1EDI05I12AF Data Sheet (1.9 MB, EN)

1EDI EiceDRIVER™ Compact
Separate output variant for IGBT
Single Channel IGBT Gate Driver IC
1EDI05I12AF
1EDI20I12AF
1EDI40I12AF
1EDI60I12AF
Data Sheet
Rev. 2.0, 2014-11-10
Industrial Power Control
Edition 2014-11-10
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2014 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
1EDI EiceDRIVER™ Compact
Separate output variant for IGBT
Revision History
Page or Item
Subjects (major changes since previous revision)
Rev. 2.0, 2014-11-10
all pages
Final DS, completion of parameters and editorial changes
Rev. 1.01, 2014-10-14
all pages
completion of parameters
Trademarks of Infineon Technologies AG
AURIX™, BlueMoon™, C166™, CanPAK™, CIPOS™, CIPURSE™, COMNEON™, EconoPACK™, CoolMOS™,
CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™,
EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™,
MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OptiMOS™, ORIGA™, PRIMARION™,
PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™,
SINDRION™, SIPMOS™, SMARTi™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™,
TRENCHSTOP™, TriCore™, X-GOLD™, X-PMU™, XMM™, XPOSYS™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR
development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of
Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data
Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics
Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™
of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc.,
OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc.
RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc.
SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden
Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA.
UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™
of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of
Diodes Zetex Limited.
Last Trademarks Update 2010-10-26
Data Sheet
3
Rev. 2.0, 2014-11-10
1EDI EiceDRIVER™ Compact
Separate output variant for IGBT
Table of Contents
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3
3.1
3.2
Pin Configuration and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Pin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4
4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.4
4.5
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protection Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Active Shut-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Short Circuit Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Non-Inverting and Inverting Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Driver Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12
12
12
13
13
13
13
13
13
5
5.1
5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Logic Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gate Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Short Circuit Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dynamic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Active Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14
14
15
15
15
16
16
17
17
18
6
Timing Diagramms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8
8.1
8.2
Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Reference Layout for Thermal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Printed Circuit Board Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Data Sheet
4
Rev. 2.0, 2014-11-10
1EDI EiceDRIVER™ Compact
Separate output variant for IGBT
List of Figures
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Data Sheet
Typical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Block Diagram 1EDI05I12AF, 1EDI20I12AF, 1EDI40I12AF and 1EDI60I12AF . . . . . . . . . . . . . . . 9
PG-DSO-8-51 (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Application Example Bipolar Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Application Example Unipolar Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Propagation Delay, Rise and Fall Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Typical Switching Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
UVLO Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
PG-DSO-8-51 (Plastic (Green) Dual Small Outline Package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Reference Layout for Thermal Data (JEDEC 1s0p, 100mm², Copper thickness 35 μm) . . . . . . . . 21
5
Rev. 2.0, 2014-11-10
1EDI EiceDRIVER™ Compact
Separate output variant for IGBT
List of Tables
Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Data Sheet
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Logic Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gate Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Short Circuit Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dynamic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Active Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
10
14
15
15
16
16
17
17
18
Rev. 2.0, 2014-11-10
1EDI EiceDRIVER™ Compact
Single Channel IGBT Gate Driver IC
1
Separate output
variant for IGBT
Overview
Main Features
•
•
•
•
•
Single channel isolated IGBT Driver
Input to output isolation voltage up to 1200 V
For high voltage power IGBTs
Up to 10 A typical peak current at rail-to-rail outputs
Separate source and sink outputs
Product Highlights
•
•
•
Galvanically isolated Coreless Transformer Driver
Wide input voltage operating range
Suitable for operation at high ambient temperature
ED-
Compact
Typical Application
•
•
•
•
•
•
AC and Brushless DC Motor Drives
High Voltage DC/DC-Converter and DC/AC-Inverter
Induction Heating Resonant Application
UPS-Systems
Welding
Solar
Description
The 1EDI05I12AF, 1EDI20I12AF, 1EDI40I12AF, and 1EDI60I12AF are galvanically isolated single channel IGBT
driver in a PG-DSO-8-51 package that provide minimum output currents up to 6 A at separated output pins.
