INFINEON IKA03N120H2

IKA03N120H2
HighSpeed 2-Technology with soft, fast recovery anti-parallel EmCon HE diode
•
Designed for:
- TV – Horizontal Line Deflection
•
2nd generation HighSpeed-Technology
for 1200V applications offers:
- loss reduction in resonant circuits
- temperature stable behavior
- parallel switching capability
- tight parameter distribution
- Integrated anti-parallel diode
- Eoff optimized for IC =3A
C
G
E
P-TO220-3-31
(FullPAK)
P-TO220-3-34
(FullPAK)
• Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
VCE
IC
Eoff
Tj
IKA03N120H2
1200V
3A
0.15mJ
150°C
K03H1202 P-TO-220-3-31
Q67040-S4649
IKA03N120H2
1200V
3A
0.15mJ
150°C
K03H1202 P-TO-220-3-34
Q67040-S4655
Type
Marking
Package
Ordering Code
Maximum Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage
VCE
1200
V
Triangular collector peak current (VGE = 15V)
IC
A
8.2
TC = 100°C, f = 32kHz
Pulsed collector current, tp limited by Tjmax
ICpuls
9
Turn off safe operating area
-
9
VCE ≤ 1200V, Tj ≤ 150°C
Diode forward current
IF
TC = 25°C
9.6
TC = 100°C
3.9
Gate-emitter voltage
VGE
±20
V
Power dissipation
Ptot
29
W
-40...+150
°C
TC = 25°C
Operating junction and storage temperature
Tj , Tstg
Soldering temperature, 1.6mm (0.063 in.) from case for 10s
-
Power Semiconductors
1
260
Mar-04, Rev. 2
IKA03N120H2
Thermal Resistance
Parameter
Symbol
Conditions
Max. Value
Unit
K/W
Characteristic
IGBT thermal resistance,
junction – case
RthJC
4.3
Diode thermal resistance,
junction - case
RthJCD
5.8
Thermal resistance,
junction – ambient
RthJA
P-TO-220-3-31
P-TO-220-3-34
62
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Parameter
Symbol
Conditions
Value
min.
Typ.
max.
1200
-
-
T j = 25° C
-
2.2
2.8
T j = 15 0° C
-
2.5
-
V G E = 10V, I C = 3A ,
T j = 25° C
-
2.4
-
T j = 25° C
-
1.55
-
T j = 15 0° C
-
1.6
-
2.1
3
3.9
Unit
Static Characteristic
Collector-emitter breakdown voltage
V ( B R ) C E S V G E = 0V, I C = 30 0µA
Collector-emitter saturation voltage
VCE(sat)
Diode forward voltage
VF
V
V G E = 15V, I C = 3A
V G E = 0, I F = 3A
Gate-emitter threshold voltage
VGE(th)
I C = 90µA ,V C E =V G E
Zero gate voltage collector current
ICES
V C E = 1200V, V G E = 0V
µA
T j = 25° C
-
-
20
T j = 15 0° C
-
-
80
Gate-emitter leakage current
IGES
V C E = 0V ,V G E = 2 0V
-
-
100
nA
Transconductance
gfs
V C E = 20V, I C = 3A
-
2
-
S
Input capacitance
Ciss
V C E = 25V,
-
205
-
pF
Output capacitance
Coss
V G E = 0V,
-
24
-
Reverse transfer capacitance
Crss
f= 1 M Hz
-
7
-
Gate charge
QGate
V C C = 9 60V, I C = 3A
-
8.6
-
nC
-
7
-
nH
Dynamic Characteristic
V G E = 1 5V
Internal emitter inductance
LE
P -T O - 2 20- 3- 1
measured 5mm (0.197 in.) from case
Power Semiconductors
2
Mar-04, Rev. 2
IKA03N120H2
Switching Characteristic, Inductive Load, at Tj=25 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
-
9.2
-
-
5.2
-
-
281
-
-
29
-
-
0.14
-
-
0.15
-
-
0.29
-
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
Ets
T j = 25° C,
V C C = 8 00V, I C = 3A ,
V G E = 0V/ 15V,
R G = 8 2Ω ,
2)
L σ = 180nH,
2)
C σ = 4 0 pF
Energy losses include
“tail” and diode 2)
reverse recovery.
