INFINEON IKW75N60T_08

TrenchStop® Series
IKW75N60T
q
Low Loss DuoPack : IGBT in TrenchStop® and Fieldstop technology
with soft, fast recovery anti-parallel EmCon HE diode
C
•
•
•
•
•
•
•
•
•
•
•
•
Very low VCE(sat) 1.5 V (typ.)
Maximum Junction Temperature 175 °C
Short circuit withstand time – 5µs
Positive temperature coefficient in VCE(sat)
very tight parameter distribution
high ruggedness, temperature stable behaviour
very high switching speed
Low EMI
Very soft, fast recovery anti-parallel EmCon HE diode
Qualified according to JEDEC1) for target applications
Pb-free lead plating; RoHS compliant
Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
G
E
PG-TO-247-3
Applications:
• Frequency Converters
• Uninterrupted Power Supply
Type
IKW75N60T
VCE
IC
VCE(sat),Tj=25°C
Tj,max
Marking
Package
600V
75A
1.5V
175°C
K75T60
PG-TO-247-3
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
VCE
DC collector current, limited by Tjmax
IC
Value
Unit
600
V
A
2)
TC = 25°C
80
TC = 100°C
75
Pulsed collector current, tp limited by Tjmax
ICpuls
225
Turn off safe operating area (VCE ≤ 600V, Tj ≤ 175°C)
-
225
Diode forward current, limited by Tjmax
IF
TC = 25°C
802)
TC = 100°C
75
Diode pulsed current, tp limited by Tjmax
IFpuls
225
Gate-emitter voltage
VGE
±20
V
tSC
5
µs
Power dissipation TC = 25°C
Ptot
428
W
Operating junction temperature
Tj
-40...+175
°C
Storage temperature
Tstg
-55...+175
Soldering temperature, 1.6mm (0.063 in.) from case for 10s
-
Short circuit withstand time
3)
VGE = 15V, VCC ≤ 400V, Tj ≤ 150°C
260
1)
J-STD-020 and JESD-022
Value limited by bondwire
3)
Allowed number of short circuits: <1000; time between short circuits: >1s.
2)
Power Semiconductors
1
Rev. 2.6 Sep 08
IKW75N60T
q
TrenchStop® Series
Thermal Resistance
Parameter
Symbol
Conditions
Max. Value
Unit
RthJC
0.35
K/W
RthJCD
0.6
RthJA
40
Characteristic
IGBT thermal resistance,
junction – case
Diode thermal resistance,
junction – case
Thermal resistance,
junction – ambient
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Parameter
Symbol
Conditions
Value
min.
Typ.
max.
600
-
-
T j = 25°C
-
1.5
2.0
T j = 175 °C
-
1.9
-
T j = 25°C
-
1.65
2.0
T j = 175 °C
-
1.6
-
4.1
4.9
5.7
Unit
Static Characteristic
Collector-emitter breakdown voltage
V ( B R ) C E S V G E = 0 V , I C =0.2mA
Collector-emitter saturation voltage
VCE(sat)
Diode forward voltage
Gate-emitter threshold voltage
Zero gate voltage collector current
VF
V
V G E = 15 V, I C =75A
VGE=0V, IF=75A
VGE(th)
I C =1.2mA,V C E =V G E
ICES
V C E = 60 0 V ,
VGE=0V
µA
T j = 25°C
-
-
40
T j = 175 °C
-
-
1000
Gate-emitter leakage current
IGES
V C E = 0 V , V G E =20V
-
-
100
nA
Transconductance
gfs
V C E =20V, I C =75A
-
41
-
S
Integrated gate resistor
RGint
-
Ω
Dynamic Characteristic
Input capacitance
Ciss
V C E =25V,
-
4620
-
Output capacitance
Coss
VGE=0V,
-
288
-
Reverse transfer capacitance
Crss
f=1MHz
-
-
Gate charge
QGate
V C C = 48 0 V, I C =75A
-
137
470
-
nC
-
13
-
nH
-
690
-
A
pF
V G E =15V
Internal emitter inductance
LE
measured 5mm (0.197 in.) from case
Short circuit collector current1)
1)
IC(SC)
V G E =15V,t S C ≤5 µs
V C C = 400 V,
T j ≤ 150°C
Allowed number of short circuits: <1000; time between short circuits: >1s.
Power Semiconductors
2
Rev. 2.6 Sep 08
IKW75N60T
q
TrenchStop® Series
Switching Characteristic, Inductive Load, at Tj=25 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
-
33
-
-
36
-
-
330
-
-
35
-
-
2.0
-
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
ns
-
2.5
-
Ets
T j = 25°C ,
V C C = 40 0 V, I C =75A,
V G E = 0 /1 5 V,
R G =5 Ω ,
L σ 1 ) =1 00nH,
C σ 1 ) =39pF
Energy losses include
“tail” and diode
reverse recovery.
