INFINEON SKW07N120

SKW07N120
Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode
C
• Lower Eoff compared to previous generation
• Short circuit withstand time – 10 µs
• Designed for:
- Motor controls
- Inverter
- SMPS
• NPT-Technology offers:
- very tight parameter distribution
- high ruggedness, temperature stable behaviour
- parallel switching capability
• Qualified according to JEDEC1 for target applications
• Pb-free lead plating; RoHS compliant
• Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type
SKW07N120
G
E
PG-TO-247-3
VCE
IC
Eoff
Tj
Marking
Package
1200V
8A
0.7mJ
150°C
K07N120
PG-TO-247-3
Maximum Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage
VCE
1200
V
DC collector current
IC
A
TC = 25°C
16.5
TC = 100°C
7.9
Pulsed collector current, tp limited by Tjmax
ICpuls
27
Turn off safe operating area
-
27
VCE ≤ 1200V, Tj ≤ 150°C
Diode forward current
IF
TC = 25°C
13
TC = 100°C
7
Diode pulsed current, tp limited by Tjmax
IFpuls
27
Gate-emitter voltage
VGE
±20
V
tSC
10
µs
Ptot
125
W
-55...+150
°C
Short circuit withstand time
2
VGE = 15V, 100V ≤ VCC ≤ 1200V, Tj ≤ 150°C
Power dissipation
TC = 25°C
Operating junction and storage temperature
Tj , Tstg
Soldering temperature,
Ts
260
wavesoldering, 1.6mm (0.063 in.) from case for 10s
1
2
J-STD-020 and JESD-022
Allowed number of short circuits: <1000; time between short circuits: >1s.
Power Semiconductors
1
Rev. 2_2
Sep 08
SKW07N120
Thermal Resistance
Parameter
Symbol
Conditions
Max. Value
Unit
RthJC
1
K/W
RthJCD
2.5
RthJA
40
Characteristic
IGBT thermal resistance,
junction – case
Diode thermal resistance,
junction – case
Thermal resistance,
junction – ambient
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Parameter
Symbol
Conditions
Value
min.
typ.
max.
1200
-
-
2.5
3.1
3.6
-
3.7
4.3
2.0
2.4
Unit
Static Characteristic
Collector-emitter breakdown voltage
V ( B R ) C E S V G E = 0 V , I C =500 µA
Collector-emitter saturation voltage
VCE(sat)
V G E = 15 V, I C = 8 A
T j = 25°C
T j = 150 °C
Diode forward voltage
VF
V
VGE=0V, IF=7A
T j = 25°C
T j = 150 °C
-
1.75
3
4
Gate-emitter threshold voltage
VGE(th)
I C =350 µA,V C E =V G E
Zero gate voltage collector current
ICES
V C E =1200V,V G E =0V
5
µA
T j = 25°C
-
-
100
T j = 150 °C
-
-
400
-
-
100
nA
6
-
S
pF
Gate-emitter leakage current
IGES
V C E =0V,V G E =20V
Transconductance
gfs
V C E =20V, I C = 8 A
Input capacitance
Ciss
V C E =25V,
-
720
870
Output capacitance
Coss
VGE=0V,
-
90
110
Reverse transfer capacitance
Crss
f=1MHz
-
40
50
Gate charge
QGate
V C C = 96 0 V, I C = 8 A
-
70
90
nC
-
13
-
nH
-
75
-
A
Dynamic Characteristic
V G E =15V
Internal emitter inductance
LE
measured 5mm (0.197 in.) from case
Short circuit collector current1)
1)
IC(SC)
V G E =15V,t S C ≤1 0 µs
1 00 V≤ V C C ≤1 200 V,
T j ≤ 150 °C
Allowed number of short circuits: <1000; time between short circuits: >1s.
Power Semiconductors
2
Rev. 2_2
Sep 08
SKW07N120
Switching Characteristic, Inductive Load, at Tj=25 °C
Parameter
Symbol
Conditions
Value
Unit
min.
typ.
max.
-
27
35
-
29
38
-
440
570
-
21
27
-
0.6
0.8
-
0.4
0.55
-
1.0
1.35
60
ns
µC
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
Ets
T j = 25°C ,
V C C = 80 0 V, I C = 8 A ,
V G E =15V/0V,
R G = 4 7Ω ,
L σ 1 ) =1 80nH,
C σ 1 ) =40pF
Energy losses include
“tail” and diode
reverse recovery.
ns
mJ
Anti-Parallel Diode Characteristic
Diode reverse recovery time
trr
T j = 25°C ,
-
tS
V R = 80 0 V , I F = 8 A ,
-
tF
d i F /d t= 400A/µs
-
Diode reverse recovery charge
Qrr
-
0.3
Diode peak reverse recovery current
Irrm
-
9
Diode peak rate of fall of reverse
recovery current during t F
dirr/dt
-
400
A
A/µs
Switching Characteristic, Inductive Load, at Tj=150 °C
Parameter
Symbol
Conditions
Value
Unit
min.
typ.
max.
