1EDIxxI12AH/1EDIxxH12AH EiceDRIVER™ 1EDI Compact Single channel IGBT gate driver IC in wide body package Features • • • • • • • Single channel isolated IGBT driver For 600 V/650 V/1200 V IGBTs and MOSFETs Up to 10 A typical peak current at rail-to-rail outputs Separate source and sink outputs Galvanically isolated coreless transformer driver Wide input voltage operating range Suitable for operation at high ambient temperature Applications • • • • AC and brushless DC motor drives High voltage DC/DC-converter and DC/AC-inverter Induction heating resonant application UPS-systems, welding and solar Product Type Output current configuration Package 1EDI05I12AH ±0.5 A PG-DSO-8-59 1EDI20I12AH ±2.0 A PG-DSO-8-59 1EDI20H12AH ±2.0 A for high speed IGBTs PG-DSO-8-59 1EDI40I12AH ±4.0 A PG-DSO-8-59 1EDI60I12AH ±6.0 A PG-DSO-8-59 1EDI60H12AH ±6.0 A for high speed IGBTs PG-DSO-8-59 Description The 1EDI05I12AH, 1EDI20I12AH, 1EDI40I12AH, 1EDI60I12AH, 1EDI20H12AH and 1EDI60H12AH are galvanically isolated single channel IGBT driver in a PG-DSO-8-59 package that provide output currents up to 10 A at separated output pins. The input logic pins operate on a wide input voltage range from 3 V to 15 V using scaled CMOS threshold levels to support even 3.3 V microcontroller. Data transfer across the isolation barrier is realized by the coreless transformer technology. Every driver family member comes with logic input and driver output under voltage lockout (UVLO) and active shutdown VCC1 OUT+ IN+ IN- EiceDRIVERTM 1EDIxxy12AH OUT- GND1 GND2,H VCC1 VCC2,L Control OUT+ IN+ IN- EiceDRIVERTM 1EDIxxy12AH OUT- GND1 Preliminary Datasheet VCC2,H GND2,L Please read the Important Notice and Warnings at the end of this document www.infineon.com/eicedriver Rev. 1.0 2016-04-20 EiceDRIVER™ 1EDI Compact Single channel IGBT gate driver IC in wide body package Table of Contents Table of Contents Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 2.1 2.2 Pin Configuration and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 3.1 3.2 3.3 3.3.1 3.3.2 3.3.3 3.4 3.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Protection Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Active Shut-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Short Circuit Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Non-Inverting and Inverting Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Driver Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Voltage Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Logic Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Gate Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Short Circuit Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.3.5 4.3.6 Dynamic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Active Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5 Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 6 6.1 6.2 Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Reference Layout for Thermal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Printed Circuit Board Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Preliminary Datasheet 2 Rev. 1.0 2016-04-20 EiceDRIVER™ 1EDI Compact Single channel IGBT gate driver IC in wide body package Block Diagram 1 Block Diagram VCC1 OUT- 7 OUT+ & UVLO 1 8 GND2 IN+ input filter 2 GND1 Shoot through protection & active filter TX VCC2 RX VCC1 IN- GND1 Figure 1 input filter 3 UVLO 4 6 5 VCC2 GND2 Block Diagram Preliminary Datasheet 3 Rev. 1.0 2016-04-20 EiceDRIVER™ 1EDI Compact Single channel IGBT gate driver IC in wide body package Pin Configuration and Functionality 2 Pin Configuration and Functionality 2.1 Pin Configuration Table 1 Pin Configuration Pin No. Name Function 1 VCC1 Positive logic supply 2 IN+ Non-inverted driver input (active high) 3 IN- Inverted driver input (active low) 4 GND1 Logic ground 5 GND2 Power ground 6 VCC2 Positive power supply output side 7 OUT+ Driver source output 8 OUT- Driver sink output Figure 2 1 VCC1 OUT- 8 2 IN+ OUT+ 7 3 IN- VCC2 6 4 GND1 GND2 5 (top view) 2.2 Pin Functionality VCC1 Logic input supply voltage of 3.3 V