
GND2
1µ
-8V
0V
Application Example Bipolar Supply
With bipolar supply the driver is typically operated with a positive voltage of 15 V at VCC2 and a negative
voltage of -8 V at GND2 relative to the emitter of the IGBT. Negative supply can help to prevent a dynamic turn
on due to the additional charge which is generated from IGBT’s input capacitance.
+5V
VCC1
VCC2
SGND
IN
Figure 4
+15V
1µ
10R
100n
OUT+
GND1
3R3
IN+
OUT-
IN-
GND2
Application Example Unipolar Supply
For unipolar supply configuration the driver is typically supplied with a positive voltage of 15 V at VCC2. In this
case, careful evaluation for turn off gate resistor selection is recommended to avoid dynamic turn on.
Preliminary Datasheet
6
Rev. 1.0
2016-04-20
EiceDRIVER™ 1EDI Compact
Single channel IGBT gate driver IC in wide body package
Functional Description
3.3
Protection Features
3.3.1
Undervoltage Lockout (UVLO)
IN+
VUVLOH1
VUVLOL1
VCC1
VUVLOH2
VUVLOL2
VCC2
OUT
Figure 5
UVLO Behavior
To ensure correct switching of IGBTs the device is equipped with an under voltage lockout for input and output
independently. Operation starts only after both VCC levels have increased beyond the respective VUVLOH levels.
If the power supply voltage VVCC1 of the input chip drops below VUVLOL1 a turn-off signal is sent to the output
chip before power-down. The IGBT is switched off and the signals at IN+ and IN- are ignored until VVCC1 reaches
the power-up voltage VUVLOH1 again.
If the power supply voltage VVCC2 of the output chip goes down below VUVLOL2 the IGBT is switched off and
signals from the input chip are ignored until VVCC2 reaches the power-up voltage VUVLOH2 again.
Note:
VVCC2 is always referred to GND2 and does not differentiate between unipolar or bipolar supply.
3.3.2
Active Shut-Down
The active shut-down feature ensures a safe IGBT off-state in case the output chip is not connected to the
power supply or an under voltage lockout is in effect. The IGBT gate is clamped at OUT- to GND2.
3.3.3
Short Circuit Clamping
During short circuit the IGBT’s gate voltage tends to rise because of the feedback via the Miller capacitance. An
additional protection circuit connected to OUT+ limits this voltage to a value slightly higher than the supply
voltage. A maximum current of 500 mA may be fed back to the supply through this path for 10 μs. If higher
currents are expected or tighter clamping is desired external Schottky diodes may be added.
3.4
Non-Inverting and Inverting Inputs
IN+
IN-
OUT
Figure 6
Typical Switching Behavior
Preliminary Datasheet
7
Rev. 1.0
2016-04-20
EiceDRIVER™ 1EDI Compact
Single channel IGBT gate driver IC in wide body package
Functional Description
There are two possible input modes to control the IGBT. At non-inverting mode IN+ controls the driver output
while IN- is set to low. At inverting mode IN- controls the driver output while IN+ is set to high. A minimum input
pulse width is defined to filter occasional glitches.
3.5
Driver Outputs
The output driver section uses MOSFETs to provide a rail-to-rail output. This feature permits that tight control
of gate voltage during on-state and short circuit can be maintained as long as the driver’s supply is stable. Due
to the low internal voltage drop, switching behavior of the IGBT is predominantly governed by the gate resistor.
Furthermore, it reduces the power to be dissipated by the driver.
Preliminary Datasheet
8
Rev. 1.0
2016-04-20
EiceDRIVER™ 1EDI Compact
Single channel IGBT gate driver IC in wide body package
Electrical Parameters
4
Electrical Parameters
4.1
Absolute Maximum Ratings
Note:
Absolute maximum ratings are defined as ratings, which when being exceeded may lead to
destruction of the integrated circuit. Unless otherwise noted all parameters refer to GND1.
Table 2
Absolute Maximum Ratings
Parameter
Symbol
Values
Min.
Max.