ns
mJ
Anti-Parallel Diode Characteristic
Diode reverse recovery time
trr
T j = 25° C,
-
52
-
ns
Diode reverse recovery charge
Qrr
V R = 8 00V, I F = 3A,
-
0.23
-
µC
Diode peak reverse recovery current
Irrm
R G = 8 2Ω
-
9.3
-
A
Diode current slope
di F / dt
-
723
-
A/µs
Switching Characteristic, Inductive Load, at Tj=150 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
-
9.4
-
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
Ets
T j = 15 0° C
V C C = 8 00V, I C = 3A ,
V G E = 0V/ 15V,
R G = 8 2Ω ,
2)
L σ = 180nH,
C σ 2 ) = 4 0 pF
Energy losses include
“tail” and diode 3)
reverse recovery.
-
6.7
-
-
340
-
-
63
-
-
0.22
-
-
0.26
-
-
0.48
-
ns
mJ
Anti-Parallel Diode Characteristic
Diode reverse recovery time
trr
T j = 15 0° C
-
112
-
ns
Diode reverse recovery charge
Qrr
V R = 8 00V, I F = 3A,
-
0.52
-
µC
Diode peak reverse recovery current
Irrm
R G = 8 2Ω
-
11
-
A
Diode current slope
di F / dt
-
661
-
A/µs
2)
2)
Leakage inductance Lσ and stray capacity Cσ due to dynamic test circuit in figure E
Commutation diode from device IKP03N120H2
Power Semiconductors
3
Mar-04, Rev. 2
IKA03N120H2
Switching Energy ZVT, Inductive Load
Parameter
Symbol
Conditions
Value
min.
typ.
max.
Unit
IGBT Characteristic
Turn-off energy
Eoff
mJ
V C C = 8 00V, I C = 3A ,
V G E = 0V/ 15V,
R G = 8 2Ω , C r 2 ) = 4nF
Power Semiconductors
T j = 25° C
-
0.05
-
T j = 15 0° C
-
0.09
-
4
Mar-04, Rev. 2
IKA03N120H2
12A
Ic
t p =10 µs
10A
10A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
20 µs
8A
T C =25°C
6A
T C =100°C
4A
2A
0A
10Hz
Ic
50 µs
1A
1m s
0,1A
100Hz
1kHz
10kHz
0,01A
100kHz
1V
10V
100V
1000V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 2. Safe operating area
(D = 0, TC = 25°C, Tj ≤ 150°C)
30W
IC, COLLECTOR CURRENT
8A
20W
10W
Ptot,
POWER DISSIPATION
100m s
DC
f, SWITCHING FREQUENCY
Figure 1. Collector current as a function of
switching frequency
(Tj ≤ 150°C, D = 0.5, VCE = 800V,
VGE = +15V/0V, RG = 82Ω)
0W
25°C
100 µs
50°C
75°C
100°C
125°C
4A
2A
0A
25°C
150°C
TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function
of case temperature
(Tj ≤ 150°C)
Power Semiconductors
6A
50°C
75°C
100°C
125°C
150°C
TC, CASE TEMPERATURE
Figure 4. Collector current as a function of
case temperature
(VGE ≤ 15V, Tj ≤ 150°C)
5
Mar-04, Rev. 2
10A
10A
8A
8A
V GE= 1 5 V
6A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
IKA03N120H2
12V
10V
8V
6V
4A
2A
0A
0V
1V
2V
3V
4V
8A
6A
Tj=+150°C
Tj=+25°C
4A
2A
0A
3V
5V
7V
9V
VGE, GATE-EMITTER VOLTAGE
Figure 7. Typical transfer characteristics
(VCE = 20V)
Power Semiconductors
12V
10V
8V
6V
4A
2A
1V
2V
3V
4V
