IGD06N60T Data Sheet (454 KB, EN)

TRENCHSTOP™ Series
Low Loss IGBT:
IGD06N60T
q
IGBT in TRENCHSTOP™ and Fieldstop technology
Features:

Very low VCE(sat) 1.5 V (typ.)

Maximum Junction Temperature 175°C

Short circuit withstand time 5s

TRENCHSTOP™ and Fieldstop technology for 600V applications offers :
- very tight parameter distribution
- high ruggedness, temperature stable behavior

Low EMI

Qualified according to JEDEC1 for target applications

Pb-free lead plating; RoHS compliant

Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
C
G
E
PG-TO252-3 (D-PAK)
Applications:

Variable Speed Drive for washing machines and air conditioners

Buck converters
Type
IGD06N60T
VCE
IC;Tc=100°C VCE(sat),Tj=25°C
600V
6A
1.5V
Tj,max
Marking
Package
175C
G06T60
PG-TO252-3
Maximum Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage, Tj ≥ 25C
VCE
600
DC collector current, limited by Tjmax
TC = 25C
TC = 100C
IC
12
6
Pulsed collector current, tp limited by Tjmax
ICpul s
18
Turn off safe operating area, VCE = 600V, Tj = 175C, tp = 1µs
-
18
Gate-emitter voltage
VGE
20
V
tSC
5
s
Power dissipation
TC = 25C
Ptot
88
W
Operating junction temperature
Tj
-40...+175
Storage temperature
Tstg
-55...+150
V
A
2)
Short circuit withstand time
VGE = 15V, VCC  400V, Tj  150C
Soldering temperature
reflow soldering, MSL1
1
2)
C
260
J-STD-020 and JESD-022
Allowed number of short circuits: <1000; time between short circuits: >1s.
IFAG IPC TD VLS
1
Rev. 2.2, 20.09.2013
TRENCHSTOP™ Series
IGD06N60T
q
Thermal Resistance
Parameter
Symbol
Conditions
Max. Value
Unit
RthJC
1.7
K/W
RthJA
62
Characteristic
IGBT thermal resistance,
junction – case
Thermal resistance,
junction – ambient
Electrical Characteristic, at Tj = 25 C, unless otherwise specified
Parameter
Symbol
Conditions
Value
min.
typ.
max.
600
-
-
T j =2 5 C
-
1.5
2.05
T j =1 7 5 C
-
1.8
4.1
4.6
Unit
Static Characteristic
Collector-emitter breakdown voltage
V ( B R ) C E S V G E = 0V ,
I C = 0. 25m A
Collector-emitter saturation voltage
VCE(sat)
Gate-emitter threshold voltage
VGE(th)
V
V G E = 15 V , I C = 6 A
I C = 0. 18m A ,
5.7
VCE=VGE
Zero gate voltage collector current
ICES
V C E = 60 0 V ,
V G E = 0V
µA
T j =2 5 C
-
-
40
T j =1 7 5 C
-
-
700
Gate-emitter leakage current
IGES
V C E = 0V , V G E =2 0 V
-
-
100
nA
Transconductance
gfs
V C E = 20 V , I C = 6 A
-
3.6
-
S
Integrated gate resistor
RGint
none
Ω
Dynamic Characteristic
Input capacitance
Ciss
V C E = 25 V ,
-
368
-
Output capacitance
Coss
V G E = 0V ,
-
28
-
Reverse transfer capacitance
Crss
f= 1 MH z
-
11
-
Gate charge
QGate
V C C = 48 0 V, I C =6 A
-
42
-
nC
-
7
-
nH
-
55
-
A
pF
V G E = 15 V
LE
Internal emitter inductance
measured 5mm (0.197 in.) from case
Short circuit collector current
1)
1)
IC(SC)
V G E = 15 V ,t S C  5 s
V C C = 4 0 0 V,
T j = 25  C
Allowed number of short circuits: <1000; time between short circuits: >1s.
IFAG IPC TD VLS
2
Rev. 2.2, 20.09.2013
TRENCHSTOP™ Series
IGD06N60T
q
Switching Characteristic, Inductive Load, at Tj=25 C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
-
9
-
-
6
-
-
130
-
-
58
-
-
0.09
-
-
0.11
-
-
0.2
-
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
Ets
T j=25 C,
VCC=400V,IC=6A,
VGE=0/15V,rG=23,
L =60nH, C=40pF
L , C f rom Fig. E
Energy losses include
“tail” and diode reverse
recovery.
Diode used IDP06E60
ns
mJ
Switching Characteristic, Inductive Load, at Tj=175 C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
-
9
-
-
8
-
-
165
-
-
84
-
-
0.14
-
-
0.18
-
-
0.335
-
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
Ets
IFAG IPC TD VLS
T j=175 C,
VCC=400V,IC=6A,
VGE=0/15V,rG= 23
L =60nH, C=40pF
L , C f rom Fig. E
Energy losses include
“tail” and diode reverse
recovery.
Diode used IDP06E60
3
ns
mJ
Rev. 2.2, 20.09.2013
TRENCHSTOP™ Series
IGD06N60T
q
tp=1µs
10A
15A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
18A
T C =80°C
12A
T C =110°C
9A
6A
Ic
3A
Ic
5µs
10µs
50µs
1A
500µs
5ms
DC
0A
100Hz
1kHz
10kH z
0,1A
1V
100kHz
f, SWITCHING FREQUENCY
Figure 1. Collector current as a function of
switching frequency
(Tj  175C, D = 0.5, VCE = 400V,
VGE = 0/15V, rG = 23)
100V
1000V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 2. Safe operating area
(D = 0, TC = 25C,
Tj 175C;VGE=0/15V)
80W
15A
IC, COLLECTOR CURRENT
Ptot, POWER DISSIPATION
10V
60W
40W
10A
5A
20W
0W
25°C
50°C
75°C
0A
25°C
100°C 125°C 150°C
TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function of
case temperature
(Tj  175C)
IFAG IPC TD VLS
4
75°C
125°C
TC, CASE TEMPERATURE
Figure 4. Collector current as a function of
case temperature
(VGE  15V, Tj  175C)
Rev. 2.2, 20.09.2013
TRENCHSTOP™ Series
15A
15A
12A
V G E =20V
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
V G E =20V
15V
13V
11V
9A
9V
7V
6A
3A
12A
15V
13V
11V
9A
9V
7V
6A
3A
0A
0A
0V
1V
2V
3V
0V
1 5A
1 2A
9A
6A
T J =1 75 °C
3A
25 °C
0A
0V
2V
4V
6V
8V
1 0V
VGE, GATE-EMITTER VOLTAGE
Figure 7. Typical transfer characteristic
(VCE=20V)
IFAG IPC TD VLS
1V
2V
3V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 6. Typical output characteristic
(Tj = 175°C)
VCE(sat), COLLECTOR-EMITT SATURATION VOLTAGE
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristic
(Tj = 25°C)
IC, COLLECTOR CURRENT
IGD06N60T
q
IC =12A
2,5V
2,0V
IC =6A
1,5V
1,0V
IC =3A
0,5V
0,0V
-50°C
0°C
50°C
100°C
TJ, JUNCTION TEMPERATURE
Figure 8. Typical collector-emitter
saturation voltage as a function of
junction temperature
(VGE = 15V)
5
Rev. 2.2, 20.09.2013
TRENCHSTOP™ Series
IGD06N60T
q
t d(off)
td(off)
100ns
100ns
t, SWITCHING TIMES
t, SWITCHING TIMES
tf
t d(on)
10ns
tf
td(on)
tr
10ns
tr
1ns
0A
3A
6A
9A
12A
1ns