The input logic pins operate on a wide input voltage range from 3 V to 15 V using CMOS threshold levels to
support even 3.3 V microcontroller.
Data transfer across the isolation barrier is realized by the Coreless Transformer Technology.
Every driver family member comes with logic input and driver output under voltage lockout (UVLO) and active
shutdown.
Product Name
Gate Drive Current (min)
Package
1EDI05I12AF
±0.5 A
PG-DSO-8-51
1EDI20I12AF
±2.0 A
PG-DSO-8-51
1EDI40I12AF
±4.0 A
PG-DSO-8-51
1EDI60I12AF
±6.0 A
PG-DSO-8-51
Data Sheet
7
Rev. 2.0, 2014-11-10
1EDI EiceDRIVER™ Compact
Separate output variant for IGBT
Overview
VCC1
VCC2,H
OUT+
IN+
IN-
EiceDRIVERTM
1EDIxxI12AF
OUT-
GND1
GND2,H
VCC1
VCC2,L
Control
OUT+
IN+
IN-
EiceDRIVERTM
1EDIxxI12AF
OUT-
GND2,L
GND1
Figure 1
Data Sheet
Typical Application
8
Rev. 2.0, 2014-11-10
1EDI EiceDRIVER™ Compact
Separate output variant for IGBT
Block Diagram
2
Block Diagram
VCC1
1
UVLO
UVLO
5
VCC2
6
OUT+
7
OUT-
8
GND2
VCC2
IN+
2
input
filter
GND1
&
active
filter
&
TX
RX
VCC1
IN-
3
GND1
4
Figure 2
Data Sheet
Shoot
through
protection
input
filter
Block Diagram 1EDI05I12AF, 1EDI20I12AF, 1EDI40I12AF and 1EDI60I12AF
9
Rev. 2.0, 2014-11-10
1EDI EiceDRIVER™ Compact
Separate output variant for IGBT
Pin Configuration and Functionality
3
Pin Configuration and Functionality
3.1
Pin Configuration
Table 1
Pin Configuration
Pin No. Name
Function
1
VCC1
Positive Logic Supply
2
IN+
Non-Inverted Driver Input (active high)
3
IN-
Inverted Driver Input (active low)
4
GND1
Logic Ground
5
VCC2
Positive Power Supply Output Side
6
OUT+
Driver Source Output
7
OUT-
Driver Sink Output
8
GND2
Power Ground
1
VCC1
GND2
8
2
IN+
OUT-
7
3
IN-
OUT+
6
4
GND1
VCC2
5
Figure 3
PG-DSO-8-51 (top view)
3.2
Pin Functionality
VCC1
Logic Input supply voltage of 3.3 V up to 15 V wide operating range.
IN+ Non Inverting Driver Input
IN+ non-inverted control signal for driver output if IN- is set to low. (Output sourcing active at IN+ = high and
IN- = low)
Due to internal filtering a minimum pulse width is defined to ensure robustness against noise at IN+. An internal
weak pull-down-resistor favors off-state.
Data Sheet
10
Rev. 2.0, 2014-11-10
1EDI EiceDRIVER™ Compact
Separate output variant for IGBT
Pin Configuration and Functionality
IN- Inverting Driver Input
IN- inverted control signal for driver output if IN+ is set to high. (Output sourcing active at IN- = low and IN+ = high)
Due to internal filtering a minimum pulse width is defined to ensure robustness against noise at IN-. An internal
weak pull-up-resistor favors off-state.
GND1
Ground connection of input circuit.
VCC2
Positive power supply pin of output driving circuit. A proper blocking capacitor has to be placed close to this supply
pin.
OUT+ Driver Source Output
Driver source output pin to turn on external IGBT. During on-state the driving output is switched to VCC2.