5V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 6. Typical output characteristics
(Tj = 150°C)
VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE
IC, COLLECTOR CURRENT
10A
6A
0A
0V
5V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristics
(Tj = 25°C)
12A
V G E =15V
3V
IC=6A
IC=3A
2V
IC=1.5A
1V
0V
-50°C
0°C
50°C
100°C
150°C
Tj, JUNCTION TEMPERATURE
Figure 8. Typical collector-emitter
saturation voltage as a function of junction
temperature
(VGE = 15V)
6
Mar-04, Rev. 2
IKA03N120H2
1000ns
1000ns
td(off)
100ns
t, SWITCHING TIMES
t, SWITCHING TIMES
td(off)
tf
td(on)
10ns
100ns
tf
td(on)
10ns
tr
tr
1ns
0A
2A
1ns
4A
IC, COLLECTOR CURRENT
Figure 9. Typical switching times as a
function of collector current
(inductive load, Tj = 150°C,
VCE = 800V, VGE = +15V/0V, RG = 82Ω,
dynamic test circuit in Fig.E)
100ns
tf
td(on)
tr
50°C
75°C
100°C
125°C
150°C
VGE(th), GATE-EMITTER THRESHOLD VOLTAGE
t, SWITCHING TIMES
100Ω
150Ω
5V
td(off)
1ns
25°C
50Ω
RG, GATE RESISTOR
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, Tj = 150°C,
VCE = 800V, VGE = +15V/0V, IC = 3A,
dynamic test circuit in Fig.E)
1000ns
10ns
0Ω
Tj, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE = 800V,
VGE = +15V/0V, IC = 3A, RG = 82Ω,
dynamic test circuit in Fig.E)
Power Semiconductors
4V
max.
3V
typ.
2V
min.
1V
0V
-50°C
0°C
50°C
100°C
150°C
Tj, JUNCTION TEMPERATURE
Figure 12. Gate-emitter threshold voltage
as a function of junction temperature
(IC = 0.09mA)
7
Mar-04, Rev. 2
IKA03N120H2
1.0mJ
1
1
Ets
0.7mJ
1
E, SWITCHING ENERGY LOSSES
E, SWITCHING ENERGY LOSSES
) Eon and Ets include losses
due to diode recovery.
Eoff
0.5mJ
1
Eon
0A
2A
0.4mJ
0.3mJ
0.5mJ
1
E, SWITCHING ENERGY LOSSES
) Eon and Ets include losses
due to diode recovery.
Ets
1
0.4mJ
0.3mJ
Eoff
1
Eon
0.2mJ
0.1mJ
25°C
80°C
125°C
150°C
1
Eon
50Ω
100Ω
150Ω
200Ω
250Ω
IC=3A, TJ=150°C
0.16mJ
0.12mJ
IC=3A, TJ=25°C
0.08mJ
IC=1A, TJ=150°C
0.04mJ
IC=1A, TJ=25°C
0.00mJ
0V/us
1000V/us
2000V/us
3000V/us
dv/dt, VOLTAGE SLOPE
Tj, JUNCTION TEMPERATURE
Figure 15. Typical switching energy losses
as a function of junction temperature
(inductive load, VCE = 800V,
VGE = +15V/0V, IC = 3A, RG = 82Ω,
dynamic test circuit in Fig.E )
Power Semiconductors
Eoff
RG, GATE RESISTOR
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, Tj = 150°C,
VCE = 800V, VGE = +15V/0V, IC = 3A,
dynamic test circuit in Fig.E )
Eoff, TURN OFF SWITCHING ENERGY LOSS
IC, COLLECTOR CURRENT
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, Tj = 150°C,
VCE = 800V, VGE = +15V/0V, RG = 82Ω,
dynamic test circuit in Fig.E )
1
0.5mJ
0Ω
4A
Ets
0.6mJ
0.2mJ
0.0mJ
) Eon and Ets include losses
due to diode recovery.
