PD- 95598 IRG4IBC30UDPbF UltraFast CoPack IGBT INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C Features • 2.5kV, 60s insulation voltage • 4.8 mm creapage distance to heatsink • UltraFast: Optimized for high operating frequencies 8-40 kHz in hard switching, >200 kHz in resonant mode • IGBT co-packaged with HEXFREDTM ultrafast, ultrasoft recovery antiparallel diodes • Tighter parameter distribution • Industry standard Isolated TO-220 FullpakTM outline • Lead-Free VCES = 600V VCE(on) typ. = 1.95V G @VGE = 15V, IC = 12A E n-channel Benefits • Simplified assembly • Highest efficiency and power density • HEXFREDTM antiparallel Diode minimizes switching losses and EMI TO-220 FULLPAK Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM Visol VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current RMS Isolation Voltage, Terminal to Case Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw. Max. Units 600 17 8.9 92 92 8.5 92 2500 ± 20 45 18 -55 to +150 V A V W °C 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1 N•m) Thermal Resistance Parameter RθJC RθJC RθJA Wt www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Junction-to-Ambient, typical socket mount Weight Typ. Max. ––– ––– ––– 2.0 (0.07) 2.8 4.1 65 ––– Units °C/W g (oz) 1 7/27/04 IRG4IBC30UDPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Collector-to-Emitter Breakdown Voltageƒ ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage VCE(on) Collector-to-Emitter Saturation Voltage V(BR)CES VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Min. 600 ––– ––– ––– ––– Gate Threshold Voltage 3.0 Temperature Coeff. of Threshold Voltage ––– Forward Transconductance 3.1 Zero Gate Voltage Collector Current ––– ––– Diode Forward Voltage Drop ––– ––– Gate-to-Emitter Leakage Current ––– Typ. ––– 0.63 1.95 2.52 2.09 ––– -11 8.6 ––– ––– 1.4 1.3 ––– Max. Units Conditions ––– V VGE = 0V, IC = 250µA ––– V/°C VGE = 0V, IC = 1.0mA 2.1 IC = 12A VGE = 15V ––– V IC = 23A See Fig. 2, 5 ––– IC = 12A, TJ = 150°C 6.0 VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, IC = 250µA ––– S VCE = 100V, IC = 12A 250 µA VGE = 0V, VCE = 600V 2500 VGE = 0V, VCE = 600V, TJ = 150°C 1.7 V IC = 12A See Fig. 13 1.6 IC = 12A, TJ = 150°C ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres trr Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Irr Diode Peak Reverse Recovery Current Qrr Diode Reverse Recovery Charge di(rec)M /dt Diode Peak Rate of Fall of Recovery During tb 2 Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. 50 8.1 18 40 21 91 80 0.38 0.16 0.54 40 22 120 180 0.89 7.5 1100 73 14 42 80 3.5 5.6 80 220 180 120 Max. Units Conditions 75 IC = 12A 12 nC VCC = 400V See Fig. 8 27 VGE = 15V ––– TJ = 25°C ––– ns IC = 12A, VCC = 480V 140 VGE = 15V, RG = 23Ω 130 Energy losses include "tail" and ––– diode reverse recovery. ––– mJ See Fig. 9, 10, 11, 18 0.9 ––– TJ = 150°C, See Fig. 9, 10, 11, 18 ––– ns IC = 12A, VCC = 480V ––– VGE = 15V, RG = 23Ω ––– Energy losses include "tail" and ––– mJ diode reverse recovery. ––– nH Measured 5mm from package ––– VGE = 0V ––– pF VCC = 30V See Fig. 7 ––– ƒ = 1.0MHz 60 ns TJ = 25°C See Fig. 120 TJ = 125°C 14 IF = 12A 6.0 A TJ = 25°C See Fig. 10 TJ = 125°C 15 VR = 200V 180 nC TJ = 25°C See Fig. 600 TJ = 125°C 16 di/dt 200A/µs ––– A/µs TJ = 25°C See Fig. ––– TJ = 125°C 17 www.irf.com IRG4IBC30UDPbF 12 For both: Duty cycle: 50% TJ = 125°C Tsink = 90°C Gate drive as specified LOAD CURRENT (A) 10 Power Dissipation = 13 W 8 Square wave: 60% of rated voltage 6 I 4 Ideal diodes 2 0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 TJ = 25°C TJ = 150°C 10 1 VGE = 15V 20µs PULSE WIDTH A 0.1 0.1 1 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com 10 IC , Collector-to-Emitter Current (A) IC , Collector-to-Emitter Current (A) 100 TJ = 150°C 10 TJ = 25°C 1 V CC = 10V 5µs PULSE WIDTH A 0.1 5 6 7 8 9 10 11 12 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4IBC30UDPbF 3.0 VCE , Collector-to-Emitter Voltage (V) Maximum DC Collector Current(A) 20 16 12 8 4 0 25 50 75 100 125 V GE = 15V 80µs PULSE WIDTH IC = 24A 2.5 IC = 12A 2.0 I C = 6.0A A 1.5 150 -60 TC , Case Temperature ( °C) -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Fig. 4 - Maximum Collector Current vs. Case Temperature Thermal Response (Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 0.1 PDM 0.02 t1 0.01 t2 SINGLE PULSE (THERMAL RESPONSE) 0.01 0.00001 0.0001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.001 0.01 0.1 1 10 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4IBC30UDPbF 20 V GE = 0V, f = 1MHz C ies = C ge + C gc , Cce SHORTED C res = C gc C oes = C ce + C gc 1600 VGE , Gate-to-Emitter Voltage (V) C, Capacitance (pF) 2000 Cies 1200 800 Coes 400 Cres A 0 1 10 VCE = 400V I C = 12A 16 12 8 4 A 0 100 0 10 VCE, Collector-to-Emitter Voltage (V) 10 Total Switchig Losses (mJ) Total Switchig Losses (mJ) 0.56 0.54 0.52 A 0.50 0 10 20 30 40 50 R G, Gate Resistance ( Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 40 50 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage V CC = 480V V GE = 15V T J = 25°C I C = 12A 0.58 30 Qg , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 0.60 20 60 R G = 23Ω V GE = 15V V CC = 480V I C = 24A I C = 12A 1 I C = 6.0A A 0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4IBC30UDPbF 1000 R G = 23 Ω T J = 150°C V CC = 480V V GE = 15V 1.6 I C , Collector Current (A) Total Switchig Losses (mJ) 2.0 VGE = 20V T J = 125 oC 100 1.2 0.8 10 1 0.4 0.1 A 0.0 0 10 20 30 SAFE OPERATING AREA 1 10 100 1000 VCE , Collector-to-Emitter Voltage (V) IC , Collector-to-Emitter Current (A) Fig. 12 - Turn-Off SOA Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Instantaneous Forward Current - I F (A) 100 TJ = 150°C 10 TJ = 125°C TJ = 25°C 1 0.4 0.8 1.2 1.6 2.0 2.4 Forward Voltage Drop - V FM (V) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com IRG4IBC30UDPbF 100 160 VR = 200V TJ = 125°C TJ = 25°C VR = 200V TJ = 125°C TJ = 25°C 120 I IRRM - (A) t rr - (ns) I F = 24A I F = 12A 80 I F = 6.0A I F = 24A I F = 12A 10 IF = 6.0A 40 0 100 di f /dt - (A/µs) 1 100 1000 Fig. 14 - Typical Reverse Recovery vs. dif/dt di f /dt - (A/µs) 1000 Fig. 15 - Typical Recovery Current vs. dif/dt 10000 600 VR = 200V TJ = 125°C TJ = 25°C di(rec)M/dt - (A/µs) VR = 200V TJ = 125°C TJ = 25°C Q RR - (nC) 400 I F = 24A I F = 12A 200 1000 I F = 12A 100 IF = 24A IF = 6.0A 0 100 di f /dt - (A/µs) Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com IF = 6.0A 1000 10 100 di f /dt - (A/µs) 1000 Fig. 17 - Typical di(rec)M/dt vs. dif/dt 7 IRG4IBC30UDPbF Same type device as D.U.T. 90% 10% Vge 430µF 80% of Vce VC D.U.T. 90% td(off) 10% IC 5% tf tr t d(on) t=5µs Eon Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf Eoff Ets= (Eon +Eoff ) Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf GATE VOLTAGE D.U.T. 10% +Vg trr Ic Qrr = tx DUT VOLTAGE AND CURRENT Vce 10% Ic 90% Ic tr td(on) 10% Irr Ipk Vpk Vcc Irr Ic DIODE RECOVERY WAVEFORMS 5% Vce t1 ∫ t2 Eon = Vce ie dt t1 t2 DIODE REVERSE RECOVERY ENERGY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 ∫ +Vg 10% Vcc Vcc trr id dt tx ∫ t4 Erec = Vd id dt t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com IRG4IBC30UDPbF Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T. VOLTAGE IN D.U.T. CURRENT IN D1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit D.U.T. L 1000V Vc* RL= 0 - 480V 480V 4 X IC @25°C 50V 6000µF 100V Figure 19. Clamped Inductive Load Test Circuit www.irf.com Figure 20. Pulsed Collector Current Test Circuit 9 IRG4IBC30UDPbF Notes: Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) VCC=80%(VCES), VGE=20V, L=10µH, RG = 23Ω (figure 19) Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot. t = 60s, f = 60Hz TO-220 Full-Pak Package Outline Dimensions are shown in millimeters (inches) TO-220 Full-Pak Part Marking Information E X AM P L E : T H IS IS AN IR F I8 4 0 G W IT H AS S E M B L Y L OT COD E 3 4 3 2 AS S E M B L E D ON W W 2 4 1 9 9 9 IN T H E AS S E M B L Y L IN E "K " Note: "P" in assembly line position indicates "Lead-Free" IN T E R N AT ION AL R E C T IF IE R L OGO AS S E M B L Y L OT C OD E P AR T N U M B E R IR F I8 4 0 G 924K 34 32 D AT E C O D E Y E AR 9 = 1 9 9 9 W E E K 24 L IN E K Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.07/04 10 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/