SKP10N60A SKW10N60A Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode C • 75% lower Eoff compared to previous generation combined with low conduction losses • Short circuit withstand time – 10 µs • Designed for: - Motor controls - Inverter • NPT-Technology for 600V applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability PG-TO-220-3-1 • Very soft, fast recovery anti-parallel EmCon diode • Pb-free lead plating; RoHS compliant • Qualified according to JEDEC1 for target applications • Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type Marking G E PG-TO-247-3 VCE IC VCE(sat) Tj Package SKP10N60A 600V 10A 2.3V 150°C K10N60 PG-TO-220-3-1 SKW10N60A 600V 10A 2.3V 150°C K10N60 PG-TO-247-3 Maximum Ratings Parameter Symbol Collector-emitter voltage VCE DC collector current IC Value 600 20 TC = 100°C 10.6 ICpuls Turn off safe operating area - VCE ≤ 600V, Tj ≤ 150°C Diode forward current 40 40 IF TC = 25°C 21 TC = 100°C 10 Diode pulsed current, tp limited by Tjmax IFpuls 42 Gate-emitter voltage VGE ±20 Short circuit withstand time 2 tSC VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C Ptot Power dissipation TC = 25°C Operating junction and storage temperature Tj , Tstg Soldering temperature Ts wavesoldering, 1.6 mm (0.063 in.) from case for 10s 1 2 V A TC = 25°C Pulsed collector current, tp limited by Tjmax Unit V µs 10 W 92 -55...+150 260 °C °C J-STD-020 and JESD-022 Allowed number of short circuits: <1000; time between short circuits: >1s. 1 Rev. 2.3 Sep 08 SKP10N60A SKW10N60A Thermal Resistance Parameter Symbol Conditions Max. Value Unit RthJC 1.35 K/W RthJCD 2.4 Characteristic IGBT thermal resistance, junction – case Diode thermal resistance, junction – case Thermal resistance, RthJA junction – ambient PG-TO-220-3-1 PG-TO-247-3-21 62 40 Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Symbol Conditions Value min. Typ. max. 600 - - 1.7 2 2.4 - 2.3 2.8 1.2 1.4 1.8 T j = 150 °C - 1.25 1.65 3 4 5 T j = 25°C - - 40 T j = 150 °C - - 1500 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0 V , I C =500 µA Collector-emitter saturation voltage VCE(sat) V G E = 15 V, I C =10A T j = 25°C T j = 150 °C Diode forward voltage VF V VGE=0V, IF=10A T j = 25°C Gate-emitter threshold voltage VGE(th) I C =300 µA,V C E =V G E Zero gate voltage collector current ICES V C E = 60 0 V,V G E = 0 V µA Gate-emitter leakage current IGES V C E = 0 V , V G E =20V - - 100 nA Transconductance gfs V C E =20V, I C =10A - 6.7 - S Input capacitance Ciss V C E =25V, - 550 660 pF Output capacitance Coss VGE=0V, - 62 75 Reverse transfer capacitance Crss f=1MHz - 42 51 Gate charge QGate V C C = 48 0 V, I C =10A V G E =15V - 52 68 nC Internal emitter inductance LE PG- TO- 220- 3-1 - 7 - nH PG- TO- 247- 3-21 - 13 - V G E =15V,t S C ≤1 0 µs V C C ≤ 60 0V, T j ≤ 150 °C - 100 - Dynamic Characteristic measured 5mm (0.197 in.) from case 2) Short circuit collector current 2) IC(SC) A Allowed number of short circuits: <1000; time between short circuits: >1s. 2 Rev. 2.3 Sep 08 SKP10N60A SKW10N60A Switching Characteristic, Inductive Load, at Tj=25 °C Parameter Symbol Conditions Value min. typ. max. - 28 34 - 12 15 - 178 214 - 24 29 - 0.15 0.173 Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon T j = 25°C , V C C = 40 0 V, I C =10A, V G E = 0 /1 5 V, R G = 2 5Ω , L σ 1 ) =1 80nH, C σ 1 ) =55pF Turn-off energy Eoff Total switching energy Ets Energy losses include “tail” and diode reverse recovery. trr T j = 25°C , - 220 - tS V R = 20 0 V , I F =10A, - 20 - tF d i F /d t= 200A/µs - 200 - - 0.17 0.221 - 0.320 0.394 ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time ns Diode reverse recovery charge Qrr - 310 - nC Diode peak reverse recovery current Irrm - 4.5 - A Diode peak rate of fall of reverse recovery current during t b dirr/dt - 180 - A/µs Switching Characteristic, Inductive Load, at Tj=150 °C Parameter Symbol Conditions