-
4.5
-
Diode reverse recovery time
trr
T j = 25°C ,
-
121
-
ns
Diode reverse recovery charge
Qrr
V R = 40 0 V , I F =75A,
-
2.4
-
µC
Diode peak reverse recovery current
Irrm
d i F /d t= 1460 A/µs
-
38.5
-
A
Diode peak rate of fall of reverse
recovery current during t b
dirr/dt
-
921
-
A/µs
mJ
Anti-Parallel Diode Characteristic
Switching Characteristic, Inductive Load, at Tj=175 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
-
32
-
-
37
-
-
363
-
-
38
-
-
2.9
-
Unit
IGBT Characteristic
-
2.9
-
Ets
T j = 175 °C ,
V C C = 40 0 V, I C =75A,
V G E = 0 /1 5 V,
RG= 5Ω
L σ 1 ) =1 00nH,
C σ 1 ) =39pF
Energy losses include
“tail” and diode
reverse recovery.
-
5.8
-
Diode reverse recovery time
trr
T j = 175 °C
-
182
-
ns
Diode reverse recovery charge
Qrr
V R = 40 0 V , I F =75A,
-
5.8
-
µC
Diode peak reverse recovery current
Irrm
d i F /d t= 1460 A/µs
-
56.2
-
A
Diode peak rate of fall of reverse
recovery current during t b
dirr/dt
-
1013
-
A/µs
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
ns
mJ
Anti-Parallel Diode Characteristic
1)
Leakage inductance L σ a nd Stray capacity C σ due to dynamic test circuit in Figure E.
Power Semiconductors
3
Rev. 2.6 Sep 08
IKW75N60T
q
TrenchStop® Series
tp=1µs
100A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
200A
150A
T C =80°C
100A
50A
T C =110°C
Ic
100H z
50µs
10A
1ms
DC
1A
Ic
0A
10H z
10µs
1kH z
10kH z
1V
100kH z
f, SWITCHING FREQUENCY
Figure 1. Collector current as a function of
switching frequency
(Tj ≤ 175°C, D = 0.5, VCE = 400V,
VGE = 0/+15V, RG = 5Ω)
10V
100V
10ms
1000V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 2. Safe operating area
(D = 0, TC = 25°C, Tj ≤175°C;
VGE=15V)
400W
120A
IC, COLLECTOR CURRENT
Ptot,
POWER DISSIPATION
350W
300W
250W
200W
150W
100W
90A
60A
30A
50W
0W
25°C
50°C
75°C
0A
25°C
100°C 125°C 150°C
TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function of
case temperature
(Tj ≤ 175°C)
Power Semiconductors
4
75°C
125°C
TC, CASE TEMPERATURE
Figure 4. DC Collector current as a function
of case temperature
(VGE ≥ 15V, Tj ≤ 175°C)
Rev. 2.6 Sep 08
IKW75N60T
q
TrenchStop® Series
120A
V G E =20V
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
120A
15V
90A
13V
11V
9V
60A
7V
30A
0A
0V
1V
2V
VCE(sat), COLLECTOR-EMITT SATURATION VOLTAGE
IC, COLLECTOR CURRENT
40A
T J = 1 7 5 °C
2 5 °C
2V
4V
6V
8V
VGE, GATE-EMITTER VOLTAGE
Figure 7. Typical transfer characteristic
(VCE=20V)
Power Semiconductors
11V
9V
60A
7V
30A
1V
2V
3V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 6. Typical output characteristic
(Tj = 175°C)
60A
0V
13V
0V
80A
0A
15V
90A
0A
3V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristic
(Tj = 25°C)
20A
V GE =20V
2.5V
IC =150A
2.0V
IC =75A
1.5V
IC =37.5A
1.0V
0.5V
0.0V
0°C
50°C
100°C
150°C
TJ, JUNCTION TEMPERATURE
Figure 8. Typical collector-emitter
saturation voltage as a function of
junction temperature
(VGE = 15V)
5
Rev. 2.6 Sep 08
IKW75N60T
q
TrenchStop® Series
t, SWITCHING TIMES
t, SWITCHING TIMES
t d(off)
100ns
tf
t d(off)
100ns
tf
tr
t d(on)
t d(on)
tr
10ns
0A
40A
80A
10ns
120A
IC, COLLECTOR CURRENT
Figure 9. Typical switching times as a
function of collector current
(inductive load, TJ=175°C,
VCE = 400V, VGE = 0/15V, RG = 5Ω,
Dynamic test circuit in Figure E)
5Ω
10Ω
15Ω
RG, GATE RESISTOR
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, TJ = 175°C,
VCE= 400V, VGE = 0/15V, IC = 75A,
Dynamic test circuit in Figure E)
t, SWITCHING TIMES
t d(off)
100ns
tr
tf
t d(on)
25°C
50°C
75°C
6V
m ax.
typ.
