IGA03N120H2 Data Sheet (609 KB, EN)

IGA03N120H2
HighSpeed 2-Technology
C
•
Designed for:
- TV – Horizontal Line Deflection
•
2 generation HighSpeed-Technology
for 1200V applications offers:
- loss reduction in resonant circuits
- temperature stable behavior
- parallel switching capability
- tight parameter distribution
- Eoff optimized for IC =3A
- simple Gate-Control
•
•
•
G
nd
PG-TO220-3-34
(FullPAK)
PG-TO220-3-31
(FullPAK)
1
E
Qualified according to JEDEC for target applications
Pb-free lead plating; RoHS compliant
Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type
VCE
IC
Eoff
Tj,max
Marking
Package
IGA03N120H2
1200V
3A
0.15mJ
150°C
G03H1202
PG-TO-220-3-31
IGA03N120H2
1200V
3A
0.15mJ
150°C
G03H1202
PG-TO-220-3-34
Maximum Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage
VCE
1200
V
Triangular collector peak current (VGS = 15V)
ICpk
A
8.2
TC = 100°C, f = 32kHz
Pulsed collector current, tp limited by Tjmax
ICpul s
9
Turn off safe operating area
-
9
VCE ≤ 1200V, Tj ≤ 150°C
Gate-emitter voltage
VGE
±20
V
Power dissipation
Ptot
29
W
-40...+150
°C
TC = 25°C
Operating junction and storage temperature
Tj , Tstg
Soldering temperature, 1.6mm (0.063 in.) from case for 10s
-
260
Isolation Voltage
Visol
2500
1
Vr m s
J-STD-020 and JESD-022
Power Semiconductors
1
Rev. 2.2
July 06
IGA03N120H2
Thermal Resistance
Parameter
Symbol
Conditions
Max. Value
Unit
RthJC
4.3
K/W
RthJA
64
Characteristic
IGBT thermal resistance,
junction – case
Thermal resistance,
junction – ambient
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Parameter
Symbol
Conditions
Value
min.
Typ.
max.
1200
-
-
T j =2 5 °C
-
2.2
2.8
T j =1 5 0° C
-
2.5
-
V G E = 10 V , I C = 3 A,
T j =2 5 °C
-
2.4
-
2.1
3
3.9
Unit
Static Characteristic
Collector-emitter breakdown voltage
V ( B R ) C E S V G E = 0V , I C = 3 00 µA
Collector-emitter saturation voltage
VCE(sat)
V
V G E = 15 V , I C = 3 A
Gate-emitter threshold voltage
VGE(th)
I C = 90 µA , V C E = V G E
Zero gate voltage collector current
ICES
V C E = 12 0 0V , V G E = 0V
µA
T j =2 5 °C
-
-
20
T j =1 5 0° C
-
-
80
Gate-emitter leakage current
IGES
V C E = 0V , V G E =2 0 V
-
-
100
nA
Transconductance
gfs
V C E = 20 V , I C = 3 A
-
2
-
S
Input capacitance
Ciss
V C E = 25 V
-
205
-
pF
Output capacitance
Coss
V G E = 0V
-
24
-
Reverse transfer capacitance
Crss
f= 1 MH z
-
7
-
Gate charge
QGate
V C C = 96 0 V, I C =3 A
-
8.6
-
nC
-
7
-
nH
Dynamic Characteristic
V G E = 15 V
Internal emitter inductance
LE
measured 5mm (0.197 in.) from case
Power Semiconductors
2
Rev. 2.2
July 06
IGA03N120H2
Switching Characteristic, Inductive Load, at Tj=25 °C
Parameter
Symbol
Conditions
Value
min.
Typ.
max.
-
9.2
-
-
5.2
-
-
281
-
-
29
-
-
0.14
-
-
0.15
-
-
0.29
-
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
Ets
T j =2 5 °C
V C C = 80 0 V, I C =3 A
V G E = 0V / 15 V
R G = 82 Ω
2)
L σ = 18 0 nH
1)
C σ = 4 0p F
Energy losses include
2)
“tail” and diode
reverse recovery.
ns
mJ
Switching Characteristic, Inductive Load, at Tj=150 °C
Parameter
Symbol
Conditions
Value
min.
Typ.
max.
-
9.4
-
-
6.7
-
-
340
-
-
63
-
-
0.22
-
-
0.26
-
-
0.48
-
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
Ets
T j =1 5 0° C
V C C = 80 0 V, I C =3 A
V G E = 0V / 15 V
R G = 82 Ω
1)
L σ =1 8 0n H
1)
C σ = 4 0p F
Energy losses include
3)
“tail” and diode
reverse recovery.
ns
mJ
Switching Energy ZVT, Inductive Load
Parameter
Symbol
Conditions
Value
min.
typ.
max.
