IKA03N120H2 HighSpeed 2-Technology with soft, fast recovery anti-parallel EmCon HE diode • Designed for: - TV – Horizontal Line Deflection • 2nd generation HighSpeed-Technology for 1200V applications offers: - loss reduction in resonant circuits - temperature stable behavior - parallel switching capability - tight parameter distribution - Integrated anti-parallel diode - Eoff optimized for IC =3A C G E P-TO220-3-31 (FullPAK) P-TO220-3-34 (FullPAK) • Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ VCE IC Eoff Tj IKA03N120H2 1200V 3A 0.15mJ 150°C K03H1202 P-TO-220-3-31 Q67040-S4649 IKA03N120H2 1200V 3A 0.15mJ 150°C K03H1202 P-TO-220-3-34 Q67040-S4655 Type Marking Package Ordering Code Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage VCE 1200 V Triangular collector peak current (VGE = 15V) IC A 8.2 TC = 100°C, f = 32kHz Pulsed collector current, tp limited by Tjmax ICpuls 9 Turn off safe operating area - 9 VCE ≤ 1200V, Tj ≤ 150°C Diode forward current IF TC = 25°C 9.6 TC = 100°C 3.9 Gate-emitter voltage VGE ±20 V Power dissipation Ptot 29 W -40...+150 °C TC = 25°C Operating junction and storage temperature Tj , Tstg Soldering temperature, 1.6mm (0.063 in.) from case for 10s - Power Semiconductors 1 260 Mar-04, Rev. 2 IKA03N120H2 Thermal Resistance Parameter Symbol Conditions Max. Value Unit K/W Characteristic IGBT thermal resistance, junction – case RthJC 4.3 Diode thermal resistance, junction - case RthJCD 5.8 Thermal resistance, junction – ambient RthJA P-TO-220-3-31 P-TO-220-3-34 62 Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Symbol Conditions Value min. Typ. max. 1200 - - T j = 25° C - 2.2 2.8 T j = 15 0° C - 2.5 - V G E = 10V, I C = 3A , T j = 25° C - 2.4 - T j = 25° C - 1.55 - T j = 15 0° C - 1.6 - 2.1 3 3.9 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0V, I C = 30 0µA Collector-emitter saturation voltage VCE(sat) Diode forward voltage VF V V G E = 15V, I C = 3A V G E = 0, I F = 3A Gate-emitter threshold voltage VGE(th) I C = 90µA ,V C E =V G E Zero gate voltage collector current ICES V C E = 1200V, V G E = 0V µA T j = 25° C - - 20 T j = 15 0° C - - 80 Gate-emitter leakage current IGES V C E = 0V ,V G E = 2 0V - - 100 nA Transconductance gfs V C E = 20V, I C = 3A - 2 - S Input capacitance Ciss V C E = 25V, - 205 - pF Output capacitance Coss V G E = 0V, - 24 - Reverse transfer capacitance Crss f= 1 M Hz - 7 - Gate charge QGate V C C = 9 60V, I C = 3A - 8.6 - nC - 7 - nH Dynamic Characteristic V G E = 1 5V Internal emitter inductance LE P -T O - 2 20- 3- 1 measured 5mm (0.197 in.) from case Power Semiconductors 2 Mar-04, Rev. 2 IKA03N120H2 Switching Characteristic, Inductive Load, at Tj=25 °C Parameter Symbol Conditions Value min. typ. max. - 9.2 - - 5.2 - - 281 - - 29 - - 0.14 - - 0.15 - - 0.29 - Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j = 25° C, V C C = 8 00V, I C = 3A , V G E = 0V/ 15V, R G = 8 2Ω , 2) L σ = 180nH, 2) C σ = 4 0 pF Energy losses include “tail” and diode 2) reverse recovery. ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time trr T j = 25° C, - 52 - ns Diode reverse recovery charge Qrr V R = 8 00V, I F = 3A, - 0.23 - µC Diode peak reverse recovery current Irrm R G = 8 2Ω - 9.3 - A Diode current slope di F / dt - 723 - A/µs Switching Characteristic, Inductive Load, at Tj=150 °C Parameter Symbol Conditions Value min. typ. max. - 9.4 - Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j = 15 0° C V C C = 8 00V, I C = 3A , V G E = 0V/ 15V, R G = 8 2Ω , 2) L σ = 180nH, C σ 2 ) = 4 0 pF Energy losses include “tail” and diode 3) reverse recovery. - 6.7 - - 340 - - 63 - - 0.22 - - 0.26 - - 0.48 - ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time trr T j = 15 0° C - 112 - ns Diode reverse recovery charge Qrr V R = 8 00V, I F = 3A, - 0.52 - µC Diode peak reverse recovery current Irrm R G = 8 2Ω - 11 - A Diode current slope di F / dt - 661 - A/µs 2) 2) Leakage inductance Lσ and stray capacity Cσ due to dynamic test circuit in figure E Commutation diode from device IKP03N120H2 Power Semiconductors 3 Mar-04, Rev. 2 IKA03N120H2 Switching Energy ZVT, Inductive Load Parameter Symbol Conditions Value min. typ. max. Unit IGBT Characteristic Turn-off energy Eoff mJ V C C = 8 00V, I C = 3A , V G E = 0V/ 15V, R G = 8 2Ω , C r 2 ) = 4nF Power Semiconductors T j = 25° C - 0.05 - T j = 15 0° C - 0.09 - 4 Mar-04, Rev. 2 IKA03N120H2 12A Ic t p =10 µs 10A 10A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 20 µs 8A T C =25°C 6A T C =100°C 4A 2A 0A 10Hz Ic 50 µs 1A 1m s 0,1A 100Hz 1kHz 10kHz 0,01A 100kHz 1V 10V 100V 1000V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤ 150°C) 30W IC, COLLECTOR CURRENT 8A 20W 10W Ptot, POWER DISSIPATION 100m s DC f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 800V, VGE = +15V/0V, RG = 82Ω) 0W 25°C 100 µs 50°C 75°C 100°C 125°C 4A 2A 0A 25°C 150°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C) Power Semiconductors 6A 50°C 75°C 100°C 125°C 150°C TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≤ 15V, Tj ≤ 150°C) 5 Mar-04, Rev. 2 10A 10A 8A 8A V GE= 1 5 V 6A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT IKA03N120H2 12V 10V 8V 6V 4A 2A 0A 0V 1V 2V 3V 4V 8A 6A Tj=+150°C Tj=+25°C 4A 2A 0A 3V 5V 7V 9V VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 20V) Power Semiconductors 12V 10V 8V 6V 4A 2A 1V 2V 3V 4V 5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150°C) VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE IC, COLLECTOR CURRENT 10A 6A 0A 0V 5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25°C) 12A V G E =15V 3V IC=6A IC=3A 2V IC=1.5A 1V 0V -50°C 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 6 Mar-04, Rev. 2 IKA03N120H2 1000ns 1000ns td(off) 100ns t, SWITCHING TIMES t, SWITCHING TIMES td(off) tf td(on) 10ns 100ns tf td(on) 10ns tr tr 1ns 0A 2A 1ns 4A IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150°C, VCE = 800V, VGE = +15V/0V, RG = 82Ω, dynamic test circuit in Fig.E) 100ns tf td(on) tr 50°C 75°C 100°C 125°C 150°C VGE(th), GATE-EMITTER THRESHOLD VOLTAGE