5V
4V
m in.
3V
2V
1V
0V
-50°C
100°C 125°C 150°C
TJ, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE = 400V,
VGE = 0/15V, IC = 10A, RG=5Ω,
Dynamic test circuit in Figure E)
Power Semiconductors
VGE(th), GATE-EMITT TRSHOLD VOLTAGE
7V
0°C
50°C
100°C
150°C
TJ, JUNCTION TEMPERATURE
Figure 12. Gate-emitter threshold voltage as
a function of junction temperature
(IC = 1.2mA)
6
Rev. 2.6 Sep 08
IKW75N60T
q
TrenchStop® Series
*) E on an d E ts in c lud e lo s se s
Ets*
12.0mJ
Eon*
8.0mJ
Eoff
4.0mJ
du e to d io d e re co v ery
E, SWITCHING ENERGY LOSSES
E, SWITCHING ENERGY LOSSES
*) Eon and Ets include losses
due to diode recovery
0A
20A
40A
60A
4.0 m J
E on *
2.0 m J
E off
0Ω
80A 100A 120A 140A
IC, COLLECTOR CURRENT
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, TJ = 175°C,
VCE = 400V, VGE = 0/15V, RG = 5Ω,
Dynamic test circuit in Figure E)
*) Eon and Ets include losses
due to diode recovery
2.0mJ
Eon*
1.0mJ
75°C
8m J
E on *
6m J
E ts *
4m J
E off
2m J
0m J
300V
100°C 125°C 150°C
TJ, JUNCTION TEMPERATURE
Figure 15. Typical switching energy losses
as a function of junction
temperature
(inductive load, VCE = 400V,
VGE = 0/15V, IC = 75A, RG = 5Ω,
Dynamic test circuit in Figure E)
Power Semiconductors
15Ω
due to diode recovery
Ets*
Eoff
50°C
10Ω
*) E on and E ts include losses
4.0mJ
0.0mJ
25°C
5Ω
RG, GATE RESISTOR
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, TJ = 175°C,
VCE = 400V, VGE = 0/15V, IC = 75A,
Dynamic test circuit in Figure E)
E, SWITCHING ENERGY LOSSES
5.0mJ
E, SWITCHING ENERGY LOSSES
6.0 m J
0.0 m J
0.0mJ
3.0mJ
E ts *
8.0 m J
350V
400V
450V
500V
550V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 16. Typical switching energy losses
as a function of collector emitter
voltage
(inductive load, TJ = 175°C,
VGE = 0/15V, IC = 75A, RG = 5Ω,
Dynamic test circuit in Figure E)
7
Rev. 2.6 Sep 08
IKW75N60T
q
TrenchStop® Series
VGE, GATE-EMITTER VOLTAGE
C iss
c, CAPACITANCE
15V
120V
10V
480V
1nF
C oss
5V
C rss
100pF
0V
0nC
100nC
200nC
300nC
0V
400nC
QGE, GATE CHARGE
Figure 17. Typical gate charge
(IC=75 A)
10V
20V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 18. Typical capacitance as a function
of collector-emitter voltage
(VGE=0V, f = 1 MHz)
SHORT CIRCUIT WITHSTAND TIME
1000
750
500
250
tSC,
IC(sc), short circuit COLLECTOR CURRENT
12µs
0
12
13
14
15
16
17
18
19
8µs
6µs
4µs
2µs
0µs
10V
20
VGE, GATE-EMITTER VOLTAGE
Figure 19. Typical short circuit collector
current as a function of gateemitter voltage
(VCE ≤ 400V, Tj ≤ 150°C)
Power Semiconductors
10µs
11V
12V
13V
14V
VGE, GATE- EMITTER VOLTAGE
Figure 20. Short circuit withstand time as a
function of gate-emitter voltage
(VCE=400V, start at TJ=25°C,
TJmax<150°C)
8
Rev. 2.6 Sep 08
IKW75N60T
q
TrenchStop® Series
D=0.5
ZthJC, TRANSIENT THERMAL RESISTANCE
ZthJC, TRANSIENT THERMAL RESISTANCE
D=0.5
-1
10 K/W
0.2
0.1
0.05
-2
10 K/W
R,(K/W)
0.1968
0.0733
0.0509
0.02 0.0290
0.01 R 1
τ, (s)
0.115504
0.009340
0.000823
0.000119
R2
C1= τ1/R1
C2= τ2/R2
single pulse
0.2
-1
10 K/W
0.1
0.05
0.02
0.01
-2
10 K/W
R,(K/W)
0.1846
0.1681
0.1261
0.0818
0.04
R1
τ, (s)
0.110373
0.015543
0.001239
0.000120
0.000008
R2
C 1 = τ 1 /R 1 C 2 = τ 2 /R 2
single pulse
-3
10µs 100µs
1ms
10ms 100ms
tP, PULSE WIDTH
Figure 21. IGBT transient thermal resistance
(D = tp / T)
trr, REVERSE RECOVERY TIME
200ns
TJ=175°C
150ns
100ns
TJ=25°C
50ns
0ns
1000A/µs
tP, PULSE WIDTH
Figure 22. Diode transient thermal