Switching of this output is controlled by IN+ and IN-. This output will also be turned off at an UVLO event.
During turn off the OUT+ terminal is able to sink approx. 100 mA.
OUT- Driver Sink Output
Driver sink output pin to turn off external IGBT. During off-state the driving output is switched to GND2. Switching
of this output is controlled by IN+ and IN-. In case of UVLO an active shut down keeps the output voltage at a low
level.
GND2 Reference Ground
Reference ground of the output driving circuit.
In case of a bipolar supply (positive and negative voltage referred to IGBT emitter) this pin is connected to the
negative supply voltage.
Data Sheet
11
Rev. 2.0, 2014-11-10
1EDI EiceDRIVER™ Compact
Separate output variant for IGBT
Functional Description
4
Functional Description
4.1
Introduction
The 1EDI EiceDRIVER™ Compact is a general purpose IGBT gate driver. Basic control and protection features
support fast and easy design of highly reliable systems.
The integrated galvanic isolation between control input logic and driving output stage grants additional safety. Its
wide input voltage supply range support the direct connection of various signal sources like DSPs and
microcontrollers.
The separated rail-to-rail driver outputs simplify gate resistor selection, save an external high current bypass diode
and enhance dV/dt control.
+5V
VCC1
+15V
VCC2
1µ
100n
10R
SGND
OUT+
GND1
IN
3R3
IN+
OUT-
IN-
GND2
Figure 4
Application Example Bipolar Supply
4.2
Supply
1µ
-8V
0V
The driver can operate over a wide supply voltage range, either unipolar or bipolar.
With bipolar supply the driver is typically operated with a positive voltage of 15 V at VCC2 and a negative voltage
of -8V at GND2 relative to the emitter of the IGBT as seen in Figure 4. Negative supply can help to prevent a
dynamic turn on due to the additional charge which is generated from IGBT’s input capacitance.
For unipolar supply configuration the driver is typically supplied with a positive voltage of 15 V at VCC2. In this
case, careful evaluation for turn off gate resistor selection is recommended to avoid dynamic turn on (see
Figure 5).
+5V
VCC1
VCC2
1µ
10R
100n
SGND
IN
Figure 5
Data Sheet
+15V
OUT+
GND1
3R3
IN+
OUT-
IN-
GND2
Application Example Unipolar Supply
12
Rev. 2.0, 2014-11-10
1EDI EiceDRIVER™ Compact
Separate output variant for IGBT
Functional Description
4.3
Protection Features
4.3.1
Undervoltage Lockout (UVLO)
To ensure correct switching of IGBTs the device is equipped with an undervoltage lockout for input and output
independently. Operation starts only after both VCC levels have increased beyond the respective VUVLOH levels
(see also Figure 8).
If the power supply voltage VVCC1 of the input chip drops below VUVLOL1 a turn-off signal is sent to the output chip
before power-down. The IGBT is switched off and the signals at IN+ and IN- are ignored until VVCC1 reaches the
power-up voltage VUVLOH1 again.
If the power supply voltage VVCC2 of the output chip goes down below VUVLOL2 the IGBT is switched off and signals
from the input chip are ignored until VVCC2 reaches the power-up voltage VUVLOH2 again.
Note: VVCC2 is always referred to GND2 and does not differentiate between unipolar or bipolar supply.
4.3.2
Active Shut-Down
The Active Shut-Down feature ensures a safe IGBT off-state in case the output chip is not connected to the power
supply or an under voltage lockout is in effect. The IGBT gate is clamped at OUT- to GND2.
4.3.3
Short Circuit Clamping
During short circuit the IGBT’s gate voltage tends to rise because of the feedback via the Miller capacitance. An
additional protection circuit connected to OUT+ limits this voltage to a value slightly higher than the supply voltage.
A maximum current of 500 mA may be fed back to the supply through this path for 10 μs. If higher currents are
expected or tighter clamping is desired external Schottky diodes may be added.
