IRF IRG4IBC30W

PD 91791A
IRG4IBC30W
INSULATED GATE BIPOLAR TRANSISTOR
Features
• Designed expressly for Switch-Mode Power
Supply and PFC (power factor correction)
applications
• 2.5kV, 60s insulation voltage V
• Industry-benchmark switching losses improve
efficiency of all power supply topologies
• 50% reduction of Eoff parameter
• Low IGBT conduction losses
• Latest-generation IGBT design and construction offers
tighter parameters distribution, exceptional reliability
• Industry standard Isolated TO-220 FullpakTM
outline
C
VCES = 600V
VCE(on) typ. = 2.1V
G
@VGE = 15V, IC = 12 A
E
n-channel
Benefits
• Lower switching losses allow more cost-effective
operation than power MOSFETs up to 150 kHz
("hard switched" mode)
• Of particular benefit to single-ended converters and
boost PFC topologies 150W and higher
• Low conduction losses and minimal minority-carrier
recombination make these an excellent option for
resonant mode switching as well (up to >>300 kHz)
TO-220 FULLPAK
Absolute Maximum Ratings
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
VGE
EARV
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Parameter
Max.
Units
Collector-to-Emitter Breakdown Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current Q
Clamped Inductive Load Current R
Gate-to-Emitter Voltage
Reverse Voltage Avalanche Energy S
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 screw.
600
17
8.4
92
92
± 20
180
45
18
-55 to + 150
V
A
V
mJ
W
°C
300 (0.063 in. (1.6mm from case )
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθJA
Wt
www.irf.com
Junction-to-Case - IGBT
Junction-to-Ambient, typical socket mount
Weight
Typ.
Max.
Units
–––
–––
2.0 (0.07)
2.8
65
–––
°C/W
g (oz)
1
12/30/00
IRG4IBC30W
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ.
Collector-to-Emitter Breakdown Voltage
600
—
Emitter-to-Collector Breakdown Voltage T 18
—
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage —
0.34
—
2.1
VCE(ON)
Collector-to-Emitter Saturation Voltage
— 2.45
— 1.95
VGE(th)
Gate Threshold Voltage
3.0
—
∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage
—
-11
gfe
Forward Transconductance U
11
16
—
—
ICES
Zero Gate Voltage Collector Current
—
—
—
—
IGES
Gate-to-Emitter Leakage Current
—
—
V(BR)CES
V(BR)ECS
Max. Units
Conditions
—
V
VGE = 0V, IC = 250µA
—
V
VGE = 0V, IC = 1.0A
—
V/°C VGE = 0V, IC = 1.0mA
VGE = 15V
2.7
IC = 12A
—
IC = 23A
See Fig.2, 5
V
—
IC = 12A , TJ = 150°C
6.0
VCE = VGE, IC = 250µA
— mV/°C VCE = VGE, IC = 250µA
—
S
VCE = 100 V, IC = 12A
250
VGE = 0V, VCE = 600V
µA
2.0
VGE = 0V, VCE = 10V, TJ = 25°C
1000
VGE = 0V, VCE = 600V, TJ = 150°C
±100
nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min.
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ.
51
7.6
18
25
16
99
67
0.13
0.13
0.26
24
17
150
150
0.55
7.5
980
71
18
Max. Units
Conditions
76
IC = 12A
11
nC VCC = 400V
See Fig.8
27
VGE = 15V
—
—
TJ = 25°C
ns
150
IC = 12A, VCC = 480V
100
VGE = 15V, RG = 23Ω
—
Energy losses include "tail"
—
mJ See Fig. 9, 10, 13, 14
0.35
—
TJ = 150°C,
—
IC = 12A, VCC = 480V
ns
—
VGE = 15V, RG = 23Ω
—
Energy losses include "tail"
—
mJ See Fig. 11,13, 14
—
nH Measured 5mm from package
—
VGE = 0V
—
pF
VCC = 30V
See Fig. 7
—
ƒ = 1.0MHz
Notes:
Q Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature. ( See fig. 13b )
R VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 23Ω,
(See fig. 13a)
S Repetitive rating; pulse width limited by maximum
T Pulse width ≤ 80µs; duty factor ≤ 0.1%.
U Pulse width 5.0µs, single shot.
V t = 60s, f = 60Hz
junction temperature.
2
www.irf.com
IRG4IBC30W
25
For both:
20
Load C urre nt (A )
Triangular wave:
Duty cycle: 50%
T J = 125°C
T sink= 90°C
Gate drive as specified
Power Dissipation = 10.6W
Clamp voltage:
80% of rated
15
Square wave:
60% of rated
voltage
10
5
Ideal diodes
A
0
0.1
1
10
100
1000
f, F req ue n cy (kH z)
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK)
100
TJ = 150 °C
10
TJ = 25 °C
V
= 15V
20µs PULSE WIDTH
I C , Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
100
TJ = 150 °C
10
TJ = 25 ° C
1
V
= 50V
5µs PULSE WIDTH
CC
GE
1
1
10
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
0.1
5.0
6.0
7.0
8.0
9.0
10.0
11.0
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4IBC30W
3.0
20
V
= 15V
80 us PULSE WIDTH
VCE , Collector-to-Emitter Voltage(V)
Maximum DC Collector Current(A)
GE
15
10
5
50
75
100
125
150
IC = 12 A
IC = 6 A
2.0
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature (° C)
TC , Case Temperature ( ° C)
Fig. 4 - Maximum Collector Current vs.
Temperature
2.5
1.5
-60 -40 -20
0
25
IC = 24 A
Fig. 5 - Collector-to-Emitter Voltage vs.
Junction Temperature
Case
Thermal Response (Z thJC)
10
D = 0.50
1
0.20
0.10
0.05
0.1
0.01
0.00001
P DM
0.02
0.01
t1
t2
SINGLE PULSE
(THERMAL RESPONSE)
0.0001
Notes:
1. Duty factor D = t 1 / t2
2. Peak TJ = PDM x Z thJC + TC
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4IBC30W
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
C, Capacitance (pF)
1500
Cies
1000
C
oes
500
C
res
20
VGE , Gate-to-Emitter Voltage (V)
2000
1
16
12
8
4
10
0
100
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
Total Switching Losses (mJ)
Total Switching Losses (mJ)
10
0.3
0.2
0.1
0.0
10
20
30
40
50
RGRG
, ,Gate
GateResistance
Resistance (Ohm)
(Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
20
30
40
50
60
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
V CC = 480V
V GE = 15V
TJ = 25 ° C
0.4 I C = 12A
0
10
QG , Total Gate Charge (nC)
VCE , Collector-to-Emitter Voltage (V)
10
VCC = 400V
I C = 12A
0
0
0.5
Ω
RG = 23
Ohm
VGE = 15V
VCC = 480V
IC = 24 A
1
IC = 12 A
IC = 6 A
0.1
0.01
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature (° C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4IBC30W
RG
TJ
VCC
VGE
1000
23Ω
= Ohm
= 150 ° C
= 480V
= 15V
I C , C ollector-to-E m itter C urrent (A )
Total Switching Losses (mJ)
1.5
1.0
0.5
100
S A FE O P E R A TIN G A R E A
10
1
0.1
0.0
0
5
10
15
20
25
I C , Collector-to-emitter Current (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
6
VGGE E= 20V
T J = 125 °C
30
1
10
100
1000
V C E , C o lle cto r-to-E m itte r V olta g e (V )
Fig. 12 - Turn-Off SOA
www.irf.com
IRG4IBC30W
L
D .U .T.
VC *
50V
RL =
0 - 480V
1 000V
480V
4 X IC@25°C
480µF
960V
Q
R
* D river sam e type as D.U.T .; Vc = 80% of Vce(m ax)
* N ote: Due to the 50V pow er supply, pulse w idth and inductor
w ill increase to obtain rated Id.
Fig. 13a - Clamped Inductive
Fig. 13b - Pulsed Collector
Load Test Circuit
Current Test Circuit
IC
L
D river*
D .U .T.
VC
Fig. 14a - Switching Loss
Test Circuit
50V
1000V
Q
* Driver same type
as D.U.T., VC = 480V
R
S
Q
R
90%
10 %
S
VC
90 %
Fig. 14b - Switching Loss
t d (o ff)
10%
I C 5%
Waveforms
tf
tr
t d (o n )
t=5µs
E on
E o ff
E ts = (E o n +E off )
www.irf.com
7
IRG4IBC30W
Case Outline — TO-220 FULLPAK
1 0 .6 0 (.4 17 )
1 0 .4 0 (.4 09 )
ø
3.4 0 (.13 3)
3.1 0 (.12 3)
4 .80 (.1 89 )
4 .60 (.1 81 )
-A3.7 0 (.145 )
3.2 0 (.126 )
1 6.0 0 (.63 0)
1 5.8 0 (.62 2)
2 .8 0 (.1 10 )
2 .6 0 (.1 02 )
LE A D A S S IG N M E N TS
LEAD ASSIGMENTS
1 - G A TE
1- GATE
2 - D RA IN
2- COLLECTOR
3 - S O U RC E
3- EMITTER
7.10 (.28 0 )
6.70 (.26 3 )
1.1 5 (.0 45)
M IN .
NOTES:
1 D IM E N S IO N IN G & TO LE R A NC ING
P E R A N S I Y 14.5M , 1 98 2
1
2
3
2 C O N TR O LL IN G D IM E N S IO N : IN C H .
3.3 0 (.130 )
3.1 0 (.122 )
-B -
1 3.7 0 (.54 0)
1 3.5 0 (.53 0)
C
A
3X
1 .4 0 (.0 55)
1 .0 5 (.0 42)
0 .90 (.0 35)
3X
0 .70 (.0 28)
0 .2 5 (.0 10)
2.5 4 (.10 0 )
2X
3X
M
A M
B
0.4 8 (.01 9)
0.4 4 (.01 7)
2 .85 (.1 12 )
2 .65 (.1 04 )
D
B
M IN IM U M C R E E P A G E
D IS T A N C E B E TW E E N
A -B -C -D = 4.8 0 (.189 )
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
Data and specifications subject to change without notice. 12/00
8
www.irf.com