Unit
IGBT Characteristic
Turn-off energy
Eoff
V C C = 80 0 V, I C =3 A
mJ
V G E = 0V / 15 V
1)
R G = 82 Ω, C r = 4 nF
2)
3)
T j =2 5 °C
-
0.05
-
T j =1 5 0° C
-
0.09
-
Leakage inductance Lσ and stray capacity Cσ due to dynamic test circuit in figure E
Commutation diode from device IKP03N120H2
Power Semiconductors
3
Rev. 2.2
July 06
IGA03N120H2
12A
Ic
t p =10 µs
10A
10A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
20 µs
8A
T C =25°C
6A
T C =100°C
4A
1A
1m s
0,1A
100Hz
1kHz
10kHz
0,01A
100kHz
1V
10V
100V
1000V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 2. Safe operating area
(D = 0, TC = 25°C, Tj ≤ 150°C)
30W
8A
IC, COLLECTOR CURRENT
Ptot, POWER DISSIPATION
100m s
DC
f, SWITCHING FREQUENCY
Figure 1. Collector current as a function of
switching frequency
(Tj ≤ 150°C, D = 0.5, VCE = 800V,
VGE = +15V/0V, RG = 82Ω)
20W
10W
0W
2 5°C
100 µs
Ic
2A
0A
10Hz
50 µs
50°C
7 5°C
100°C
12 5°C
4A
2A
0A
25 °C
150°C
TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function
of case temperature
(Tj ≤ 150°C)
Power Semiconductors
6A
50°C
75°C
100°C
12 5°C
150°C
TC, CASE TEMPERATURE
Figure 4. Collector current as a function of
case temperature
(VGE ≤ 15V, Tj ≤ 150°C)
4
Rev. 2.2
July 06
10A
10A
8A
8A
V GE= 1 5 V
6A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
IGA03N120H2
12V
10V
8V
6V
4A
2A
0A
0V
1V
2V
3V
4V
8A
6A
Tj=+150°C
Tj=+25°C
4A
2A
0A
3V
5V
7V
9V
VGE, GATE-EMITTER VOLTAGE
Figure 7. Typical transfer characteristics
(VCE = 20V)
Power Semiconductors
12V
10V
8V
6V
4A
2A
1V
2V
3V
4V
5V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 6. Typical output characteristics
(Tj = 150°C)
VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE
IC, COLLECTOR CURRENT
10A
6A
0A
0V
5V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristics
(Tj = 25°C)
12A
V G E =15V
3V
IC=6A
IC=3A
2V
IC=1.5A
1V
0V
-50°C
0°C
50°C
100°C
150°C
Tj, JUNCTION TEMPERATURE
Figure 8. Typical collector-emitter
saturation voltage as a function of junction
temperature
(VGE = 15V)
5
Rev. 2.2
July 06
IGA03N120H2
1000ns
1000ns
td(off)
100ns
t, SWITCHING TIMES
t, SWITCHING TIMES
td(off)
tf
td(on)
10ns
100ns
tf
td(on)
10ns
tr
tr
1ns
1ns
0A
2A
4A
IC, COLLECTOR CURRENT
Figure 9. Typical switching times as a
function of collector current
(inductive load, Tj = 150°C,
VCE = 800V, VGE = +15V/0V, RG = 82Ω,
dynamic test circuit in Fig.E)
100ns
tf
td(on)
tr
50°C
75°C
100°C
125°C
150°C
VGE(th), GATE-EMITTER THRESHOLD VOLTAGE
t, SWITCHING TIMES
100Ω
150Ω
5V
td(off)
1ns
25°C
50Ω
RG, GATE RESISTOR
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, Tj = 150°C,
VCE = 800V, VGE = +15V/0V, IC = 3A,
dynamic test circuit in Fig.E)
1000ns
10ns
0Ω
Tj, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE = 800V,
VGE = +15V/0V, IC = 3A, RG = 82Ω,
dynamic test circuit in Fig.E)
Power Semiconductors
4V
max.
3V
typ.
2V
min.
1V
0V
-50°C
0°C
50°C
100°C
150°C
Tj, JUNCTION TEMPERATURE
Figure 12. Gate-emitter threshold voltage
as a function of junction temperature
(IC = 0.09mA)
6
Rev. 2.2
July 06
IGA03N120H2
1.0mJ
1
1
Ets
0.7mJ
1
E, SWITCHING ENERGY LOSSES
E, SWITCHING ENERGY LOSSES
) Eon and Ets include losses
due to diode recovery.