-
30
36
-
26
31
-
490
590
-
30
36
-
1.0
1.2
-
0.7
0.9
-
1.7
2.1
170
ns
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
Ets
T j = 150 °C
V C C = 80 0 V,
IC=8A,
V G E =15V/0V,
R G = 4 7Ω ,
L σ 1 ) =1 80nH,
C σ 1 ) =40pF
Energy losses include
“tail” and diode
reverse recovery.
ns
mJ
Anti-Parallel Diode Characteristic
Diode reverse recovery time
trr
T j = 150 °C
-
tS
V R = 80 0 V , I F = 8 A ,
-
tF
d i F /d t= 500A/µs
-
Diode reverse recovery charge
Qrr
-
1.1
µC
Diode peak reverse recovery current
Irrm
-
15
A
Diode peak rate of fall of reverse
recovery current during t F
dirr/dt
-
110
A/µs
1)
Leakage inductance Lσ and stray capacity Cσ due to dynamic test circuit in figure E.
Power Semiconductors
3
Rev. 2_2
Sep 08
SKW07N120
35A
Ic
tp=5µs
30A
15µs
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
10A
25A
TC=80°C
20A
15A
TC=110°C
10A
5A
0A
10Hz
Ic
100Hz
50µs
200µs
1A
1ms
DC
0.1A
1kHz
10kHz
1V
100kHz
f, SWITCHING FREQUENCY
Figure 1. Collector current as a function of
switching frequency
(Tj ≤ 150°C, D = 0.5, VCE = 800V,
VGE = +15V/0V, RG = 47Ω)
10V
100V
1000V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 2. Safe operating area
(D = 0, TC = 25°C, Tj ≤ 150°C)
150W
20A
IC, COLLECTOR CURRENT
100W
75W
50W
Ptot,
POWER DISSIPATION
125W
15A
10A
5A
25W
0W
25°C
50°C
75°C
100°C
0A
25°C
125°C
TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function
of case temperature
(Tj ≤ 150°C)
Power Semiconductors
50°C
75°C
100°C
125°C
TC, CASE TEMPERATURE
Figure 4. Collector current as a function of
case temperature
(VGE ≤ 15V, Tj ≤ 150°C)
4
Rev. 2_2
Sep 08
25A
25A
20A
20A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
SKW07N120
VGE=17V
15V
13V
11V
9V
7V
15A
10A
5A
0A
0V
1V
2V
3V
4V
5V
6V
15A
TJ=+150°C
TJ=+25°C
TJ=-40°C
5A
7V
9V
11V
VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE
IC, COLLECTOR CURRENT
20A
5V
VGE, GATE-EMITTER VOLTAGE
Figure 7. Typical transfer characteristics
(VCE = 20V)
Power Semiconductors
5A
1V
2V
3V
4V
5V
6V
7V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 6. Typical output characteristics
(Tj = 150°C)
25A
0A
3V
10A
0A
0V
7V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristics
(Tj = 25°C)
10A
15A
VGE=17V
15V
13V
11V
9V
7V
6V
IC=16A
5V
4V
IC=8A
3V
IC=4A
2V
1V
0V
-50°C
0°C
50°C
100°C
150°C
Tj, JUNCTION TEMPERATURE
Figure 8. Typical collector-emitter
saturation voltage as a function of junction
temperature
(VGE = 15V)
5
Rev. 2_2
Sep 08
SKW07N120
000ns
td(off)
t, SWITCHING TIMES
t, SWITCHING TIMES
td(off)
tf
100ns
td(on)
100ns
tf
td(on)
tr
tr
10ns
0Ω
10ns
0A
5A
10A
15A
20A
IC, COLLECTOR CURRENT
Figure 9. Typical switching times as a
function of collector current
(inductive load, Tj = 150°C,
VCE = 800V, VGE = +15V/0V, RG = 4 7 Ω,
dynamic test circuit in Fig.E )
20Ω
40Ω
60Ω
80Ω
100Ω
RG, GATE RESISTOR
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, Tj = 150°C,
VCE = 800V, VGE = +15V/0V, IC = 8A,
dynamic test circuit in Fig.E )
t, SWITCHING TIMES
td(off)
100ns
tr
td(on)
tf
10ns
-50°C
0°C
50°C
100°C
VGE(th), GATE-EMITTER THRESHOLD VOLTAGE
6V
4V
max.