Value min. typ. max. - 28 34 - 12 15 - 198 238 - 26 32 - 0.260 0.299 Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon T j = 150 °C V C C = 40 0 V, I C =10A, V G E = 0 /1 5 V, R G = 2 5Ω L σ 1 ) =1 80nH, C σ 1 ) =55pF Turn-off energy Eoff Total switching energy Ets Energy losses include “tail” and diode reverse recovery. trr T j = 150 °C - 350 - tS V R = 20 0 V , I F =10A, - 36 - tF d i F /d t= 200A/µs - 314 - - 0.280 0.364 - 0.540 0.663 ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time ns Diode reverse recovery charge Qrr - 690 - nC Diode peak reverse recovery current Irrm - 6.3 - A Diode peak rate of fall of reverse recovery current during t b dirr/dt - 200 - A/µs 1) Leakage inductance L σ a nd Stray capacity C σ due to dynamic test circuit in Figure E. 3 Rev. 2.3 Sep 08 SKP10N60A SKW10N60A 50A tp = 5 µs Ic 40A 10A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT T C =80°c 30A 20A 10A T C =110°c Ic 1 5 µs 5 0 µs 2 0 0 µs 1A 1m s DC 0 ,1 A 0A 10H z 100H z 1kH z 10kH z 100kH z 1V f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 25Ω) 10V 100V 1000V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤ 150°C) 120W 25A 100W IC, COLLECTOR CURRENT 80W 60W 40W Ptot, POWER DISSIPATION 20A 20W 0W 25°C 50 °C 75°C 100 °C 15A 10A 5A 0A 2 5 °C 125°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C) 5 0 °C 7 5 °C 1 0 0 °C 1 2 5 °C TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≤ 15V, Tj ≤ 150°C) 4 Rev. 2.3 Sep 08 35A 35A 30A 30A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT SKP10N60A SKW10N60A 25A V GE=20V 20A 15V 13V 15A 11V 9V 10A 7V 5V 1V 2V 20A 15A 15V 13V 11V 9V 10A 7V 5V 3V 4V 0A 0V 5V 1V 2V 3V 4V 5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150°C) 35A 3 ,5 V T j=+25°C +150°C 25A 20A 15A 10A 5A 0A 0V 2V 4V 6V 8V 10V VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25°C) 30A IC, COLLECTOR CURRENT V GE=20V 5A 5A 0A 0V 25A VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 10V) IC = 2 0 A 3 ,0 V 2 ,5 V IC = 1 0 A 2 ,0 V 1 ,5 V 0 °C IC = 5 A 5 0 °C 1 0 0 °C 1 5 0 °C Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 5 Rev. 2.3 Sep 08 SKP10N60A SKW10N60A t, SWITCHING TIMES t, SWITCHING TIMES t d (o ff) 100ns tf t d (o n ) 100ns tf t d (o n ) tr 10ns 0A 5A 10A 15A 20A t d (o ff) 10ns 0Ω 25A IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 2 5 Ω, Dynamic test circuit in Figure E) tr 20Ω 40Ω 60Ω 80Ω RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 10A, Dynamic test circuit in Figure E) VGE(th), GATE-EMITTER THRESHOLD VOLTAGE 5,5V t, SWITCHING TIMES t d(off) 100ns t d(on) tf 10ns 0°C tr 50°C 100°C 150°C 5,0V 4,5V 4,0V 3,5V m ax. 3,0V 2,5V typ. 2,0V 1,5V m in. 1,0V -50°C Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 10A, RG = 25 Ω, Dynamic test circuit in Figure E) 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.3mA) 6 Rev. 2.3 Sep 08 SKP10N60A SKW10N60A 1,6m J E ts * 1,2m J 1,0m J 0,8m J E on* 0,6m J E o ff 0,4m J 0,2m J 0,0m J 0A 5A 10A 15A 20A E, SWITCHING ENERGY LOSSES 1,4m J E, SWITCHING ENERGY LOSSES 1 ,0m J *) Eon and Ets include losses due to diode recovery. 0 ,4m J E on* 20 Ω 40Ω 60 Ω 80Ω 0 ZthJC, TRANSIENT THERMAL IMPEDANCE E, SWITCHING ENERGY LOSSES E o ff 10 K/W 0,6mJ 0,4mJ Ets* E off E on* 0,0mJ 0°C 0 ,6m J RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 10A, Dynamic test circuit in Figure E) *) Eon and Ets include losses due to diode recovery. 