TrenchStop® Series IKW75N60T q Low Loss DuoPack : IGBT in TrenchStop® and Fieldstop technology with soft, fast recovery anti-parallel EmCon HE diode C • • • • • • • • • • • • Very low VCE(sat) 1.5 V (typ.) Maximum Junction Temperature 175 °C Short circuit withstand time – 5µs Positive temperature coefficient in VCE(sat) very tight parameter distribution high ruggedness, temperature stable behaviour very high switching speed Low EMI Very soft, fast recovery anti-parallel EmCon HE diode Qualified according to JEDEC1) for target applications Pb-free lead plating; RoHS compliant Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ G E PG-TO-247-3 Applications: • Frequency Converters • Uninterrupted Power Supply Type IKW75N60T VCE IC VCE(sat),Tj=25°C Tj,max Marking Package 600V 75A 1.5V 175°C K75T60 PG-TO-247-3 Maximum Ratings Parameter Symbol Collector-emitter voltage VCE DC collector current, limited by Tjmax IC Value Unit 600 V A 2) TC = 25°C 80 TC = 100°C 75 Pulsed collector current, tp limited by Tjmax ICpuls 225 Turn off safe operating area (VCE ≤ 600V, Tj ≤ 175°C) - 225 Diode forward current, limited by Tjmax IF TC = 25°C 802) TC = 100°C 75 Diode pulsed current, tp limited by Tjmax IFpuls 225 Gate-emitter voltage VGE ±20 V tSC 5 µs Power dissipation TC = 25°C Ptot 428 W Operating junction temperature Tj -40...+175 °C Storage temperature Tstg -55...+175 Soldering temperature, 1.6mm (0.063 in.) from case for 10s - Short circuit withstand time 3) VGE = 15V, VCC ≤ 400V, Tj ≤ 150°C 260 1) J-STD-020 and JESD-022 Value limited by bondwire 3) Allowed number of short circuits: <1000; time between short circuits: >1s. 2) Power Semiconductors 1 Rev. 2.6 Sep 08 IKW75N60T q TrenchStop® Series Thermal Resistance Parameter Symbol Conditions Max. Value Unit RthJC 0.35 K/W RthJCD 0.6 RthJA 40 Characteristic IGBT thermal resistance, junction – case Diode thermal resistance, junction – case Thermal resistance, junction – ambient Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Symbol Conditions Value min. Typ. max. 600 - - T j = 25°C - 1.5 2.0 T j = 175 °C - 1.9 - T j = 25°C - 1.65 2.0 T j = 175 °C - 1.6 - 4.1 4.9 5.7 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0 V , I C =0.2mA Collector-emitter saturation voltage VCE(sat) Diode forward voltage Gate-emitter threshold voltage Zero gate voltage collector current VF V V G E = 15 V, I C =75A VGE=0V, IF=75A VGE(th) I C =1.2mA,V C E =V G E ICES V C E = 60 0 V , VGE=0V µA T j = 25°C - - 40 T j = 175 °C - - 1000 Gate-emitter leakage current IGES V C E = 0 V , V G E =20V - - 100 nA Transconductance gfs V C E =20V, I C =75A - 41 - S Integrated gate resistor RGint - Ω Dynamic Characteristic Input capacitance Ciss V C E =25V, - 4620 - Output capacitance Coss VGE=0V, - 288 - Reverse transfer capacitance Crss f=1MHz - - Gate charge QGate V C C = 48 0 V, I C =75A - 137 470 - nC - 13 - nH - 690 - A pF V G E =15V Internal emitter inductance LE measured 5mm (0.197 in.) from case Short circuit collector current1) 1) IC(SC) V G E =15V,t S C ≤5 µs V C C = 400 V, T j ≤ 150°C Allowed number of short circuits: <1000; time between short circuits: >1s. Power