up to 15 V wide operating range. IN+ Non Inverting Driver Input IN+ non-inverted control signal for driver output if IN- is set to low. (Output sourcing active at IN+ = high and IN= low) Due to internal filtering a minimum pulse width is defined to ensure robustness against noise at IN+. An internal weak pull-down-resistor favors off-state. Preliminary Datasheet 4 Rev. 1.0 2016-04-20 EiceDRIVER™ 1EDI Compact Single channel IGBT gate driver IC in wide body package Pin Configuration and Functionality IN- Inverting Driver Input IN- inverted control signal for driver output if IN+ is set to high. (Output sourcing active at IN- = low and IN + = high) Due to internal filtering a minimum pulse width is defined to ensure robustness against noise at IN-. An internal weak pull-up-resistor favors off-state. GND1 Ground connection of input circuit. GND2 Reference Ground Reference ground of the output driving circuit. In case of a bipolar supply (positive and negative voltage referred to IGBT emitter) this pin is connected to the negative supply voltage. VCC2 Positive power supply pin of output driving circuit. A proper blocking capacitor has to be placed close to this supply pin. OUT+ Driver Source Output Driver source output pin to turn on external IGBT. During on-state the driving output is switched to VCC2. Switching of this output is controlled by IN+ and IN-. This output will also be turned off at an UVLO event. During turn off the OUT+ terminal is able to sink approx. 100 mA. In case of an unconnected OUT- the complete gate charge is discharged through this channel resulting in a slow turn off. OUT- Driver Sink Output Driver sink output pin to turn off external IGBT. During off-state the driving output is switched to GND2. Switching of this output is controlled by IN+ and IN-. In case of UVLO an active shut down keeps the output voltage at a low level. Preliminary Datasheet 5 Rev. 1.0 2016-04-20 EiceDRIVER™ 1EDI Compact Single channel IGBT gate driver IC in wide body package Functional Description 3 Functional Description 3.1 Introduction The 1EDIxxI12AH and 1EDIxxH12AH are general purpose IGBT gate drivers. Basic control and protection features support fast and easy design of highly reliable systems. The integrated galvanic isolation between control input logic and driving output stage grants additional safety. Its wide input voltage supply range support the direct connection of various signal sources like DSPs and microcontrollers. The separated rail-to-rail driver outputs simplify gate resistor selection, save an external high current bypass diode and enhance dV/dt control. 3.2 Supply The driver can operate over a wide supply voltage range, either unipolar or bipolar. +5V VCC1 +15V VCC2 1µ 100n 10R SGND IN Figure 3 OUT+ GND1 3R3 IN+ OUT- IN- GND2 1µ -8V 0V Application Example Bipolar Supply With bipolar supply the driver is typically operated with a positive voltage of 15 V at VCC2 and a negative voltage of -8 V at GND2 relative to the emitter of the IGBT. Negative supply can help to prevent a dynamic turn on due to the additional charge which is generated from IGBT’s input capacitance. +5V VCC1 VCC2 SGND IN Figure 4 +15V 1µ 10R 100n OUT+ GND1 3R3 IN+ OUT- IN- GND2 Application Example Unipolar Supply For unipolar supply configuration the driver is typically supplied with a positive voltage of 15 V at VCC2. In this case, careful evaluation for turn off gate resistor selection is recommended to avoid dynamic turn on. Preliminary Datasheet 6 Rev. 1.0 2016-04-20 EiceDRIVER™ 1EDI Compact Single channel IGBT gate driver IC in wide body package Functional Description 3.3 Protection Features 3.3.1 Undervoltage Lockout (UVLO) IN+ VUVLOH1 VUVLOL1 VCC1 VUVLOH2 VUVLOL2 VCC2 OUT Figure 5 UVLO Behavior To ensure correct switching of IGBTs the device is equipped with an under voltage lockout for input and output independently. Operation starts only after both VCC levels have increased beyond the respective VUVLOH levels. If the power supply voltage VVCC1 of the input chip drops below VUVLOL1 a turn-off signal is sent to the output chip before power-down. The IGBT is switched off and the signals at IN+ and IN- are ignored until VVCC1 reaches the power-up voltage VUVLOH1 again. If the power supply voltage VVCC2 of the output chip goes down below VUVLOL2 the IGBT is switched off and signals from the input chip are ignored until VVCC2 reaches the power-up voltage VUVLOH2 again. Note: VVCC2 is always referred to GND2 and does not differentiate between unipolar or bipolar supply. 