Figure 16. Typical turn off switching energy
loss for soft switching
(dynamic test circuit in Fig. E)
8
Mar-04, Rev. 2
IKA03N120H2
1nF
20V
VGE, GATE-EMITTER VOLTAGE
C, CAPACITANCE
C iss
100pF
C oss
C rss
10pF
0V
10V
20V
15V
UCE=240V
10V
UCE=960V
5V
0V
0nC
30V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 17. Typical capacitance as a
function of collector-emitter voltage
(VGE = 0V, f = 1MHz)
10nC
20nC
30nC
QGE, GATE CHARGE
Figure 18. Typical gate charge
(IC = 3A)
1
10 K/W
0.1
D=0.5
0.2
0
10 K/W
-1
10 K/W
R,(K/W)
1,4285
1,8838
0,4057
0.05
0,4234
0,3241
0.02
0,1021
0.01
0,1340
τ, (s)
5,2404
1,7688
0,07592
0,005018
0,000595
0,000126
0,000018
R1
R2
-2
10 K/W
single pulse
ZthJC, TRANSIENT THERMAL RESISTANCE
ZthJC, TRANSIENT THERMAL RESISTANCE
D=0.5
0.1
-1
10 K/W
0.05
0.02
R,(K/W)
0.9734
1.452
0.6213
0.7174
0.7037
0.1445
τ, (s)
4.279
1.094
-2
4.899*10
-3
3.081*10
-4
4.341*10
-5
0.833*10
R1
R2
0.01
single pulse
C 1 = τ 1 /R 1
C 2 = τ 2 /R 2
-2
10s
10s
tP, PULSE WIDTH
Figure 19. Typical IGBT transient thermal
impedance as a function of pulse width
(D=tP/T)
Power Semiconductors
0.2
10 K/W
10µs 100µs 1m s 10m s100m s 1s
C 1 = τ 1 /R 1 C 2 = τ 2 /R 2
1µs 10µs 100µs 1ms 10ms100ms 1s
0
10 K/W
tP, PULSE WIDTH
Figure 22. Typical Diode transient
thermal impedance as a function of
pulse width
(D=tP/T)
9
Mar-04, Rev. 2
IKA03N120H2
0.6uC
180ns
Qrr, REVERSE RECOVERY CHARGE
trr, REVERSE RECOVERY TIME
160ns
TJ=150°C
140ns
120ns
100ns
80ns
60ns
TJ=25°C
40ns
0Ohm
100Ohm
200Ohm
TJ=150°C
0.5uC
0.4uC
0.3uC
TJ=25°C
0.2uC
0Ohm
300Ohm
RG, GATE RESISTANCE
Figure 23. Typical reverse recovery time
as a function of diode current slope
VR=800V, IF=3A,
Dynamic test circuit in Figure E)
100Ohm
200Ohm
300Ohm
RG, GATE RESISTANCE
Figure 24. Typical reverse recovery
charge as a function of diode current
slope
(VR=800V, IF=3A,
Dynamic test circuit in Figure E)
16A
dirr/dt, DIODE PEAK RATE OF FALL
OF REVERSE RECOVERY CURRENT
14A
12A
T J =150°C
10A
T J =25°C
Irr,
REVERSE RECOVERY CURRENT
-600A/us
8A
0O hm
100O hm
200O hm
-800A/us
-1000A/us
-1200A/us
TJ=25°C
-1400A/us
-1600A/us
-1800A/us
0Ohm
300O hm
RG, GATE RESISTANCE
Figure 25. Typical reverse recovery
current as a function of diode current
slope
(VR=800V, IF=3A,
Dynamic test circuit in Figure E)
Power Semiconductors
TJ=150°C
100Ohm
200Ohm
300Ohm
RG, GATE RESISTANCE
Figure 26. Typical diode peak rate of fall
of reverse recovery current as a
function of diode current slope
(VR=800V, IF=3A,
Dynamic test circuit in Figure E)
10
Mar-04, Rev. 2
IKA03N120H2