Semiconductors 2 Rev. 2.6 Sep 08 IKW75N60T q TrenchStop® Series Switching Characteristic, Inductive Load, at Tj=25 °C Parameter Symbol Conditions Value min. typ. max. - 33 - - 36 - - 330 - - 35 - - 2.0 - Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy ns - 2.5 - Ets T j = 25°C , V C C = 40 0 V, I C =75A, V G E = 0 /1 5 V, R G =5 Ω , L σ 1 ) =1 00nH, C σ 1 ) =39pF Energy losses include “tail” and diode reverse recovery. - 4.5 - Diode reverse recovery time trr T j = 25°C , - 121 - ns Diode reverse recovery charge Qrr V R = 40 0 V , I F =75A, - 2.4 - µC Diode peak reverse recovery current Irrm d i F /d t= 1460 A/µs - 38.5 - A Diode peak rate of fall of reverse recovery current during t b dirr/dt - 921 - A/µs mJ Anti-Parallel Diode Characteristic Switching Characteristic, Inductive Load, at Tj=175 °C Parameter Symbol Conditions Value min. typ. max. - 32 - - 37 - - 363 - - 38 - - 2.9 - Unit IGBT Characteristic - 2.9 - Ets T j = 175 °C , V C C = 40 0 V, I C =75A, V G E = 0 /1 5 V, RG= 5Ω L σ 1 ) =1 00nH, C σ 1 ) =39pF Energy losses include “tail” and diode reverse recovery. - 5.8 - Diode reverse recovery time trr T j = 175 °C - 182 - ns Diode reverse recovery charge Qrr V R = 40 0 V , I F =75A, - 5.8 - µC Diode peak reverse recovery current Irrm d i F /d t= 1460 A/µs - 56.2 - A Diode peak rate of fall of reverse recovery current during t b dirr/dt - 1013 - A/µs Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy ns mJ Anti-Parallel Diode Characteristic 1) Leakage inductance L σ a nd Stray capacity C σ due to dynamic test circuit in Figure E. Power Semiconductors 3 Rev. 2.6 Sep 08 IKW75N60T q TrenchStop® Series tp=1µs 100A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 200A 150A T C =80°C 100A 50A T C =110°C Ic 100H z 50µs 10A 1ms DC 1A Ic 0A 10H z 10µs 1kH z 10kH z 1V 100kH z f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 175°C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 5Ω) 10V 100V 10ms 1000V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤175°C; VGE=15V) 400W 120A IC, COLLECTOR CURRENT Ptot, POWER DISSIPATION 350W 300W 250W 200W 150W 100W 90A 60A 30A 50W 0W 25°C 50°C 75°C 0A 25°C 100°C 125°C 150°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 175°C) Power Semiconductors 4 75°C 125°C TC, CASE TEMPERATURE Figure 4. DC Collector current as a function of case temperature (VGE ≥ 15V, Tj ≤ 175°C) Rev. 2.6 Sep 08 IKW75N60T q TrenchStop® Series 120A V G E =20V IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 120A 15V 90A 13V 11V 9V 60A 7V 30A 0A 0V 1V 2V VCE(sat), COLLECTOR-EMITT SATURATION VOLTAGE IC, COLLECTOR CURRENT 40A T J = 1 7 5 °C 2 5 °C 2V 4V 6V 8V VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristic (VCE=20V) Power Semiconductors 11V 9V 60A 7V 30A 1V 2V 3V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristic (Tj = 175°C) 60A 0V 13V 0V 80A 0A 15V 90A 0A 3V VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristic (Tj = 25°C) 20A V GE =20V 2.5V IC =150A 2.0V IC =75A 1.5V IC =37.5A 1.0V 0.5V 0.0V 0°C 50°C 100°C 150°C TJ, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 5 Rev. 2.6 Sep 08 IKW75N60T q TrenchStop® Series