3V
typ.
2V
min.
1V
0V
-50°C
150°C
Tj, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE = 800V,
VGE = +15V/0V, IC = 8A, RG = 4 7 Ω,
dynamic test circuit in Fig.E )
Power Semiconductors
5V
0°C
50°C
100°C
150°C
Tj, JUNCTION TEMPERATURE
Figure 12. Gate-emitter threshold voltage
as a function of junction temperature
(IC = 0.3mA)
6
Rev. 2_2
Sep 08
SKW07N120
2.5mJ
E, SWITCHING ENERGY LOSSES
5mJ
4mJ
Ets*
Eon*
3mJ
Eoff
2mJ
1mJ
*) Eon and Ets include losses
due to diode recovery.
E, SWITCHING ENERGY LOSSES
*) Eon and Ets include losses
due to diode recovery.
0mJ
0A
5A
10A
15A
2.0mJ
1.5mJ
Eon*
Eoff
1.0mJ
0.5mJ
0.0mJ
0Ω
20A
IC, COLLECTOR CURRENT
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, Tj = 150°C,
VCE = 800V, VGE = +15V/0V, RG = 4 7 Ω,
dynamic test circuit in Fig.E )
Ets*
20Ω
40Ω
60Ω
80Ω
100Ω
RG, GATE RESISTOR
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, Tj = 150°C,
VCE = 800V, VGE = +15V/0V, IC = 8A,
dynamic test circuit in Fig.E )
2.0mJ
Ets*
1.5mJ
Eon*
1.0mJ
Eoff
0.5mJ
0.0mJ
-50°C
0
10 K/W
ZthJC, TRANSIENT THERMAL IMPEDANCE
E, SWITCHING ENERGY LOSSES
*) Eon and Ets include losses
due to diode recovery.
D=0.5
0.2
-1
10 K/W
0.1
0.05
R,(K/W)
0.1020
0.40493
0.26391
0.22904
0.02
-2
10 K/W
0.01
R1
single pulse
0°C
50°C
100°C
-3
10 K/W
1µs
150°C
10µs
100µs
R2
C 1 = τ 1 /R 1 C 2 = τ 2 /R 2
1ms
10ms 100ms
1s
tp, PULSE WIDTH
Tj, JUNCTION TEMPERATURE
Figure 15. Typical switching energy losses
as a function of junction temperature
(inductive load, VCE = 800V,
VGE = +15V/0V, IC = 8A, RG = 4 7 Ω,
dynamic test circuit in Fig.E )
Power Semiconductors
τ, (s)
0.77957
0.21098
0.01247
0.00092
Figure 16. IGBT transient thermal
impedance as a function of pulse width
(D = tp / T)
7
Rev. 2_2
Sep 08
SKW07N120
20V
15V
Ciss
C, CAPACITANCE
VGE, GATE-EMITTER VOLTAGE
1nF
UCE=960V
10V
5V
100pF
Coss
Crss
0V
0nC
20nC
40nC
60nC
QGE, GATE CHARGE
Figure 17. Typical gate charge
(IC = 8A)
80nC
0V
20V
30V
150A
IC(sc), SHORT CIRCUIT COLLECTOR CURRENT
tsc, SHORT CIRCUIT WITHSTAND TIME
30µs
25µs
20µs
15µs
10µs
5µs
0µs
10V
10V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 18. Typical capacitance as a
function of collector-emitter voltage
(VGE = 0V, f = 1MHz)
11V
12V
13V
14V
50A
0A
10V
15V
VGE, GATE-EMITTER VOLTAGE
Figure 19. Short circuit withstand time as a
function of gate-emitter voltage
(VCE = 1200V, start at Tj = 25°C)
Power Semiconductors
100A
12V
14V
16V
18V
20V
VGE, GATE-EMITTER VOLTAGE
Figure 20. Typical short circuit collector
current as a function of gate-emitter voltage
(100V ≤ VCE ≤ 1200V, TC = 25°C, Tj ≤ 150°C)
8
Rev. 2_2
Sep 08
SKW07N120
350ns
1.50µC
250ns
1.25µC
Qrr, REVERSE RECOVERY CHARGE
trr, REVERSE RECOVERY TIME
300ns
IF=7A
200ns
150ns
100ns
IF=3.5A
50ns
0ns
200A/µs
400A/µs
600A/µs
IF=7A
1.00µC
0.75µC
0.50µC
0.25µC
0.00µC
200A/µs
800A/µs
d i F /d t, DIODE CURRENT SLOPE
Figure 21. Typical reverse recovery time as
a function of diode current slope
(VR = 800V, Tj = 150°C,
dynamic test circuit in Fig.E )
IF=3.5A
400A/µs
600A/µs
800A/µs
d i F /d t, DIODE CURRENT SLOPE
Figure 22. Typical reverse recovery charge
as a function of diode current slope
(VR = 800V, Tj = 150°C,
dynamic test circuit in Fig.E )