4.4
Non-Inverting and Inverting Inputs
There are two possible input modes to control the IGBT. At non-inverting mode IN+ controls the driver output while
IN- is set to low. At inverting mode IN- controls the driver output while IN+ is set to high, please see Figure 7. A
minimum input pulse width is defined to filter occasional glitches.
4.5
Driver Outputs
The output driver section uses MOSFETs to provide a rail-to-rail output. This feature permits that tight control of
gate voltage during on-state and short circuit can be maintained as long as the driver’s supply is stable. Due to
the low internal voltage drop, switching behaviour of the IGBT is predominantly governed by the gate resistor.
Furthermore, it reduces the power to be dissipated by the driver.
Data Sheet
13
Rev. 2.0, 2014-11-10
1EDI EiceDRIVER™ Compact
Separate output variant for IGBT
Electrical Parameters
5
Electrical Parameters
5.1
Absolute Maximum Ratings
Note: Absolute maximum ratings are defined as ratings, which when being exceeded may lead to destruction of
the integrated circuit. Unless otherwise noted all parameters refer to GND1.
Table 2
Absolute Maximum Ratings
Parameter
Symbol
Values
Min.
Max.
40
Unit
Note /
Test Condition
Power supply output side
VVCC2
-0.3
V
1)
Gate driver output
VOUT
VGND2-0.3 VVCC2+0.3 V
–
Positive power supply input side
VVCC1
-0.3
18.0
V
–
Logic input voltages (IN+,IN-)
VLogicIN
-0.3
18.0
V
–
Input to output isolation voltage (GND2)
VISO
-1200
1200
V
Junction temperature
TJ
-40
150
°C
–
Storage temperature
TS
-55
150
°C
–
Power dissipation (Input side)
PD, IN
–
25
mW
2)
@TA = 25°C
mW
2)
@TA = 25°C
K/W
2)
@TA = 85°C
@TA = 85°C
Power dissipation (Output side)
Thermal resistance (Input side)
PD, OUT
RTHJA,IN
–
–
400
145
Thermal resistance (Output side)
RTHJA,OUT
–
165
K/W
2)
ESD capability
VESD,HBM
–
2
kV
Human Body
Model3)
1) With respect to GND2.
2) See Figure 10 for reference layouts for these thermal data. Thermal performance may change significantly with layout and
heat dissipation of components in close proximity.
3) According to EIA/JESD22-A114-C (discharging a 100 pF capacitor through a 1.5 kΩ series resistor).
Data Sheet
14
Rev. 2.0, 2014-11-10
1EDI EiceDRIVER™ Compact
Separate output variant for IGBT
Electrical Parameters
5.2
Operating Parameters
Note: Within the operating range the IC operates as described in the functional description. Unless otherwise
noted all parameters refer to GND1.
Table 3
Operating Parameters
Parameter
Symbol
Values
Min.
Max.
Unit
Note /
Test Condition
Power supply output side
VVCC2
13
35
V
1)
Power supply input side
VVCC1
3.1
17
V
–
Logic input voltages (IN+,IN-)
VLogicIN
-0.3
17
V
–
Switching frequency
fsw
–
1.0
MHz
2) 3)
Ambient temperature
TA
-40
125
°C
–
Thermal coefficient, junction-top
Ψth,jt
–
4.8
K/W
3)
@TA = 85°C
kV/μs
3)
@ 1000 V
Common mode transient immunity
(CMTI)
|dVISO/dt|
–
100
1) With respect to GND2.
2) do not exceed max. power dissipation
3) Parameter is not subject to production test - verified by design/characterization
5.3
Electrical Characteristics
Note: The electrical characteristics include the spread of values in supply voltages, load and junction temperatures
given below. Typical values represent the median values at TA = 25°C. Unless otherwise noted all voltages
are given with respect to their respective GND (GND1 for pins 1 to 3, GND2 for pins 5 to 7).