0,2mJ E ts * 0 ,8m J 0 ,2m J 0Ω 25A IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 2 5 Ω, Dynamic test circuit in Figure E) 0,8mJ *) Eon and Ets include losses due to diode recovery. D=0.5 0.2 0.1 -1 10 K/W R,(K/W) 0.4287 0.4830 0.4383 0.05 0.02 τ, (s) 0.0358 -3 4.3*10 -4 3.46*10 R1 -2 10 K/W 0.01 R2 C 1 = τ 1 /R 1 C 2 = τ 2 /R 2 single pulse -3 50°C 100°C 10 K/W 1µs 150°C 10µs 100µs 1m s 10m s 100m s 1s tp, PULSE WIDTH Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 10A, RG = 25 Ω, Dynamic test circuit in Figure E) Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T) 7 Rev. 2.3 Sep 08 SKP10N60A SKW10N60A 1nF 25V C iss 15V C, CAPACITANCE VGE, GATE-EMITTER VOLTAGE 20V 120V 480V 10V C o ss C rss 5V 0V 0nC 25nC 50nC 10pF 0V 75nC QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 10A) 20V 30V IC(sc), SHORT CIRCUIT COLLECTOR CURRENT 200A 20µ s 15µ s 10µ s 5µ s 0µ s 10V 10V VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) 25µ s tsc, SHORT CIRCUIT WITHSTAND TIME 100pF 11V 12V 13V 14V 15V VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 600V, start at Tj = 25°C) 150A 100A 50A 0A 10V 12V 14V 16V 18V 20V VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (VCE ≤ 600V, Tj = 150°C) 8 Rev. 2.3 Sep 08 SKP10N60A SKW10N60A 1400nC 500ns trr, REVERSE RECOVERY TIME 300ns I F = 20A 200ns I F = 10A I F = 5A 100ns Qrr, REVERSE RECOVERY CHARGE 1200nC 400ns d i F /d t, DIODE CURRENT SLOPE Figure 21. Typical reverse recovery time as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) 600nC IF = 5 A 400nC 200nC d i F /d t, DIODE CURRENT SLOPE Figure 22. Typical reverse recovery charge as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) 1 0 00 A / µs 16A 8 00 A / µs IF = 1 0 A 8A IF = 5 A 4A d i r r / d t, IF = 2 0 A DIODE PEAK RATE OF FALL OF REVERSE RECOVERY CURRENT 20A 12A I F = 10 A 800nC 0nC 100A / µs 300A / µs 500A / µs 700A / µs 900A / µs 0ns 100A / µs 300A / µs 500A/ µs 700A/ µs 900A/ µs Irr, REVERSE RECOVERY CURRENT I F = 2 0A 1000nC 0A 1 0 0 A / µs 3 0 0 A / µs 5 0 0 A / µs 7 0 0 A / µs 9 0 0 A / µs 6 00 A / µs 4 00 A / µs 2 00 A / µs 0 A / µs 1 0 0A / µs d i F /d t, DIODE CURRENT SLOPE Figure 23. Typical reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) 3 00 A / µs 50 0A / µs 7 00 A / µs 90 0 A / µs diF/dt, DIODE CURRENT SLOPE Figure 24. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) 9 Rev. 2.3 Sep 08 SKP10N60A SKW10N60A 2.0V 20A I F = 20A VF, FORWARD VOLTAGE IF, FORWARD CURRENT 15A 150°C 10A 100°C 25°C 5A 1.5V I F = 10A -55°C 1.0V 0A 0.0V 0.5V 1.0V 1.5V 2.0V ZthJCD, TRANSIENT THERMAL IMPEDANCE VF, FORWARD VOLTAGE Figure 25. Typical diode forward current as a function of forward voltage -40°C 0°C 40°C 80°C 120°C Tj, JUNCTION TEMPERATURE Figure 26. Typical diode forward voltage as a function of junction temperature D=0.5 0 10 K/W 0.2 0.1 R,(K/W) 0.759 0.481 0.609 0.551 0.05 -1 10 K/W 0.02 R1 0.01 single pulse τ, (s) -2 5.53*10 -3 4.28*10 -4 4.83*10 -5 5.77*10 R2 C 1 = τ 1 /R 1 C 2 = τ 2 /R 2 -2 10 K/W 1µs 10µs 100µs 1ms 10ms 100ms 1s tp, PULSE WIDTH Figure 27. Diode transient thermal impedance as a function of pulse width (D = tp / T) 10 Rev. 2.3 Sep 08 SKP10N60A SKW10N60A PG-TO220-3-1 11 Rev. 2.3 Sep 08 SKP10N60A SKW10N60A PG-TO247-3 M M MAX 5.16 2.53 2.11 1.33 2.41 2.16 3.38 3.13 0.68 21.10 17.65 1.35 16.03 14.15 5.10 2.60 MIN 4.90 2.27 1.85 1.07 1.90 1.90 2.87 2.87 0.55 20.82 16.25 1.05 15.70 13.10 3.68 1.68 MIN 0.193 0.089 0.073 0.042 0.075 0.075 0.113 0.113 0.022 0.820 0.640 0.041 0.618 0.516 0.145 0.066 5.44 3 19.80 4.17 3.50 5.49 6.04 MAX 0.203 0.099 0.083 0.052 0.095 0.085 0.133 0.123 0.027 0.831 0.695 0.053 0.631 0.557 0.201 0.102 Z8B00003327 0 0 5 5 7.5mm 0.214 3 20.31 4.47 3.70 6.00 6.30 0.780 0.164 0.138 0.216 0.238 12 0.799 0.176 0.146 0.236 0.248 17-12-2007 03 Rev. 2.3 Sep 08 SKP10N60A SKW10N60A i,v tr r =tS +tF diF /dt Qr r =QS +QF IF tS QS Ir r m tr r tF 10% Ir r m QF dir r /dt 90% Ir r m t VR Figure C. Definition of diodes switching characteristics τ1 τ2 r1 r2 τn rn Tj (t) p(t) r1 r2 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit Figure B. Definition of switching losses Figure E. Dynamic test circuit Leakage inductance Lσ =180nH a nd Stray capacity C σ =55pF. Published by Infineon Technologies AG, 13 Rev. 2.3 Sep 08 SKP10N60A SKW10N60A Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 14 Rev. 2.3 Sep 08