25A
15A
10A
IF=3.5A
5A
0A
200A/µs
DIODE PEAK RATE OF FALL
OF REVERSE RECOVERY CURRENT
IF=7A
d i r r / d t,
Irr, REVERSE RECOVERY CURRENT
300A/µs
20A
400A/µs
600A/µs
200A/µs
IF=7A
100A/µs
0A/µs
200A/µs
800A/µs
d i F /d t, DIODE CURRENT SLOPE
Figure 23. Typical reverse recovery current
as a function of diode current slope
(VR = 800V, Tj = 150°C,
dynamic test circuit in Fig.E )
Power Semiconductors
IF=3.5A
400A/µs
600A/µs
800A/µs
diF/dt, DIODE CURRENT SLOPE
Figure 24. Typical diode peak rate of fall of
reverse recovery current as a function of
diode current slope
(VR = 800V, Tj = 150°C,
dynamic test circuit in Fig.E )
9
Rev. 2_2
Sep 08
SKW07N120
3.0V
20A
IF=14A
VF, FORWARD VOLTAGE
IF, FORWARD CURRENT
2.5V
15A
TJ=150°C
10A
TJ=25°C
5A
2.0V
IF=7A
1.5V
IF=3.5A
1.0V
0.5V
0A
0V
1V
2V
3V
0.0V
0°C
4V
40°C
80°C
120°C
Tj, JUNCTION TEMPERATURE
Figure 26. Typical diode forward voltage as
a function of junction temperature
D=0.5
0
10 K/W
0.2
0.1
R,(K/W)
0.75885
0.88470
0.85670
0.05
-1
10 K/W
0. 0
01 .0
2
ZthJCD, TRANSIENT THERMAL IMPEDANCE
VF, FORWARD VOLTAGE
Figure 25. Typical diode forward current as
a function of forward voltage
R1
single pulse
10µs
100µs
τ, (s)
0.09354
0.00543
0.00042
R2
C 1 = τ 1 /R 1 C 2 = τ 2 /R 2
1ms
10ms
100ms
1s
tp, PULSE WIDTH
Figure 27. Diode transient thermal
impedance as a function of pulse width
(D = tp / T)
Power Semiconductors
10
Rev. 2_2
Sep 08
SKW07N120
PG-TO247-3
M
M
MAX
5.16
2.53
2.11
1.33
2.41
2.16
3.38
3.13
0.68
21.10
17.65
1.35
16.03
14.15
5.10
2.60
MIN
4.90
2.27
1.85
1.07
1.90
1.90
2.87
2.87
0.55
20.82
16.25
1.05
15.70
13.10
3.68
1.68
MIN
0.193
0.089
0.073
0.042
0.075
0.075
0.113
0.113
0.022
0.820
0.640
0.041
0.618
0.516
0.145
0.066
5.44
3
19.80
4.17
3.50
5.49
6.04
Power Semiconductors
MAX
0.203
0.099
0.083
0.052
0.095
0.085
0.133
0.123
0.027
0.831
0.695
0.053
0.631
0.557
0.201
0.102
Z8B00003327
0
0
5 5
7.5mm
0.214
3
20.31
4.47
3.70
6.00
6.30
0.780
0.164
0.138
0.216
0.238
11
0.799
0.176
0.146
0.236
0.248
17-12-2007
03
Rev. 2_2
Sep 08
SKW07N120
i,v
tr r =tS +tF
diF /dt
Qr r =QS +QF
IF
tr r
tS
QS
Ir r m
tF
10% Ir r m
QF
dir r /dt
90% Ir r m
t
VR
Figure C. Definition of diodes
switching characteristics
τ1
τ2
r1
r2
τn
rn
Tj (t)
p(t)
r1
r2
rn
Figure A. Definition of switching times
TC
Figure D. Thermal equivalent
circuit
Figure B. Definition of switching losses
Power Semiconductors
Figure E. Dynamic test circuit
Leakage inductance Lσ =180nH,
and stray capacity Cσ =40pF.
12
Rev. 2_2
Sep 08
SKW07N120
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2008 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or
any information regarding the application of the device, Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual
property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the
types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies
components may be used in life-support devices or systems only with the express written approval of
Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of
that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and
sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other
persons may be endangered.
Power Semiconductors
13
Rev. 2_2
Sep 08