40
Unit
Note /
Test Condition
Power supply output side
VVCC2
-0.3
V
1)
Gate driver output
VOUT
VGND2-0.3 VVCC2+0.3 V
1)
Positive power supply input side
VVCC1
-0.3
18.0
V
–
Logic input voltages (IN+,IN-)
VLogicIN
-0.3
18.0
V
–
Input to output isolation voltage (GND2)
VGND2
-1200
1200
V
GND2 - GND1
Junction temperature
TJ
-40
150
°C
–
Storage temperature
TS
-55
150
°C
–
Power dissipation (Input side)
PD, IN
–
25
mW
2) @T
Power dissipation (Output side)
PD, OUT
–
400
mW
2) @T
Thermal resistance (Input side)
RTHJA,IN
–
145
K/W
2) @T
Thermal resistance (Output side)
RTHJA,OUT –
165
K/W
2) @T
ESD capability
VESD,HBM
–
2
kV
Human body model3)
VESD,CDM
–
1
kV
Charged device
model4)
1
2
3
4
A = 25°C
A = 25°C
A = 85°C
A = 85°C
With respect to GND2.
See Figure 9 for reference layouts for these thermal data. Thermal performance may change significantly
with layout and heat dissipation of components in close proximity.
According to EIA/JESD22-A114-C (discharging a 100 pF capacitor through a 1.5 kΩ series resistor).
According to EIA/JESD22-C101 (specified waveform characteristics)
Preliminary Datasheet
9
Rev. 1.0
2016-04-20
EiceDRIVER™ 1EDI Compact
Single channel IGBT gate driver IC in wide body package
Electrical Parameters
4.2
Operating Parameters
Note:
Within the operating range the IC operates as described in the functional description. Unless
otherwise noted all parameters refer to GND1.
Table 3
Operating Parameters
Parameter
Symbol
Values
Min.
Max.
Unit
Note /
Test Condition
Power supply output side
VVCC2
13
35
V
5)
Power supply input side
VVCC1
3.1
17
V
–
Logic input voltages (IN+,IN-)
VLogicIN
-0.3
17
V
–
Switching frequency
fsw
–
1.0
MHz
6)7)
Ambient temperature
TA
-40
125
°C
–
Thermal coefficient, junction-top
Ψth,jt
–
4.8
K/W
7) at T
Common mode transient immunity (CMTI)
|dVISO/dt| –
100
kV/μs
7) at 1000 V
4.3
Electrical Characteristics
Note:
The electrical characteristics include the spread of values in supply voltages, load and junction
temperatures given below. Typical values represent the median values at TA = 25°C. Unless otherwise
noted all voltages are given with respect to their respective GND (GND1 for pins 1 to 3, GND2 for pins 5
to 7).
4.3.1
Table 4
Voltage Supply
Voltage Supply
Parameter
Symbol
Values
Min.
UVLO threshold input chip
UVLO hysteresis input chip
(VUVLOH1 - VUVLOL1)
5
7
8
Typ.
Unit
Note or Test
Condition
Max.
VUVLOH1
–
2.85
3.1
V
–
VUVLOL1
2.55
2.75
–
V
–
VHYS1
0.09
0.1
–
V
–
–
12.0
12.7
V
8)
10.5
11.1
–
V
8)
UVLO threshold output chip (IGBT VUVLOH2
supply)
VUVLOL2
6
A = 85°C
With respect to GND2.
do not exceed max. power dissipation
Parameter is not subject to production test - verified by design/characterization
With respect to GND2.
Preliminary Datasheet
10
Rev. 1.0
2016-04-20
EiceDRIVER™ 1EDI Compact
Single channel IGBT gate driver IC in wide body package
Electrical Parameters
Table 4
Voltage Supply (Continued)
Parameter
Symbol
Values
Min.
Typ.
Unit
Note or Test
Condition
Max.
UVLO hysteresis output chip
(VUVLOH2 - VUVLOL2)
VHYS2
0.7
0.85
–
V
–
Quiescent current input chip
IQ1
–
0.65
1.0
mA
VVCC1 = 5 V
IN+ = High, IN- = Low
=>OUT = High
Quiescent current output chip
IQ2
–
1.2
2.0
mA
VVCC2 = 15 V
IN+ = High, IN- = Low
=>OUT = High
Unit
Note or Test
Condition
4.3.2
Table 5
Logic Input
Logic Input
Parameter
Symbol
Values
Min.
Typ.
Max.
