PD - 95326 IRG4IBC30WPbF INSULATED GATE BIPOLAR TRANSISTOR Features Designed expressly for Switch-Mode Power Supply and PFC (power factor correction) applications • 2.5kV, 60s insulation voltage Industry-benchmark switching losses improve efficiency of all power supply topologies 50% reduction of Eoff parameter Low IGBT conduction losses Latest-generation IGBT design and construction offers tighter parameters distribution, exceptional reliability • Industry standard Isolated TO-220 FullpakTM outline • Lead-Free C VCES = 600V VCE(on) typ. = 2.1V G @VGE = 15V, IC = 12 A E n-channel Benefits Lower switching losses allow more cost-effective operation than power MOSFETs up to 150 kHz ("hard switched" mode) Of particular benefit to single-ended converters and boost PFC topologies 150W and higher Low conduction losses and minimal minority-carrier recombination make these an excellent option for resonant mode switching as well (up to >>300 kHz) TO-220 FULLPAK Absolute Maximum Ratings VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE EARV PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Parameter Max. Units Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw. 600 17 8.4 92 92 ± 20 180 45 18 -55 to + 150 V A V mJ W °C 300 (0.063 in. (1.6mm from case ) 10 lbf•in (1.1N•m) Thermal Resistance Parameter RθJC RθJA Wt www.irf.com Junction-to-Case - IGBT Junction-to-Ambient, typical socket mount Weight Typ. Max. Units ––– ––– 2.0 (0.07) 2.8 65 ––– °C/W g (oz) 1 6/1/04 IRG4IBC30WPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 — Emitter-to-Collector Breakdown Voltage 18 — ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 0.34 — 2.1 Collector-to-Emitter Saturation Voltage — 2.45 VCE(ON) — 1.95 VGE(th) Gate Threshold Voltage 3.0 — ∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage — -11 gfe Forward Transconductance 11 16 — — ICES Zero Gate Voltage Collector Current — — — — IGES Gate-to-Emitter Leakage Current — — V(BR)CES V(BR)ECS Max. Units Conditions — V VGE = 0V, IC = 250µA — V VGE = 0V, IC = 1.0A — V/°C VGE = 0V, IC = 1.0mA 2.7 IC = 12A VGE = 15V — IC = 23A See Fig.2, 5 V — IC = 12A , TJ = 150°C 6.0 VCE = VGE, IC = 250µA — mV/°C VCE = VGE, IC = 250µA — S VCE = 100 V, IC = 12A 250 VGE = 0V, VCE = 600V µA 2.0 VGE = 0V, VCE = 10V, TJ = 25°C 1000 VGE = 0V, VCE = 600V, TJ = 150°C ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. — — — — — — — — — — — — — — — — — — — Typ. 51 7.6 18 25 16 99 67 0.13 0.13 0.26 24 17 150 150 0.55 7.5 980 71 18 Max. Units Conditions 76 IC = 12A 11 nC VCC = 400V See Fig.8 27 VGE = 15V — — TJ = 25°C ns 150 IC = 12A, VCC = 480V 100 VGE = 15V, RG = 23Ω — Energy losses include "tail" — mJ See Fig. 9, 10, 13, 14 0.35 — TJ = 150°C, — IC = 12A, VCC = 480V ns — VGE = 15V, RG = 23Ω — Energy losses include "tail" — mJ See Fig. 11,13, 14 — nH Measured 5mm from package — VGE = 0V — pF VCC = 30V See Fig. 7 — ƒ = 1.0MHz Notes: Repetitive rating; VGE = 20V, pulse width limited by max. junction temperature. ( See fig. 13b ) VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 23Ω, Pulse width ≤ 80µs; duty factor ≤ 0.1%. Repetitive rating; pulse width limited by maximum Pulse width 5.0µs, single shot. t = 60s, f = 60Hz (See fig. 13a) junction temperature. 