15A
IC, COLLECTOR CURRENT
Figure 9. Typical switching times as a
function of collector current
(inductive load, TJ=175°C,
VCE = 400V, VGE = 0/15V, rG = 23Ω,
Dynamic test circuit in Figure E)
VGE(th), GATE-EMITT TRSHOLD VOLTAGE
t, SWITCHING TIMES
tf
t d(on)
10ns
tr
50°C
100°C
150°C
TJ, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE = 400V,
VGE = 0/15V, IC = 6A, rG = 23Ω,
Dynamic test circuit in Figure E)
IFAG IPC TD VLS



RG, GATE RESISTOR
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, TJ=175°C,
VCE = 400V, VGE = 0/15V, IC = 6A,
Dynamic test circuit in Figure E)
100ns td(off)
1ns

6V
5V
m ax.
4V
typ.
3V
m in.
2V
1V
0V
-50°C
0°C
50°C
100°C
150°C
TJ, JUNCTION TEMPERATURE
Figure 12. Gate-emitter threshold voltage as
a function of junction temperature
(IC = 0.18mA)
6
Rev. 2.2, 20.09.2013
TRENCHSTOP™ Series
*) E on and E ts include losses
E ts*
due to diode recovery
E ts *
0,5 mJ
0,4 mJ
0,3 mJ
E off
0,2 mJ
E on*
E, SWITCHING ENERGY LOSSES
E, SWITCHING ENERGY LOSSES
*) E on and E ts include losses
due to diode recovery
0,6 mJ
IGD06N60T
q
0,4 mJ
0,3 mJ
E on*
0,2 mJ
E off
0,1 mJ
0,1 mJ
0,0 mJ 0A
2A
4A
6A
8A
0,0 mJ
10A