5.3.1
Voltage Supply
Table 4
Voltage Supply
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note /
Test Condition
UVLO threshold input
chip
VUVLOH1
–
2.85
3.1
V
–
VUVLOL1
2.55
2.75
–
V
–
UVLO hysteresis input
chip (VUVLOH1 - VUVLOL1)
VHYS1
90
100
–
mV
–
UVLO threshold output
chip (IGBT supply)
VUVLOH2
–
12.0
12.7
V
–
VUVLOL2
10.5
11.1
–
V
–
UVLO hysteresis output
chip (VUVLOH2 - VUVLOL2)
VHYS2
700
850
–
mV
–
Data Sheet
15
Rev. 2.0, 2014-11-10
1EDI EiceDRIVER™ Compact
Separate output variant for IGBT
Electrical Parameters
Table 4
Voltage Supply (cont’d)
Parameter
Symbol
Values
Unit
Note /
Test Condition
Min.
Typ.
Max.
IQ1
–
0.65
1.0
mA
VVCC1 = 5 V
IN+ = High,
IN- = Low
=>OUT = High
Quiescent current output IQ2
chip
–
1.2
2.0
mA
VVCC2 = 15 V
IN+ = High,
IN- = Low
=>OUT = High
Unit
Note /
Test Condition
Quiescent current input
chip
5.3.2
Logic Input
Note: Unless stated otherwise VCC1 = 5.0V
Table 5
Logic Input
Parameter
Symbol
Values
Min.
Typ.
Max.
IN+,IN- low input voltage
VIN+L,VIN-L
–
–
30
%
of VCC1
IN+,IN- high input voltage
VIN+H,VIN-H
70
–
–
%
of VCC1
IN+,IN- low input voltage
VIN+L,VIN-L
–
–
1.5
V
–
IN+,IN- high input voltage
VIN+H,VIN-H
3.5
–
–
V
–
IN- input current
IIN-
–
70
200
μA
VIN- = GND1
IN+ input current
IIN+,
–
70
200
μA
VIN+ = VCC1
Unit
Note /
Test Condition
A
1)
5.3.3
Gate Driver
Table 6
Gate Driver
Parameter
Symbol
Values
Min.
High level output peak
current (source)
1EDI05I12AF
1EDI20I12AF
1EDI40I12AF
1EDI60I12AF
IOUT+,PEAK
0.5
2.0
4.0
6.0
Typ.
Max.
–
–
–
Low level output peak
IOUT-,PEAK
current (sink)
1EDI05I12AF
0.5
0.9
1EDI20I12AF
2.0
3.5
1EDI40I12AF
4.0
6.8
1EDI60I12AF
6.0
9.4
1) voltage across the device V(VCC2 - OUT+) or V(OUT- - GND2) < VVCC2.
Data Sheet
IN+ = High,
IN- = Low,
VVCC2 = 15 V
1.3
4.0
7.5
10.0
16
–
A
1)
IN+ = Low,
IN- = Low,
VVCC2 = 15 V
Rev. 2.0, 2014-11-10
1EDI EiceDRIVER™ Compact
Separate output variant for IGBT
Electrical Parameters
5.3.4
Short Circuit Clamping
Table 7
Short Circuit Clamping
Parameter
Symbol
Clamping voltage (OUT+) VCLPout
(VOUT - VVCC2)
5.3.5
Values
Min.
Typ.
Max.
–
0.9
1.3
Unit
Note /
Test Condition
V
IN+ = High,
IN- = Low,
OUT = High
IOUT = 500 mA
pulse test,
tCLPmax = 10 μs)
Unit
Note /
Test Condition
CLOAD = 100 pF
VIN+ = 50%,
VOUT=50% @ 25°C
Dynamic Characteristics
Dynamic characteristics are measured with VVCC1 = 5 V and VVCC2 = 15 V.
Table 8
Dynamic Characteristics
Parameter
Symbol
Values
Min.
Typ.
Max.