2 www.irf.com IRG4IBC30WPbF 25 For both: 20 Load Current (A) Triangular wave: Duty cycle: 50% TJ = 125°C Tsink= 90°C Gate drive as specified Power Dissipation = 10.6W Clamp voltage: 80% of rated 15 Square wave: 60% of rated voltage 10 5 Ideal diodes A 0 0.1 1 10 100 1000 f, Frequency (kHz) Fig. 1 - Typical Load Current vs. Frequency (For square wave, I=IRMS of fundamental; for triangular wave, I=IPK) 100 TJ = 150 °C 10 TJ = 25 °C 1 VGE = 15V 20µs PULSE WIDTH 1 10 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com I C , Collector-to-Emitter Current (A) I C , Collector-to-Emitter Current (A) 100 TJ = 150 °C 10 TJ = 25 °C 1 0.1 5.0 V CC = 50V 5µs PULSE WIDTH 6.0 7.0 8.0 9.0 10.0 11.0 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4IBC30WPbF 3.0 VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) 20 15 10 5 0 25 50 75 100 125 IC = 24 A 2.5 IC = 12 A 2.0 IC = 1.5 -60 -40 -20 150 0 20 40 60 6A 80 100 120 140 160 TJ , Junction Temperature ( °C) TC , Case Temperature ( °C) Fig. 4 - Maximum Collector Current vs. Temperature VGE = 15V 80 us PULSE WIDTH Fig. 5 - Collector-to-Emitter Voltage vs. Junction Temperature Case Thermal Response (Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 0.1 0.01 0.00001 PDM 0.02 t1 0.01 t2 SINGLE PULSE (THERMAL RESPONSE) 0.0001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.001 0.01 0.1 1 10 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4IBC30WPbF 2000 20 VGE , Gate-to-Emitter Voltage (V) VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc C, Capacitance (pF) 1500 Cies 1000 Coes 500 Cres 0 16 12 8 4 0 1 10 100 Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 10 Total Switching Losses (mJ) Total Switching Losses (mJ) VCC = 480V VGE = 15V TJ = 25 ° C 0.4 I C = 12A 0.3 0.2 0.1 0 10 20 30 40 50 RGR,GGate , GateResistance Resistance(Ohm) (Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 10 20 30 40 50 60 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 0.5 0.0 0 QG , Total Gate Charge (nC) VCE , Collector-to-Emitter Voltage (V) 10 VCC = 400V I C = 12A 23Ω RG = Ohm VGE = 15V VCC = 480V IC = 24 A 1 IC = 12 A IC = 6A 0.1 0.01 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4IBC30WPbF RG TJ VCC VGE 1000 23Ω = Ohm = 150 °C = 480V = 15V I C , Collector-to-Emitter Current (A) Total Switching Losses (mJ) 1.5 1.0 0.5 0.0 100 SAFE OPERATING AREA 10 1 0.1 0 5 10 15 20 25 I C , Collector-to-emitter Current (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current 6 VGE = 20V GE TJ = 125°C 30 1 10 100 1000 VCE , Collector-to-Emitter Voltage (V) Fig. 12 - Turn-Off SOA www.irf.com IRG4IBC30WPbF L D.U.T. VC * 50V RL = 0 - 480V 1000V c 480V 4 X IC@ 25°C 480µF 960V d * Driver same type as D.U.T.; Vc = 80% of Vce(max) * Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated Id. Fig. 13a - Clamped Inductive Fig. 13b - Pulsed Collector Load Test Circuit Current Test Circuit IC L Driver* D.U.T. VC Test Circuit 50V 1000V c Fig. 14a - Switching Loss d e * Driver same type as D.U.T., VC = 480V c d 90% e VC 10% 90% Fig. 14b - Switching Loss t d(off) 10% I C 5% Waveforms tf tr t d(on) t=5µs E on E off E ts = (Eon +Eoff ) www.irf.com 7 IRG4IBC30WPbF TO-220 Full-Pak Package Outline Dimensions are shown in millimeters (inches) TO-220 Full-Pak Part Marking Information E X AM P L E : T H IS IS AN IR F I8 4 0 G W IT H AS S E M B L Y L OT CODE 3 432 AS S E M B L E D O N W W 2 4 1 9 9 9 IN T H E AS S E M B L Y L IN E "K " Note: "P" in assembly line position indicates "Lead-Free" IN T E R N AT IO N AL R E CT IF IE R L OGO AS S E M B L Y L OT CODE P AR T N U M B E R IR F I8 40 G 924 K 34 32 D AT E C O D E Y E AR 9 = 1 9 9 9 WE E K 24 L IN E K IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 06/04 8 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/