t, SWITCHING TIMES t, SWITCHING TIMES t d(off) 100ns tf t d(off) 100ns tf tr t d(on) t d(on) tr 10ns 0A 40A 80A 10ns 120A IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, TJ=175°C, VCE = 400V, VGE = 0/15V, RG = 5Ω, Dynamic test circuit in Figure E) 5Ω 10Ω 15Ω RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, TJ = 175°C, VCE= 400V, VGE = 0/15V, IC = 75A, Dynamic test circuit in Figure E) t, SWITCHING TIMES t d(off) 100ns tr tf t d(on) 25°C 50°C 75°C 6V m ax. typ. 5V 4V m in. 3V 2V 1V 0V -50°C 100°C 125°C 150°C TJ, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/15V, IC = 10A, RG=5Ω, Dynamic test circuit in Figure E) Power Semiconductors VGE(th), GATE-EMITT TRSHOLD VOLTAGE 7V 0°C 50°C 100°C 150°C TJ, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 1.2mA) 6 Rev. 2.6 Sep 08 IKW75N60T q TrenchStop® Series *) E on an d E ts in c lud e lo s se s Ets* 12.0mJ Eon* 8.0mJ Eoff 4.0mJ du e to d io d e re co v ery E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES *) Eon and Ets include losses due to diode recovery 0A 20A 40A 60A 4.0 m J E on * 2.0 m J E off 0Ω 80A 100A 120A 140A IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, TJ = 175°C, VCE = 400V, VGE = 0/15V, RG = 5Ω, Dynamic test circuit in Figure E) *) Eon and Ets include losses due to diode recovery 2.0mJ Eon* 1.0mJ 75°C 8m J E on * 6m J E ts * 4m J E off 2m J 0m J 300V 100°C 125°C 150°C TJ, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/15V, IC = 75A, RG = 5Ω, Dynamic test circuit in Figure E) Power Semiconductors 15Ω due to diode recovery Ets* Eoff 50°C 10Ω *) E on and E ts include losses 4.0mJ 0.0mJ 25°C 5Ω RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, TJ = 175°C, VCE = 400V, VGE = 0/15V, IC = 75A, Dynamic test circuit in Figure E) E, SWITCHING ENERGY LOSSES 5.0mJ E, SWITCHING ENERGY LOSSES 6.0 m J 0.0 m J 0.0mJ 3.0mJ E ts * 8.0 m J 350V 400V 450V 500V 550V VCE, COLLECTOR-EMITTER VOLTAGE Figure 16. Typical switching energy losses as a function of collector emitter voltage (inductive load, TJ = 175°C, VGE = 0/15V, IC = 75A, RG = 5Ω, Dynamic test circuit in Figure E) 7 Rev. 2.6 Sep 08 IKW75N60T q TrenchStop® Series VGE, GATE-EMITTER VOLTAGE C iss c, CAPACITANCE 15V 120V 10V 480V 1nF C oss 5V C rss 100pF 0V 0nC 100nC 200nC 300nC 0V 400nC QGE, GATE CHARGE Figure 17. Typical gate charge (IC=75 A) 10V 20V VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE=0V, f = 1 MHz) SHORT CIRCUIT WITHSTAND TIME 1000 750 500 250 tSC, IC(sc), short circuit COLLECTOR CURRENT 12µs 0 12 13 14 15 16 17 18 19 8µs 6µs 4µs 2µs 0µs 10V 20 VGE, GATE-EMITTER VOLTAGE Figure 19. Typical short circuit collector current as a function of gateemitter voltage (VCE ≤ 400V, Tj ≤ 150°C) Power Semiconductors 10µs 11V 12V 13V 14V VGE, GATE- EMITTER VOLTAGE Figure 20. Short circuit withstand time as a function of gate-emitter voltage (VCE=400V, start at TJ=25°C, TJmax<150°C) 8 Rev. 2.6 Sep 08 IKW75N60T q TrenchStop® Series D=0.5 ZthJC, TRANSIENT THERMAL RESISTANCE ZthJC, TRANSIENT THERMAL RESISTANCE D=0.5 -1 10 K/W 0.2 0.1 0.05 -2 10 K/W R,(K/W) 0.1968 0.0733 0.0509 0.02 0.0290 0.01 R 1 τ, (s) 0.115504 0.009340 0.000823 0.000119 