IC, COLLECTOR CURRENT
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, TJ=175°C,
VCE=400V, VGE=0/15V, rG=23Ω,
Dynamic test circuit in Figure E)


RG, GATE RESISTOR
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, TJ=175°C,
VCE = 400V, VGE = 0/15V, IC = 6A,
Dynamic test circuit in Figure E)
*) E on and E ts include losses
*) E on and E ts include losses
due to diode recovery
0,5m J
E, SWITCHING ENERGY LOSSES
0,4mJ
E, SWITCHING ENERGY LOSSES

0,3mJ
E ts *
0,2mJ
E off
0,1mJ
due to diode recovery
E ts *
0,4m J
0,3m J
E off
0,2m J
E on *
0,1m J
E on*
0,0mJ
50°C
100°C
0,0m J
200V
150°C
TJ, JUNCTION TEMPERATURE
Figure 15. Typical switching energy losses
as a function of junction
temperature
(inductive load, VCE=400V,
VGE = 0/15V, IC = 6A, rG = 23Ω,
Dynamic test circuit in Figure E)
IFAG IPC TD VLS
300V
400V
500V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 16. Typical switching energy losses
as a function of collector emitter
voltage
(inductive load, TJ = 175°C,
VGE = 0/15V, IC = 6A, rG = 23Ω,
Dynamic test circuit in Figure E)
7
Rev. 2.2, 20.09.2013
TRENCHSTOP™ Series
IGD06N60T
q
VGE, GATE-EMITTER VOLTAGE
1nF
C iss
c, CAPACITANCE
15V
120V
10V
48 0V
100pF
C oss
5V
C rss
10pF
0V
0nC
10 nC
20n C
30nC
40nC
50nC
0V
QGE, GATE CHARGE
Figure 17. Typical gate charge
(IC = 6 A)
10V
20V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 18. Typical capacitance as a function
of collector-emitter voltage
(VGE=0V, f = 1 MHz)
tSC, SHORT CIRCUIT WITHSTAND TIME
IC(sc), short circuit COLLECTOR CURRENT
12µs
80A
60A
40A
20A
0A
12V
14V
16V
8µs
6µs
4µs
2µs
0µs
10V
18V
VGE, GATE-EMITTETR VOLTAGE
Figure 19. Typical short circuit collector
current as a function of gateemitter voltage
(VCE  400V, Tj  150C)
IFAG IPC TD VLS
10µs
11V
12V
13V
14V
VGE, GATE-EMITETR VOLTAGE
Figure 20. Short circuit withstand time as a
function of gate-emitter voltage
(VCE=400V, start at TJ=25°C,
TJmax<150°C)
8
Rev. 2.2, 20.09.2013
ZthJC, TRANSIENT THERMAL IMPEDANCE
TRENCHSTOP™ Series
IGD06N60T
q
0
10 K/W D=0.5
0.2
R,(K/W)
0.3837
0.4533
0.5877
0.2483
0.1
-1
0.05
10 K/W
R1
0.02
0.01
, (s)
5.047*10-2
4.758*10-3
4.965*10-4
4.717*10-5
R2
C 1 =  1 /R 1
C 2 =  2 /R 2
single pulse
-2
10 K/W
1µs
10µs 100µs
1ms
10m s 100m s
tP, PULSE WIDTH
Figure 21. IGBT transient thermal
impedance
(D = tp / T)
IFAG IPC TD VLS
9
Rev. 2.2, 20.09.2013
TRENCHSTOP™ Series
IGD06N60T
q
PG - TO252 - 3
IFAG IPC TD VLS
10
Rev. 2.2, 20.09.2013
TRENCHSTOP™ Series
IGD06N60T
q
i,v
tr r =tS +tF
diF /dt
Qr r =QS +QF
tr r
IF
tS
QS
Ir r m
tF
QF
10% Ir r m
dir r /dt
90% Ir r m
t
VR
Figure C. Definition of diodes
switching characteristics
1
2
r1
n
r2
rn
Tj (t)
p(t)
r1
r2
rn
Figure A. Definition of switching times
TC
Figure D. Thermal equivalent
circuit
Figure B. Definition of switching losses
IFAG IPC TD VLS
11
Rev. 2.2, 20.09.2013
TRENCHSTOP™ Series
IGD06N60T
q
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2013 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or
any information regarding the application of the device, Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual
property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the
types in question, please contact the nearest Infineon Technologies Office.
The Infineon Technologies component described in this Data Sheet may be used in life-support devices or
systems and/or automotive, aviation and aerospace applications or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the
failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or
effectiveness of that device or system. Life support devices or systems are intended to be implanted in the
human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable
to assume that the health of the user or other persons may be endangered.
IFAG IPC TD VLS
12
Rev. 2.2, 20.09.2013