IRF IRG4IBC20FDPBF

PD -94915
IRG4IBC20FDPbF
Fast CoPack IGBT
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
C
•
•
•
•
Very Low 1.66V votage drop
2.5kV, 60s insulation voltage …
4.8 mm creapage distance to heatsink
Fast: Optimized for medium operating
frequencies ( 1-5 kHz in hard switching, >20
kHz in resonant mode).
• IGBT co-packaged with HEXFREDTM ultrafast,
ultrasoft recovery antiparallel diodes
• Tighter parameter distribution
• Industry standard Isolated TO-220 FullpakTM
outline
• Lead-Free
VCES = 600V
VCE(on) typ. = 1.66V
G
@VGE = 15V, IC = 9.0A
E
n-channel
Benefits
• Simplified assembly
• Highest efficiency and power density
• HEXFREDTM antiparallel Diode minimizes
switching losses and EMI
TO-220 FULLPAK
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 100°C
IFM
Visol
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current 
Clamped Inductive Load Current ‚
Diode Continuous Forward Current
Diode Maximum Forward Current
RMS Isolation Voltage, Terminal to Case…
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting Torque, 6-32 or M3 Screw.
Max.
Units
600
14.3
7.7
64
64
6.5
64
2500
± 20
34
14
-55 to +150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1 N•m)
Thermal Resistance
Parameter
RθJC
RθJC
RθJA
Wt
www.irf.com
Junction-to-Case - IGBT
Junction-to-Case - Diode
Junction-to-Ambient, typical socket mount
Weight
Typ.
Max.
–––
–––
–––
2.0 (0.07)
3.7
5.1
65
–––
Units
°C/W
g (oz)
1
12/30/03
IRG4IBC20FDPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ.
Collector-to-Emitter Breakdown Voltageƒ 600
—
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage —
0.72
VCE(on)
Collector-to-Emitter Saturation Voltage
— 1.66
— 2.06
— 1.76
Gate Threshold Voltage
3.0
—
VGE(th)
∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage
—
-11
gfe
Forward Transconductance
„
2.9 5.1
Zero Gate Voltage Collector Current
—
—
ICES
—
—
VFM
Diode Forward Voltage Drop
—
1.4
—
1.3
IGES
Gate-to-Emitter Leakage Current
—
—
V(BR)CES
Max. Units
Conditions
—
V
VGE = 0V, IC = 250µA
—
V/°C VGE = 0V, I C = 1.0mA
2.0
IC = 9.0A
VGE = 15V
—
V
IC = 16A
See Fig. 2, 5
—
IC = 9.0A, TJ = 150°C
6.0
VCE = VGE, IC = 250µA
— mV/°C VCE = VGE, IC = 250µA
—
S
VCE = 100V, IC = 9.0A
250
µA
VGE = 0V, VCE = 600V
1700
VGE = 0V, VCE = 600V, TJ = 150°C
1.7
V
IC = 8.0A
See Fig. 13
1.6
IC = 8.0A, TJ = 150°C
±100 nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
t rr
I rr
Q rr
di (rec)M/dt
2
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Min.
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Diode Peak Reverse Recovery Current —
—
Diode Reverse Recovery Charge
—
—
Diode Peak Rate of Fall of Recovery
—
During tb
—
Typ.
27
4.2
9.9
43
20
240
150
0.25
0.64
0.89
41
22
320
290
1.35
7.5
540
37
7.0
37
55
3.5
4.5
65
124
240
210
Max. Units
Conditions
40
IC = 9.0A
6.2
nC VCC = 400V
See Fig. 8
15
VGE = 15V
—
TJ = 25°C
—
ns
IC = 9.0A, VCC = 480V
360
VGE = 15V, RG = 50Ω
220
Energy losses include "tail" and
—
diode reverse recovery.
—
mJ See Fig. 9, 10, 18
1.3
—
TJ = 150°C, See Fig. 11, 18
—
ns
IC = 9.0A, VCC = 480V
—
VGE = 15V, RG = 50Ω
—
Energy losses include "tail" and
—
mJ diode reverse recovery.
—
nH Measured 5mm from package
—
VGE = 0V
—
pF
VCC = 30V
See Fig. 7
—
ƒ = 1.0MHz
55
ns
TJ = 25°C See Fig.
90
TJ = 125°C
14
IF = 8.0A
5.0
A
TJ = 25°C See Fig.
8.0
TJ = 125°C
15
VR = 200V
138
nC TJ = 25°C See Fig.
360
TJ = 125°C
16
di/dt = 200Aµs
—
A/µs TJ = 25°C See Fig.
—
TJ = 125°C
17
www.irf.com
IRG4IBC20FDPbF
10.0
For both:
Duty cycle: 50%
TJ = 125°C
Tsink = 90°C
Gate drive as specified
LOAD CURRENT (A)
8.0
Power Dissipation = 9.5 W
6.0
Square wave:
60% of rated
voltage
4.0
I
2.0
Ideal diodes
0.0
0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
TJ = 25 o C
TJ = 150 o C
10
1
V GE = 15V
20µs PULSE WIDTH
1
10
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
I C, Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
100
TJ = 150 o C
10
TJ = 25 oC
1
V CC = 50V
5µs PULSE WIDTH
5
6
7
8
9
10
11
12
13
14
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4IBC20FDPbF
3.0
VCE , Collector-to-Emitter Voltage(V)
Maximum DC Collector Current(A)
16
12
8
4
0
25
50
75
100
125
IC = 18 A
2.0
IC = 9.0
9A
IC = 4.5 A
1.0
-60 -40 -20
150
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( ° C)
TC , Case Temperature ( °C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
VGE = 15V
80 us PULSE WIDTH
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z thJC )
10
D = 0.50
1
0.20
0.10
0.05
0.1
0.01
0.00001
PDM
0.02
0.01
t1
SINGLE PULSE
(THERMAL RESPONSE)
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = PDM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
10
t1, Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4IBC20FDPbF
1000
600
VGE , Gate-to-Emitter Voltage (V)
800
C, Capacitance (pF)
20
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
Cies
400
200
Coes
VCC = 400V
I C = 9.0A
16
12
8
4
Cres
0
1
10
0
100
VCE , Collector-to-Emitter Voltage (V)
Total Switching Losses (mJ)
Total Switching Losses (mJ)
10
V CC = 480V
V GE = 15V
TJ = 25 ° C
0.88
I C = 9.0A
0.86
0.84
0.82
0.80
10
20
30
40
Ω
RG , Gate Resistance (Ohm)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
10
15
20
25
30
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
0.90
0
5
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
0.78
0
50
Ω
RG = 50Ohm
VGE = 15V
VCC = 480V
IC = 18 A
IC = 9.09 A
1
IC = 4.5 A
0.1
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4IBC20FDPbF
100
= 50Ohm
Ω
= 150 ° C
= 480V
= 15V
I C , Collector Current (A)
RG
TJ
VCC
2.5
VGE
2.0
1.5
1.0
VGE = 20V
T J = 125 o C
10
0.5
0.0
0
4
8
12
16
1
20
SAFE OPERATING AREA
1
10
100
1000
VCE , Collector-to-Emitter Voltage (V)
I C , Collector-to-emitter Current (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
100
Instantaneous Forward Current - I F (A)
Total Switching Losses (mJ)
3.0
10
TJ = 150°C
TJ = 125°C
TJ = 25°C
1
0.1
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
Forward Voltage Drop - V FM (V)
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4IBC20FDPbF
100
100
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
80
60
I F = 8.0A
40
I IRRM - (A)
t rr - (ns)
IF = 16A
I F = 16A
10
IF = 8.0A
I F = 4.0A
I F = 4.0A
20
0
100
1
100
1000
di f /dt - (A/µs)
Fig. 14 - Typical Reverse Recovery vs. dif/dt
di f /dt - (A/µs)
1000
Fig. 15 - Typical Recovery Current vs. dif/dt
500
10000
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
di(rec)M/dt - (A/µs)
Q RR - (nC)
400
300
I F = 16A
200
I F = 8.0A
1000
IF = 4.0A
IF = 8.0A
I F = 16A
100
IF = 4.0A
0
100
di f /dt - (A/µs)
Fig. 16 - Typical Stored Charge vs. dif/dt
www.irf.com
1000
100
100
di f /dt - (A/µs)
1000
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
7
IRG4IBC20FDPbF
Same type
device as
D.U.T.
430µF
80%
of Vce
90%
D.U.T.
10%
Vge
VC
90%
td(off)
10%
IC 5%
Fig. 18a - Test Circuit for Measurement of
tf
tr
t d(on)
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t=5µs
Eon
Eoff
Ets= (Eon +Eoff )
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T.
10% +Vg
trr
Ic
Qrr =
tx
DUT VOLTAGE
AND CURRENT
Vce
10% Ic
90% Ic
tr
td(on)
10% Irr
Ipk
Vpk
Vcc
Irr
Ic
DIODE RECOVERY
WAVEFORMS
5% Vce
t1
∫
t2
VceieIcdt dt
Eon = Vce
t1
t2
DIODE REVERSE
RECOVERY ENERGY
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
8
∫
+Vg
10% Vcc
Vcc
trr
id
Ic dtdt
tx
∫
t4
Erec = Vd
VdidIcdt dt
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
www.irf.com
IRG4IBC20FDPbF
Vg GATE SIGNAL
DEVICE UNDER TEST
CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
D.U.T.
L
1000V
Vc*
RL=
0 - 480V
480V
4 X IC @25°C
50V
6000µF
100V
Figure 19. Clamped Inductive Load Test Circuit
www.irf.com
Figure 20. Pulsed Collector Current
Test Circuit
9
IRG4IBC20FDPbF
Notes:
Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20)
‚VCC=80%(VCES), VGE=20V, L=10µH, RG = 50Ω (figure 19)
ƒPulse width £ 80µs; duty factor ≤ 0.1%.
„Pulse width 5.0µs, single shot.
… t = 60s, f = 60Hz
TO-220 Full-Pak Package Outline
TO-220 Full-Pak Part Marking Information
E X AM P L E :
T H IS I S AN IR F I 8 4 0 G
W IT H AS S E M B L Y
L OT COD E 3 4 3 2
AS S E M B L E D ON W W 2 4 1 9 9 9
I N T H E AS S E M B L Y L IN E "K "
Note: "P" in assembly line
position indicates "Lead-Free"
IN T E R N AT ION AL
R E CT IF IE R
L OGO
AS S E M B L Y
L OT COD E
P AR T N U M B E R
I R F I 8 4 0G
9 24 K
34
32
D AT E CO D E
Y E AR 9 = 1 9 9 9
W E E K 24
L IN E K
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.12/03
10
www.irf.com