R2 C1= τ1/R1 C2= τ2/R2 single pulse 0.2 -1 10 K/W 0.1 0.05 0.02 0.01 -2 10 K/W R,(K/W) 0.1846 0.1681 0.1261 0.0818 0.04 R1 τ, (s) 0.110373 0.015543 0.001239 0.000120 0.000008 R2 C 1 = τ 1 /R 1 C 2 = τ 2 /R 2 single pulse -3 10µs 100µs 1ms 10ms 100ms tP, PULSE WIDTH Figure 21. IGBT transient thermal resistance (D = tp / T) trr, REVERSE RECOVERY TIME 200ns TJ=175°C 150ns 100ns TJ=25°C 50ns 0ns 1000A/µs tP, PULSE WIDTH Figure 22. Diode transient thermal impedance as a function of pulse width (D=tP/T) 5µC 1500A/µs 9 T J=175°C 4µC 3µC 2µC T J=25°C 1µC 0µC 1000A/µs diF/dt, DIODE CURRENT SLOPE Figure 23. Typical reverse recovery time as a function of diode current slope (VR=400V, IF=75A, Dynamic test circuit in Figure E) Power Semiconductors 100ns 1µs 10µs 100µs 1ms 10ms100ms Qrr, REVERSE RECOVERY CHARGE 10 K/W 1µs 1500A/µs diF/dt, DIODE CURRENT SLOPE Figure 24. Typical reverse recovery charge as a function of diode current slope (VR = 400V, IF = 75A, Dynamic test circuit in Figure E) Rev. 2.6 Sep 08 TrenchStop® Series T J =175°C IKW75N60T q T J=175°C -1200A/µs -1000A/µs 50A 40A T J =25°C 30A 20A 10A 0A 1000A/µs 200A -800A/µs -600A/µs -400A/µs -200A/µs 1500A/µs diF/dt, DIODE CURRENT SLOPE Figure 26. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR=400V, IF=75A, Dynamic test circuit in Figure E) T J =25°C I F =150A 2.0V VF, FORWARD VOLTAGE 175°C 150A 100A 50A 0A T J=25°C 0A/µs 1000A/µs 1500A/µs diF/dt, DIODE CURRENT SLOPE Figure 25. Typical reverse recovery current as a function of diode current slope (VR = 400V, IF = 75A, Dynamic test circuit in Figure E) IF, FORWARD CURRENT dirr/dt, DIODE PEAK RATE OF FALL OF REVERSE RECOVERY CURRENT Irr, REVERSE RECOVERY CURRENT 60A 75A 1.5V 37.5A 1.0V 0.5V 0V 1V 0.0V 0°C 2V VF, FORWARD VOLTAGE Figure 27. Typical diode forward current as a function of forward voltage Power Semiconductors 10 50°C 100°C 150°C TJ, JUNCTION TEMPERATURE Figure 28. Typical diode forward voltage as a function of junction temperature Rev. 2.6 Sep 08 TrenchStop® Series IKW75N60T q PG-TO247-3 M M MAX 5.16 2.53 2.11 1.33 2.41 2.16 3.38 3.13 0.68 21.10 17.65 1.35 16.03 14.15 5.10 2.60 MIN 4.90 2.27 1.85 1.07 1.90 1.90 2.87 2.87 0.55 20.82 16.25 1.05 15.70 13.10 3.68 1.68 MIN 0.193 0.089 0.073 0.042 0.075 0.075 0.113 0.113 0.022 0.820 0.640 0.041 0.618 0.516 0.145 0.066 5.44 3 19.80 4.17 3.50 5.49 6.04 Power Semiconductors MAX 0.203 0.099 0.083 0.052 0.095 0.085 0.133 0.123 0.027 0.831 0.695 0.053 0.631 0.557 0.201 0.102 Z8B00003327 0 0 5 5 7.5mm 0.214 3 0.780 0.164 0.138 0.216 0.238 20.31 4.47 3.70 6.00 6.30 11 0.799 0.176 0.146 0.236 0.248 17-12-2007 03 Rev. 2.6 Sep 08 IKW75N60T q TrenchStop® Series i,v tr r =tS +tF diF /dt Qr r =QS +QF IF tS QS Ir r m tr r tF QF 10% Ir r m dir r /dt 90% Ir r m t VR Figure C. Definition of diodes switching characteristics τ1 τ2 r1 r2 τn rn Tj (t) p(t) r1 r2 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit Figure E. Dynamic test circuit Figure B. Definition of switching losses Power Semiconductors 12 Rev. 2.6 Sep 08 TrenchStop® Series IKW75N60T q Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Power Semiconductors 13 Rev. 2.6 Sep 08