t, SWITCHING TIMES 100Ω 150Ω 5V td(off) 1ns 25°C 50Ω RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150°C, VCE = 800V, VGE = +15V/0V, IC = 3A, dynamic test circuit in Fig.E) 1000ns 10ns 0Ω Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 800V, VGE = +15V/0V, IC = 3A, RG = 82Ω, dynamic test circuit in Fig.E) Power Semiconductors 4V max. 3V typ. 2V min. 1V 0V -50°C 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.09mA) 7 Mar-04, Rev. 2 IKA03N120H2 1.0mJ 1 1 Ets 0.7mJ 1 E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES ) Eon and Ets include losses due to diode recovery. Eoff 0.5mJ 1 Eon 0A 2A 0.4mJ 0.3mJ 0.5mJ 1 E, SWITCHING ENERGY LOSSES ) Eon and Ets include losses due to diode recovery. Ets 1 0.4mJ 0.3mJ Eoff 1 Eon 0.2mJ 0.1mJ 25°C 80°C 125°C 150°C 1 Eon 50Ω 100Ω 150Ω 200Ω 250Ω IC=3A, TJ=150°C 0.16mJ 0.12mJ IC=3A, TJ=25°C 0.08mJ IC=1A, TJ=150°C 0.04mJ IC=1A, TJ=25°C 0.00mJ 0V/us 1000V/us 2000V/us 3000V/us dv/dt, VOLTAGE SLOPE Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 800V, VGE = +15V/0V, IC = 3A, RG = 82Ω, dynamic test circuit in Fig.E ) Power Semiconductors Eoff RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150°C, VCE = 800V, VGE = +15V/0V, IC = 3A, dynamic test circuit in Fig.E ) Eoff, TURN OFF SWITCHING ENERGY LOSS IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150°C, VCE = 800V, VGE = +15V/0V, RG = 82Ω, dynamic test circuit in Fig.E ) 1 0.5mJ 0Ω 4A Ets 0.6mJ 0.2mJ 0.0mJ ) Eon and Ets include losses due to diode recovery. Figure 16. Typical turn off switching energy loss for soft switching (dynamic test circuit in Fig. E) 8 Mar-04, Rev. 2 IKA03N120H2 1nF 20V VGE, GATE-EMITTER VOLTAGE C, CAPACITANCE C iss 100pF C oss C rss 10pF 0V 10V 20V 15V UCE=240V 10V UCE=960V 5V 0V 0nC 30V VCE, COLLECTOR-EMITTER VOLTAGE Figure 17. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) 10nC 20nC 30nC QGE, GATE CHARGE Figure 18. Typical gate charge (IC = 3A) 1 10 K/W 0.1 D=0.5 0.2 0 10 K/W -1 10 K/W R,(K/W) 1,4285 1,8838 0,4057 0.05 0,4234 0,3241 0.02 0,1021 0.01 0,1340 τ, (s) 5,2404 1,7688 0,07592 0,005018 0,000595 0,000126 0,000018 R1 R2 -2 10 K/W single pulse ZthJC, TRANSIENT THERMAL RESISTANCE ZthJC, TRANSIENT THERMAL RESISTANCE D=0.5 0.1 -1 10 K/W 0.05 0.02 R,(K/W) 0.9734 1.452 0.6213 0.7174 0.7037 0.1445 τ, (s) 4.279 1.094 -2 4.899*10 -3 3.081*10 -4 4.341*10 -5 0.833*10 R1 R2 0.01 single pulse C 1 = τ 1 /R 1 C 2 = τ 2 /R 2 -2 10s 10s tP, PULSE WIDTH Figure 19. Typical IGBT transient thermal impedance as a function of pulse width (D=tP/T) Power Semiconductors 0.2 10 K/W 10µs 100µs 1m s 10m s100m s 1s C 1 = τ 1 /R 1 C 2 = τ 2 /R 2 1µs 10µs 100µs 1ms 10ms100ms 1s 0 10 K/W tP, PULSE WIDTH Figure 22. Typical Diode transient thermal impedance as a function of pulse width (D=tP/T) 9 Mar-04, Rev. 2 IKA03N120H2 0.6uC 180ns Qrr, REVERSE RECOVERY CHARGE trr, REVERSE RECOVERY TIME 160ns TJ=150°C 140ns 120ns 100ns 80ns 60ns TJ=25°C 40ns 0Ohm 100Ohm 200Ohm TJ=150°C 0.5uC 0.4uC 0.3uC TJ=25°C 0.2uC 0Ohm 300Ohm RG, GATE RESISTANCE