Eoff
0.5mJ
1
Eon
0A
2A
IC, COLLECTOR CURRENT
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, Tj = 150°C,
VCE = 800V, VGE = +15V/0V, RG = 82Ω,
dynamic test circuit in Fig.E )
0.4mJ
0.3mJ
1
E, SWITCHING ENERGY LOSSES
) Eon and Ets include losses
due to diode recovery.
Ets
1
0.4mJ
0.3mJ
Eoff
1
Eon
0.2mJ
0.1mJ
25°C
80°C
125°C
150°C
1
Eon
50Ω
100Ω
150Ω
200Ω
250Ω
IC=3A, TJ=150°C
0.16mJ
0.12mJ
IC=3A, TJ=25°C
0.08mJ
IC=1A, TJ=150°C
0.04mJ
IC=1A, TJ=25°C
0.00mJ
0V/us
1000V/us
2000V/us
3000V/us
dv/dt, VOLTAGE SLOPE
Tj, JUNCTION TEMPERATURE
Figure 15. Typical switching energy losses
as a function of junction temperature
(inductive load, VCE = 800V,
VGE = +15V/0V, IC = 3A, RG = 82Ω,
dynamic test circuit in Fig.E )
Power Semiconductors
Eoff
RG, GATE RESISTOR
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, Tj = 150°C,
VCE = 800V, VGE = +15V/0V, IC = 3A,
dynamic test circuit in Fig.E )
Eoff, TURN OFF SWITCHING ENERGY LOSS
0.5mJ
1
0.5mJ
0Ω
4A
Ets
0.6mJ
0.2mJ
0.0mJ
) Eon and Ets include losses
due to diode recovery.
Figure 16. Typical turn off switching energy
loss for soft switching
(dynamic test circuit in Fig. E)
7
Rev. 2.2
July 06
IGA03N120H2
1nF
20V
VGE, GATE-EMITTER VOLTAGE
C, CAPACITANCE
C iss
100pF
C oss
C rss
10pF
0V
10V
20V
15V
10V
UCE=960V
5V
0V
0nC
30V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 19. Typical capacitance as a
function of collector-emitter voltage
(VGE = 0V, f = 1MHz)
UCE=240V
10nC
20nC
30nC
QGE, GATE CHARGE
Figure 18. Typical gate charge
(IC = 3A)
1
10 K/W
ZthJC, TRANSIENT THERMAL RESISTANCE
D=0.5
0.1
0.2
0
10 K/W
-1
10 K/W
R,(K/W)
1,4285
1,8838
0,4057
0.05
0,4234
0,3241
0.02
0,1021
0.01
0,1340
τ, (s)
5,2404
1,7688
0,07592
0,005018
0,000595
0,000126
0,000018
R1
R2
-2
10 K/W
single pulse
C 1 = τ 1 /R 1 C 2 = τ 2 / R 2
1µs 10µs 100µs 1ms 10ms100ms 1s
10s
tP, PULSE WIDTH
Figure 17. IGBT transient thermal
impedance as a function of pulse width
(D=tP/T)
Power Semiconductors
8
Rev. 2.2
July 06
IGA03N120H2
PG-TO-220-3-31 (FullPAK)
dimensions
symbol
min
max
A
10.37
10.63
0.4084
0.4184
B
15.86
16.12
0.6245
0.6345
C
0.65
0.78
0.0256
0.0306
2.95 typ.
0.1160 typ.
E
3.15
3.25
0.124
0.128
F
6.05
6.56
0.2384
0.2584
G
13.47
13.73
0.5304
0.5404
H
3.18
3.43
0.125
0.135
K
0.45
0.63
0.0177
0.0247
L
1.23
1.36
0.0484
0.0534
M
9
[inch]
max
D
Power Semiconductors
[mm]
min
2.54 typ.
0.100 typ.
N
4.57
4.83
0.1800
0.1900
P
2.57
2.83
0.1013
0.1113
T
2.51
2.62
0.0990
0.1030
Rev. 2.2
July 06
IGA03N120H2
Edition 2006-01
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 12/14/06.
All Rights Reserved.
Attention please!
The information given in this data sheet shall in no event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical
values stated herein and/or any information regarding the application of the device, Infineon Technologies
hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types
in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or
system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
Power Semiconductors
10
Rev. 2.2
July 06