IGA03N120H2 HighSpeed 2-Technology C • Designed for: - TV – Horizontal Line Deflection • 2 generation HighSpeed-Technology for 1200V applications offers: - loss reduction in resonant circuits - temperature stable behavior - parallel switching capability - tight parameter distribution - Eoff optimized for IC =3A - simple Gate-Control • • • G nd PG-TO220-3-34 (FullPAK) PG-TO220-3-31 (FullPAK) 1 E Qualified according to JEDEC for target applications Pb-free lead plating; RoHS compliant Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type VCE IC Eoff Tj,max Marking Package IGA03N120H2 1200V 3A 0.15mJ 150°C G03H1202 PG-TO-220-3-31 IGA03N120H2 1200V 3A 0.15mJ 150°C G03H1202 PG-TO-220-3-34 Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage VCE 1200 V Triangular collector peak current (VGS = 15V) ICpk A 8.2 TC = 100°C, f = 32kHz Pulsed collector current, tp limited by Tjmax ICpul s 9 Turn off safe operating area - 9 VCE ≤ 1200V, Tj ≤ 150°C Gate-emitter voltage VGE ±20 V Power dissipation Ptot 29 W -40...+150 °C TC = 25°C Operating junction and storage temperature Tj , Tstg Soldering temperature, 1.6mm (0.063 in.) from case for 10s - 260 Isolation Voltage Visol 2500 1 Vr m s J-STD-020 and JESD-022 Power Semiconductors 1 Rev. 2.2 July 06 IGA03N120H2 Thermal Resistance Parameter Symbol Conditions Max. Value Unit RthJC 4.3 K/W RthJA 64 Characteristic IGBT thermal resistance, junction – case Thermal resistance, junction – ambient Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Symbol Conditions Value min. Typ. max. 1200 - - T j =2 5 °C - 2.2 2.8 T j =1 5 0° C - 2.5 - V G E = 10 V , I C = 3 A, T j =2 5 °C - 2.4 - 2.1 3 3.9 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0V , I C = 3 00 µA Collector-emitter saturation voltage VCE(sat) V V G E = 15 V , I C = 3 A Gate-emitter threshold voltage VGE(th) I C = 90 µA , V C E = V G E Zero gate voltage collector current ICES V C E = 12 0 0V , V G E = 0V µA T j =2 5 °C - - 20 T j =1 5 0° C - - 80 Gate-emitter leakage current IGES V C E = 0V , V G E =2 0 V - - 100 nA Transconductance gfs V C E = 20 V , I C = 3 A - 2 - S Input capacitance Ciss V C E = 25 V - 205 - pF Output capacitance Coss V G E = 0V - 24 - Reverse transfer capacitance Crss f= 1 MH z - 7 - Gate charge QGate V C C = 96 0 V, I C =3 A - 8.6 - nC - 7 - nH Dynamic Characteristic V G E = 15 V Internal emitter inductance LE measured 5mm (0.197 in.) from case Power Semiconductors 2 Rev. 2.2 July 06 IGA03N120H2 Switching Characteristic, Inductive Load, at Tj=25 °C Parameter Symbol Conditions Value min. Typ. max. - 9.2 - - 5.2 - - 281 - - 29 - - 0.14 - - 0.15 - - 0.29 - Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j =2 5 °C V C C = 80 0 V, I C =3 A V G E = 0V / 15 V R G = 82 Ω 2) L σ = 18 0 nH 1) C σ = 4 0p F Energy losses include 2) “tail” and diode reverse recovery. ns mJ Switching Characteristic, Inductive Load, at Tj=150 °C Parameter Symbol Conditions Value min. Typ. max. - 9.4 - - 6.7 - - 340 - - 63 - - 0.22 - - 0.26 - - 0.48 - Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j =1 5 0° C V C C = 80 0 V, I C =3 A V G E = 0V / 15 V R G = 82 Ω 1) L σ =1 8 0n H 1) C σ = 4 0p F Energy losses include 3) “tail” and diode reverse recovery. ns mJ Switching Energy ZVT, Inductive Load Parameter Symbol Conditions Value min. typ. max. Unit IGBT Characteristic Turn-off energy Eoff V C C = 80 0 V, I C =3 A mJ V G E = 0V / 15 V 1) R G = 82 Ω, C r = 4 nF 2) 3) T j =2 5 °C - 0.05 - T j =1 5 0° C - 0.09 - Leakage inductance Lσ and stray capacity Cσ due to dynamic test circuit in figure E Commutation diode from device IKP03N120H2 Power Semiconductors 3 Rev. 2.2 July 06 IGA03N120H2 12A Ic t p =10 µs 10A 10A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 20 µs 8A T C =25°C 6A T C =100°C 4A 1A 1m s 0,1A 100Hz 1kHz 10kHz 0,01A 100kHz 1V 10V 100V 1000V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤ 150°C) 30W 8A IC, COLLECTOR CURRENT Ptot, POWER DISSIPATION 100m s DC f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 800V, VGE = +15V/0V, RG = 82Ω) 20W 10W 0W 2 5°C 100 µs Ic 2A 0A 10Hz 50 µs 50°C 7 5°C 100°C 12 5°C 4A 2A 0A 25 °C 150°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C) Power Semiconductors 6A 50°C 