3.0V
IF=4A
T J =150°C
2.5V
VF, FORWARD VOLTAGE
IF, FORWARD CURRENT
4A
2A
T J =25°C
0A
0V
IF=2A
IF=1A
2.0V
1.5V
1.0V
1V
2V
-50°C
3V
VF, FORWARD VOLTAGE
Figure 27. Typical diode forward current
as a function of forward voltage
Power Semiconductors
0°C
50°C
100°C
150°C
TJ, JUNCTION TEMPERATURE
Figure 28. Typical diode forward
voltage as a function of junction
temperature
11
Mar-04, Rev. 2
IKA03N120H2
TO-220-3-31 (FullPAK)
dimensions
[mm]
symbol
[inch]
min
max
min
max
A
10.37
10.63
0.4084
0.4184
B
15.86
16.12
0.6245
0.6345
C
0.65
0.78
0.0256
0.0306
D
2.95 typ.
0.1160 typ.
E
3.15
3.25
0.124
0.128
F
6.05
6.56
0.2384
0.2584
G
13.47
13.73
0.5304
0.5404
H
3.18
3.43
0.125
0.135
K
0.45
0.63
0.0177
0.0247
L
1.23
1.36
0.0484
0.0534
M
2.54 typ.
0.100 typ.
N
4.57
4.83
0.1800
0.1900
P
2.57
2.83
0.1013
0.1113
T
2.51
2.62
0.0990
0.1030
TO-220-3-34 (FullPAK)
dimensions
symbol
[mm]
[inch]
min
max
min
max
A
10.37
10.63
0.4084
0.4184
B
15.86
16.12
0.6245
0.6345
C
0.65
0.78
0.0256
0.0306
D
2.95 typ.
0.1160 typ.
E
3.15
3.25
0.124
0.128
F
6.05
6.56
0.2384
0.2584
G
8.28
8.79
0.326
0.346
H
3.18
3.43
0.125
0.135
K
0.45
0.63
0.0177
0.0247
L
1.23
1.36
0.0484
0.0534
M
2.54 typ.
0.100 typ.
N
4.57
4.83
0.1800
0.1900
P
2.57
2.83
0.1013
0.1113
T
2.51
2.62
0.0990
0.1030
U
5.00 typ.
0.197 typ.
1: Gate
2: Collector
3: Emitter
Power Semiconductors
12
Mar-04, Rev. 2
IKA03N120H2
i,v
tr r =tS +tF
diF /dt
Qr r =QS +QF
IF
tS
QS
Ir r m
tr r
tF
QF
10% Ir r m
dir r /dt
90% Ir r m
t
VR
Figure C. Definition of diodes
switching characteristics
τ1
τ2
r1
τn
r2
rn
Tj (t)
p(t)
r2
r1
rn
Figure A. Definition of switching times
TC
Figure D. Thermal equivalent
circuit
½ Lσ
öö
DUT
(Diode)
L
Cσ
Cr
VDC
RG
DUT
(IGBT)
½ Lσ
Figure E. Dynamic test circuit
Leakage inductance Lσ = 180nH,
Stray capacitor Cσ = 40pF,
Relief capacitor Cr = 4nF (only for
ZVT switching)
Figure B. Definition of switching losses
Power Semiconductors
13
Mar-04, Rev. 2
IKA03N120H2
Published by
Infineon Technologies AG i Gr.,
Bereich Kommunikation
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 1999
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits,
descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon
Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question
please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of
that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or
systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect
human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Power Semiconductors
14
Mar-04, Rev. 2