Figure 23. Typical reverse recovery time as a function of diode current slope VR=800V, IF=3A, Dynamic test circuit in Figure E) 100Ohm 200Ohm 300Ohm RG, GATE RESISTANCE Figure 24. Typical reverse recovery charge as a function of diode current slope (VR=800V, IF=3A, Dynamic test circuit in Figure E) 16A dirr/dt, DIODE PEAK RATE OF FALL OF REVERSE RECOVERY CURRENT 14A 12A T J =150°C 10A T J =25°C Irr, REVERSE RECOVERY CURRENT -600A/us 8A 0O hm 100O hm 200O hm -800A/us -1000A/us -1200A/us TJ=25°C -1400A/us -1600A/us -1800A/us 0Ohm 300O hm RG, GATE RESISTANCE Figure 25. Typical reverse recovery current as a function of diode current slope (VR=800V, IF=3A, Dynamic test circuit in Figure E) Power Semiconductors TJ=150°C 100Ohm 200Ohm 300Ohm RG, GATE RESISTANCE Figure 26. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR=800V, IF=3A, Dynamic test circuit in Figure E) 10 Mar-04, Rev. 2 IKA03N120H2 3.0V IF=4A T J =150°C 2.5V VF, FORWARD VOLTAGE IF, FORWARD CURRENT 4A 2A T J =25°C 0A 0V IF=2A IF=1A 2.0V 1.5V 1.0V 1V 2V -50°C 3V VF, FORWARD VOLTAGE Figure 27. Typical diode forward current as a function of forward voltage Power Semiconductors 0°C 50°C 100°C 150°C TJ, JUNCTION TEMPERATURE Figure 28. Typical diode forward voltage as a function of junction temperature 11 Mar-04, Rev. 2 IKA03N120H2 TO-220-3-31 (FullPAK) dimensions [mm] symbol [inch] min max min max A 10.37 10.63 0.4084 0.4184 B 15.86 16.12 0.6245 0.6345 C 0.65 0.78 0.0256 0.0306 D 2.95 typ. 0.1160 typ. E 3.15 3.25 0.124 0.128 F 6.05 6.56 0.2384 0.2584 G 13.47 13.73 0.5304 0.5404 H 3.18 3.43 0.125 0.135 K 0.45 0.63 0.0177 0.0247 L 1.23 1.36 0.0484 0.0534 M 2.54 typ. 0.100 typ. N 4.57 4.83 0.1800 0.1900 P 2.57 2.83 0.1013 0.1113 T 2.51 2.62 0.0990 0.1030 TO-220-3-34 (FullPAK) dimensions symbol [mm] [inch] min max min max A 10.37 10.63 0.4084 0.4184 B 15.86 16.12 0.6245 0.6345 C 0.65 0.78 0.0256 0.0306 D 2.95 typ. 0.1160 typ. E 3.15 3.25 0.124 0.128 F 6.05 6.56 0.2384 0.2584 G 8.28 8.79 0.326 0.346 H 3.18 3.43 0.125 0.135 K 0.45 0.63 0.0177 0.0247 L 1.23 1.36 0.0484 0.0534 M 2.54 typ. 0.100 typ. N 4.57 4.83 0.1800 0.1900 P 2.57 2.83 0.1013 0.1113 T 2.51 2.62 0.0990 0.1030 U 5.00 typ. 0.197 typ. 1: Gate 2: Collector 3: Emitter Power Semiconductors 12 Mar-04, Rev. 2 IKA03N120H2 i,v tr r =tS +tF diF /dt Qr r =QS +QF IF tS QS Ir r m tr r tF QF 10% Ir r m dir r /dt 90% Ir r m t VR Figure C. Definition of diodes switching characteristics τ1 τ2 r1 τn r2 rn Tj (t) p(t) r2 r1 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit ½ Lσ öö DUT (Diode) L Cσ Cr VDC RG DUT (IGBT) ½ Lσ Figure E. Dynamic test circuit Leakage inductance Lσ = 180nH, Stray capacitor Cσ = 40pF, Relief capacitor Cr = 4nF (only for ZVT switching) Figure B. Definition of switching losses Power Semiconductors 13 Mar-04, Rev. 2 IKA03N120H2 Published by Infineon Technologies AG i Gr., Bereich Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 1999 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Power Semiconductors 14 Mar-04, Rev. 2