impedance as a function of pulse
width
(D=tP/T)
5µC
1500A/µs
9
T J=175°C
4µC
3µC
2µC
T J=25°C
1µC
0µC
1000A/µs
diF/dt, DIODE CURRENT SLOPE
Figure 23. Typical reverse recovery time as
a function of diode current slope
(VR=400V, IF=75A,
Dynamic test circuit in Figure E)
Power Semiconductors
100ns 1µs 10µs 100µs 1ms 10ms100ms
Qrr, REVERSE RECOVERY CHARGE
10 K/W
1µs
1500A/µs
diF/dt, DIODE CURRENT SLOPE
Figure 24. Typical reverse recovery charge
as a function of diode current
slope
(VR = 400V, IF = 75A,
Dynamic test circuit in Figure E)
Rev. 2.6 Sep 08
TrenchStop® Series
T J =175°C
IKW75N60T
q
T J=175°C
-1200A/µs
-1000A/µs
50A
40A
T J =25°C
30A
20A
10A
0A
1000A/µs
200A
-800A/µs
-600A/µs
-400A/µs
-200A/µs
1500A/µs
diF/dt, DIODE CURRENT SLOPE
Figure 26. Typical diode peak rate of fall of
reverse recovery current as a
function of diode current slope
(VR=400V, IF=75A,
Dynamic test circuit in Figure E)
T J =25°C
I F =150A
2.0V
VF, FORWARD VOLTAGE
175°C
150A
100A
50A
0A
T J=25°C
0A/µs
1000A/µs
1500A/µs
diF/dt, DIODE CURRENT SLOPE
Figure 25. Typical reverse recovery current
as a function of diode current
slope
(VR = 400V, IF = 75A,
Dynamic test circuit in Figure E)
IF, FORWARD CURRENT
dirr/dt, DIODE PEAK RATE OF FALL
OF REVERSE RECOVERY CURRENT
Irr,
REVERSE RECOVERY CURRENT
60A
75A
1.5V
37.5A
1.0V
0.5V
0V
1V
0.0V
0°C
2V
VF, FORWARD VOLTAGE
Figure 27. Typical diode forward current as
a function of forward voltage
Power Semiconductors
10
50°C
100°C
150°C
TJ, JUNCTION TEMPERATURE
Figure 28. Typical diode forward voltage as a
function of junction temperature
Rev. 2.6 Sep 08
TrenchStop® Series
IKW75N60T
q
PG-TO247-3
M
M
MAX
5.16
2.53
2.11
1.33
2.41
2.16
3.38
3.13
0.68
21.10
17.65
1.35
16.03
14.15
5.10
2.60
MIN
4.90
2.27
1.85
1.07
1.90
1.90
2.87
2.87
0.55
20.82
16.25
1.05
15.70
13.10
3.68
1.68
MIN
0.193
0.089
0.073
0.042
0.075
0.075
0.113
0.113
0.022
0.820
0.640
0.041
0.618
0.516
0.145
0.066
5.44
3
19.80
4.17
3.50
5.49
6.04
Power Semiconductors
MAX
0.203
0.099
0.083
0.052
0.095
0.085
0.133
0.123
0.027
0.831
0.695
0.053
0.631
0.557
0.201
0.102
Z8B00003327
0
0
5 5
7.5mm
0.214
3
0.780
0.164
0.138
0.216
0.238
20.31
4.47
3.70
6.00
6.30
11
0.799
0.176
0.146
0.236
0.248
17-12-2007
03
Rev. 2.6 Sep 08
IKW75N60T
q
TrenchStop® Series
i,v
tr r =tS +tF
diF /dt
Qr r =QS +QF
IF
tS
QS
Ir r m
tr r
tF
QF
10% Ir r m
dir r /dt
90% Ir r m
t
VR
Figure C. Definition of diodes
switching characteristics
τ1
τ2
r1
r2
τn
rn
Tj (t)
p(t)
r1
r2
rn
Figure A. Definition of switching times
TC
Figure D. Thermal equivalent
circuit
Figure E. Dynamic test circuit
Figure B. Definition of switching losses
Power Semiconductors
12
Rev. 2.6 Sep 08
TrenchStop® Series
IKW75N60T
q
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2008 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or
any information regarding the application of the device, Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual
property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the
types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies
components may be used in life-support devices or systems only with the express written approval of
Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of
that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and
sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other
persons may be endangered.
Power Semiconductors
13
Rev. 2.6 Sep 08