75°C 100°C 12 5°C 150°C TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≤ 15V, Tj ≤ 150°C) 4 Rev. 2.2 July 06 10A 10A 8A 8A V GE= 1 5 V 6A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT IGA03N120H2 12V 10V 8V 6V 4A 2A 0A 0V 1V 2V 3V 4V 8A 6A Tj=+150°C Tj=+25°C 4A 2A 0A 3V 5V 7V 9V VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 20V) Power Semiconductors 12V 10V 8V 6V 4A 2A 1V 2V 3V 4V 5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150°C) VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE IC, COLLECTOR CURRENT 10A 6A 0A 0V 5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25°C) 12A V G E =15V 3V IC=6A IC=3A 2V IC=1.5A 1V 0V -50°C 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 5 Rev. 2.2 July 06 IGA03N120H2 1000ns 1000ns td(off) 100ns t, SWITCHING TIMES t, SWITCHING TIMES td(off) tf td(on) 10ns 100ns tf td(on) 10ns tr tr 1ns 1ns 0A 2A 4A IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150°C, VCE = 800V, VGE = +15V/0V, RG = 82Ω, dynamic test circuit in Fig.E) 100ns tf td(on) tr 50°C 75°C 100°C 125°C 150°C VGE(th), GATE-EMITTER THRESHOLD VOLTAGE t, SWITCHING TIMES 100Ω 150Ω 5V td(off) 1ns 25°C 50Ω RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150°C, VCE = 800V, VGE = +15V/0V, IC = 3A, dynamic test circuit in Fig.E) 1000ns 10ns 0Ω Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 800V, VGE = +15V/0V, IC = 3A, RG = 82Ω, dynamic test circuit in Fig.E) Power Semiconductors 4V max. 3V typ. 2V min. 1V 0V -50°C 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.09mA) 6 Rev. 2.2 July 06 IGA03N120H2 1.0mJ 1 1 Ets 0.7mJ 1 E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES ) Eon and Ets include losses due to diode recovery. Eoff 0.5mJ 1 Eon 0A 2A IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150°C, VCE = 800V, VGE = +15V/0V, RG = 82Ω, dynamic test circuit in Fig.E ) 0.4mJ 0.3mJ 1 E, SWITCHING ENERGY LOSSES ) Eon and Ets include losses due to diode recovery. Ets 1 0.4mJ 0.3mJ Eoff 1 Eon 0.2mJ 0.1mJ 25°C 80°C 125°C 150°C 1 Eon 50Ω 100Ω 150Ω 200Ω 250Ω IC=3A, TJ=150°C 0.16mJ 0.12mJ IC=3A, TJ=25°C 0.08mJ IC=1A, TJ=150°C 0.04mJ IC=1A, TJ=25°C 0.00mJ 0V/us 1000V/us 2000V/us 3000V/us dv/dt, VOLTAGE SLOPE Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 800V, VGE = +15V/0V, IC = 3A, RG = 82Ω, dynamic test circuit in Fig.E ) Power Semiconductors Eoff RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150°C, VCE = 800V, VGE = +15V/0V, IC = 3A, dynamic test circuit in Fig.E ) Eoff, TURN OFF SWITCHING ENERGY LOSS 0.5mJ 1 0.5mJ 0Ω 4A Ets 0.6mJ 0.2mJ 0.0mJ ) Eon and Ets include losses due to diode recovery. Figure 16. Typical turn off switching energy loss for soft switching (dynamic test circuit in Fig. E) 7 Rev. 2.2 July 06 IGA03N120H2 1nF 20V VGE, GATE-EMITTER VOLTAGE C, CAPACITANCE C iss 100pF C oss C rss 10pF 0V 10V 20V 15V 10V UCE=960V 5V 0V 0nC 30V VCE, COLLECTOR-EMITTER VOLTAGE Figure 19. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) UCE=240V 10nC 20nC 30nC QGE, GATE CHARGE Figure 18. Typical gate charge (IC = 3A) 1 10 K/W ZthJC, TRANSIENT THERMAL RESISTANCE D=0.5 0.1 0.2 0 10 K/W -1 10 K/W R,(K/W) 1,4285 1,8838 0,4057 0.05 0,4234 0,3241 0.02 0,1021 0.01 0,1340 τ, (s) 5,2404 1,7688 0,07592 0,005018 0,000595 0,000126 0,000018 R1 R2 -2 10 K/W single pulse C 1 = τ 1 /R 1 C 2 = τ 2 / R 2 1µs 10µs 100µs 1ms 10ms100ms 1s 10s tP, PULSE WIDTH Figure 17. IGBT transient thermal impedance as a function of pulse width (D=tP/T) Power Semiconductors 8 Rev. 2.2 July 06 IGA03N120H2 PG-TO-220-3-31 (FullPAK) dimensions symbol min max A 10.37 10.63 0.4084 0.4184 B 15.86 16.12 0.6245 0.6345 C 0.65 0.78 0.0256 0.0306 2.95 typ. 0.1160 typ. E 3.15 3.25 0.124 0.128 F 6.05 6.56 0.2384 0.2584 G 13.47 13.73 0.5304 0.5404 H 3.18 3.43 0.125 0.135 K 0.45 0.63 0.0177 0.0247 L 1.23 1.36 0.0484 0.0534 M 9 [inch] max D Power Semiconductors [mm] min 2.54 typ. 0.100 typ. N 4.57 4.83 0.1800 0.1900 P 2.57 2.83 0.1013 0.1113 T 2.51 2.62 0.0990 0.1030 Rev. 2.2 July 06 IGA03N120H2 Edition 2006-01 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 12/14/06. All Rights Reserved. Attention please! The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Power Semiconductors 10 Rev. 2.2 July 06