Input IN to output propagation delay ON
TPDON
270
300
330
ns
Input IN to output propagation delay OFF
TPDOFF
270
300
330
ns
Input IN to output propagation delay distortion
(TPDOFF - TPDON)
TPDISTO
-30
5
40
ns
Input pulse suppression
IN+, IN-
TMININ+,
TMININ-
230
240
–
ns
–
Input IN to output
propagation delay ON
variation due to temp
TPDONt
–
–
14
ns
1)
Input IN to output
propagation delay OFF
variation due to temp
TPDOFFt
–
–
14
ns
1)
Input IN to output
TPDISTOt
propagation delay
distortion variation due to
temp (TPDOFF-TPDON)
–
–
8
ns
1)
CLOAD = 100 pF
VIN+ = 50%,
VOUT=50%
CLOAD = 100 pF
VIN+ = 50%,
VOUT=50%
CLOAD = 100 pF
VIN+ = 50%,
VOUT=50%
Rise time
TRISE
5
10
20
ns
CLOAD = 1 nF
VL 20%, VH 80%
Fall time
TFALL
4
9
19
ns
CLOAD = 1 nF
VL 20%, VH 80%
1) The parameter is not subject to production test - verified by design/characterization
Data Sheet
17
Rev. 2.0, 2014-11-10
1EDI EiceDRIVER™ Compact
Separate output variant for IGBT
Electrical Parameters
5.3.6
Active Shut Down
Table 9
Active Shut Down
Parameter
Active shut down voltage
Symbol
V
1)
ACTSD
Values
Min.
Typ.
Max.
–
2.2
2.5
Unit
Note /
Test Condition
V
IOUT-/IOUT-,PEAK=0.1,
VCC2 open
1) With reference to GND2
Data Sheet
18
Rev. 2.0, 2014-11-10
1EDI EiceDRIVER™ Compact
Separate output variant for IGBT
Timing Diagramms
6
Timing Diagramms
50 %
IN+
80 %
50 %
20 %
OUT
TPDON
Figure 6
TRISE
TPDOFF
TFALL
Propagation Delay, Rise and Fall Time
IN+
IN‐
OUT
Figure 7
Typical Switching Behavior
IN+
VUVLOH 1
VUVLOL 1
VCC1
V UVLOH 2
V UVLOL 2
VCC2
OUT
Figure 8
Data Sheet
UVLO Behavior
19
Rev. 2.0, 2014-11-10
1EDI EiceDRIVER™ Compact
Separate output variant for IGBT
Package Outlines
7
Package Outlines
Figure 9
PG-DSO-8-51 (Plastic (Green) Dual Small Outline Package)
Data Sheet
20
Rev. 2.0, 2014-11-10
1EDI EiceDRIVER™ Compact
Separate output variant for IGBT
Application Notes
8
Application Notes
8.1
Reference Layout for Thermal Data
The PCB layout shown in Figure 10 represents the reference layout used for the thermal characterisation. Pin 4
(GND1) and pin 8 (GND2) require each a ground plane of 100 mm² for achieving maximum power dissipation. The
Separate output variant for IGBT is conceived to dissipate most of the heat generated through these pins.
The thermal coefficient junction-top (Ψth,jt) can be used to calculate the junction temperature at a given top case
temperature and driver power dissipation:
T j = Ψ th ,jt ⋅ P D + T top
Figure 10
Reference Layout for Thermal Data (JEDEC 1s0p, 100mm², Copper thickness 35 μm)
8.2
Printed Circuit Board Guidelines
The following factors should be taken into account for an optimum PCB layout.
•
•
•
Sufficient spacing should be kept between high voltage isolated side and low voltage side circuits.
The same minimum distance between two adjacent high-side isolated parts of the PCB should be maintained
to increase the effective isolation and to reduce parasitic coupling.
In order to ensure low supply ripple and clean switching signals, bypass capacitor trace lengths should be kept
as short as possible.
Data Sheet
21
Rev. 2.0, 2014-11-10
w w w . i n f i n e o n . c o m
Published by Infineon Technologies AG