3.3.2 Active Shut-Down The active shut-down feature ensures a safe IGBT off-state in case the output chip is not connected to the power supply or an under voltage lockout is in effect. The IGBT gate is clamped at OUT- to GND2. 3.3.3 Short Circuit Clamping During short circuit the IGBT’s gate voltage tends to rise because of the feedback via the Miller capacitance. An additional protection circuit connected to OUT+ limits this voltage to a value slightly higher than the supply voltage. A maximum current of 500 mA may be fed back to the supply through this path for 10 μs. If higher currents are expected or tighter clamping is desired external Schottky diodes may be added. 3.4 Non-Inverting and Inverting Inputs IN+ IN- OUT Figure 6 Typical Switching Behavior Preliminary Datasheet 7 Rev. 1.0 2016-04-20 EiceDRIVER™ 1EDI Compact Single channel IGBT gate driver IC in wide body package Functional Description There are two possible input modes to control the IGBT. At non-inverting mode IN+ controls the driver output while IN- is set to low. At inverting mode IN- controls the driver output while IN+ is set to high. A minimum input pulse width is defined to filter occasional glitches. 3.5 Driver Outputs The output driver section uses MOSFETs to provide a rail-to-rail output. This feature permits that tight control of gate voltage during on-state and short circuit can be maintained as long as the driver’s supply is stable. Due to the low internal voltage drop, switching behavior of the IGBT is predominantly governed by the gate resistor. Furthermore, it reduces the power to be dissipated by the driver. Preliminary Datasheet 8 Rev. 1.0 2016-04-20 EiceDRIVER™ 1EDI Compact Single channel IGBT gate driver IC in wide body package Electrical Parameters 4 Electrical Parameters 4.1 Absolute Maximum Ratings Note: Absolute maximum ratings are defined as ratings, which when being exceeded may lead to destruction of the integrated circuit. Unless otherwise noted all parameters refer to GND1. Table 2 Absolute Maximum Ratings Parameter Symbol Values Min. Max. 40 Unit Note / Test Condition Power supply output side VVCC2 -0.3 V 1) Gate driver output VOUT VGND2-0.3 VVCC2+0.3 V 1) Positive power supply input side VVCC1 -0.3 18.0 V – Logic input voltages (IN+,IN-) VLogicIN -0.3 18.0 V – Input to output isolation voltage (GND2) VGND2 -1200 1200 V GND2 - GND1 Junction temperature TJ -40 150 °C – Storage temperature TS -55 150 °C – Power dissipation (Input side) PD, IN – 25 mW 2) @T Power dissipation (Output side) PD, OUT – 400 mW 2) @T Thermal resistance (Input side) RTHJA,IN – 145 K/W 2) @T Thermal resistance (Output side) RTHJA,OUT – 165 K/W 2) @T ESD capability VESD,HBM – 2 kV Human body model3) VESD,CDM – 1 kV Charged device model4) 1 2 3 4 A = 25°C A = 25°C A = 85°C A = 85°C With respect to GND2. See Figure 9 for reference layouts for these thermal data. Thermal performance may change significantly with layout and heat dissipation of components in close proximity. According to EIA/JESD22-A114-C (discharging a 100 pF capacitor through a 1.5 kΩ series resistor). According to EIA/JESD22-C101 (specified waveform characteristics) Preliminary Datasheet 9 Rev. 1.0 2016-04-20 EiceDRIVER™ 1EDI Compact Single channel IGBT gate driver IC in wide body package Electrical Parameters 4.2 Operating Parameters Note: Within the operating range the IC operates as described in the functional description. Unless otherwise noted all parameters refer to GND1. Table 3 Operating Parameters Parameter Symbol Values Min. Max. Unit Note / Test Condition Power supply output side VVCC2 13 35 V 5) Power supply input