IN+,IN- low input voltage
VIN+L,VIN-L –
–
30
%
of VCC1
IN+,IN- high input voltage
VIN+H,VIN-
–
–
%
of VCC1
70
H
IN+,IN- low input voltage
VIN+L,VIN-L –
–
1.5
V
VCC1 = 5.0V
IN+,IN- high input voltage
VIN+H,VIN-
3.5
–
–
V
VCC1 = 5.0V
H
IN- input current
IIN-
–
70
200
μA
VIN- = GND1, VCC1 =
5.0V
IN+ input current
IIN+
–
70
200
μA
VIN+ = VCC1, VCC1 =
5.0V
Preliminary Datasheet
11
Rev. 1.0
2016-04-20
EiceDRIVER™ 1EDI Compact
Single channel IGBT gate driver IC in wide body package
Electrical Parameters
4.3.3
Gate Driver
Note:
minimum Peak current rating valid over temperature range!
Table 6
Gate Driver
Parameter
Symbol
Values
Min.
High level output peak current
(source)
1EDI05I12AH
1EDI20I12AH
1EDI20H12AH
1EDI40I12AH
1EDI60I12AH
1EDI60H12AH
IOUT+,PEAK
Low level output peak current
(sink)
1EDI05I12AH
1EDI20I12AH
1EDI20H12AH
1EDI40I12AH
1EDI60I12AH
1EDI60H12AH
IOUT-,PEAK
4.3.4
Table 7
Typ.
9)IN+ = High,
IN- = Low,
VVCC2 = 15 V
1.3
4.0
4.0
7.5
10.0
10.0
–
0.5
2.0
2.0
4.0
6.0
6.0
A
9)IN+ = Low,
IN- = Low,
VVCC2 = 15 V
0.9
3.5
3.5
6.8
9.4
9.4
Short Circuit Clamping
Symbol
Values
Min.
Clamping voltage (OUT+)
(VOUT+ - VVCC2)
9
A
Short Circuit Clamping
Parameter
10
Note or Test
Condition
Max.
–
0.5
2.0
2.0
4.0
6.0
6.0
Unit
VCLPout
Typ.
–
0.9
Unit
Note or Test
Condition
V
10)IN+ = High, IN- =
Max.
1.3
Low,
OUT = High
IOUT = 500 mA,
(pulse test tCLPmax =
10 μs)
specified min. output current is forced; voltage across the device V(VCC2 - OUT+) or V(OUT- - GND2) < VVCC2.
With respect to GND2.
Preliminary Datasheet
12
Rev. 1.0
2016-04-20
EiceDRIVER™ 1EDI Compact
Single channel IGBT gate driver IC in wide body package
Electrical Parameters
4.3.5
Dynamic Characteristics
Dynamic characteristics are measured with VVCC1 = 5 V and VVCC2 = 15 V.
50%
IN+
80%
50%
20%
OUT
TPDON
Figure 7
Propagation Delay, Rise and Fall Time
Table 8
Dynamic Characteristics
Parameter
TRISE
TPDOFF
Symbol
Values
Min.
Typ.
TFALL
Unit
Note or Test
Condition
CLOAD = 100 pF
VIN+ = 50%,
VOUT=50% @25°C
1EDI05I12AH,
1EDI20I12AH,
1EDI40I12AH,
1EDI60I12AH
Max.
Input IN to output propagation
delay ON
TPDON
270
300
330
ns
Input IN to output propagation
delay OFF
TPDOFF
270
300
330
ns
Input IN to output propagation
delay distortion (TPDOFF - TPDON)
TPDISTO
-30
5
40
ns
Input pulse suppression time IN+, TMININ+,
INTMININ-
230
240
–
ns
Input IN to output propagation
delay ON
TPDON
95
120
142
ns
Input IN to output propagation
delay OFF
TPDOFF
105
125
150
ns
Input IN to output propagation
delay distortion (TPDOFF - TPDON)
TPDISTO
-35
-5
25
ns
Input Pulse Suppressiontime IN+, TMININ+,
INTMININ-
30
40
–
ns
Input IN to output propagation
delay ON variation due to temp
TPDONt
–
–
14
ns
11)C
Input IN to output propagation
delay OFF variation due to temp
TPDONt
–
–
14
ns
VIN+ = 50%,
VOUT=50%
Input IN to output propagation
delay distortion variation due to
temp (TPDOFF-TPDON)
TPDISTOt
–
–
8
ns
Rise time
TRISE
5
10
20
ns
Fall time
TFALL
4
9
19
ns
11
CLOAD = 100 pF
VIN+ = 50%,
VOUT=50% @25°C
1EDI20H12AH,
1EDI60H12AH
LOAD = 100 pF
CLOAD = 1 nF
VL20%, VH 80%
Parameter is not subject to production test - verified by design/characterization
Preliminary Datasheet
13
Rev. 1.0
2016-04-20
EiceDRIVER™ 1EDI Compact
Single channel IGBT gate driver IC in wide body package
Electrical Parameters
4.3.6
Table 9
Active Shut Down
Active Shut Down
Parameter
Symbol
Values
Min.
Active shut down voltage
VACTSD
Typ.
–
2.0
Unit
Note or Test
Condition
V
12)I
Max.
2.3
OUT-/IOUT-,PEAK=0.1,
VCC2 open
12
With respect to GND2.
Preliminary Datasheet
14
Rev. 1.0
2016-04-20
EiceDRIVER™ 1EDI Compact
Single channel IGBT gate driver IC in wide body package
Package Outline
5
Package Outline
DOCUMENT NO.
Z8B00179262
A
A1
A2
b
c
D
E
E1
e
N
L
L2
h
MILLIMETERS
MIN
MAX
2.65
0.10
0.20
2.25
2.45
0.30
0.50
0.23
0.32
6.20
6.40
10.00
10.60
7.40
7.60
1.27 BSC
8
0.50
0.90
0.25 BSC
0.25
0.45
ccc
ddd
0.10
0.25
DIM
Figure 8
INCHES
MIN
0.004
0.089
0.012
0.009
0.244
0.394
0.291
SCALE
MAX
0.104
0.008
0.096
0.020
0.013
0.252
0.417
0.299
0
2
0
2
4mm
EUROPEAN PROJECTION
0.050 BSC
8
0.020
0.035
0.010 BSC
0.010
0.018
0.004
0.010
ISSUE DATE
05.11.2015
REVISION
01
PG-DSO-8-59 (Plastic (Green) Dual Small Outline Package)
Preliminary Datasheet
15
Rev. 1.0
2016-04-20
EiceDRIVER™ 1EDI Compact
Single channel IGBT gate driver IC in wide body package
Application Notes
6
Application Notes
6.1
Reference Layout for Thermal Data
Figure 9
Reference Layout for Thermal Data (Copper thickness 35 μm)
This PCB layout represents the reference layout used for the thermal characterization.
Pin 4 (GND1) and pin 5 (GND2) require each a ground plane of 100 mm² for achieving maximum power
dissipation. The package is built to dissipate most of the heat generated through these pins.
The thermal coefficient junction-top (Ψth,jt) can be used to calculate the junction temperature at a given top
case temperature and driver power dissipation:
6.2
Printed Circuit Board Guidelines
The following factors should be taken into account for an optimum PCB layout.
• Sufficient spacing should be kept between high voltage isolated side and low voltage side circuits.
• The same minimum distance between two adjacent high-side isolated parts of the PCB should be
maintained to increase the effective isolation and to reduce parasitic coupling.
• In order to ensure low supply ripple and clean switching signals, bypass capacitor trace lengths should be
kept as short as possible.
Revision History
Page or Item
Subjects (major changes since previous revision)
Rev. 1.0, 2016-04-20
el. Parameters
missing product parameters updated
Rev. 0.51, 2015-11-05
all pages
change of template, standardized package drawing included
Rev. 0.50, 2014-05-05
all pages
Preliminary Datasheet
initial version
16
Rev. 1.0
2016-04-20
Trademarks of Infineon Technologies AG
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™, DAVE™,
DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™,
HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™,
PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™,
SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.
Trademarks Update 2015-12-22
Other Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2016-04-20
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2016 Infineon Technologies AG
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: [email protected]
Document reference
IFX-ret1441196173716
IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .
With respect to any examples, hints or any typical
values stated herein and/or any information regarding
the application of the product, Infineon Technologies
hereby disclaims any and all warranties and liabilities of
any kind, including without limitation warranties of
non-infringement of intellectual property rights of any
third party.
In addition, any information given in this document is
subject to customer’s compliance with its obligations
stated in this document and any applicable legal
requirements, norms and standards concerning
customer’s products and any use of the product of
Infineon Technologies in customer’s applications.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.
For further information on technology, delivery
terms and conditions and prices, please contact the
nearest
Infineon
Technologies
Office
(www.infineon.com)
Please note that this product is not qualified
according to the AEC Q100 or AEC Q101 documents
of the Automotive Electronics Council.
WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury