INFINEON SKP10N60A

SKP10N60A
SKW10N60A
Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode
C
• 75% lower Eoff compared to previous generation
combined with low conduction losses
• Short circuit withstand time – 10 µs
• Designed for:
- Motor controls
- Inverter
• NPT-Technology for 600V applications offers:
- very tight parameter distribution
- high ruggedness, temperature stable behaviour
- parallel switching capability
PG-TO-220-3-1
• Very soft, fast recovery anti-parallel EmCon diode
• Pb-free lead plating; RoHS compliant
• Qualified according to JEDEC1 for target applications
• Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type
Marking
G
E
PG-TO-247-3
VCE
IC
VCE(sat)
Tj
Package
SKP10N60A
600V
10A
2.3V
150°C
K10N60 PG-TO-220-3-1
SKW10N60A
600V
10A
2.3V
150°C
K10N60 PG-TO-247-3
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
VCE
DC collector current
IC
Value
600
20
TC = 100°C
10.6
ICpuls
Turn off safe operating area
-
VCE ≤ 600V, Tj ≤ 150°C
Diode forward current
40
40
IF
TC = 25°C
21
TC = 100°C
10
Diode pulsed current, tp limited by Tjmax
IFpuls
42
Gate-emitter voltage
VGE
±20
Short circuit withstand time
2
tSC
VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C
Ptot
Power dissipation
TC = 25°C
Operating junction and storage temperature
Tj , Tstg
Soldering temperature
Ts
wavesoldering, 1.6 mm (0.063 in.) from case for 10s
1
2
V
A
TC = 25°C
Pulsed collector current, tp limited by Tjmax
Unit
V
µs
10
W
92
-55...+150
260
°C
°C
J-STD-020 and JESD-022
Allowed number of short circuits: <1000; time between short circuits: >1s.
1
Rev. 2.3
Sep 08
SKP10N60A
SKW10N60A
Thermal Resistance
Parameter
Symbol
Conditions
Max. Value
Unit
RthJC
1.35
K/W
RthJCD
2.4
Characteristic
IGBT thermal resistance,
junction – case
Diode thermal resistance,
junction – case
Thermal resistance,
RthJA
junction – ambient
PG-TO-220-3-1
PG-TO-247-3-21
62
40
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Parameter
Symbol
Conditions
Value
min.
Typ.
max.
600
-
-
1.7
2
2.4
-
2.3
2.8
1.2
1.4
1.8
T j = 150 °C
-
1.25
1.65
3
4
5
T j = 25°C
-
-
40
T j = 150 °C
-
-
1500
Unit
Static Characteristic
Collector-emitter breakdown voltage
V ( B R ) C E S V G E = 0 V , I C =500 µA
Collector-emitter saturation voltage
VCE(sat)
V G E = 15 V, I C =10A
T j = 25°C
T j = 150 °C
Diode forward voltage
VF
V
VGE=0V, IF=10A
T j = 25°C
Gate-emitter threshold voltage
VGE(th)
I C =300 µA,V C E =V G E
Zero gate voltage collector current
ICES
V C E = 60 0 V,V G E = 0 V
µA
Gate-emitter leakage current
IGES
V C E = 0 V , V G E =20V
-
-
100
nA
Transconductance
gfs
V C E =20V, I C =10A
-
6.7
-
S
Input capacitance
Ciss
V C E =25V,
-
550
660
pF
Output capacitance
Coss
VGE=0V,
-
62
75
Reverse transfer capacitance
Crss
f=1MHz
-
42
51
Gate charge
QGate
V C C = 48 0 V, I C =10A
V G E =15V
-
52
68
nC
Internal emitter inductance
LE
PG- TO- 220- 3-1
-
7
-
nH
PG- TO- 247- 3-21
-
13
-
V G E =15V,t S C ≤1 0 µs
V C C ≤ 60 0V,
T j ≤ 150 °C
-
100
-
Dynamic Characteristic
measured 5mm (0.197 in.) from case
2)
Short circuit collector current
2)
IC(SC)
A
Allowed number of short circuits: <1000; time between short circuits: >1s.
2
Rev. 2.3
Sep 08
SKP10N60A
SKW10N60A
Switching Characteristic, Inductive Load, at Tj=25 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
-
28
34
-
12
15
-
178
214
-
24
29
-
0.15
0.173
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
T j = 25°C ,
V C C = 40 0 V, I C =10A,
V G E = 0 /1 5 V,
R G = 2 5Ω ,
L σ 1 ) =1 80nH,
C σ 1 ) =55pF
Turn-off energy
Eoff
Total switching energy
Ets
Energy losses include
“tail” and diode
reverse recovery.
trr
T j = 25°C ,
-
220
-
tS
V R = 20 0 V , I F =10A,
-
20
-
tF
d i F /d t= 200A/µs
-
200
-
-
0.17
0.221
-
0.320
0.394
ns
mJ
Anti-Parallel Diode Characteristic
Diode reverse recovery time
ns
Diode reverse recovery charge
Qrr
-
310
-
nC
Diode peak reverse recovery current
Irrm
-
4.5
-
A
Diode peak rate of fall of reverse
recovery current during t b
dirr/dt
-
180
-
A/µs
Switching Characteristic, Inductive Load, at Tj=150 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
-
28
34
-
12
15
-
198
238
-
26
32
-
0.260
0.299
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
T j = 150 °C
V C C = 40 0 V, I C =10A,
V G E = 0 /1 5 V,
R G = 2 5Ω
L σ 1 ) =1 80nH,
C σ 1 ) =55pF
Turn-off energy
Eoff
Total switching energy
Ets
Energy losses include
“tail” and diode
reverse recovery.
trr
T j = 150 °C
-
350
-
tS
V R = 20 0 V , I F =10A,
-
36
-
tF
d i F /d t= 200A/µs
-
314
-
-
0.280
0.364
-
0.540
0.663
ns
mJ
Anti-Parallel Diode Characteristic
Diode reverse recovery time
ns
Diode reverse recovery charge
Qrr
-
690
-
nC
Diode peak reverse recovery current
Irrm
-
6.3
-
A
Diode peak rate of fall of reverse
recovery current during t b
dirr/dt
-
200
-
A/µs
1)
Leakage inductance L σ a nd Stray capacity C σ due to dynamic test circuit in Figure E.
3
Rev. 2.3
Sep 08
SKP10N60A
SKW10N60A
50A
tp = 5 µs
Ic
40A
10A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
T C =80°c
30A
20A
10A
T C =110°c
Ic
1 5 µs
5 0 µs
2 0 0 µs
1A
1m s
DC
0 ,1 A
0A
10H z
100H z
1kH z
10kH z 100kH z
1V
f, SWITCHING FREQUENCY
Figure 1. Collector current as a function of
switching frequency
(Tj ≤ 150°C, D = 0.5, VCE = 400V,
VGE = 0/+15V, RG = 25Ω)
10V
100V
1000V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 2. Safe operating area
(D = 0, TC = 25°C, Tj ≤ 150°C)
120W
25A
100W
IC, COLLECTOR CURRENT
80W
60W
40W
Ptot,
POWER DISSIPATION
20A
20W
0W
25°C
50 °C
75°C
100 °C
15A
10A
5A
0A
2 5 °C
125°C
TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function
of case temperature
(Tj ≤ 150°C)
5 0 °C
7 5 °C
1 0 0 °C
1 2 5 °C
TC, CASE TEMPERATURE
Figure 4. Collector current as a function of
case temperature
(VGE ≤ 15V, Tj ≤ 150°C)
4
Rev. 2.3
Sep 08
35A
35A
30A
30A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
SKP10N60A
SKW10N60A
25A
V GE=20V
20A
15V
13V
15A
11V
9V
10A
7V
5V
1V
2V
20A
15A
15V
13V
11V
9V
10A
7V
5V
3V
4V
0A
0V
5V
1V
2V
3V
4V
5V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 6. Typical output characteristics
(Tj = 150°C)
35A
3 ,5 V
T j=+25°C
+150°C
25A
20A
15A
10A
5A
0A
0V
2V
4V
6V
8V
10V
VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristics
(Tj = 25°C)
30A
IC, COLLECTOR CURRENT
V GE=20V
5A
5A
0A
0V
25A
VGE, GATE-EMITTER VOLTAGE
Figure 7. Typical transfer characteristics
(VCE = 10V)
IC = 2 0 A
3 ,0 V
2 ,5 V
IC = 1 0 A
2 ,0 V
1 ,5 V
0 °C
IC = 5 A
5 0 °C
1 0 0 °C
1 5 0 °C
Tj, JUNCTION TEMPERATURE
Figure 8. Typical collector-emitter
saturation voltage as a function of junction
temperature
(VGE = 15V)
5
Rev. 2.3
Sep 08
SKP10N60A
SKW10N60A
t, SWITCHING TIMES
t, SWITCHING TIMES
t d (o ff)
100ns
tf
t d (o n )
100ns
tf
t d (o n )
tr
10ns
0A
5A
10A
15A
20A
t d (o ff)
10ns
0Ω
25A
IC, COLLECTOR CURRENT
Figure 9. Typical switching times as a
function of collector current
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, RG = 2 5 Ω,
Dynamic test circuit in Figure E)
tr
20Ω
40Ω
60Ω
80Ω
RG, GATE RESISTOR
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, IC = 10A,
Dynamic test circuit in Figure E)
VGE(th), GATE-EMITTER THRESHOLD VOLTAGE
5,5V
t, SWITCHING TIMES
t d(off)
100ns
t d(on)
tf
10ns
0°C
tr
50°C
100°C
150°C
5,0V
4,5V
4,0V
3,5V
m ax.
3,0V
2,5V
typ.
2,0V
1,5V
m in.
1,0V
-50°C
Tj, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE = 400V, VGE = 0/+15V,
IC = 10A, RG = 25 Ω,
Dynamic test circuit in Figure E)
0°C
50°C
100°C
150°C
Tj, JUNCTION TEMPERATURE
Figure 12. Gate-emitter threshold voltage
as a function of junction temperature
(IC = 0.3mA)
6
Rev. 2.3
Sep 08
SKP10N60A
SKW10N60A
1,6m J
E ts *
1,2m J
1,0m J
0,8m J
E on*
0,6m J
E o ff
0,4m J
0,2m J
0,0m J
0A
5A
10A
15A
20A
E, SWITCHING ENERGY LOSSES
1,4m J
E, SWITCHING ENERGY LOSSES
1 ,0m J
*) Eon and Ets include losses
due to diode recovery.
0 ,4m J
E on*
20 Ω
40Ω
60 Ω
80Ω
0
ZthJC, TRANSIENT THERMAL IMPEDANCE
E, SWITCHING ENERGY LOSSES
E o ff
10 K/W
0,6mJ
0,4mJ
Ets*
E off
E on*
0,0mJ
0°C
0 ,6m J
RG, GATE RESISTOR
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, IC = 10A,
Dynamic test circuit in Figure E)
*) Eon and Ets include losses
due to diode recovery.
0,2mJ
E ts *
0 ,8m J
0 ,2m J
0Ω
25A
IC, COLLECTOR CURRENT
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, RG = 2 5 Ω,
Dynamic test circuit in Figure E)
0,8mJ
*) Eon and Ets include losses
due to diode recovery.
D=0.5
0.2
0.1
-1
10 K/W
R,(K/W)
0.4287
0.4830
0.4383
0.05
0.02
τ, (s)
0.0358
-3
4.3*10
-4
3.46*10
R1
-2
10 K/W 0.01
R2
C 1 = τ 1 /R 1 C 2 = τ 2 /R 2
single pulse
-3
50°C
100°C
10 K/W
1µs
150°C
10µs
100µs
1m s
10m s 100m s
1s
tp, PULSE WIDTH
Tj, JUNCTION TEMPERATURE
Figure 15. Typical switching energy losses
as a function of junction temperature
(inductive load, VCE = 400V, VGE = 0/+15V,
IC = 10A, RG = 25 Ω,
Dynamic test circuit in Figure E)
Figure 16. IGBT transient thermal
impedance as a function of pulse width
(D = tp / T)
7
Rev. 2.3
Sep 08
SKP10N60A
SKW10N60A
1nF
25V
C iss
15V
C, CAPACITANCE
VGE, GATE-EMITTER VOLTAGE
20V
120V
480V
10V
C o ss
C rss
5V
0V
0nC
25nC
50nC
10pF
0V
75nC
QGE, GATE CHARGE
Figure 17. Typical gate charge
(IC = 10A)
20V
30V
IC(sc), SHORT CIRCUIT COLLECTOR CURRENT
200A
20µ s
15µ s
10µ s
5µ s
0µ s
10V
10V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 18. Typical capacitance as a
function of collector-emitter voltage
(VGE = 0V, f = 1MHz)
25µ s
tsc, SHORT CIRCUIT WITHSTAND TIME
100pF
11V
12V
13V
14V
15V
VGE, GATE-EMITTER VOLTAGE
Figure 19. Short circuit withstand time as a
function of gate-emitter voltage
(VCE = 600V, start at Tj = 25°C)
150A
100A
50A
0A
10V
12V
14V
16V
18V
20V
VGE, GATE-EMITTER VOLTAGE
Figure 20. Typical short circuit collector
current as a function of gate-emitter voltage
(VCE ≤ 600V, Tj = 150°C)
8
Rev. 2.3
Sep 08
SKP10N60A
SKW10N60A
1400nC
500ns
trr, REVERSE RECOVERY TIME
300ns
I F = 20A
200ns
I F = 10A
I F = 5A
100ns
Qrr, REVERSE RECOVERY CHARGE
1200nC
400ns
d i F /d t, DIODE CURRENT SLOPE
Figure 21. Typical reverse recovery time as
a function of diode current slope
(VR = 200V, Tj = 125°C,
Dynamic test circuit in Figure E)
600nC
IF = 5 A
400nC
200nC
d i F /d t, DIODE CURRENT SLOPE
Figure 22. Typical reverse recovery charge
as a function of diode current slope
(VR = 200V, Tj = 125°C,
Dynamic test circuit in Figure E)
1 0 00 A / µs
16A
8 00 A / µs
IF = 1 0 A
8A
IF = 5 A
4A
d i r r / d t,
IF = 2 0 A
DIODE PEAK RATE OF FALL
OF REVERSE RECOVERY CURRENT
20A
12A
I F = 10 A
800nC
0nC
100A / µs 300A / µs 500A / µs 700A / µs 900A / µs
0ns
100A / µs 300A / µs 500A/ µs 700A/ µs 900A/ µs
Irr, REVERSE RECOVERY CURRENT
I F = 2 0A
1000nC
0A
1 0 0 A / µs 3 0 0 A / µs 5 0 0 A / µs 7 0 0 A / µs 9 0 0 A / µs
6 00 A / µs
4 00 A / µs
2 00 A / µs
0 A / µs
1 0 0A / µs
d i F /d t, DIODE CURRENT SLOPE
Figure 23. Typical reverse recovery current
as a function of diode current slope
(VR = 200V, Tj = 125°C,
Dynamic test circuit in Figure E)
3 00 A / µs
50 0A / µs
7 00 A / µs
90 0 A / µs
diF/dt, DIODE CURRENT SLOPE
Figure 24. Typical diode peak rate of fall of
reverse recovery current as a function of
diode current slope
(VR = 200V, Tj = 125°C,
Dynamic test circuit in Figure E)
9
Rev. 2.3
Sep 08
SKP10N60A
SKW10N60A
2.0V
20A
I F = 20A
VF, FORWARD VOLTAGE
IF, FORWARD CURRENT
15A
150°C
10A
100°C
25°C
5A
1.5V
I F = 10A
-55°C
1.0V
0A
0.0V
0.5V
1.0V
1.5V
2.0V
ZthJCD, TRANSIENT THERMAL IMPEDANCE
VF, FORWARD VOLTAGE
Figure 25. Typical diode forward current as
a function of forward voltage
-40°C
0°C
40°C
80°C
120°C
Tj, JUNCTION TEMPERATURE
Figure 26. Typical diode forward voltage as
a function of junction temperature
D=0.5
0
10 K/W
0.2
0.1
R,(K/W)
0.759
0.481
0.609
0.551
0.05
-1
10 K/W 0.02
R1
0.01
single pulse
τ, (s)
-2
5.53*10
-3
4.28*10
-4
4.83*10
-5
5.77*10
R2
C 1 = τ 1 /R 1 C 2 = τ 2 /R 2
-2
10 K/W
1µs
10µs
100µs
1ms
10ms 100ms
1s
tp, PULSE WIDTH
Figure 27. Diode transient thermal
impedance as a function of pulse width
(D = tp / T)
10
Rev. 2.3
Sep 08
SKP10N60A
SKW10N60A
PG-TO220-3-1
11
Rev. 2.3
Sep 08
SKP10N60A
SKW10N60A
PG-TO247-3
M
M
MAX
5.16
2.53
2.11
1.33
2.41
2.16
3.38
3.13
0.68
21.10
17.65
1.35
16.03
14.15
5.10
2.60
MIN
4.90
2.27
1.85
1.07
1.90
1.90
2.87
2.87
0.55
20.82
16.25
1.05
15.70
13.10
3.68
1.68
MIN
0.193
0.089
0.073
0.042
0.075
0.075
0.113
0.113
0.022
0.820
0.640
0.041
0.618
0.516
0.145
0.066
5.44
3
19.80
4.17
3.50
5.49
6.04
MAX
0.203
0.099
0.083
0.052
0.095
0.085
0.133
0.123
0.027
0.831
0.695
0.053
0.631
0.557
0.201
0.102
Z8B00003327
0
0
5 5
7.5mm
0.214
3
20.31
4.47
3.70
6.00
6.30
0.780
0.164
0.138
0.216
0.238
12
0.799
0.176
0.146
0.236
0.248
17-12-2007
03
Rev. 2.3
Sep 08
SKP10N60A
SKW10N60A
i,v
tr r =tS +tF
diF /dt
Qr r =QS +QF
IF
tS
QS
Ir r m
tr r
tF
10% Ir r m
QF
dir r /dt
90% Ir r m
t
VR
Figure C. Definition of diodes
switching characteristics
τ1
τ2
r1
r2
τn
rn
Tj (t)
p(t)
r1
r2
rn
Figure A. Definition of switching times
TC
Figure D. Thermal equivalent
circuit
Figure B. Definition of switching losses
Figure E. Dynamic test circuit
Leakage inductance Lσ =180nH
a nd Stray capacity C σ =55pF.
Published by
Infineon Technologies AG,
13
Rev. 2.3
Sep 08
SKP10N60A
SKW10N60A
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2008 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or
any information regarding the application of the device, Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual
property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the
types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies
components may be used in life-support devices or systems only with the express written approval of
Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of
that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and
sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other
persons may be endangered.
14
Rev. 2.3
Sep 08