side VVCC1 3.1 17 V – Logic input voltages (IN+,IN-) VLogicIN -0.3 17 V – Switching frequency fsw – 1.0 MHz 6)7) Ambient temperature TA -40 125 °C – Thermal coefficient, junction-top Ψth,jt – 4.8 K/W 7) at T Common mode transient immunity (CMTI) |dVISO/dt| – 100 kV/μs 7) at 1000 V 4.3 Electrical Characteristics Note: The electrical characteristics include the spread of values in supply voltages, load and junction temperatures given below. Typical values represent the median values at TA = 25°C. Unless otherwise noted all voltages are given with respect to their respective GND (GND1 for pins 1 to 3, GND2 for pins 5 to 7). 4.3.1 Table 4 Voltage Supply Voltage Supply Parameter Symbol Values Min. UVLO threshold input chip UVLO hysteresis input chip (VUVLOH1 - VUVLOL1) 5 7 8 Typ. Unit Note or Test Condition Max. VUVLOH1 – 2.85 3.1 V – VUVLOL1 2.55 2.75 – V – VHYS1 0.09 0.1 – V – – 12.0 12.7 V 8) 10.5 11.1 – V 8) UVLO threshold output chip (IGBT VUVLOH2 supply) VUVLOL2 6 A = 85°C With respect to GND2. do not exceed max. power dissipation Parameter is not subject to production test - verified by design/characterization With respect to GND2. Preliminary Datasheet 10 Rev. 1.0 2016-04-20 EiceDRIVER™ 1EDI Compact Single channel IGBT gate driver IC in wide body package Electrical Parameters Table 4 Voltage Supply (Continued) Parameter Symbol Values Min. Typ. Unit Note or Test Condition Max. UVLO hysteresis output chip (VUVLOH2 - VUVLOL2) VHYS2 0.7 0.85 – V – Quiescent current input chip IQ1 – 0.65 1.0 mA VVCC1 = 5 V IN+ = High, IN- = Low =>OUT = High Quiescent current output chip IQ2 – 1.2 2.0 mA VVCC2 = 15 V IN+ = High, IN- = Low =>OUT = High Unit Note or Test Condition 4.3.2 Table 5 Logic Input Logic Input Parameter Symbol Values Min. Typ. Max. IN+,IN- low input voltage VIN+L,VIN-L – – 30 % of VCC1 IN+,IN- high input voltage VIN+H,VIN- – – % of VCC1 70 H IN+,IN- low input voltage VIN+L,VIN-L – – 1.5 V VCC1 = 5.0V IN+,IN- high input voltage VIN+H,VIN- 3.5 – – V VCC1 = 5.0V H IN- input current IIN- – 70 200 μA VIN- = GND1, VCC1 = 5.0V IN+ input current IIN+ – 70 200 μA VIN+ = VCC1, VCC1 = 5.0V Preliminary Datasheet 11 Rev. 1.0 2016-04-20 EiceDRIVER™ 1EDI Compact Single channel IGBT gate driver IC in wide body package Electrical Parameters 4.3.3 Gate Driver Note: minimum Peak current rating valid over temperature range! Table 6 Gate Driver Parameter Symbol Values Min. High level output peak current (source) 1EDI05I12AH 1EDI20I12AH 1EDI20H12AH 1EDI40I12AH 1EDI60I12AH 1EDI60H12AH IOUT+,PEAK Low level output peak current (sink) 1EDI05I12AH 1EDI20I12AH 1EDI20H12AH 1EDI40I12AH 1EDI60I12AH 1EDI60H12AH IOUT-,PEAK 4.3.4 Table 7 Typ. 9)IN+ = High, IN- = Low, VVCC2 = 15 V 1.3 4.0 4.0 7.5 10.0 10.0 – 0.5 2.0 2.0 4.0 6.0 6.0 A 9)IN+ = Low, IN- = Low, VVCC2 = 15 V 0.9 3.5 3.5 6.8 9.4 9.4 Short Circuit Clamping Symbol Values Min. Clamping voltage (OUT+) (VOUT+ - VVCC2) 9 A Short Circuit Clamping Parameter 10 Note or Test Condition Max. – 0.5 2.0 2.0 4.0 6.0 6.0 Unit VCLPout Typ. – 0.9 Unit Note or Test Condition V 10)IN+ = High, IN- = Max. 1.3 Low, OUT = High IOUT = 500 mA, (pulse test tCLPmax = 10 μs) specified min. output current is forced; voltage across the device V(VCC2 - OUT+) or V(OUT- - GND2) < VVCC2. With respect to GND2. Preliminary Datasheet 12 Rev. 1.0 2016-04-20 EiceDRIVER™ 1EDI Compact Single channel IGBT gate driver IC in wide body package Electrical Parameters 4.3.5 Dynamic Characteristics Dynamic characteristics are measured with VVCC1 = 5 V and VVCC2 = 15 V. 50% IN+ 80% 50% 20% OUT TPDON Figure 7 Propagation Delay, Rise and Fall Time Table 8 Dynamic Characteristics Parameter TRISE TPDOFF Symbol Values Min. Typ. TFALL Unit Note or Test Condition CLOAD = 100 pF VIN+ = 50%, VOUT=50% @25°C 1EDI05I12AH, 1EDI20I12AH, 1EDI40I12AH, 1EDI60I12AH Max. Input IN to output propagation delay ON TPDON 270 300 330 ns Input IN to output propagation delay OFF TPDOFF 270 300 330 ns Input IN to output propagation delay distortion (TPDOFF - TPDON) TPDISTO -30 5 40 ns Input pulse suppression time IN+, TMININ+, INTMININ- 230 240 – ns Input IN to output propagation delay ON TPDON 95 120 142 ns Input IN to output propagation delay OFF TPDOFF 105 125 150 ns Input IN to output propagation delay distortion (TPDOFF - TPDON) TPDISTO -35 -5 25 ns Input Pulse Suppressiontime IN+, TMININ+, INTMININ- 30 40 – ns Input IN to output propagation delay ON variation due to temp TPDONt – – 14 ns 11)C Input IN to output propagation delay OFF variation due to temp TPDONt – – 14 ns VIN+ = 50%, VOUT=50% Input IN to output propagation delay distortion variation due to temp (TPDOFF-TPDON) TPDISTOt – – 8 ns Rise time TRISE 5 10 20 ns Fall time TFALL 4 9 19 ns 11 CLOAD = 100 pF VIN+ = 50%, VOUT=50% @25°C 1EDI20H12AH, 1EDI60H12AH LOAD = 100 pF CLOAD = 1 nF VL20%, VH 80% Parameter is not subject to production test - verified by design/characterization Preliminary Datasheet 13 Rev. 1.0 2016-04-20 EiceDRIVER™ 1EDI Compact Single channel IGBT gate driver IC in wide body package Electrical Parameters 4.3.6 Table 9 Active Shut Down Active Shut Down Parameter Symbol Values Min. Active shut down voltage VACTSD Typ. – 2.0 Unit Note or Test Condition V 12)I Max. 2.3 OUT-/IOUT-,PEAK=0.1, VCC2 open 12 With respect to GND2. Preliminary Datasheet 14 Rev. 1.0 2016-04-20 EiceDRIVER™ 1EDI Compact Single channel IGBT gate driver IC in wide body package Package Outline 5 Package Outline DOCUMENT NO. Z8B00179262 A A1 A2 b c D E E1 e N L L2 h MILLIMETERS MIN MAX 2.65 0.10 0.20 2.25 2.45 0.30 0.50 0.23 0.32 6.20 6.40 10.00 10.60 7.40 7.60 1.27 BSC 8 0.50 0.90 0.25 BSC 0.25 0.45 ccc ddd 0.10 0.25 DIM Figure 8 INCHES MIN 0.004 0.089 0.012 0.009 0.244 0.394 0.291 SCALE MAX 0.104 0.008 0.096 0.020 0.013 0.252 0.417 0.299 0 2 0 2 4mm EUROPEAN PROJECTION 0.050 BSC 8 0.020 0.035 0.010 BSC 0.010 0.018 0.004 0.010 ISSUE DATE 05.11.2015 REVISION 01 PG-DSO-8-59 (Plastic (Green) Dual Small Outline Package) Preliminary Datasheet 15 Rev. 1.0 2016-04-20 EiceDRIVER™ 1EDI Compact Single channel IGBT gate driver IC in wide body package Application Notes 6 Application Notes 6.1 Reference Layout for Thermal Data Figure 9 Reference Layout for Thermal Data (Copper thickness 35 μm) This PCB layout represents the reference layout used for the thermal characterization. Pin 4 (GND1) and pin 5 (GND2) require each a ground plane of 100 mm² for achieving maximum power dissipation. The package is built to dissipate most of the heat generated through these pins. The thermal coefficient junction-top (Ψth,jt) can be used to calculate the junction temperature at a given top case temperature and driver power dissipation: 6.2 Printed Circuit Board Guidelines The following factors should be taken into account for an optimum PCB layout. • Sufficient spacing should be kept between high voltage isolated side and low voltage side circuits. • The same minimum distance between two adjacent high-side isolated parts of the PCB should be maintained to increase the effective isolation and to reduce parasitic coupling. • In order to ensure low supply ripple and clean switching signals, bypass capacitor trace lengths should be kept as short as possible. Revision History Page or Item Subjects (major changes since previous revision) Rev. 1.0, 2016-04-20 el. Parameters missing product parameters updated Rev. 0.51, 2015-11-05 all pages change of template, standardized package drawing included Rev. 0.50, 2014-05-05 all pages Preliminary Datasheet initial version 16 Rev. 1.0 2016-04-20 Trademarks of Infineon Technologies AG µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™. Trademarks Update 2015-12-22 Other Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2016-04-20 Published by Infineon Technologies AG 81726 Munich, Germany © 2016 Infineon Technologies AG All Rights Reserved. Do you have a question about any aspect of this document? Email: [email protected] Document reference IFX-ret1441196173716 IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”) . With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com) Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council. WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury