SGP15N60 SGW15N60 Fast IGBT in NPT-technology • 75% lower Eoff compared to previous generation combined with low conduction losses • Short circuit withstand time – 10 µs • Designed for: - Motor controls - Inverter • NPT-Technology for 600V applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability C G PG-TO-220-3-1 E PG-TO-247-3 • Qualified according to JEDEC1 for target applications • Pb-free lead plating; RoHS compliant • Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ VCE IC VCE(sat) Tj Marking SGP15N60 600V 15A 2.3V 150°C G15N60 PG-TO-220-3-1 SGW15N60 600V 15A 2.3V 150°C G15N60 PG-TO-247-3 Type Package Maximum Ratings Parameter Symbol Collector-emitter voltage VCE DC collector current IC Value 600 Unit V A TC = 25°C 31 TC = 100°C 15 Pulsed collector current, tp limited by Tjmax ICpuls 62 Turn off safe operating area - 62 Gate-emitter voltage VGE ±20 V Avalanche energy, single pulse EAS 85 mJ tSC 10 µs Ptot 139 W -55...+150 °C VCE ≤ 600V, Tj ≤ 150°C IC = 15 A, VCC = 50 V, RGE = 25 Ω , start at Tj = 25°C Short circuit withstand time2 VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C Power dissipation TC = 25°C Operating junction and storage temperature Tj , Tstg Soldering temperature, Ts 260 wavesoldering, 1.6mm (0.063 in.) from case for 10s 1 2 J-STD-020 and JESD-022 Allowed number of short circuits: <1000; time between short circuits: >1s. 1 Rev. 2.3 Sep 08 SGP15N60 SGW15N60 Thermal Resistance Parameter Symbol Conditions Max. Value Unit 0.9 K/W Characteristic IGBT thermal resistance, RthJC junction – case Thermal resistance, RthJA junction – ambient PG-TO-220-3-1 62 PG-TO-247-3-21 40 Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Symbol Conditions Value min. Typ. max. 600 - - 1.7 2 2.4 T j = 150 °C - 2.3 2.8 3 4 5 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0 V , I C =500 µA Collector-emitter saturation voltage VCE(sat) V V G E = 15 V, I C =15A T j = 25°C Gate-emitter threshold voltage VGE(th) I C =400 µA,V C E =V G E Zero gate voltage collector current ICES V C E = 60 0 V,V G E = 0 V µA T j = 25°C - - 40 T j = 150 °C - - 2000 Gate-emitter leakage current IGES V C E = 0 V , V G E =20V - - 100 nA Transconductance gfs V C E =20V, I C =15A 3 10.9 - S Input capacitance Ciss V C E =25V, - 800 960 pF Output capacitance Coss VGE=0V, - 84 101 Reverse transfer capacitance Crss f=1MHz - 52 62 Gate charge QGate V C C = 48 0 V, I C =15A - 76 99 nC PG-TO-220-3-1 - 7 - nH PG-TO-247-3-21 - 13 - V G E =15V,t S C ≤1 0 µs V C C ≤ 60 0V, T j ≤ 150 °C - 150 - Dynamic Characteristic V G E =15V Internal emitter inductance LE measured 5mm (0.197 in.) from case 2) Short circuit collector current 2) IC(SC) A Allowed number of short circuits: <1000; time between short circuits: >1s. 2 Rev. 2.3 Sep 08 SGP15N60 SGW15N60 Switching Characteristic, Inductive Load, at Tj=25 °C Parameter Symbol Conditions Value min. typ. max. - 32 38 - 23 28 - 234 281 - 46 55 - 0.30 0.36 - 0.27 0.35 - 0.57 0.71 Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j = 25°C , V C C = 40 0 V, I C =15A, V G E = 0 /1 5 V, R G = 2 1Ω , L σ 1 ) =1 80nH , C σ 1 ) =2 50p F Energy losses include “tail” and diode reverse recovery. ns mJ Switching Characteristic, Inductive Load, at Tj=150 °C Parameter Symbol Conditions Value min. typ. max. - 31 38 - 23 28 - 261 313 - 54 65 - 0.45 0.54 - 0.41 0.53 - 0.86 1.07 Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets 1) T j = 150 °C V C C = 40 0 V, I C =15A, L σ 1 ) =1 80nH, C σ 1 ) = 25 0p F V G E = 0 /1 5 V, R G = 2 1Ω Energy losses include “tail” and diode reverse recovery. ns mJ Leakage inductance L σ a nd Stray capacity C σ due to dynamic test circuit in Figure E. 3 Rev. 2.3 Sep 08 SGP15N60 SGW15N60 80A 100A Ic tp=5µs 70A 15µs IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 60A 50A 40A TC=80°C 30A 20A 10A 0A 10Hz TC=110°C 10A 50µs 200µs 1A 1ms Ic DC 0.1A 100Hz 1kHz 10kHz 1V 100kHz f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 21Ω) 10V 100V 1000V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤ 150°C) 35A 140W 30A IC, COLLECTOR CURRENT Ptot, POWER DISSIPATION 120W 100W 80W 60W 40W 20A 15A 10A 5A 20W 0W 25°C 25A 50°C 75°C 100°C 0A 25°C 125°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C) 50°C 75°C 100°C 125°C TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≤ 15V, Tj ≤ 150°C) 4 Rev. 2.3 Sep 08 50A 50A 45A 45A 40A 40A 35A 30A 25A 20A 15A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT SGP15N60 SGW15N60 VGE=20V 15V 13V 11V 9V 7V 5V 10A 1V 2V 3V 4V 20A 15A 10A 45A Tj=+25°C 40A -55°C +150°C 35A 30A 25A 20A 15A 10A 5A 2V 4V 6V 8V 10V 1V 2V 3V 4V 5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150°C) VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE 50A IC, COLLECTOR CURRENT 15V 13V 11V 9V 7V 5V 25A 0A 0V 5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25°C) 0A 0V VGE=20V 30A 5A 5A 0A 0V 35A VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 10V) 4.0V 3.5V IC = 30A 3.0V 2.5V IC = 15A 2.0V 1.5V 1.0V -50°C 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 5 Rev. 2.3 Sep 08 SGP15N60 SGW15N60 td(off) 100ns t, SWITCHING TIMES t, SWITCHING TIMES td(off) tf td(on) 100ns tf td(on) tr 10ns 5A 10A tr 15A 20A 25A 10ns 0Ω 30A IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 2 1 Ω, Dynamic test circuit in Figure E) 20Ω 40Ω 60Ω RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 15A, Dynamic test circuit in Figure E) VGE(th), GATE-EMITTER THRESHOLD VOLTAGE 5.5V t, SWITCHING TIMES td(off) 100ns tf tr td(on) 10ns 0°C 50°C 100°C 150°C 5.0V 4.5V 4.0V max. 3.5V typ. 3.0V 2.5V min. 2.0V -50°C Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 15A, RG = 21 Ω, Dynamic test circuit in Figure E) 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.4mA) 6 Rev. 2.3 Sep 08 SGP15N60 SGW15N60 1.8mJ 1.4mJ 1.2mJ 1.0mJ Eon* 0.8mJ Eoff 0.6mJ 0.4mJ Ets* 1.0mJ 0.8mJ Eoff 0.6mJ Eon* 0.4mJ 0.2mJ 0.2mJ 0.0mJ 0A *) Eon and Ets include losses due to diode recovery. 1.2mJ E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES 1.6mJ 1.4mJ Ets* *) Eon and Ets include losses due to diode recovery. 5A 10A 15A 20A 25A 30A 0.0mJ 0Ω 35A IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 2 1 Ω, Dynamic test circuit in Figure E) 20Ω 40Ω 60Ω 80Ω RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 15A, Dynamic test circuit in Figure E) 1.0mJ 0.8mJ 0 Ets* 0.6mJ Eon* 0.4mJ Eoff 0.2mJ 0.0mJ 0°C ZthJC, TRANSIENT THERMAL IMPEDANCE E, SWITCHING ENERGY LOSSES *) Eon and Ets include losses due to diode recovery. 10 K/W D=0.5 0.2 -1 10 K/W 0.1 0.05 0.02 R,(1/W) 0.5321 0.2047 0.1304 0.0027 -2 10 K/W 0.01 -3 10 K/W τ, (s) 0.04968 -3 2.58*10 -4 2.54*10 -4 3.06*10 R1 R2 single pulse C 1= τ1/R 1 C 2= τ2/R 2 -4 50°C 100°C 10 K/W 1µs 150°C 10µs 100µs 1ms 10ms 100ms 1s tp, PULSE WIDTH Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 15A, RG = 21 Ω, Dynamic test circuit in Figure E) Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T) 7 Rev. 2.3 Sep 08 SGP15N60 SGW15N60 25V 1nF Ciss 15V 120V C, CAPACITANCE VGE, GATE-EMITTER VOLTAGE 20V 480V 10V Crss 5V 0V 0nC 25nC 50nC 75nC 10pF 0V 100nC QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 15A) 20V 30V IC(sc), SHORT CIRCUIT COLLECTOR CURRENT 250A 20 µ s 15 µ s 10 µ s 5µ s 0µ s 10V 10V VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) 25 µ s tsc, SHORT CIRCUIT WITHSTAND TIME Coss 100pF 11V 12V 13V 14V 200A 150A 100A 50A 0A 10V 15V VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 600V, start at Tj = 25°C) 12V 14V 16V 18V 20V VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (VCE ≤ 600V, Tj = 150°C) 8 Rev. 2.3 Sep 08 SGP15N60 SGW15N60 PG-TO-220-3-1 9 Rev. 2.3 Sep 08 SGP15N60 SGW15N60 PG-TO247-3 M M MAX 5.16 2.53 2.11 1.33 2.41 2.16 3.38 3.13 0.68 21.10 17.65 1.35 16.03 14.15 5.10 2.60 MIN 4.90 2.27 1.85 1.07 1.90 1.90 2.87 2.87 0.55 20.82 16.25 1.05 15.70 13.10 3.68 1.68 MIN 0.193 0.089 0.073 0.042 0.075 0.075 0.113 0.113 0.022 0.820 0.640 0.041 0.618 0.516 0.145 0.066 5.44 3 19.80 4.17 3.50 5.49 6.04 MAX 0.203 0.099 0.083 0.052 0.095 0.085 0.133 0.123 0.027 0.831 0.695 0.053 0.631 0.557 0.201 0.102 Z8B00003327 0 0 5 5 7.5mm 0.214 3 20.31 4.47 3.70 6.00 6.30 0.780 0.164 0.138 0.216 0.238 10 0.799 0.176 0.146 0.236 0.248 17-12-2007 03 Rev. 2.3 Sep 08 SGP15N60 SGW15N60 τ1 τ2 r1 r2 τn rn Tj (t) p(t) r1 r2 rn TC Figure D. Thermal equivalent circuit Figure A. Definition of switching times Figure B. Definition of switching losses Figure E. Dynamic test circuit =180nH Leakage inductance Lσ a nd Stray capacity C σ =250pF. 11 Rev. 2.3 Sep 08 SGP15N60 SGW15N60 Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 12 Rev. 2.3 Sep 08